rf_states.c revision 1.6.4.1 1 /* $NetBSD: rf_states.c,v 1.6.4.1 1999/08/02 22:05:32 thorpej Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/errno.h>
30
31 #include "rf_archs.h"
32 #include "rf_threadstuff.h"
33 #include "rf_raid.h"
34 #include "rf_dag.h"
35 #include "rf_desc.h"
36 #include "rf_aselect.h"
37 #include "rf_threadid.h"
38 #include "rf_general.h"
39 #include "rf_states.h"
40 #include "rf_dagutils.h"
41 #include "rf_driver.h"
42 #include "rf_engine.h"
43 #include "rf_map.h"
44 #include "rf_etimer.h"
45
46 #if defined(KERNEL) && (DKUSAGE > 0)
47 #include <sys/dkusage.h>
48 #include <io/common/iotypes.h>
49 #include <io/cam/dec_cam.h>
50 #include <io/cam/cam.h>
51 #include <io/cam/pdrv.h>
52 #endif /* KERNEL && DKUSAGE > 0 */
53
54 /* prototypes for some of the available states.
55
56 States must:
57
58 - not block.
59
60 - either schedule rf_ContinueRaidAccess as a callback and return
61 RF_TRUE, or complete all of their work and return RF_FALSE.
62
63 - increment desc->state when they have finished their work.
64 */
65
66 static char *
67 StateName(RF_AccessState_t state)
68 {
69 switch (state) {
70 case rf_QuiesceState:return "QuiesceState";
71 case rf_MapState:
72 return "MapState";
73 case rf_LockState:
74 return "LockState";
75 case rf_CreateDAGState:
76 return "CreateDAGState";
77 case rf_ExecuteDAGState:
78 return "ExecuteDAGState";
79 case rf_ProcessDAGState:
80 return "ProcessDAGState";
81 case rf_CleanupState:
82 return "CleanupState";
83 case rf_LastState:
84 return "LastState";
85 case rf_IncrAccessesCountState:
86 return "IncrAccessesCountState";
87 case rf_DecrAccessesCountState:
88 return "DecrAccessesCountState";
89 default:
90 return "!!! UnnamedState !!!";
91 }
92 }
93
94 void
95 rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc)
96 {
97 int suspended = RF_FALSE;
98 int current_state_index = desc->state;
99 RF_AccessState_t current_state = desc->states[current_state_index];
100
101 do {
102
103 current_state_index = desc->state;
104 current_state = desc->states[current_state_index];
105
106 switch (current_state) {
107
108 case rf_QuiesceState:
109 suspended = rf_State_Quiesce(desc);
110 break;
111 case rf_IncrAccessesCountState:
112 suspended = rf_State_IncrAccessCount(desc);
113 break;
114 case rf_MapState:
115 suspended = rf_State_Map(desc);
116 break;
117 case rf_LockState:
118 suspended = rf_State_Lock(desc);
119 break;
120 case rf_CreateDAGState:
121 suspended = rf_State_CreateDAG(desc);
122 break;
123 case rf_ExecuteDAGState:
124 suspended = rf_State_ExecuteDAG(desc);
125 break;
126 case rf_ProcessDAGState:
127 suspended = rf_State_ProcessDAG(desc);
128 break;
129 case rf_CleanupState:
130 suspended = rf_State_Cleanup(desc);
131 break;
132 case rf_DecrAccessesCountState:
133 suspended = rf_State_DecrAccessCount(desc);
134 break;
135 case rf_LastState:
136 suspended = rf_State_LastState(desc);
137 break;
138 }
139
140 /* after this point, we cannot dereference desc since desc may
141 * have been freed. desc is only freed in LastState, so if we
142 * renter this function or loop back up, desc should be valid. */
143
144 if (rf_printStatesDebug) {
145 int tid;
146 rf_get_threadid(tid);
147
148 printf("[%d] State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
149 tid, StateName(current_state), current_state_index, (long) desc,
150 suspended ? "callback scheduled" : "looping");
151 }
152 } while (!suspended && current_state != rf_LastState);
153
154 return;
155 }
156
157
158 void
159 rf_ContinueDagAccess(RF_DagList_t * dagList)
160 {
161 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
162 RF_RaidAccessDesc_t *desc;
