bpp.c revision 1.2.8.1 1 /* $NetBSD: bpp.c,v 1.2.8.1 2000/11/20 11:43:04 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/ioctl.h>
41 #include <sys/fcntl.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/vnode.h>
45 #include <sys/poll.h>
46 #include <sys/select.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/signalvar.h>
50 #include <sys/conf.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53
54 #include <machine/bus.h>
55 #include <machine/intr.h>
56 #include <machine/autoconf.h>
57 #include <machine/conf.h>
58
59 #include <dev/ic/lsi64854reg.h>
60 #include <dev/ic/lsi64854var.h>
61
62 #include <dev/sbus/sbusvar.h>
63 #include <dev/sbus/bppreg.h>
64
65 #define splbpp() spltty() /* XXX */
66
67 #if 0
68 struct bpp_param {
69 int bpp_dss; /* data setup to strobe */
70 int bpp_dsw; /* data strobe width */
71 int bpp_outputpins; /* Select/Autofeed/Init pins */
72 int bpp_inputpins; /* Error/Select/Paperout pins */
73 };
74 #endif
75
76 struct hwstate {
77 u_int16_t hw_hcr; /* Hardware config register */
78 u_int16_t hw_ocr; /* Operation config register */
79 u_int8_t hw_tcr; /* Transfer Control register */
80 u_int8_t hw_or; /* Output register */
81 u_int16_t hw_irq; /* IRQ; polarity bits only */
82 };
83
84 struct bpp_softc {
85 struct lsi64854_softc sc_lsi64854; /* base device */
86 struct sbusdev sc_sd; /* sbus device */
87
88 size_t sc_bufsz; /* temp buffer */
89 caddr_t sc_buf;
90
91 int sc_error; /* bottom-half error */
92 int sc_flags;
93 #define BPP_OPEN 0x01 /* Device is open */
94 #define BPP_XCLUDE 0x02 /* Exclusive-open mode */
95 #define BPP_ASYNC 0x04 /* Asynchronous I/O mode */
96 #define BPP_LOCKED 0x08 /* DMA in progress */
97 #define BPP_WANT 0x10 /* Waiting for DMA */
98
99 struct selinfo sc_rsel;
100 struct selinfo sc_wsel;
101 struct proc *sc_asyncproc; /* Process to notify if async */
102
103 /* Hardware state */
104 struct hwstate sc_hwdefault;
105 struct hwstate sc_hwcurrent;
106 };
107
108 static int bppmatch __P((struct device *, struct cfdata *, void *));
109 static void bppattach __P((struct device *, struct device *, void *));
110 static int bppintr __P((void *));
111 static void bpp_setparams __P((struct bpp_softc *, struct hwstate *));
112
113 struct cfattach bpp_ca = {
114 sizeof(struct bpp_softc), bppmatch, bppattach
115 };
116
117 extern struct cfdriver bpp_cd;
118 #define BPPUNIT(dev) (minor(dev))
119
120
121 int
122 bppmatch(parent, cf, aux)
123 struct device *parent;
124 struct cfdata *cf;
125 void *aux;
126 {
127 struct sbus_attach_args *sa = aux;
128
129 return (strcmp("SUNW,bpp", sa->sa_name) == 0);
130 }
131
132 void
133 bppattach(parent, self, aux)
134 struct device *parent, *self;
135 void *aux;
136 {
137 struct sbus_attach_args *sa = aux;
138 struct bpp_softc *dsc = (void *)self;
139 struct lsi64854_softc *sc = &dsc->sc_lsi64854;
140 int burst, sbusburst;
141 int node;
142
143 sc->sc_bustag = sa->sa_bustag;
144 sc->sc_dmatag = sa->sa_dmatag;
145 node = sa->sa_node;
146
147 /* Map device registers */
148 if (bus_space_map2(sa->sa_bustag,
149 sa->sa_slot,
150 sa->sa_offset,
151 sa->sa_size,
152 BUS_SPACE_MAP_LINEAR,
153 0, &sc->sc_regs) != 0) {
154 printf("%s: cannot map registers\n", self->dv_xname);
155 return;
156 }
157
158 /*
159 * Get transfer burst size from PROM and plug it into the
160 * controller registers. This is needed on the Sun4m; do
161 * others need it too?
