rf_states.c revision 1.52 1 /* $NetBSD: rf_states.c,v 1.52 2021/07/23 00:54:45 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.52 2021/07/23 00:54:45 oster Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48 #include "rf_paritymap.h"
49
50 #ifndef RF_DEBUG_STATES
51 #define RF_DEBUG_STATES 0
52 #endif
53
54 /* prototypes for some of the available states.
55
56 States must:
57
58 - not block.
59
60 - either schedule rf_ContinueRaidAccess as a callback and return
61 RF_TRUE, or complete all of their work and return RF_FALSE.
62
63 - increment desc->state when they have finished their work.
64 */
65
66 #if RF_DEBUG_STATES
67 static char *
68 StateName(RF_AccessState_t state)
69 {
70 switch (state) {
71 case rf_QuiesceState:return "QuiesceState";
72 case rf_MapState:
73 return "MapState";
74 case rf_LockState:
75 return "LockState";
76 case rf_CreateDAGState:
77 return "CreateDAGState";
78 case rf_ExecuteDAGState:
79 return "ExecuteDAGState";
80 case rf_ProcessDAGState:
81 return "ProcessDAGState";
82 case rf_CleanupState:
83 return "CleanupState";
84 case rf_LastState:
85 return "LastState";
86 case rf_IncrAccessesCountState:
87 return "IncrAccessesCountState";
88 case rf_DecrAccessesCountState:
89 return "DecrAccessesCountState";
90 default:
91 return "!!! UnnamedState !!!";
92 }
93 }
94 #endif
95
96 void
97 rf_ContinueRaidAccess(void *v)
98 {
99 RF_RaidAccessDesc_t *desc = v;
100 int suspended = RF_FALSE;
101 int current_state_index = desc->state;
102 RF_AccessState_t current_state = desc->states[current_state_index];
103 #if RF_DEBUG_STATES
104 int unit = desc->raidPtr->raidid;
105 #endif
106
107 do {
108
109 current_state_index = desc->state;
110 current_state = desc->states[current_state_index];
111
112 switch (current_state) {
113
114 case rf_QuiesceState:
115 suspended = rf_State_Quiesce(desc);
116 break;
117 case rf_IncrAccessesCountState:
118 suspended = rf_State_IncrAccessCount(desc);
119 break;
120 case rf_MapState:
121 suspended = rf_State_Map(desc);
122 break;
123 case rf_LockState:
124 suspended = rf_State_Lock(desc);
125 break;
126 case rf_CreateDAGState:
127 suspended = rf_State_CreateDAG(desc);
128 break;
129 case rf_ExecuteDAGState:
130 suspended = rf_State_ExecuteDAG(desc);
131 break;
132 case rf_ProcessDAGState:
133 suspended = rf_State_ProcessDAG(desc);
134 break;
135 case rf_CleanupState:
136 suspended = rf_State_Cleanup(desc);
137 break;
138 case rf_DecrAccessesCountState:
139 suspended = rf_State_DecrAccessCount(desc);
140 break;
141 case rf_LastState:
142 suspended = rf_State_LastState(desc);
143 break;
144 }
145
146 /* after this point, we cannot dereference desc since
147 * desc may have been freed. desc is only freed in
148 * LastState, so if we renter this function or loop
149 * back up, desc should be valid. */
150
151 #if RF_DEBUG_STATES
152 if (rf_printStatesDebug) {
153 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
154 unit, StateName(current_state),
155 current_state_index, (long) desc,
156 suspended ? "callback scheduled" : "looping");
157 }
158 #endif
159 } while (!suspended && current_state != rf_LastState);
160
161 return;
162 }
163
164
165 void
166 rf_ContinueDagAccess(RF_DagList_t *dagList)
167 {
168 #if RF_ACC_TRACE > 0
169 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
170 RF_Etimer_t timer;
171 #endif
172 RF_RaidAccessDesc_t *desc;
173 RF_DagHeader_t *dag_h;
174 int i;
175
176 desc = dagList->desc;
177
178 #if RF_ACC_TRACE > 0
179 timer = tracerec->timer;
180 RF_ETIMER_STOP(timer);
181 RF_ETIMER_EVAL(timer);
182 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
183 RF_ETIMER_START(tracerec->timer);
184 #endif
185
186 /* skip to dag which just finished */
187 dag_h = dagList->dags;
188 for (i = 0; i < dagList->numDagsDone; i++) {
189 dag_h = dag_h->next;
190 }
191
192 /* check to see if retry is required */
193 if (dag_h->status == rf_rollBackward) {
194 /* when a dag fails, mark desc status as bad and allow
195 * all other dags in the desc to execute to
196 * completion. then, free all dags and start over */
197 desc->status = 1; /* bad status */
198 #if 0
199 printf("raid%d: DAG failure: %c addr 0x%lx "
200 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
201 desc->raidPtr->raidid, desc->type,
202 (long) desc->raidAddress,
203 (long) desc->raidAddress, (int) desc->numBlocks,
204 (int) desc->numBlocks,
205 (unsigned long) (desc->bufPtr), desc->state);
206 #endif
207 }
208 dagList->numDagsDone++;
209 rf_ContinueRaidAccess(desc);
210 }
211
212 int
213 rf_State_LastState(RF_RaidAccessDesc_t *desc)
214 {
215 void (*callbackFunc) (void *) = desc->callbackFunc;
216 void * callbackArg = desc->callbackArg;
217
218 /*
219 * We don't support non-async IO.