163 RF_DagHeader_t *dag_h;
164 RF_Etimer_t timer;
165 int i;
166
167 desc = dagList->desc;
168
169 timer = tracerec->timer;
170 RF_ETIMER_STOP(timer);
171 RF_ETIMER_EVAL(timer);
172 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
173 RF_ETIMER_START(tracerec->timer);
174
175 /* skip to dag which just finished */
176 dag_h = dagList->dags;
177 for (i = 0; i < dagList->numDagsDone; i++) {
178 dag_h = dag_h->next;
179 }
180
181 /* check to see if retry is required */
182 if (dag_h->status == rf_rollBackward) {
183 /* when a dag fails, mark desc status as bad and allow all
184 * other dags in the desc to execute to completion. then,
185 * free all dags and start over */
186 desc->status = 1; /* bad status */
187 {
188 printf("[%d] DAG failure: %c addr 0x%lx (%ld) nblk 0x%x (%d) buf 0x%lx\n",
189 desc->tid, desc->type, (long) desc->raidAddress,
190 (long) desc->raidAddress, (int) desc->numBlocks,
191 (int) desc->numBlocks, (unsigned long) (desc->bufPtr));
192 }
193 }
194 dagList->numDagsDone++;
195 rf_ContinueRaidAccess(desc);
196 }
197
198
199 int
200 rf_State_LastState(RF_RaidAccessDesc_t * desc)
201 {
202 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
203 RF_CBParam_t callbackArg;
204
205 callbackArg.p = desc->callbackArg;
206
207 if (!(desc->flags & RF_DAG_TEST_ACCESS)) { /* don't biodone if this */
208 #if DKUSAGE > 0
209 RF_DKU_END_IO(((RF_Raid_t *) desc->raidPtr)->raidid, (struct buf *) desc->bp);
210 #else
211 RF_DKU_END_IO(((RF_Raid_t *) desc->raidPtr)->raidid);
212 #endif /* DKUSAGE > 0 */
213
214 /*
215 * If this is not an async request, wake up the caller
216 */
217 if (desc->async_flag == 0)
218 wakeup(desc->bp);
219
220 /*
221 * Wakeup any requests waiting to go.
222 */
223
224 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
225 ((RF_Raid_t *) desc->raidPtr)->openings++;
226 wakeup(&(((RF_Raid_t *) desc->raidPtr)->openings));
227 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
228
229
230 /* printf("Calling biodone on 0x%x\n",desc->bp); */
231 biodone(desc->bp); /* access came through ioctl */
232 }
233 if (callbackFunc)
234 callbackFunc(callbackArg);
235 rf_FreeRaidAccDesc(desc);
236
237 return RF_FALSE;
238 }
239
240 int
241 rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc)
242 {
243 RF_Raid_t *raidPtr;
244
245 raidPtr = desc->raidPtr;
246 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
247 * below */
248 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
249 raidPtr->accs_in_flight++; /* used to detect quiescence */
250 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
251
252 desc->state++;
253 return RF_FALSE;
254 }
255
256 int
257 rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc)
258 {
259 RF_Raid_t *raidPtr;
260
261 raidPtr = desc->raidPtr;
262
263 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
264 raidPtr->accs_in_flight--;
265 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
266 rf_SignalQuiescenceLock(raidPtr, raidPtr->reconDesc);
267 }
268 rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks);
269 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
270
271 desc->state++;
272 return RF_FALSE;
273 }
274
275 int
276 rf_State_Quiesce(RF_RaidAccessDesc_t * desc)
277 {
278 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
279 RF_Etimer_t timer;
280 int suspended = RF_FALSE;
281 RF_Raid_t *raidPtr;
282
283 raidPtr = desc->raidPtr;
284
285 RF_ETIMER_START(timer);
286 RF_ETIMER_START(desc->timer);
287
288 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
289 if (raidPtr->accesses_suspended) {
290 RF_CallbackDesc_t *cb;
291 cb = rf_AllocCallbackDesc();
292 /* XXX the following cast is quite bogus...
