rf_states.c revision 1.47 1 /* $NetBSD: rf_states.c,v 1.47 2011/05/05 07:12:58 mrg Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.47 2011/05/05 07:12:58 mrg Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48 #include "rf_paritymap.h"
49
50 #ifndef RF_DEBUG_STATES
51 #define RF_DEBUG_STATES 0
52 #endif
53
54 /* prototypes for some of the available states.
55
56 States must:
57
58 - not block.
59
60 - either schedule rf_ContinueRaidAccess as a callback and return
61 RF_TRUE, or complete all of their work and return RF_FALSE.
62
63 - increment desc->state when they have finished their work.
64 */
65
66 #if RF_DEBUG_STATES
67 static char *
68 StateName(RF_AccessState_t state)
69 {
70 switch (state) {
71 case rf_QuiesceState:return "QuiesceState";
72 case rf_MapState:
73 return "MapState";
74 case rf_LockState:
75 return "LockState";
76 case rf_CreateDAGState:
77 return "CreateDAGState";
78 case rf_ExecuteDAGState:
79 return "ExecuteDAGState";
80 case rf_ProcessDAGState:
81 return "ProcessDAGState";
82 case rf_CleanupState:
83 return "CleanupState";
84 case rf_LastState:
85 return "LastState";
86 case rf_IncrAccessesCountState:
87 return "IncrAccessesCountState";
88 case rf_DecrAccessesCountState:
89 return "DecrAccessesCountState";
90 default:
91 return "!!! UnnamedState !!!";
92 }
93 }
94 #endif
95
96 void
97 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
98 {
99 int suspended = RF_FALSE;
100 int current_state_index = desc->state;
101 RF_AccessState_t current_state = desc->states[current_state_index];
102 #if RF_DEBUG_STATES
103 int unit = desc->raidPtr->raidid;
104 #endif
105
106 do {
107
108 current_state_index = desc->state;
109 current_state = desc->states[current_state_index];
110
111 switch (current_state) {
112
113 case rf_QuiesceState:
114 suspended = rf_State_Quiesce(desc);
115 break;
116 case rf_IncrAccessesCountState:
117 suspended = rf_State_IncrAccessCount(desc);
118 break;
119 case rf_MapState:
120 suspended = rf_State_Map(desc);
121 break;
122 case rf_LockState:
123 suspended = rf_State_Lock(desc);
124 break;
125 case rf_CreateDAGState:
126 suspended = rf_State_CreateDAG(desc);
127 break;
128 case rf_ExecuteDAGState:
129 suspended = rf_State_ExecuteDAG(desc);
130 break;
131 case rf_ProcessDAGState:
132 suspended = rf_State_ProcessDAG(desc);
133 break;
134 case rf_CleanupState:
135 suspended = rf_State_Cleanup(desc);
136 break;
137 case rf_DecrAccessesCountState:
138 suspended = rf_State_DecrAccessCount(desc);
139 break;
140 case rf_LastState:
141 suspended = rf_State_LastState(desc);
142 break;
143 }
144
145 /* after this point, we cannot dereference desc since
146 * desc may have been freed. desc is only freed in
147 * LastState, so if we renter this function or loop
148 * back up, desc should be valid. */
149
150 #if RF_DEBUG_STATES
151 if (rf_printStatesDebug) {
152 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
153 unit, StateName(current_state),
154 current_state_index, (long) desc,
155 suspended ? "callback scheduled" : "looping");
156 }
157 #endif
158 } while (!suspended && current_state != rf_LastState);
159
160 return;
161 }
162
163
164 void
165 rf_ContinueDagAccess(RF_DagList_t *dagList)
166 {
167 #if RF_ACC_TRACE > 0
168 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
169 RF_Etimer_t timer;
170 #endif
171 RF_RaidAccessDesc_t *desc;
172 RF_DagHeader_t *dag_h;
173 int i;
174
175 desc = dagList->desc;
176
177 #if RF_ACC_TRACE > 0
178 timer = tracerec->timer;
179 RF_ETIMER_STOP(timer);
180 RF_ETIMER_EVAL(timer);
181 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
182 RF_ETIMER_START(tracerec->timer);
183 #endif
184
185 /* skip to dag which just finished */
186 dag_h = dagList->dags;
187 for (i = 0; i < dagList->numDagsDone; i++) {
188 dag_h = dag_h->next;
189 }
190
191 /* check to see if retry is required */
192 if (dag_h->status == rf_rollBackward) {
193 /* when a dag fails, mark desc status as bad and allow
194 * all other dags in the desc to execute to
195 * completion. then, free all dags and start over */
196 desc->status = 1; /* bad status */
197 #if 0
198 printf("raid%d: DAG failure: %c addr 0x%lx "
199 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
200 desc->raidPtr->raidid, desc->type,
201 (long) desc->raidAddress,
202 (long) desc->raidAddress, (int) desc->numBlocks,
203 (int) desc->numBlocks,
204 (unsigned long) (desc->bufPtr), desc->state);
205 #endif
206 }
207 dagList->numDagsDone++;
208 rf_ContinueRaidAccess(desc);
209 }
210
211 int
212 rf_State_LastState(RF_RaidAccessDesc_t *desc)
213 {
214 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
215 RF_CBParam_t callbackArg;
216
217 callbackArg.p = desc->callbackArg;
218
219 /*
220 * If this is not an async request, wake up the caller
221 */
222 if (desc->async_flag == 0)
223 wakeup(desc->bp);
224
225 /*
226 * That's all the IO for this one... unbusy the 'disk'.