162 */
163 sbusburst = ((struct sbus_softc *)parent)->sc_burst;
164 if (sbusburst == 0)
165 sbusburst = SBUS_BURST_32 - 1; /* 1->16 */
166
167 burst = getpropint(node, "burst-sizes", -1);
168 if (burst == -1)
169 /* take SBus burst sizes */
170 burst = sbusburst;
171
172 /* Clamp at parent's burst sizes */
173 burst &= sbusburst;
174 sc->sc_burst = (burst & SBUS_BURST_32) ? 32 :
175 (burst & SBUS_BURST_16) ? 16 : 0;
176
177 /* Join the Sbus device family */
178 dsc->sc_sd.sd_reset = (void *)0;
179 sbus_establish(&dsc->sc_sd, self);
180
181 /* Initialize the DMA channel */
182 sc->sc_channel = L64854_CHANNEL_PP;
183 lsi64854_attach(sc);
184
185 /* Establish interrupt handler */
186 if (sa->sa_nintr) {
187 sc->sc_intrchain = bppintr;
188 sc->sc_intrchainarg = dsc;
189 (void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_TTY, 0,
190 lsi64854_pp_intr, sc);
191 }
192
193 /* Allocate buffer XXX - should actually use dmamap_uio() */
194 dsc->sc_bufsz = 1024;
195 dsc->sc_buf = malloc(dsc->sc_bufsz, M_DEVBUF, M_NOWAIT);
196
197 /* XXX read default state */
198 {
199 bus_space_handle_t h = sc->sc_regs;
200 struct hwstate *hw = &dsc->sc_hwdefault;
201 hw->hw_hcr = bus_space_read_2(sc->sc_bustag, h, L64854_REG_HCR);
202 hw->hw_ocr = bus_space_read_2(sc->sc_bustag, h, L64854_REG_OCR);
203 hw->hw_tcr = bus_space_read_1(sc->sc_bustag, h, L64854_REG_TCR);
204 hw->hw_or = bus_space_read_1(sc->sc_bustag, h, L64854_REG_OR);
205 }
206 }
207
208 void
209 bpp_setparams(sc, hw)
210 struct bpp_softc *sc;
211 struct hwstate *hw;
212 {
213 u_int16_t irq;
214 bus_space_tag_t t = sc->sc_lsi64854.sc_bustag;
215 bus_space_handle_t h = sc->sc_lsi64854.sc_regs;
216
217 bus_space_write_2(t, h, L64854_REG_HCR, hw->hw_hcr);
218 bus_space_write_2(t, h, L64854_REG_OCR, hw->hw_ocr);
219 bus_space_write_1(t, h, L64854_REG_TCR, hw->hw_tcr);
220 bus_space_write_1(t, h, L64854_REG_OR, hw->hw_or);
221
222 /* Only change IRP settings in interrupt status register */
223 irq = bus_space_read_2(t, h, L64854_REG_ICR);
224 irq &= ~BPP_ALLIRP;
225 irq |= (hw->hw_irq & BPP_ALLIRP);
226 bus_space_write_2(t, h, L64854_REG_ICR, irq);
227 }
228
229 int
230 bppopen(dev, flags, mode, p)
231 dev_t dev;
232 int flags, mode;
233 struct proc *p;
234 {
235 int unit = BPPUNIT(dev);
236 struct bpp_softc *sc;
237 struct lsi64854_softc *lsi;
238 u_int16_t irq;
239 int s;
240
241 if (unit >= bpp_cd.cd_ndevs)
242 return (ENXIO);
243 sc = bpp_cd.cd_devs[unit];
244
245 if ((sc->sc_flags & (BPP_OPEN|BPP_XCLUDE)) == (BPP_OPEN|BPP_XCLUDE))
246 return (EBUSY);
247
248 lsi = &sc->sc_lsi64854;
249
250 /* Set default parameters */
251 sc->sc_hwcurrent = sc->sc_hwdefault;
252 s = splbpp();
253 bpp_setparams(sc, &sc->sc_hwdefault);
254 splx(s);
255
256 /* Enable interrupts */
257 irq = BPP_ALLEN;
258 irq |= sc->sc_hwdefault.hw_irq;
259 bus_space_write_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR, irq);
260 return (0);
261 }
262
263 int