293 * rf_ContinueRaidAccess takes a (RF_RaidAccessDesc_t *) as an
294 * argument.. GO */
295 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
296 cb->callbackArg.p = (void *) desc;
297 cb->next = raidPtr->quiesce_wait_list;
298 raidPtr->quiesce_wait_list = cb;
299 suspended = RF_TRUE;
300 }
301 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
302
303 RF_ETIMER_STOP(timer);
304 RF_ETIMER_EVAL(timer);
305 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
306
307 if (suspended && rf_quiesceDebug)
308 printf("Stalling access due to quiescence lock\n");
309
310 desc->state++;
311 return suspended;
312 }
313
314 int
315 rf_State_Map(RF_RaidAccessDesc_t * desc)
316 {
317 RF_Raid_t *raidPtr = desc->raidPtr;
318 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
319 RF_Etimer_t timer;
320
321 RF_ETIMER_START(timer);
322
323 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
324 desc->bufPtr, RF_DONT_REMAP)))
325 RF_PANIC();
326
327 RF_ETIMER_STOP(timer);
328 RF_ETIMER_EVAL(timer);
329 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
330
331 desc->state++;
332 return RF_FALSE;
333 }
334
335 int
336 rf_State_Lock(RF_RaidAccessDesc_t * desc)
337 {
338 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
339 RF_Raid_t *raidPtr = desc->raidPtr;
340 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
341 RF_AccessStripeMap_t *asm_p;
342 RF_Etimer_t timer;
343 int suspended = RF_FALSE;
344
345 RF_ETIMER_START(timer);
346 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
347 RF_StripeNum_t lastStripeID = -1;
348
349 /* acquire each lock that we don't already hold */
350 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
351 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
352 if (!rf_suppressLocksAndLargeWrites &&
353 asm_p->parityInfo &&
354 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
355 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
356 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
357 RF_ASSERT(asm_p->stripeID > lastStripeID); /* locks must be
358 * acquired
359 * hierarchically */
360 lastStripeID = asm_p->stripeID;
361 /* XXX the cast to (void (*)(RF_CBParam_t))
362 * below is bogus! GO */
363 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
364 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
365 raidPtr->Layout.dataSectorsPerStripe);
366 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
367 &asm_p->lockReqDesc)) {
368 suspended = RF_TRUE;
369 break;
370 }
371 }
372 if (desc->type == RF_IO_TYPE_WRITE &&
373 raidPtr->status[asm_p->physInfo->row] == rf_rs_reconstructing) {
374 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
375 int val;
376
377 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
378 /* XXX the cast below is quite
379 * bogus!!! XXX GO */
380 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
381 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
382 if (val == 0) {
383 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
384 } else {
385 suspended = RF_TRUE;
386 break;
387 }
388 } else {
389 if (rf_pssDebug) {
390 printf("[%d] skipping force/block because already done, psid %ld\n",
391 desc->tid, (long) asm_p->stripeID);
392 }
393 }
394 } else {
395 if (rf_pssDebug) {
396 printf("[%d] skipping force/block because not write or not under recon, psid %ld\n",
397 desc->tid, (long) asm_p->stripeID);
398 }
399 }
400 }
401
402 RF_ETIMER_STOP(timer);
403 RF_ETIMER_EVAL(timer);
404 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
405
406 if (suspended)
407 return (RF_TRUE);
408 }
409 desc->state++;
410 return (RF_FALSE);
411 }
412 /*
413 * the following three states create, execute, and post-process dags
414 * the error recovery unit is a single dag.