220 */
221 KASSERT(desc->async_flag);
222
223 /*
224 * The parity_map hook has to go here, because the iodone
225 * callback goes straight into the kintf layer.
226 */
227 if (desc->raidPtr->parity_map != NULL &&
228 desc->type == RF_IO_TYPE_WRITE)
229 rf_paritymap_end(desc->raidPtr->parity_map,
230 desc->raidAddress, desc->numBlocks);
231
232 /* printf("Calling raiddone on 0x%x\n",desc->bp); */
233 raiddone(desc->raidPtr, desc->bp); /* access came through ioctl */
234
235 if (callbackFunc)
236 callbackFunc(callbackArg);
237 rf_FreeRaidAccDesc(desc);
238
239 return RF_FALSE;
240 }
241
242 int
243 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
244 {
245 RF_Raid_t *raidPtr;
246
247 raidPtr = desc->raidPtr;
248 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
249 * below */
250 rf_lock_mutex2(raidPtr->access_suspend_mutex);
251 raidPtr->accs_in_flight++; /* used to detect quiescence */
252 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
253
254 desc->state++;
255 return RF_FALSE;
256 }
257
258 int
259 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
260 {
261 RF_Raid_t *raidPtr;
262
263 raidPtr = desc->raidPtr;
264
265 rf_lock_mutex2(raidPtr->access_suspend_mutex);
266 raidPtr->accs_in_flight--;
267 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
268 rf_SignalQuiescenceLock(raidPtr);
269 }
270 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
271
272 desc->state++;
273 return RF_FALSE;
274 }
275
276 int
277 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
278 {
279 #if RF_ACC_TRACE > 0
280 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
281 RF_Etimer_t timer;
282 #endif
283 RF_CallbackFuncDesc_t *cb;
284 RF_Raid_t *raidPtr;
285 int suspended = RF_FALSE;
286 int need_cb, used_cb;
287
288 raidPtr = desc->raidPtr;
289
290 #if RF_ACC_TRACE > 0
291 RF_ETIMER_START(timer);
292 RF_ETIMER_START(desc->timer);
293 #endif
294
295 need_cb = 0;
296 used_cb = 0;
297 cb = NULL;
298
299 rf_lock_mutex2(raidPtr->access_suspend_mutex);
300 /* Do an initial check to see if we might need a callback structure */
301 if (raidPtr->accesses_suspended) {
302 need_cb = 1;
303 }
304 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
305
306 if (need_cb) {
307 /* create a callback if we might need it...