227 */
228
229 rf_disk_unbusy(desc);
230
231 /*
232 * Wakeup any requests waiting to go.
233 */
234
235 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
236 ((RF_Raid_t *) desc->raidPtr)->openings++;
237 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
238
239 rf_lock_mutex2(desc->raidPtr->iodone_lock);
240 rf_signal_cond2(desc->raidPtr->iodone_cv);
241 rf_unlock_mutex2(desc->raidPtr->iodone_lock);
242
243 /*
244 * The parity_map hook has to go here, because the iodone
245 * callback goes straight into the kintf layer.
246 */
247 if (desc->raidPtr->parity_map != NULL &&
248 desc->type == RF_IO_TYPE_WRITE)
249 rf_paritymap_end(desc->raidPtr->parity_map,
250 desc->raidAddress, desc->numBlocks);
251
252 /* printf("Calling biodone on 0x%x\n",desc->bp); */
253 biodone(desc->bp); /* access came through ioctl */
254
255 if (callbackFunc)
256 callbackFunc(callbackArg);
257 rf_FreeRaidAccDesc(desc);
258
259 return RF_FALSE;
260 }
261
262 int
263 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
264 {
265 RF_Raid_t *raidPtr;
266
267 raidPtr = desc->raidPtr;
268 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
269 * below */
270 rf_lock_mutex2(raidPtr->access_suspend_mutex);
271 raidPtr->accs_in_flight++; /* used to detect quiescence */
272 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
273
274 desc->state++;
275 return RF_FALSE;
276 }
277
278 int
279 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
280 {
281 RF_Raid_t *raidPtr;
282
283 raidPtr = desc->raidPtr;
284
285 rf_lock_mutex2(raidPtr->access_suspend_mutex);
286 raidPtr->accs_in_flight--;
287 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
288 rf_SignalQuiescenceLock(raidPtr);
289 }
290 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
291
292 desc->state++;
293 return RF_FALSE;
294 }
295
296 int
297 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
298 {
299 #if RF_ACC_TRACE > 0
300 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
301 RF_Etimer_t timer;
302 #endif
303 RF_CallbackDesc_t *cb;
304 RF_Raid_t *raidPtr;
305 int suspended = RF_FALSE;
306 int need_cb, used_cb;
307
308 raidPtr = desc->raidPtr;
309
310 #if RF_ACC_TRACE > 0
311 RF_ETIMER_START(timer);
312 RF_ETIMER_START(desc->timer);
313 #endif
314
315 need_cb = 0;
316 used_cb = 0;
317 cb = NULL;
318
319 rf_lock_mutex2(raidPtr->access_suspend_mutex);
320 /* Do an initial check to see if we might need a callback structure */
321 if (raidPtr->accesses_suspended) {
322 need_cb = 1;
323 }
324 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
325
326 if (need_cb) {
327 /* create a callback if we might need it...
