cs4231_sbus.c revision 1.10 1 /* $NetBSD: cs4231_sbus.c,v 1.10 1999/03/19 02:32:48 eeh Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47
48 #include <machine/autoconf.h>
49 #include <machine/cpu.h>
50
51 #include <sys/audioio.h>
52 #include <dev/audio_if.h>
53
54 #include <dev/ic/ad1848reg.h>
55 #include <dev/ic/cs4231reg.h>
56 #include <dev/ic/ad1848var.h>
57
58 #if 0
59 /* XXX- put these elsewhere */
60 #define SUNAUDIO_MIC_PORT 0
61 #define SUNAUDIO_SPEAKER 1
62 #define SUNAUDIO_HEADPHONES 2
63 #define SUNAUDIO_MONITOR 3
64 #define SUNAUDIO_SOURCE 4
65 #define SUNAUDIO_OUTPUT 5
66 #define SUNAUDIO_INPUT_CLASS 6
67 #define SUNAUDIO_OUTPUT_CLASS 7
68 #define SUNAUDIO_RECORD_CLASS 8
69 #define SUNAUDIO_MONITOR_CLASS 9
70 #endif
71
72 /*---*/
73 #define CSAUDIO_DAC_LVL 0
74 #define CSAUDIO_LINE_IN_LVL 1
75 #define CSAUDIO_MONO_LVL 2
76 #define CSAUDIO_CD_LVL 3
77 #define CSAUDIO_MONITOR_LVL 4
78 #define CSAUDIO_OUT_LVL 5
79 #define CSAUDIO_LINE_IN_MUTE 6
80 #define CSAUDIO_DAC_MUTE 7
81 #define CSAUDIO_CD_MUTE 8
82 #define CSAUDIO_MONO_MUTE 9
83 #define CSAUDIO_MONITOR_MUTE 10
84 #define CSAUDIO_REC_LVL 11
85 #define CSAUDIO_RECORD_SOURCE 12
86
87 #define CSAUDIO_INPUT_CLASS 13
88 #define CSAUDIO_OUTPUT_CLASS 14
89 #define CSAUDIO_RECORD_CLASS 15
90 #define CSAUDIO_MONITOR_CLASS 16
91
92 #define AUDIO_ROM_NAME "SUNW,CS4231"
93
94 #ifdef AUDIO_DEBUG
95 int cs4231debug = 0;
96 #define DPRINTF(x) if (cs4231debug) printf x
97 #else
98 #define DPRINTF(x)
99 #endif
100
101 /*
102 * Layout of 4231 registers.
103 *
104 struct cs4231_reg {
105 volatile u_int8_t iar; // Index Address Register
106 volatile u_int8_t pad0[3];
107 volatile u_int8_t idr; // Data Register
108 volatile u_int8_t pad1[3];
109 volatile u_int8_t status; // Status Register
110 volatile u_int8_t pad2[3];
111 volatile u_int8_t piodr; // PIO Data Register I/O
112 volatile u_int8_t pad3[3];
113 };
114 */
115 #define CS4231_REG_SIZE 16
116
117
118 /*
119 * APC DMA hardware; from SunOS header
120 * Thanks to Derrick J. Brashear for additional info on the
121 * meaning of some of these bits.