308 and we likely do. */
309 cb = rf_AllocCallbackFuncDesc(raidPtr);
310 }
311
312 rf_lock_mutex2(raidPtr->access_suspend_mutex);
313 if (raidPtr->accesses_suspended) {
314 cb->callbackFunc = rf_ContinueRaidAccess;
315 cb->callbackArg = desc;
316 cb->next = raidPtr->quiesce_wait_list;
317 raidPtr->quiesce_wait_list = cb;
318 suspended = RF_TRUE;
319 used_cb = 1;
320 }
321 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
322
323 if ((need_cb == 1) && (used_cb == 0)) {
324 rf_FreeCallbackFuncDesc(raidPtr, cb);
325 }
326
327 #if RF_ACC_TRACE > 0
328 RF_ETIMER_STOP(timer);
329 RF_ETIMER_EVAL(timer);
330 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
331 #endif
332
333 #if RF_DEBUG_QUIESCE
334 if (suspended && rf_quiesceDebug)
335 printf("Stalling access due to quiescence lock\n");
336 #endif
337 desc->state++;
338 return suspended;
339 }
340
341 int
342 rf_State_Map(RF_RaidAccessDesc_t *desc)
343 {
344 RF_Raid_t *raidPtr = desc->raidPtr;
345 #if RF_ACC_TRACE > 0
346 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
347 RF_Etimer_t timer;
348
349 RF_ETIMER_START(timer);
350 #endif
351
352 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
353 desc->bufPtr, RF_DONT_REMAP)))
354 RF_PANIC();
355
356 #if RF_ACC_TRACE > 0
357 RF_ETIMER_STOP(timer);
358 RF_ETIMER_EVAL(timer);
359 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
360 #endif
361
362 desc->state++;
363 return RF_FALSE;
364 }
365
366 int
367 rf_State_Lock(RF_RaidAccessDesc_t *desc)
368 {
369 #if RF_ACC_TRACE > 0
370 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
371 RF_Etimer_t timer;
372 #endif
373 RF_Raid_t *raidPtr = desc->raidPtr;
374 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
375 RF_AccessStripeMap_t *asm_p;
376 RF_StripeNum_t lastStripeID = -1;
377 int suspended = RF_FALSE;
378
379 #if RF_ACC_TRACE > 0
380 RF_ETIMER_START(timer);
381 #endif
382
383 /* acquire each lock that we don't already hold */
384 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
385 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
386 if (!rf_suppressLocksAndLargeWrites &&
387 asm_p->parityInfo &&
388 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
389 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
390 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
391 /* locks must be acquired hierarchically */
392 RF_ASSERT(asm_p->stripeID > lastStripeID);
393 lastStripeID = asm_p->stripeID;
394
395 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
396 rf_ContinueRaidAccess, desc, asm_p,
397 raidPtr->Layout.dataSectorsPerStripe);
398 if (rf_AcquireStripeLock(raidPtr, raidPtr->lockTable, asm_p->stripeID,
399 &asm_p->lockReqDesc)) {
400 suspended = RF_TRUE;
401 break;
402 }
403 }
404 if (desc->type == RF_IO_TYPE_WRITE &&
405 raidPtr->status == rf_rs_reconstructing) {
406 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
407 int val;
408
409 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
410 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
411 rf_ContinueRaidAccess, desc);
412 if (val == 0) {
413 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
414 } else {
415 suspended = RF_TRUE;
416 break;
417 }
418 } else {
419 #if RF_DEBUG_PSS > 0
420 if (rf_pssDebug) {
421 printf("raid%d: skipping force/block because already done, psid %ld\n",
422 desc->raidPtr->raidid,
423 (long) asm_p->stripeID);
424 }
425 #endif
426 }
427 } else {
428 #if RF_DEBUG_PSS > 0
429 if (rf_pssDebug) {
430 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
431 desc->raidPtr->raidid,
432 (long) asm_p->stripeID);
433 }
434 #endif
435 }
436 }
437 #if RF_ACC_TRACE > 0
438 RF_ETIMER_STOP(timer);
439 RF_ETIMER_EVAL(timer);
440 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
441 #endif
442 if (suspended)
443 return (RF_TRUE);
444
445 desc->state++;
446 return (RF_FALSE);
447 }
448 /*
449 * the following three states create, execute, and post-process dags
450 * the error recovery unit is a single dag.