415 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
416 * in some tricky cases, multiple dags per stripe are created
417 * - dags within a parity stripe are executed sequentially (arbitrary order)
418 * - dags for distinct parity stripes are executed concurrently
419 *
420 * repeat until all dags complete successfully -or- dag selection fails
421 *
422 * while !done
423 * create dag(s) (SelectAlgorithm)
424 * if dag
425 * execute dag (DispatchDAG)
426 * if dag successful
427 * done (SUCCESS)
428 * else
429 * !done (RETRY - start over with new dags)
430 * else
431 * done (FAIL)
432 */
433 int
434 rf_State_CreateDAG(RF_RaidAccessDesc_t * desc)
435 {
436 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
437 RF_Etimer_t timer;
438 RF_DagHeader_t *dag_h;
439 int i, selectStatus;
440
441 /* generate a dag for the access, and fire it off. When the dag
442 * completes, we'll get re-invoked in the next state. */
443 RF_ETIMER_START(timer);
444 /* SelectAlgorithm returns one or more dags */
445 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
446 if (rf_printDAGsDebug)
447 for (i = 0; i < desc->numStripes; i++)
448 rf_PrintDAGList(desc->dagArray[i].dags);
449 RF_ETIMER_STOP(timer);
450 RF_ETIMER_EVAL(timer);
451 /* update time to create all dags */
452 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
453
454 desc->status = 0; /* good status */
455
456 if (selectStatus) {
457 /* failed to create a dag */
458 /* this happens when there are too many faults or incomplete
459 * dag libraries */
460 printf("[Failed to create a DAG\n]");
461 RF_PANIC();
462 } else {
463 /* bind dags to desc */
464 for (i = 0; i < desc->numStripes; i++) {
465 dag_h = desc->dagArray[i].dags;
466 while (dag_h) {
467 dag_h->bp = (struct buf *) desc->bp;
468 dag_h->tracerec = tracerec;
469 dag_h = dag_h->next;
470 }
471 }
472 desc->flags |= RF_DAG_DISPATCH_RETURNED;
473 desc->state++; /* next state should be rf_State_ExecuteDAG */
474 }
475 return RF_FALSE;
476 }
477
478
479
480 /* the access has an array of dagLists, one dagList per parity stripe.
481 * fire the first dag in each parity stripe (dagList).
482 * dags within a stripe (dagList) must be executed sequentially
483 * - this preserves atomic parity update
484 * dags for independents parity groups (stripes) are fired concurrently */
485
486 int
487 rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc)
488 {
489 int i;
490 RF_DagHeader_t *dag_h;
491 RF_DagList_t *dagArray = desc->dagArray;
492
493 /* next state is always rf_State_ProcessDAG important to do this
494 * before firing the first dag (it may finish before we leave this
495 * routine) */
496 desc->state++;
497
498 /* sweep dag array, a stripe at a time, firing the first dag in each
499 * stripe */
500 for (i = 0; i < desc->numStripes; i++) {
501 RF_ASSERT(dagArray[i].numDags > 0);
502 RF_ASSERT(dagArray[i].numDagsDone == 0);
503 RF_ASSERT(dagArray[i].numDagsFired == 0);
504 RF_ETIMER_START(dagArray[i].tracerec.timer);
505 /* fire first dag in this stripe */
506 dag_h = dagArray[i].dags;
507 RF_ASSERT(dag_h);
508 dagArray[i].numDagsFired++;
509 /* XXX Yet another case where we pass in a conflicting
510 * function pointer :-( XXX GO */
511 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, &dagArray[i]);
512 }
513
514 /* the DAG will always call the callback, even if there was no
515 * blocking, so we are always suspended in this state */
516 return RF_TRUE;
517 }
518
519
520
521 /* rf_State_ProcessDAG is entered when a dag completes.