122 */
123 struct apc_dma {
124 volatile u_int32_t dmacsr; /* APC CSR */
125 volatile u_int32_t lpad[3]; /* */
126 volatile u_int32_t dmacva; /* Capture Virtual Address */
127 volatile u_int32_t dmacc; /* Capture Count */
128 volatile u_int32_t dmacnva; /* Capture Next Virtual Address */
129 volatile u_int32_t dmacnc; /* Capture next count */
130 volatile u_int32_t dmapva; /* Playback Virtual Address */
131 volatile u_int32_t dmapc; /* Playback Count */
132 volatile u_int32_t dmapnva; /* Playback Next VAddress */
133 volatile u_int32_t dmapnc; /* Playback Next Count */
134 };
135
136 /*
137 * APC CSR Register bit definitions
138 */
139 #define APC_IP 0x00800000 /* Interrupt Pending */
140 #define APC_PI 0x00400000 /* Playback interrupt */
141 #define APC_CI 0x00200000 /* Capture interrupt */
142 #define APC_EI 0x00100000 /* General interrupt */
143 #define APC_IE 0x00080000 /* General ext int. enable */
144 #define APC_PIE 0x00040000 /* Playback ext intr */
145 #define APC_CIE 0x00020000 /* Capture ext intr */
146 #define APC_EIE 0x00010000 /* Error ext intr */
147 #define APC_PMI 0x00008000 /* Pipe empty interrupt */
148 #define APC_PM 0x00004000 /* Play pipe empty */
149 #define APC_PD 0x00002000 /* Playback NVA dirty */
150 #define APC_PMIE 0x00001000 /* play pipe empty Int enable */
151 #define APC_CM 0x00000800 /* Cap data dropped on floor */
152 #define APC_CD 0x00000400 /* Capture NVA dirty */
153 #define APC_CMI 0x00000200 /* Capture pipe empty interrupt */
154 #define APC_CMIE 0x00000100 /* Cap. pipe empty int enable */
155 #define APC_PPAUSE 0x00000080 /* Pause the play DMA */
156 #define APC_CPAUSE 0x00000040 /* Pause the capture DMA */
157 #define APC_CODEC_PDN 0x00000020 /* CODEC RESET */
158 #define PDMA_GO 0x00000008
159 #define CDMA_GO 0x00000004 /* bit 2 of the csr */
160 #define APC_RESET 0x00000001 /* Reset the chip */
161
162 #define APC_BITS \
163 "\20\30IP\27PI\26CI\25EI\24IE" \
164 "\23PIE\22CIE\21EIE\20PMI\17PM\16PD\15PMIE" \
165 "\14CM\13CD\12CMI\11CMIE\10PPAUSE\7CPAUSE\6PDN\4PGO\3CGO"
166
167 /*
168 * To start DMA, you write to dma[cp]nva and dma[cp]nc and set [CP]DMA_GO
169 * in dmacsr. dma[cp]va and dma[cp]c, when read, appear to be the live
170 * counter as the DMA operation progresses.
171 * Supposedly, you get an interrupt with the "dirty" bits (APC_PD,APC_CD)
172 * set, when the next DMA buffer can be programmed, while the current one
173 * is still in progress. We don't currently use this feature, since I
174 * haven't been able to make it work.. instead the next buffer goes in
175 * as soon as we see a "pipe empty" (APC_PM) interrupt.
176 */
177
178 /* It's not clear if there's a maximum DMA size.. */
179 #define APC_MAX (sc->sc_blksz)/*(16*1024)*/
180
181 /*
182 * List of device memory allocations (see cs4231_malloc/cs4231_free).
183 */
184 struct cs_dma {
185 struct cs_dma *next;
186 caddr_t addr;
187 bus_dma_segment_t segs[1];
188 int nsegs;
189 size_t size;
190 };
191
192
193 /*
194 * Software state, per CS4231 audio chip.
195 */
196 struct cs4231_softc {
197 struct ad1848_softc sc_ad1848; /* base device */
198 struct sbusdev sc_sd; /* sbus device */
199 bus_space_tag_t sc_bustag;
200 bus_dma_tag_t sc_dmatag;
201 struct evcnt sc_intrcnt; /* statistics */
202
203 struct cs_dma *sc_dmas;
204 struct cs_dma *sc_nowplaying; /*XXX*/
205 u_long sc_playsegsz; /*XXX*/
206 u_long sc_playcnt;
207 u_long sc_blksz;
208
209 int sc_open; /* single use device */
210 int sc_locked; /* true when transfering data */
211 struct apc_dma *sc_dmareg; /* DMA registers */
212
213 /* interfacing with the interrupt handlers */
214 void (*sc_rintr)(void*); /* input completion intr handler */
215 void *sc_rarg; /* arg for sc_rintr() */
216 void (*sc_pintr)(void*); /* output completion intr handler */
217 void *sc_parg; /* arg for sc_pintr() */
218 };
219
220 /* autoconfiguration driver */
221 void cs4231attach __P((struct device *, struct device *, void *));
222 int cs4231match __P((struct device *, struct cfdata *, void *));
223
224 struct cfattach audiocs_ca = {
225 sizeof(struct cs4231_softc), cs4231match, cs4231attach
226 };
227
228 struct audio_device cs4231_device = {
229 "cs4231",
230 "x",
231 "audio"
232 };
233
234
235 /*
236 * Define our interface to the higher level audio driver.