451 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
452 * in some tricky cases, multiple dags per stripe are created
453 * - dags within a parity stripe are executed sequentially (arbitrary order)
454 * - dags for distinct parity stripes are executed concurrently
455 *
456 * repeat until all dags complete successfully -or- dag selection fails
457 *
458 * while !done
459 * create dag(s) (SelectAlgorithm)
460 * if dag
461 * execute dag (DispatchDAG)
462 * if dag successful
463 * done (SUCCESS)
464 * else
465 * !done (RETRY - start over with new dags)
466 * else
467 * done (FAIL)
468 */
469 int
470 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
471 {
472 #if RF_ACC_TRACE > 0
473 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
474 RF_Etimer_t timer;
475 #endif
476 RF_DagHeader_t *dag_h;
477 RF_DagList_t *dagList;
478 struct buf *bp;
479 int i, selectStatus;
480
481 /* generate a dag for the access, and fire it off. When the dag
482 * completes, we'll get re-invoked in the next state. */
483 #if RF_ACC_TRACE > 0
484 RF_ETIMER_START(timer);
485 #endif
486 /* SelectAlgorithm returns one or more dags */
487 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
488 #if RF_DEBUG_VALIDATE_DAG
489 if (rf_printDAGsDebug) {
490 dagList = desc->dagList;
491 for (i = 0; i < desc->numStripes; i++) {
492 rf_PrintDAGList(dagList->dags);
493 dagList = dagList->next;
494 }
495 }
496 #endif /* RF_DEBUG_VALIDATE_DAG */
497 #if RF_ACC_TRACE > 0
498 RF_ETIMER_STOP(timer);
499 RF_ETIMER_EVAL(timer);
500 /* update time to create all dags */
501 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
502 #endif
503
504 desc->status = 0; /* good status */
505
506 if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) {
507 /* failed to create a dag */
508 /* this happens when there are too many faults or incomplete
509 * dag libraries */
510 if (selectStatus) {
511 printf("raid%d: failed to create a dag. "
512 "Too many component failures.\n",
513 desc->raidPtr->raidid);
514 } else {
515 printf("raid%d: IO failed after %d retries.\n",
516 desc->raidPtr->raidid, RF_RETRY_THRESHOLD);
517 }
518
519 desc->status = 1; /* bad status */
520 /* skip straight to rf_State_Cleanup() */
521 desc->state = rf_CleanupState;
522 bp = (struct buf *)desc->bp;
523 bp->b_error = EIO;
524 bp->b_resid = bp->b_bcount;
525 } else {
526 /* bind dags to desc */
527 dagList = desc->dagList;
528 for (i = 0; i < desc->numStripes; i++) {
529 dag_h = dagList->dags;
530 while (dag_h) {
531 dag_h->bp = (struct buf *) desc->bp;
532 #if RF_ACC_TRACE > 0
533 dag_h->tracerec = tracerec;
534 #endif
535 dag_h = dag_h->next;
536 }
537 dagList = dagList->next;
538 }
539 desc->flags |= RF_DAG_DISPATCH_RETURNED;
540 desc->state++; /* next state should be rf_State_ExecuteDAG */
541 }
542 return RF_FALSE;
543 }
544
545
546
547 /* the access has an list of dagLists, one dagList per parity stripe.
548 * fire the first dag in each parity stripe (dagList).
549 * dags within a stripe (dagList) must be executed sequentially
550 * - this preserves atomic parity update
551 * dags for independents parity groups (stripes) are fired concurrently */
552
553 int
554 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
555 {
556 int i;
557 RF_DagHeader_t *dag_h;
558 RF_DagList_t *dagList;
559
560 /* next state is always rf_State_ProcessDAG important to do
561 * this before firing the first dag (it may finish before we
562 * leave this routine) */
563 desc->state++;
564
565 /* sweep dag array, a stripe at a time, firing the first dag
566 * in each stripe */
567 dagList = desc->dagList;
568 for (i = 0; i < desc->numStripes; i++) {
569 RF_ASSERT(dagList->numDags > 0);
570 RF_ASSERT(dagList->numDagsDone == 0);
571 RF_ASSERT(dagList->numDagsFired == 0);
572 #if RF_ACC_TRACE > 0
573 RF_ETIMER_START(dagList->tracerec.timer);
574 #endif
575 /* fire first dag in this stripe */
576 dag_h = dagList->dags;
577 RF_ASSERT(dag_h);
578 dagList->numDagsFired++;
579 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
580 dagList = dagList->next;
581 }
582
583 /* the DAG will always call the callback, even if there was no
584 * blocking, so we are always suspended in this state */
585 return RF_TRUE;
586 }
587
588
589
590 /* rf_State_ProcessDAG is entered when a dag completes.
