bpp.c revision 1.8.2.2 1 /* $NetBSD: bpp.c,v 1.8.2.2 2001/11/14 19:15:56 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: bpp.c,v 1.8.2.2 2001/11/14 19:15:56 nathanw Exp $");
41
42 #include <sys/param.h>
43 #include <sys/ioctl.h>
44 #include <sys/fcntl.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <sys/poll.h>
49 #include <sys/select.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/signalvar.h>
53 #include <sys/conf.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56
57 #include <machine/bus.h>
58 #include <machine/intr.h>
59 #include <machine/autoconf.h>
60 #include <machine/conf.h>
61
62 #include <dev/ic/lsi64854reg.h>
63 #include <dev/ic/lsi64854var.h>
64
65 #include <dev/sbus/sbusvar.h>
66 #include <dev/sbus/bppreg.h>
67
68 #define splbpp() spltty() /* XXX */
69
70 #ifdef DEBUG
71 #define DPRINTF(x) do { if (bppdebug) printf x ; } while (0)
72 int bppdebug = 1;
73 #else
74 #define DPRINTF(x)
75 #endif
76
77 #if 0
78 struct bpp_param {
79 int bpp_dss; /* data setup to strobe */
80 int bpp_dsw; /* data strobe width */
81 int bpp_outputpins; /* Select/Autofeed/Init pins */
82 int bpp_inputpins; /* Error/Select/Paperout pins */
83 };
84 #endif
85
86 struct hwstate {
87 u_int16_t hw_hcr; /* Hardware config register */
88 u_int16_t hw_ocr; /* Operation config register */
89 u_int8_t hw_tcr; /* Transfer Control register */
90 u_int8_t hw_or; /* Output register */
91 u_int16_t hw_irq; /* IRQ; polarity bits only */
92 };
93
94 struct bpp_softc {
95 struct lsi64854_softc sc_lsi64854; /* base device */
96 struct sbusdev sc_sd; /* sbus device */
97
98 size_t sc_bufsz; /* temp buffer */
99 caddr_t sc_buf;
100
101 int sc_error; /* bottom-half error */
102 int sc_flags;
103 #define BPP_OPEN 0x01 /* Device is open */
104 #define BPP_XCLUDE 0x02 /* Exclusive-open mode */
105 #define BPP_ASYNC 0x04 /* Asynchronous I/O mode */
106 #define BPP_LOCKED 0x08 /* DMA in progress */
107 #define BPP_WANT 0x10 /* Waiting for DMA */
108
109 struct selinfo sc_rsel;
110 struct selinfo sc_wsel;
111 struct proc *sc_asyncproc; /* Process to notify if async */
112
113 /* Hardware state */
114 struct hwstate sc_hwdefault;
115 struct hwstate sc_hwcurrent;
116 };
117
118 static int bppmatch __P((struct device *, struct cfdata *, void *));
119 static void bppattach __P((struct device *, struct device *, void *));
120 static int bppintr __P((void *));
121 static void bpp_setparams __P((struct bpp_softc *, struct hwstate *));
122
123 struct cfattach bpp_ca = {
124 sizeof(struct bpp_softc), bppmatch, bppattach
125 };
126
127 extern struct cfdriver bpp_cd;
128 #define BPPUNIT(dev) (minor(dev))
129
130
131 int
132 bppmatch(parent, cf, aux)
133 struct device *parent;
134 struct cfdata *cf;
135 void *aux;
136 {
137 struct sbus_attach_args *sa = aux;
138
139 return (strcmp("SUNW,bpp", sa->sa_name) == 0);
140 }
141
142 void
143 bppattach(parent, self, aux)
144 struct device *parent, *self;
145 void *aux;
146 {
147 struct sbus_attach_args *sa = aux;
148 struct bpp_softc *dsc = (void *)self;
149 struct lsi64854_softc *sc = &dsc->sc_lsi64854;
150 int burst, sbusburst;
151 int node;
152
153 sc->sc_bustag = sa->sa_bustag;
154 sc->sc_dmatag = sa->sa_dmatag;
155 node = sa->sa_node;
156
157 /* Map device registers */
158 if (bus_space_map2(sa->sa_bustag,
159 sa->sa_slot,
160 sa->sa_offset,
161 sa->sa_size,
162 BUS_SPACE_MAP_LINEAR,
163 0, &sc->sc_regs) != 0) {
164 printf("%s: cannot map registers\n", self->dv_xname);
165 return;
166 }
167
168 /*
169 * Get transfer burst size from PROM and plug it into the
170 * controller registers. This is needed on the Sun4m; do
171 * others need it too?