237 */
238 int cs4231_open __P((void *, int));
239 void cs4231_close __P((void *));
240 size_t cs4231_round_buffersize __P((void *, int, size_t));
241 int cs4231_round_blocksize __P((void *, int));
242 int cs4231_halt_output __P((void *));
243 int cs4231_halt_input __P((void *));
244 int cs4231_getdev __P((void *, struct audio_device *));
245 int cs4231_set_port __P((void *, mixer_ctrl_t *));
246 int cs4231_get_port __P((void *, mixer_ctrl_t *));
247 int cs4231_query_devinfo __P((void *, mixer_devinfo_t *));
248 int cs4231_get_props __P((void *));
249
250 void *cs4231_malloc __P((void *, int, size_t, int, int));
251 void cs4231_free __P((void *, void *, int));
252 int cs4231_trigger_output __P((void *, void *, void *, int,
253 void (*)(void *), void *,
254 struct audio_params *));
255 int cs4231_trigger_input __P((void *, void *, void *, int,
256 void (*)(void *), void *,
257 struct audio_params *));
258
259 int cs4231_intr __P((void *));
260 void cs4231_init __P((struct cs4231_softc *));
261
262 #ifdef AUDIO_DEBUG
263 static void cs4231_regdump __P((char *, struct cs4231_softc *));
264 #endif
265
266 static int cs_read __P((struct ad1848_softc *, int));
267 static void cs_write __P((struct ad1848_softc *, int, int));
268
269 static int
270 cs_read(sc, index)
271 struct ad1848_softc *sc;
272 int index;
273 {
274 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, (index << 2));
275 }
276
277 static void
278 cs_write(sc, index, value)
279 struct ad1848_softc *sc;
280 int index, value;
281 {
282 bus_space_write_1(sc->sc_iot, sc->sc_ioh, (index << 2), value);
283 }
284
285 static struct audio_hw_if hw_if = {
286 cs4231_open,
287 cs4231_close,
288 0,
289 ad1848_query_encoding,
290 ad1848_set_params,
291 cs4231_round_blocksize,
292 ad1848_commit_settings,
293 0,
294 0,
295 NULL,
296 NULL,
297 cs4231_halt_output,
298 cs4231_halt_input,
299 0,
300 cs4231_getdev,
301 0,
302 cs4231_set_port,
303 cs4231_get_port,
304 cs4231_query_devinfo,
305 cs4231_malloc,
306 cs4231_free,
307 cs4231_round_buffersize,
308 0,
309 cs4231_get_props,
310 cs4231_trigger_output,
311 cs4231_trigger_input
312 };
313
314 /* autoconfig routines */
315
316 int
317 cs4231match(parent, cf, aux)
318 struct device *parent;
319 struct cfdata *cf;
320 void *aux;
321 {
322 struct sbus_attach_args *sa = aux;
323
324 return (strcmp(AUDIO_ROM_NAME, sa->sa_name) == 0);
325 }
326
327 /*
328 * Audio chip found.
329 */
330 void
331 cs4231attach(parent, self, aux)
332 struct device *parent, *self;
333 void *aux;
334 {
335 struct cs4231_softc *sc = (struct cs4231_softc *)self;
336 struct sbus_attach_args *sa = aux;
337 bus_space_handle_t bh;
338
339 sc->sc_bustag = sa->sa_bustag;
340 sc->sc_dmatag = sa->sa_dmatag;
341
342 sc->sc_ad1848.parent = sc;
343 sc->sc_ad1848.sc_iot = sc->sc_bustag;
344 sc->sc_ad1848.sc_readreg = cs_read;
345 sc->sc_ad1848.sc_writereg = cs_write;
346
347 /*
348 * Map my registers in, if they aren't already in virtual
349 * address space.