264 bppclose(dev, flags, mode, p)
265 dev_t dev;
266 int flags, mode;
267 struct proc *p;
268 {
269 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
270 struct lsi64854_softc *lsi = &sc->sc_lsi64854;
271 u_int16_t irq;
272
273 /* Turn off all interrupt enables */
274 irq = sc->sc_hwdefault.hw_irq | BPP_ALLIRQ;
275 irq &= ~BPP_ALLEN;
276 bus_space_write_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR, irq);
277
278 sc->sc_asyncproc = NULL;
279 sc->sc_flags = 0;
280 return (0);
281 }
282
283 int
284 bppread(dev, uio, flags)
285 dev_t dev;
286 struct uio *uio;
287 int flags;
288 {
289
290 return (ENXIO);
291 }
292
293 int
294 bppwrite(dev, uio, flags)
295 dev_t dev;
296 struct uio *uio;
297 int flags;
298 {
299 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
300 struct lsi64854_softc *lsi = &sc->sc_lsi64854;
301 int error = 0;
302 int s;
303
304 /*
305 * Wait until the DMA engine is free.
306 */
307 s = splbpp();
308 while ((sc->sc_flags & BPP_LOCKED) != 0) {
309 if ((flags & IO_NDELAY) != 0) {
310 splx(s);
311 return (EWOULDBLOCK);
312 }
313
314 sc->sc_flags |= BPP_WANT;
315 error = tsleep(sc->sc_buf, PZERO|PCATCH, "bppwrite", 0);
316 if (error != 0) {
317 splx(s);
318 return (error);
319 }
320 }
321 sc->sc_flags |= BPP_LOCKED;
322 splx(s);
323
324 /*
325 * Move data from user space into our private buffer
326 * and start DMA.
327 */
328 while (uio->uio_resid > 0) {
329 caddr_t bp = sc->sc_buf;
330 size_t len = min(sc->sc_bufsz, uio->uio_resid);
331
332 if ((error = uiomove(bp, len, uio)) != 0)
333 break;
334
335 while (len > 0) {
336 u_int8_t tcr;
337 size_t size = len;
338 DMA_SETUP(lsi, &bp, &len, 0, &size);
339
340 /* Clear direction control bit */
341 tcr = bus_space_read_1(lsi->sc_bustag, lsi->sc_regs,
342 L64854_REG_TCR);
343 tcr &= ~BPP_TCR_DIR;
344 bus_space_write_1(lsi->sc_bustag, lsi->sc_regs,
345 L64854_REG_TCR, tcr);
346
347 /* Enable DMA */
348 s = splbpp();
349 DMA_GO(lsi);
350 error = tsleep(sc, PZERO|PCATCH, "bppdma", 0);
351 splx(s);
352 if (error != 0)
353 goto out;
354
355 /* Bail out if bottom half reported an error */
356 if ((error = sc->sc_error) != 0)
357 goto out;
358
359 len -= size;
360 }
361 }
362
363 out:
364 s = splbpp();
365 sc->sc_flags &= ~BPP_LOCKED;
366 if ((sc->sc_flags & BPP_WANT) != 0) {
367 sc->sc_flags &= ~BPP_WANT;
368 wakeup(sc->sc_buf);
369 }
370 splx(s);
371 return (error);
372 }
373
374 /* move to header: */
375 #define BPPIOCSPARAM _IOW('P', 0x1, struct hwstate)
376 #define BPPIOCGPARAM _IOR('P', 0x2, struct hwstate)
377
378 int
379 bppioctl(dev, cmd, data, flag, p)
380 dev_t dev;
381 u_long cmd;
382 caddr_t data;
383 int flag;
384 struct proc *p;
385 {
386 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
387 struct hwstate *hw, *chw;
388 int error = 0;
389 int s;
390
391 switch(cmd) {
392 case BPPIOCSPARAM:
393 chw = &sc->sc_hwcurrent;
394 hw = (struct hwstate *)data;
395
396 /*
397 * Extract and store user-settable bits.