328 and we likely do. */
329 cb = rf_AllocCallbackDesc();
330 }
331
332 rf_lock_mutex2(raidPtr->access_suspend_mutex);
333 if (raidPtr->accesses_suspended) {
334 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
335 cb->callbackArg.p = (void *) desc;
336 cb->next = raidPtr->quiesce_wait_list;
337 raidPtr->quiesce_wait_list = cb;
338 suspended = RF_TRUE;
339 used_cb = 1;
340 }
341 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
342
343 if ((need_cb == 1) && (used_cb == 0)) {
344 rf_FreeCallbackDesc(cb);
345 }
346
347 #if RF_ACC_TRACE > 0
348 RF_ETIMER_STOP(timer);
349 RF_ETIMER_EVAL(timer);
350 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
351 #endif
352
353 #if RF_DEBUG_QUIESCE
354 if (suspended && rf_quiesceDebug)
355 printf("Stalling access due to quiescence lock\n");
356 #endif
357 desc->state++;
358 return suspended;
359 }
360
361 int
362 rf_State_Map(RF_RaidAccessDesc_t *desc)
363 {
364 RF_Raid_t *raidPtr = desc->raidPtr;
365 #if RF_ACC_TRACE > 0
366 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
367 RF_Etimer_t timer;
368
369 RF_ETIMER_START(timer);
370 #endif
371
372 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
373 desc->bufPtr, RF_DONT_REMAP)))
374 RF_PANIC();
375
376 #if RF_ACC_TRACE > 0
377 RF_ETIMER_STOP(timer);
378 RF_ETIMER_EVAL(timer);
379 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
380 #endif
381
382 desc->state++;
383 return RF_FALSE;
384 }
385
386 int
387 rf_State_Lock(RF_RaidAccessDesc_t *desc)
388 {
389 #if RF_ACC_TRACE > 0
390 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
391 RF_Etimer_t timer;
392 #endif
393 RF_Raid_t *raidPtr = desc->raidPtr;
394 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
395 RF_AccessStripeMap_t *asm_p;
396 RF_StripeNum_t lastStripeID = -1;
397 int suspended = RF_FALSE;
398
399 #if RF_ACC_TRACE > 0
400 RF_ETIMER_START(timer);
401 #endif
402
403 /* acquire each lock that we don't already hold */
404 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
405 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
406 if (!rf_suppressLocksAndLargeWrites &&
407 asm_p->parityInfo &&
408 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
409 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
410 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
411 /* locks must be acquired hierarchically */
412 RF_ASSERT(asm_p->stripeID > lastStripeID);
413 lastStripeID = asm_p->stripeID;
414
415 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
416 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
417 raidPtr->Layout.dataSectorsPerStripe);
418 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
419 &asm_p->lockReqDesc)) {
420 suspended = RF_TRUE;
421 break;
422 }
423 }
424 if (desc->type == RF_IO_TYPE_WRITE &&
425 raidPtr->status == rf_rs_reconstructing) {
426 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
427 int val;
428
429 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
430 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
431 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
432 if (val == 0) {
433 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
434 } else {
435 suspended = RF_TRUE;
436 break;
437 }
438 } else {
439 #if RF_DEBUG_PSS > 0
440 if (rf_pssDebug) {
441 printf("raid%d: skipping force/block because already done, psid %ld\n",
442 desc->raidPtr->raidid,
443 (long) asm_p->stripeID);
444 }
445 #endif
446 }
447 } else {
448 #if RF_DEBUG_PSS > 0
449 if (rf_pssDebug) {
450 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
451 desc->raidPtr->raidid,
452 (long) asm_p->stripeID);
453 }
454 #endif
455 }
456 }
457 #if RF_ACC_TRACE > 0
458 RF_ETIMER_STOP(timer);
459 RF_ETIMER_EVAL(timer);
460 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
461 #endif
462 if (suspended)
463 return (RF_TRUE);
464
465 desc->state++;
466 return (RF_FALSE);
467 }
468 /*
469 * the following three states create, execute, and post-process dags
470 * the error recovery unit is a single dag.