350 */
351 if (sa->sa_npromvaddrs) {
352 bh = (bus_space_handle_t)sa->sa_promvaddrs[0];
353 } else {
354 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
355 sa->sa_offset,
356 sa->sa_size,
357 BUS_SPACE_MAP_LINEAR,
358 0, &bh) != 0) {
359 printf("%s @ sbus: cannot map registers\n",
360 self->dv_xname);
361 return;
362 }
363 }
364
365 sc->sc_ad1848.sc_ioh = bh;
366 sc->sc_dmareg = (struct apc_dma *)(bh + CS4231_REG_SIZE);
367
368 cs4231_init(sc);
369
370 /* Put ad1848 driver in `MODE 2' mode */
371 sc->sc_ad1848.mode = 2;
372 ad1848_attach(&sc->sc_ad1848);
373
374 printf("\n");
375
376 sbus_establish(&sc->sc_sd, &sc->sc_ad1848.sc_dev);
377
378 /* Establish interrupt channel */
379 bus_intr_establish(sa->sa_bustag,
380 sa->sa_pri, 0,
381 cs4231_intr, sc);
382
383 evcnt_attach(&sc->sc_ad1848.sc_dev, "intr", &sc->sc_intrcnt);
384 audio_attach_mi(&hw_if, sc, &sc->sc_ad1848.sc_dev);
385 }
386
387
388 #ifdef AUDIO_DEBUG
389 static void
390 cs4231_regdump(label, sc)
391 char *label;
392 struct cs4231_softc *sc;
393 {
394 char bits[128];
395 volatile struct apc_dma *dma = sc->sc_dmareg;
396
397 printf("cs4231regdump(%s): regs:", label);
398 printf("dmapva: 0x%x; ", dma->dmapva);
399 printf("dmapc: 0x%x; ", dma->dmapc);
400 printf("dmapnva: 0x%x; ", dma->dmapnva);
401 printf("dmapnc: 0x%x\n", dma->dmapnc);
402 printf("dmacva: 0x%x; ", dma->dmacva);
403 printf("dmacc: 0x%x; ", dma->dmacc);
404 printf("dmacnva: 0x%x; ", dma->dmacnva);
405 printf("dmacnc: 0x%x\n", dma->dmacnc);
406
407 printf("apc_dmacsr=%s\n",
408 bitmask_snprintf(dma->dmacsr, APC_BITS, bits, sizeof(bits)) );
409
410 ad1848_dump_regs(&sc->sc_ad1848);
411 }
412 #endif
413
414 void
415 cs4231_init(sc)
416 register struct cs4231_softc *sc;
417 {
418 char *buf;
419 #if 0
420 volatile struct apc_dma *dma = sc->sc_dmareg;
421 #endif
422 int reg;
423
424 #if 0
425 dma->dmacsr = APC_CODEC_PDN;
426 delay(20);
427 dma->dmacsr &= ~APC_CODEC_PDN;
428 #endif
429 /* First, put chip in native mode */
430 reg = ad_read(&sc->sc_ad1848, SP_MISC_INFO);
431 ad_write(&sc->sc_ad1848, SP_MISC_INFO, reg | MODE2);
432
433 /* Read version numbers from I25 */
434 reg = ad_read(&sc->sc_ad1848, CS_VERSION_ID);
435 switch (reg & (CS_VERSION_NUMBER | CS_VERSION_CHIPID)) {
436 case 0xa0:
437 sc->sc_ad1848.chip_name = "CS4231A";
438 break;
439 case 0x80:
440 sc->sc_ad1848.chip_name = "CS4231";
441 break;
442 case 0x82:
443 sc->sc_ad1848.chip_name = "CS4232";
444 break;
445 default:
446 if ((buf = malloc(32, M_TEMP, M_NOWAIT)) != NULL) {
447 sprintf(buf, "unknown rev: %x/%x", reg&0xe, reg&7);
448 sc->sc_ad1848.chip_name = buf;
449 }
450 }
451 }
452
453 void *
454 cs4231_malloc(addr, direction, size, pool, flags)
455 void *addr;
456 int direction;
457 size_t size;
458 int pool, flags;
459 {
460 struct cs4231_softc *sc = addr;
461 struct cs_dma *p;
462 int error;
463
464 p = malloc(sizeof(*p), pool, flags);
465 if (p == NULL)
466 return (NULL);
467
468 p->size = size;
469 error = bus_dmamem_alloc(sc->sc_dmatag, size, 64*1024, 0,
470 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
471 &p->nsegs, BUS_DMA_NOWAIT);
472 if (error) {
473 free(p, pool);
474 return (NULL);
475 }
476
477 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
478 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