172 */
173 sbusburst = ((struct sbus_softc *)parent)->sc_burst;
174 if (sbusburst == 0)
175 sbusburst = SBUS_BURST_32 - 1; /* 1->16 */
176
177 burst = PROM_getpropint(node, "burst-sizes", -1);
178 if (burst == -1)
179 /* take SBus burst sizes */
180 burst = sbusburst;
181
182 /* Clamp at parent's burst sizes */
183 burst &= sbusburst;
184 sc->sc_burst = (burst & SBUS_BURST_32) ? 32 :
185 (burst & SBUS_BURST_16) ? 16 : 0;
186
187 /* Join the Sbus device family */
188 dsc->sc_sd.sd_reset = (void *)0;
189 sbus_establish(&dsc->sc_sd, self);
190
191 /* Initialize the DMA channel */
192 sc->sc_channel = L64854_CHANNEL_PP;
193 lsi64854_attach(sc);
194
195 /* Establish interrupt handler */
196 if (sa->sa_nintr) {
197 sc->sc_intrchain = bppintr;
198 sc->sc_intrchainarg = dsc;
199 (void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_TTY, 0,
200 bppintr, sc);
201 }
202
203 /* Allocate buffer XXX - should actually use dmamap_uio() */
204 dsc->sc_bufsz = 1024;
205 dsc->sc_buf = malloc(dsc->sc_bufsz, M_DEVBUF, M_NOWAIT);
206
207 /* XXX read default state */
208 {
209 bus_space_handle_t h = sc->sc_regs;
210 struct hwstate *hw = &dsc->sc_hwdefault;
211 int ack_rate = sa->sa_frequency/1000000;
212
213 hw->hw_hcr = bus_space_read_2(sc->sc_bustag, h, L64854_REG_HCR);
214 hw->hw_ocr = bus_space_read_2(sc->sc_bustag, h, L64854_REG_OCR);
215 hw->hw_tcr = bus_space_read_1(sc->sc_bustag, h, L64854_REG_TCR);
216 hw->hw_or = bus_space_read_1(sc->sc_bustag, h, L64854_REG_OR);
217
218 DPRINTF(("bpp: hcr %x ocr %x tcr %x or %x\n",
219 hw->hw_hcr, hw->hw_ocr, hw->hw_tcr, hw->hw_or));
220 /* Set these to sane values */
221 hw->hw_hcr = ((ack_rate<<BPP_HCR_DSS_SHFT)&BPP_HCR_DSS_MASK)
222 | ((ack_rate<<BPP_HCR_DSW_SHFT)&BPP_HCR_DSW_MASK);
223 hw->hw_ocr |= BPP_OCR_ACK_OP;
224 }
225 }
226
227 void
228 bpp_setparams(sc, hw)
229 struct bpp_softc *sc;
230 struct hwstate *hw;
231 {
232 u_int16_t irq;
233 bus_space_tag_t t = sc->sc_lsi64854.sc_bustag;
234 bus_space_handle_t h = sc->sc_lsi64854.sc_regs;
235
236 bus_space_write_2(t, h, L64854_REG_HCR, hw->hw_hcr);
237 bus_space_write_2(t, h, L64854_REG_OCR, hw->hw_ocr);
238 bus_space_write_1(t, h, L64854_REG_TCR, hw->hw_tcr);
239 bus_space_write_1(t, h, L64854_REG_OR, hw->hw_or);
240
241 /* Only change IRP settings in interrupt status register */
242 irq = bus_space_read_2(t, h, L64854_REG_ICR);
243 irq &= ~BPP_ALLIRP;
244 irq |= (hw->hw_irq & BPP_ALLIRP);
245 bus_space_write_2(t, h, L64854_REG_ICR, irq);
246 DPRINTF(("bpp_setparams: hcr %x ocr %x tcr %x or %x, irq %x\n",
247 hw->hw_hcr, hw->hw_ocr, hw->hw_tcr, hw->hw_or, irq));
248 }
249
250 int
251 bppopen(dev, flags, mode, p)
252 dev_t dev;
253 int flags, mode;
254 struct proc *p;
255 {
256 int unit = BPPUNIT(dev);
257 struct bpp_softc *sc;
258 struct lsi64854_softc *lsi;
259 u_int16_t irq;
260 int s;
261
262 if (unit >= bpp_cd.cd_ndevs)
263 return (ENXIO);