471 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
472 * in some tricky cases, multiple dags per stripe are created
473 * - dags within a parity stripe are executed sequentially (arbitrary order)
474 * - dags for distinct parity stripes are executed concurrently
475 *
476 * repeat until all dags complete successfully -or- dag selection fails
477 *
478 * while !done
479 * create dag(s) (SelectAlgorithm)
480 * if dag
481 * execute dag (DispatchDAG)
482 * if dag successful
483 * done (SUCCESS)
484 * else
485 * !done (RETRY - start over with new dags)
486 * else
487 * done (FAIL)
488 */
489 int
490 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
491 {
492 #if RF_ACC_TRACE > 0
493 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
494 RF_Etimer_t timer;
495 #endif
496 RF_DagHeader_t *dag_h;
497 RF_DagList_t *dagList;
498 struct buf *bp;
499 int i, selectStatus;
500
501 /* generate a dag for the access, and fire it off. When the dag
502 * completes, we'll get re-invoked in the next state. */
503 #if RF_ACC_TRACE > 0
504 RF_ETIMER_START(timer);
505 #endif
506 /* SelectAlgorithm returns one or more dags */
507 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
508 #if RF_DEBUG_VALIDATE_DAG
509 if (rf_printDAGsDebug) {
510 dagList = desc->dagList;
511 for (i = 0; i < desc->numStripes; i++) {
512 rf_PrintDAGList(dagList->dags);
513 dagList = dagList->next;
514 }
515 }
516 #endif /* RF_DEBUG_VALIDATE_DAG */
517 #if RF_ACC_TRACE > 0
518 RF_ETIMER_STOP(timer);
519 RF_ETIMER_EVAL(timer);
520 /* update time to create all dags */
521 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
522 #endif
523
524 desc->status = 0; /* good status */
525
526 if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) {
527 /* failed to create a dag */
528 /* this happens when there are too many faults or incomplete
529 * dag libraries */
530 if (selectStatus) {
531 printf("raid%d: failed to create a dag. "
532 "Too many component failures.\n",
533 desc->raidPtr->raidid);
534 } else {
535 printf("raid%d: IO failed after %d retries.\n",
536 desc->raidPtr->raidid, RF_RETRY_THRESHOLD);
537 }
538
539 desc->status = 1; /* bad status */
540 /* skip straight to rf_State_Cleanup() */
541 desc->state = rf_CleanupState;
542 bp = (struct buf *)desc->bp;
543 bp->b_error = EIO;
544 bp->b_resid = bp->b_bcount;
545 } else {
546 /* bind dags to desc */
547 dagList = desc->dagList;
548 for (i = 0; i < desc->numStripes; i++) {
549 dag_h = dagList->dags;
550 while (dag_h) {
551 dag_h->bp = (struct buf *) desc->bp;
552 #if RF_ACC_TRACE > 0
553 dag_h->tracerec = tracerec;
554 #endif
555 dag_h = dag_h->next;
556 }
557 dagList = dagList->next;
558 }
559 desc->flags |= RF_DAG_DISPATCH_RETURNED;
560 desc->state++; /* next state should be rf_State_ExecuteDAG */
561 }
562 return RF_FALSE;
563 }
564
565
566
567 /* the access has an list of dagLists, one dagList per parity stripe.
568 * fire the first dag in each parity stripe (dagList).
569 * dags within a stripe (dagList) must be executed sequentially
570 * - this preserves atomic parity update
571 * dags for independents parity groups (stripes) are fired concurrently */
572
573 int
574 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
575 {
576 int i;
577 RF_DagHeader_t *dag_h;
578 RF_DagList_t *dagList;
579
580 /* next state is always rf_State_ProcessDAG important to do
581 * this before firing the first dag (it may finish before we
582 * leave this routine) */
583 desc->state++;
584
585 /* sweep dag array, a stripe at a time, firing the first dag
586 * in each stripe */
587 dagList = desc->dagList;
588 for (i = 0; i < desc->numStripes; i++) {
589 RF_ASSERT(dagList->numDags > 0);
590 RF_ASSERT(dagList->numDagsDone == 0);
591 RF_ASSERT(dagList->numDagsFired == 0);
592 #if RF_ACC_TRACE > 0
593 RF_ETIMER_START(dagList->tracerec.timer);
594 #endif
595 /* fire first dag in this stripe */
596 dag_h = dagList->dags;
597 RF_ASSERT(dag_h);
598 dagList->numDagsFired++;
599 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
600 dagList = dagList->next;
601 }
602
603 /* the DAG will always call the callback, even if there was no
604 * blocking, so we are always suspended in this state */
605 return RF_TRUE;
606 }
607
608
609
610 /* rf_State_ProcessDAG is entered when a dag completes.