591 * first, check to all dags in the access have completed
592 * if not, fire as many dags as possible */
593
594 int
595 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
596 {
597 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
598 RF_Raid_t *raidPtr = desc->raidPtr;
599 RF_DagHeader_t *dag_h;
600 int i, j, done = RF_TRUE;
601 RF_DagList_t *dagList, *temp;
602
603 /* check to see if this is the last dag */
604 dagList = desc->dagList;
605 for (i = 0; i < desc->numStripes; i++) {
606 if (dagList->numDags != dagList->numDagsDone)
607 done = RF_FALSE;
608 dagList = dagList->next;
609 }
610
611 if (done) {
612 if (desc->status) {
613 /* a dag failed, retry */
614 /* free all dags */
615 dagList = desc->dagList;
616 for (i = 0; i < desc->numStripes; i++) {
617 rf_FreeDAG(dagList->dags);
618 temp = dagList;
619 dagList = dagList->next;
620 rf_FreeDAGList(raidPtr, temp);
621 }
622 desc->dagList = NULL;
623
624 rf_MarkFailuresInASMList(raidPtr, asmh);
625
626 /* note the retry so that we'll bail in
627 rf_State_CreateDAG() once we've retired
628 the IO RF_RETRY_THRESHOLD times */
629
630 desc->numRetries++;
631
632 /* back up to rf_State_CreateDAG */
633 desc->state = desc->state - 2;
634 return RF_FALSE;
635 } else {
636 /* move on to rf_State_Cleanup */
637 desc->state++;
638 }
639 return RF_FALSE;
640 } else {
641 /* more dags to execute */
642 /* see if any are ready to be fired. if so, fire them */
643 /* don't fire the initial dag in a list, it's fired in
644 * rf_State_ExecuteDAG */
645 dagList = desc->dagList;
646 for (i = 0; i < desc->numStripes; i++) {
647 if ((dagList->numDagsDone < dagList->numDags)
648 && (dagList->numDagsDone == dagList->numDagsFired)
649 && (dagList->numDagsFired > 0)) {
650 #if RF_ACC_TRACE > 0
651 RF_ETIMER_START(dagList->tracerec.timer);
652 #endif
653 /* fire next dag in this stripe */
654 /* first, skip to next dag awaiting execution */
655 dag_h = dagList->dags;
656 for (j = 0; j < dagList->numDagsDone; j++)
657 dag_h = dag_h->next;
658 dagList->numDagsFired++;
659 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
660 dagList);
661 }
662 dagList = dagList->next;
663 }
664 return RF_TRUE;
665 }
666 }
667 /* only make it this far if all dags complete successfully */
668 int
669 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
670 {
671 #if RF_ACC_TRACE > 0
672 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
673 RF_Etimer_t timer;
674 #endif
675 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
676 RF_Raid_t *raidPtr = desc->raidPtr;
677 RF_AccessStripeMap_t *asm_p;
678 RF_DagList_t *dagList;
679 int i;
680
681 desc->state++;
682
683 #if RF_ACC_TRACE > 0
684 timer = tracerec->timer;
685 RF_ETIMER_STOP(timer);
686 RF_ETIMER_EVAL(timer);
687 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
688
689 /* the RAID I/O is complete. Clean up. */
690 tracerec->specific.user.dag_retry_us = 0;
691
692 RF_ETIMER_START(timer);
693 #endif
694 /* free all dags */
695 dagList = desc->dagList;
696 for (i = 0; i < desc->numStripes; i++) {
697 rf_FreeDAG(dagList->dags);
698 dagList = dagList->next;
699 }
700 #if RF_ACC_TRACE > 0
701 RF_ETIMER_STOP(timer);
702 RF_ETIMER_EVAL(timer);
703 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
704
705 RF_ETIMER_START(timer);
706 #endif
707 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
708 if (!rf_suppressLocksAndLargeWrites &&
709 asm_p->parityInfo &&
710 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
711 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
712 rf_ReleaseStripeLock(raidPtr,
713 raidPtr->lockTable,
714 asm_p->stripeID,
715 &asm_p->lockReqDesc);
716 }
717 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
718 rf_UnblockRecon(raidPtr, asm_p);
719 }
720 }
721 #if RF_ACC_TRACE > 0
722 RF_ETIMER_STOP(timer);
723 RF_ETIMER_EVAL(timer);
724 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
725
726 RF_ETIMER_START(timer);
727 #endif
728 rf_FreeAccessStripeMap(raidPtr, asmh);
729 #if RF_ACC_TRACE > 0
730 RF_ETIMER_STOP(timer);
731 RF_ETIMER_EVAL(timer);
732 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
733
734 RF_ETIMER_STOP(desc->timer);
735 RF_ETIMER_EVAL(desc->timer);
736
737 timer = desc->tracerec.tot_timer;
738 RF_ETIMER_STOP(timer);
739 RF_ETIMER_EVAL(timer);
740 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
741
742 rf_LogTraceRec(raidPtr, tracerec);
743 #endif
744 desc->flags |= RF_DAG_ACCESS_COMPLETE;
745
746 return RF_FALSE;
747 }
748