522 * first, check to all dags in the access have completed
523 * if not, fire as many dags as possible */
524
525 int
526 rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc)
527 {
528 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
529 RF_Raid_t *raidPtr = desc->raidPtr;
530 RF_DagHeader_t *dag_h;
531 int i, j, done = RF_TRUE;
532 RF_DagList_t *dagArray = desc->dagArray;
533 RF_Etimer_t timer;
534
535 /* check to see if this is the last dag */
536 for (i = 0; i < desc->numStripes; i++)
537 if (dagArray[i].numDags != dagArray[i].numDagsDone)
538 done = RF_FALSE;
539
540 if (done) {
541 if (desc->status) {
542 /* a dag failed, retry */
543 RF_ETIMER_START(timer);
544 /* free all dags */
545 for (i = 0; i < desc->numStripes; i++) {
546 rf_FreeDAG(desc->dagArray[i].dags);
547 }
548 rf_MarkFailuresInASMList(raidPtr, asmh);
549 /* back up to rf_State_CreateDAG */
550 desc->state = desc->state - 2;
551 return RF_FALSE;
552 } else {
553 /* move on to rf_State_Cleanup */
554 desc->state++;
555 }
556 return RF_FALSE;
557 } else {
558 /* more dags to execute */
559 /* see if any are ready to be fired. if so, fire them */
560 /* don't fire the initial dag in a list, it's fired in
561 * rf_State_ExecuteDAG */
562 for (i = 0; i < desc->numStripes; i++) {
563 if ((dagArray[i].numDagsDone < dagArray[i].numDags)
564 && (dagArray[i].numDagsDone == dagArray[i].numDagsFired)
565 && (dagArray[i].numDagsFired > 0)) {
566 RF_ETIMER_START(dagArray[i].tracerec.timer);
567 /* fire next dag in this stripe */
568 /* first, skip to next dag awaiting execution */
569 dag_h = dagArray[i].dags;
570 for (j = 0; j < dagArray[i].numDagsDone; j++)
571 dag_h = dag_h->next;
572 dagArray[i].numDagsFired++;
573 /* XXX and again we pass a different function
574 * pointer.. GO */
575 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
576 &dagArray[i]);
577 }
578 }
579 return RF_TRUE;
580 }
581 }
582 /* only make it this far if all dags complete successfully */
583 int
584 rf_State_Cleanup(RF_RaidAccessDesc_t * desc)
585 {
586 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
587 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
588 RF_Raid_t *raidPtr = desc->raidPtr;
589 RF_AccessStripeMap_t *asm_p;
590 RF_DagHeader_t *dag_h;
591 RF_Etimer_t timer;
592 int tid, i;
593
594 desc->state++;
595
596 rf_get_threadid(tid);
597
598 timer = tracerec->timer;
599 RF_ETIMER_STOP(timer);
600 RF_ETIMER_EVAL(timer);
601 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
602
603 /* the RAID I/O is complete. Clean up. */
604 tracerec->specific.user.dag_retry_us = 0;
605
606 RF_ETIMER_START(timer);
607 if (desc->flags & RF_DAG_RETURN_DAG) {
608 /* copy dags into paramDAG */
609 *(desc->paramDAG) = desc->dagArray[0].dags;
610 dag_h = *(desc->paramDAG);
611 for (i = 1; i < desc->numStripes; i++) {
612 /* concatenate dags from remaining stripes */
613 RF_ASSERT(dag_h);
614 while (dag_h->next)
615 dag_h = dag_h->next;
616 dag_h->next = desc->dagArray[i].dags;
617 }
618 } else {
619 /* free all dags */
620 for (i = 0; i < desc->numStripes; i++) {
621 rf_FreeDAG(desc->dagArray[i].dags);
622 }
623 }
624
625 RF_ETIMER_STOP(timer);
626 RF_ETIMER_EVAL(timer);
627 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
628
629 RF_ETIMER_START(timer);
630 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
631 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
632 if (!rf_suppressLocksAndLargeWrites &&
633 asm_p->parityInfo &&
634 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
635 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
636 rf_ReleaseStripeLock(raidPtr->lockTable, asm_p->stripeID,
637 &asm_p->lockReqDesc);
638 }
639 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
640 rf_UnblockRecon(raidPtr, asm_p);
641 }
642 }
643 }
644 RF_ETIMER_STOP(timer);
645 RF_ETIMER_EVAL(timer);
646 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
647
648 RF_ETIMER_START(timer);
649 if (desc->flags & RF_DAG_RETURN_ASM)
650 *(desc->paramASM) = asmh;
651 else
652 rf_FreeAccessStripeMap(asmh);
653 RF_ETIMER_STOP(timer);
654 RF_ETIMER_EVAL(timer);
655 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
656
657 RF_ETIMER_STOP(desc->timer);
658 RF_ETIMER_EVAL(desc->timer);
659
660 timer = desc->tracerec.tot_timer;
661 RF_ETIMER_STOP(timer);
662 RF_ETIMER_EVAL(timer);
663 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
664
665 rf_LogTraceRec(raidPtr, tracerec);
666
667 desc->flags |= RF_DAG_ACCESS_COMPLETE;
668
669 return RF_FALSE;
670 }
671