264 sc = bpp_cd.cd_devs[unit];
265
266 if ((sc->sc_flags & (BPP_OPEN|BPP_XCLUDE)) == (BPP_OPEN|BPP_XCLUDE))
267 return (EBUSY);
268
269 lsi = &sc->sc_lsi64854;
270
271 /* Set default parameters */
272 sc->sc_hwcurrent = sc->sc_hwdefault;
273 s = splbpp();
274 bpp_setparams(sc, &sc->sc_hwdefault);
275 splx(s);
276
277 /* Enable interrupts */
278 irq = BPP_ERR_IRQ_EN;
279 irq |= sc->sc_hwdefault.hw_irq;
280 bus_space_write_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR, irq);
281 return (0);
282 }
283
284 int
285 bppclose(dev, flags, mode, p)
286 dev_t dev;
287 int flags, mode;
288 struct proc *p;
289 {
290 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
291 struct lsi64854_softc *lsi = &sc->sc_lsi64854;
292 u_int16_t irq;
293
294 /* Turn off all interrupt enables */
295 irq = sc->sc_hwdefault.hw_irq | BPP_ALLIRQ;
296 irq &= ~BPP_ALLEN;
297 bus_space_write_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR, irq);
298
299 sc->sc_asyncproc = NULL;
300 sc->sc_flags = 0;
301 return (0);
302 }
303
304 int
305 bppread(dev, uio, flags)
306 dev_t dev;
307 struct uio *uio;
308 int flags;
309 {
310
311 return (ENXIO);
312 }
313
314 int
315 bppwrite(dev, uio, flags)
316 dev_t dev;
317 struct uio *uio;
318 int flags;
319 {
320 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
321 struct lsi64854_softc *lsi = &sc->sc_lsi64854;
322 int error = 0;
323 int s;
324
325 /*
326 * Wait until the DMA engine is free.
327 */
328 s = splbpp();
329 while ((sc->sc_flags & BPP_LOCKED) != 0) {
330 if ((flags & IO_NDELAY) != 0) {
331 splx(s);
332 return (EWOULDBLOCK);
333 }
334
335 sc->sc_flags |= BPP_WANT;
336 error = tsleep(sc->sc_buf, PZERO|PCATCH, "bppwrite", 0);
337 if (error != 0) {
338 splx(s);
339 return (error);
340 }
341 }
342 sc->sc_flags |= BPP_LOCKED;
343 splx(s);
344
345 /*
346 * Move data from user space into our private buffer
347 * and start DMA.
348 */
349 while (uio->uio_resid > 0) {
350 caddr_t bp = sc->sc_buf;
351 size_t len = min(sc->sc_bufsz, uio->uio_resid);
352
353 if ((error = uiomove(bp, len, uio)) != 0)
354 break;
355
356 while (len > 0) {
357 u_int8_t tcr;
358 size_t size = len;
359 DMA_SETUP(lsi, &bp, &len, 0, &size);
360
361 #ifdef DEBUG
362 if (bppdebug) {
363 int i;
364 printf("bpp: writing %ld : ", len);
365 for (i=0; i<len; i++) printf("%c(0x%x)", bp[i], bp[i]);
366 printf("\n");
367 }
368 #endif
369
370 /* Clear direction control bit */
371 tcr = bus_space_read_1(lsi->sc_bustag, lsi->sc_regs,
372 L64854_REG_TCR);
373 tcr &= ~BPP_TCR_DIR;
374 bus_space_write_1(lsi->sc_bustag, lsi->sc_regs,
375 L64854_REG_TCR, tcr);
376
377 /* Enable DMA */
378 s = splbpp();
379 DMA_GO(lsi);
380 error = tsleep(sc, PZERO|PCATCH, "bppdma", 0);
381 splx(s);
382 if (error != 0)
383 goto out;
384
385 /* Bail out if bottom half reported an error */
386 if ((error = sc->sc_error) != 0)
387 goto out;
388
389 /*
390 * lsi64854_pp_intr() does this part.