611 * first, check to all dags in the access have completed
612 * if not, fire as many dags as possible */
613
614 int
615 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
616 {
617 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
618 RF_Raid_t *raidPtr = desc->raidPtr;
619 RF_DagHeader_t *dag_h;
620 int i, j, done = RF_TRUE;
621 RF_DagList_t *dagList, *temp;
622
623 /* check to see if this is the last dag */
624 dagList = desc->dagList;
625 for (i = 0; i < desc->numStripes; i++) {
626 if (dagList->numDags != dagList->numDagsDone)
627 done = RF_FALSE;
628 dagList = dagList->next;
629 }
630
631 if (done) {
632 if (desc->status) {
633 /* a dag failed, retry */
634 /* free all dags */
635 dagList = desc->dagList;
636 for (i = 0; i < desc->numStripes; i++) {
637 rf_FreeDAG(dagList->dags);
638 temp = dagList;
639 dagList = dagList->next;
640 rf_FreeDAGList(temp);
641 }
642 desc->dagList = NULL;
643
644 rf_MarkFailuresInASMList(raidPtr, asmh);
645
646 /* note the retry so that we'll bail in
647 rf_State_CreateDAG() once we've retired
648 the IO RF_RETRY_THRESHOLD times */
649
650 desc->numRetries++;
651
652 /* back up to rf_State_CreateDAG */
653 desc->state = desc->state - 2;
654 return RF_FALSE;
655 } else {
656 /* move on to rf_State_Cleanup */
657 desc->state++;
658 }
659 return RF_FALSE;
660 } else {
661 /* more dags to execute */
662 /* see if any are ready to be fired. if so, fire them */
663 /* don't fire the initial dag in a list, it's fired in
664 * rf_State_ExecuteDAG */
665 dagList = desc->dagList;
666 for (i = 0; i < desc->numStripes; i++) {
667 if ((dagList->numDagsDone < dagList->numDags)
668 && (dagList->numDagsDone == dagList->numDagsFired)
669 && (dagList->numDagsFired > 0)) {
670 #if RF_ACC_TRACE > 0
671 RF_ETIMER_START(dagList->tracerec.timer);
672 #endif
673 /* fire next dag in this stripe */
674 /* first, skip to next dag awaiting execution */
675 dag_h = dagList->dags;
676 for (j = 0; j < dagList->numDagsDone; j++)
677 dag_h = dag_h->next;
678 dagList->numDagsFired++;
679 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
680 dagList);
681 }
682 dagList = dagList->next;
683 }
684 return RF_TRUE;
685 }
686 }
687 /* only make it this far if all dags complete successfully */
688 int
689 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
690 {
691 #if RF_ACC_TRACE > 0
692 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
693 RF_Etimer_t timer;
694 #endif
695 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
696 RF_Raid_t *raidPtr = desc->raidPtr;
697 RF_AccessStripeMap_t *asm_p;
698 RF_DagList_t *dagList;
699 int i;
700
701 desc->state++;
702
703 #if RF_ACC_TRACE > 0
704 timer = tracerec->timer;
705 RF_ETIMER_STOP(timer);
706 RF_ETIMER_EVAL(timer);
707 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
708
709 /* the RAID I/O is complete. Clean up. */
710 tracerec->specific.user.dag_retry_us = 0;
711
712 RF_ETIMER_START(timer);
713 #endif
714 /* free all dags */
715 dagList = desc->dagList;
716 for (i = 0; i < desc->numStripes; i++) {
717 rf_FreeDAG(dagList->dags);
718 dagList = dagList->next;
719 }
720 #if RF_ACC_TRACE > 0
721 RF_ETIMER_STOP(timer);
722 RF_ETIMER_EVAL(timer);
723 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
724
725 RF_ETIMER_START(timer);
726 #endif
727 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
728 if (!rf_suppressLocksAndLargeWrites &&
729 asm_p->parityInfo &&
730 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
731 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
732 rf_ReleaseStripeLock(raidPtr->lockTable,
733 asm_p->stripeID,
734 &asm_p->lockReqDesc);
735 }
736 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
737 rf_UnblockRecon(raidPtr, asm_p);
738 }
739 }
740 #if RF_ACC_TRACE > 0
741 RF_ETIMER_STOP(timer);
742 RF_ETIMER_EVAL(timer);
743 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
744
745 RF_ETIMER_START(timer);
746 #endif
747 rf_FreeAccessStripeMap(asmh);
748 #if RF_ACC_TRACE > 0
749 RF_ETIMER_STOP(timer);
750 RF_ETIMER_EVAL(timer);
751 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
752
753 RF_ETIMER_STOP(desc->timer);
754 RF_ETIMER_EVAL(desc->timer);
755
756 timer = desc->tracerec.tot_timer;
757 RF_ETIMER_STOP(timer);
758 RF_ETIMER_EVAL(timer);
759 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
760
761 rf_LogTraceRec(raidPtr, tracerec);
762 #endif
763 desc->flags |= RF_DAG_ACCESS_COMPLETE;
764
765 return RF_FALSE;
766 }
767