479 if (error) {
480 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
481 free(p, pool);
482 return (NULL);
483 }
484
485 p->next = sc->sc_dmas;
486 sc->sc_dmas = p;
487 return (p->addr);
488 }
489
490 void
491 cs4231_free(addr, ptr, pool)
492 void *addr;
493 void *ptr;
494 int pool;
495 {
496 struct cs4231_softc *sc = addr;
497 struct cs_dma *p, **pp;
498
499 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) {
500 if (p->addr != ptr)
501 continue;
502 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
503 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
504 *pp = p->next;
505 free(p, pool);
506 return;
507 }
508 printf("cs4231_free: rogue pointer\n");
509 }
510
511 int
512 cs4231_open(addr, flags)
513 void *addr;
514 int flags;
515 {
516 struct cs4231_softc *sc = addr;
517 #if 0
518 struct apc_dma *dma = sc->sc_dmareg;
519 #endif
520
521 DPRINTF(("sa_open: unit %p\n", sc));
522
523 if (sc->sc_open)
524 return (EBUSY);
525 sc->sc_open = 1;
526 sc->sc_locked = 0;
527 sc->sc_rintr = 0;
528 sc->sc_rarg = 0;
529 sc->sc_pintr = 0;
530 sc->sc_parg = 0;
531 #if 1
532 /*No interrupts from ad1848 */
533 ad_write(&sc->sc_ad1848, SP_PIN_CONTROL, 0);
534 #endif
535 #if 0
536 dma->dmacsr = APC_RESET;
537 delay(10);
538 dma->dmacsr = 0;
539 delay(10);
540 ad1848_reset(&sc->sc_ad1848);
541 #endif
542
543 DPRINTF(("saopen: ok -> sc=%p\n", sc));
544 return (0);
545 }
546
547 void
548 cs4231_close(addr)
549 void *addr;
550 {
551 register struct cs4231_softc *sc = addr;
552
553 DPRINTF(("sa_close: sc=%p\n", sc));
554 /*
555 * halt i/o, clear open flag, and done.
556 */
557 cs4231_halt_input(sc);
558 cs4231_halt_output(sc);
559 sc->sc_open = 0;
560
561 DPRINTF(("sa_close: closed.\n"));
562 }
563
564 size_t
565 cs4231_round_buffersize(addr, direction, size)
566 void *addr;
567 int direction;
568 size_t size;
569 {
570 #if 0
571 if (size > APC_MAX)
572 size = APC_MAX;
573 #endif
574 return (size);
575 }
576
577 int
578 cs4231_round_blocksize(addr, blk)
579 void *addr;
580 int blk;
581 {
582 return (blk & -4);
583 }
584
585 int
586 cs4231_getdev(addr, retp)
587 void *addr;
588 struct audio_device *retp;
589 {
590 *retp = cs4231_device;
591 return (0);
592 }
593
594 static ad1848_devmap_t csmapping[] = {
595 { CSAUDIO_DAC_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
596 { CSAUDIO_LINE_IN_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
597 { CSAUDIO_MONO_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
598 { CSAUDIO_CD_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
599 { CSAUDIO_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
600 { CSAUDIO_OUT_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
601 { CSAUDIO_DAC_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
602 { CSAUDIO_LINE_IN_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
603 { CSAUDIO_MONO_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
604 { CSAUDIO_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
605 { CSAUDIO_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
606 { CSAUDIO_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
607 { CSAUDIO_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1 }
608 };
609
610 static int nummap = sizeof(csmapping) / sizeof(csmapping[0]);
611
612
613 int
614 cs4231_set_port(addr, cp)