391 *
392 * len -= size;
393 */
394 }
395 }
396
397 out:
398 DPRINTF(("bpp done %x\n", error));
399 s = splbpp();
400 sc->sc_flags &= ~BPP_LOCKED;
401 if ((sc->sc_flags & BPP_WANT) != 0) {
402 sc->sc_flags &= ~BPP_WANT;
403 wakeup(sc->sc_buf);
404 }
405 splx(s);
406 return (error);
407 }
408
409 /* move to header: */
410 #define BPPIOCSPARAM _IOW('P', 0x1, struct hwstate)
411 #define BPPIOCGPARAM _IOR('P', 0x2, struct hwstate)
412
413 int
414 bppioctl(dev, cmd, data, flag, p)
415 dev_t dev;
416 u_long cmd;
417 caddr_t data;
418 int flag;
419 struct proc *p;
420 {
421 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
422 struct hwstate *hw, *chw;
423 int error = 0;
424 int s;
425
426 switch(cmd) {
427 case BPPIOCSPARAM:
428 chw = &sc->sc_hwcurrent;
429 hw = (struct hwstate *)data;
430
431 /*
432 * Extract and store user-settable bits.
433 */
434 #define _bpp_set(reg,mask) do { \
435 chw->reg &= ~(mask); \
436 chw->reg |= (hw->reg & (mask)); \
437 } while (0)
438 _bpp_set(hw_hcr, BPP_HCR_DSS_MASK|BPP_HCR_DSW_MASK);
439 _bpp_set(hw_ocr, BPP_OCR_USER);
440 _bpp_set(hw_tcr, BPP_TCR_USER);
441 _bpp_set(hw_or, BPP_OR_USER);
442 _bpp_set(hw_irq, BPP_IRQ_USER);
443 #undef _bpp_set
444
445 /* Apply settings */
446 s = splbpp();
447 bpp_setparams(sc, chw);
448 splx(s);
449 break;
450 case BPPIOCGPARAM:
451 *((struct hwstate *)data) = sc->sc_hwcurrent;
452 break;
453 case TIOCEXCL:
454 s = splbpp();
455 sc->sc_flags |= BPP_XCLUDE;
456 splx(s);
457 break;
458 case TIOCNXCL:
459 s = splbpp();
460 sc->sc_flags &= ~BPP_XCLUDE;
461 splx(s);
462 break;
463 case FIOASYNC:
464 s = splbpp();
465 if (*(int *)data) {
466 if (sc->sc_asyncproc != NULL)
467 error = EBUSY;
468 else
469 sc->sc_asyncproc = p;
470 } else
471 sc->sc_asyncproc = NULL;
472 splx(s);
473 break;
474 default:
475 break;
476 }
477
478 return (error);
479 }
480
481 int
482 bpppoll(dev, events, p)
483 dev_t dev;
484 int events;
485 struct proc *p;
486 {
487 struct bpp_softc *sc = bpp_cd.cd_devs[BPPUNIT(dev)];
488 int revents = 0;
489
490 if (events & (POLLIN | POLLRDNORM)) {
491 /* read is not yet implemented */
492 }
493
494 if (events & (POLLOUT | POLLWRNORM)) {
495 if ((sc->sc_flags & BPP_LOCKED) == 0)
496 revents |= (POLLOUT | POLLWRNORM);
497 }
498
499 if (revents == 0) {
500 if (events & (POLLIN | POLLRDNORM))
501 selrecord(p, &sc->sc_rsel);
502 if (events & (POLLOUT | POLLWRNORM))
503 selrecord(p, &sc->sc_wsel);
504 }
505
506 return (revents);
507 }
508
509 int
510 bppintr(arg)
511 void *arg;
512 {
513 struct bpp_softc *sc = arg;
514 struct lsi64854_softc *lsi = &sc->sc_lsi64854;
515 u_int16_t irq;
516
517 /* First handle any possible DMA interrupts */
518 if (lsi64854_pp_intr((void *)lsi) == -1)
519 sc->sc_error = 1;
520
521 irq = bus_space_read_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR);
522 /* Ack all interrupts */
523 bus_space_write_2(lsi->sc_bustag, lsi->sc_regs, L64854_REG_ICR,
524 irq | BPP_ALLIRQ);
525
526 DPRINTF(("bpp_intr: %x\n", irq));
527 /* Did our device interrupt? */
528 if ((irq & BPP_ALLIRQ) == 0)
529 return (0);
530
531 if ((sc->sc_flags & BPP_LOCKED) != 0)
532 wakeup(sc);
533 else if ((sc->sc_flags & BPP_WANT) != 0) {
534 sc->sc_flags &= ~BPP_WANT;
535 wakeup(sc->sc_buf);
536 } else {
537 selwakeup(&sc->sc_wsel);
538 if (sc->sc_asyncproc != NULL)
539 psignal(sc->sc_asyncproc, SIGIO);
540 }
541 return (1);
542 }
543