398 */
399 #define _bpp_set(reg,mask) do { \
400 chw->reg &= ~(mask); \
401 chw->reg |= (hw->reg & (mask)); \
402 } while (0)
403 _bpp_set(hw_hcr, BPP_HCR_DSS_MASK|BPP_HCR_DSW_MASK);
404 _bpp_set(hw_ocr, BPP_OCR_USER);
405 _bpp_set(hw_tcr, BPP_TCR_USER);
406 _bpp_set(hw_or, BPP_OR_USER);
407 _bpp_set(hw_irq, BPP_IRQ_USER);
408 #undef _bpp_set
409
410 /* Apply settings */
411 s = splbpp();
412 bpp_setparams(sc, chw);
413 splx(s);
414 break;
415 case BPPIOCGPARAM:
416 *((struct hwstate *)data) = sc->sc_hwcurrent;
417 break;
418 case TIOCEXCL:
419 s = splbpp();
420 sc->sc_flags |= BPP_XCLUDE;
421 splx(s);
422 break;
423 case TIOCNXCL:
424 s = splbpp();
425 sc->sc_flags &= ~BPP_XCLUDE;
426 splx(s);
427 break;
428 case FIOASYNC:
429 s = splbpp();
430 if (*(int *)data) {
431 if (sc->sc_asyncproc != NULL)
432 error = EBUSY;
433 else
434 sc->sc_asyncproc = p;
435 } else
436 sc->sc_asyncproc = NULL;
437 splx(s);
438 break;
439 default:
440 break;
441 }
442
443 return (error);
444 }
445
446 int
447 bpppoll(dev, events, p)
448 dev_t dev;
449 int events;
450 struct proc *p;
451 {
452 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
453 int revents = 0;
454
455 if (events & (POLLIN | POLLRDNORM)) {
456 /* read is not yet implemented */
457 }
458
459 if (events & (POLLOUT | POLLWRNORM)) {
460 if ((sc->sc_flags & BPP_LOCKED) == 0)
461 revents |= (POLLOUT | POLLWRNORM);
462 }
463
464 if (revents == 0) {
465 if (events & (POLLIN | POLLRDNORM))
466 selrecord(p, &sc->sc_rsel);
467 if (events & (POLLOUT | POLLWRNORM))
468 selrecord(p, &sc->sc_wsel);
469 }
470
471 return (revents);
472 }
473
474 int
475 bppintr(arg)
476 void *arg;
477 {
478 struct bpp_softc *sc = arg;
479 struct lsi64854_softc *lsi = &sc->sc_lsi64854;
480 u_int16_t irq;
481
482 irq = bus_space_read_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR);
483 /* Ack all interrupts */
484 bus_space_write_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR,
485 irq | BPP_ALLIRQ);
486
487 /* Did our device interrupt? */
488 if ((irq & BPP_ALLIRQ) == 0)
489 return (0);
490
491 if ((sc->sc_flags & BPP_LOCKED) != 0)
492 wakeup(sc);
493 else if ((sc->sc_flags & BPP_WANT) != 0) {
494 sc->sc_flags &= ~BPP_WANT;
495 wakeup(sc->sc_buf);
496 } else {
497 selwakeup(&sc->sc_wsel);
498 if (sc->sc_asyncproc != NULL)
499 psignal(sc->sc_asyncproc, SIGIO);
500 }
501 return (1);
502 }
503