615 void *addr;
616 mixer_ctrl_t *cp;
617 {
618 struct ad1848_softc *ac = addr;
619
620 DPRINTF(("cs4231_set_port: port=%d", cp->dev));
621 return (ad1848_mixer_set_port(ac, csmapping, nummap, cp));
622 }
623
624 int
625 cs4231_get_port(addr, cp)
626 void *addr;
627 mixer_ctrl_t *cp;
628 {
629 struct ad1848_softc *ac = addr;
630
631 DPRINTF(("cs4231_get_port: port=%d", cp->dev));
632 return (ad1848_mixer_get_port(ac, csmapping, nummap, cp));
633 }
634
635 int
636 cs4231_get_props(addr)
637 void *addr;
638 {
639 return (AUDIO_PROP_FULLDUPLEX);
640 }
641
642 int
643 cs4231_query_devinfo(addr, dip)
644 void *addr;
645 register mixer_devinfo_t *dip;
646 {
647
648 switch(dip->index) {
649 #if 0
650 case CSAUDIO_MIC_IN_LVL: /* Microphone */
651 dip->type = AUDIO_MIXER_VALUE;
652 dip->mixer_class = CSAUDIO_INPUT_CLASS;
653 dip->prev = AUDIO_MIXER_LAST;
654 dip->next = CSAUDIO_MIC_IN_MUTE;
655 strcpy(dip->label.name, AudioNmicrophone);
656 dip->un.v.num_channels = 2;
657 strcpy(dip->un.v.units.name, AudioNvolume);
658 break;
659 #endif
660
661 case CSAUDIO_MONO_LVL: /* mono/microphone mixer */
662 dip->type = AUDIO_MIXER_VALUE;
663 dip->mixer_class = CSAUDIO_INPUT_CLASS;
664 dip->prev = AUDIO_MIXER_LAST;
665 dip->next = CSAUDIO_MONO_MUTE;
666 strcpy(dip->label.name, AudioNmicrophone);
667 dip->un.v.num_channels = 1;
668 strcpy(dip->un.v.units.name, AudioNvolume);
669 break;
670
671 case CSAUDIO_DAC_LVL: /* dacout */
672 dip->type = AUDIO_MIXER_VALUE;
673 dip->mixer_class = CSAUDIO_INPUT_CLASS;
674 dip->prev = AUDIO_MIXER_LAST;
675 dip->next = CSAUDIO_DAC_MUTE;
676 strcpy(dip->label.name, AudioNdac);
677 dip->un.v.num_channels = 2;
678 strcpy(dip->un.v.units.name, AudioNvolume);
679 break;
680
681 case CSAUDIO_LINE_IN_LVL: /* line */
682 dip->type = AUDIO_MIXER_VALUE;
683 dip->mixer_class = CSAUDIO_INPUT_CLASS;
684 dip->prev = AUDIO_MIXER_LAST;
685 dip->next = CSAUDIO_LINE_IN_MUTE;
686 strcpy(dip->label.name, AudioNline);
687 dip->un.v.num_channels = 2;
688 strcpy(dip->un.v.units.name, AudioNvolume);
689 break;
690
691 case CSAUDIO_CD_LVL: /* cd */
692 dip->type = AUDIO_MIXER_VALUE;
693 dip->mixer_class = CSAUDIO_INPUT_CLASS;
694 dip->prev = AUDIO_MIXER_LAST;
695 dip->next = CSAUDIO_CD_MUTE;
696 strcpy(dip->label.name, AudioNcd);
697 dip->un.v.num_channels = 2;
698 strcpy(dip->un.v.units.name, AudioNvolume);
699 break;
700
701
702 case CSAUDIO_MONITOR_LVL: /* monitor level */
703 dip->type = AUDIO_MIXER_VALUE;
704 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
705 dip->next = CSAUDIO_MONITOR_MUTE;
706 dip->prev = AUDIO_MIXER_LAST;
707 strcpy(dip->label.name, AudioNmonitor);
708 dip->un.v.num_channels = 1;
709 strcpy(dip->un.v.units.name, AudioNvolume);
710 break;
711
712 case CSAUDIO_OUT_LVL: /* cs4231 output volume: not useful? */
713 dip->type = AUDIO_MIXER_VALUE;
714 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
715 dip->prev = dip->next = AUDIO_MIXER_LAST;
716 strcpy(dip->label.name, AudioNoutput);
717 dip->un.v.num_channels = 2;
718 strcpy(dip->un.v.units.name, AudioNvolume);
719 break;
720
721 case CSAUDIO_LINE_IN_MUTE:
722 dip->mixer_class = CSAUDIO_INPUT_CLASS;
723 dip->type = AUDIO_MIXER_ENUM;
724 dip->prev = CSAUDIO_LINE_IN_LVL;
725 dip->next = AUDIO_MIXER_LAST;
726 goto mute;
727
728 case CSAUDIO_DAC_MUTE:
729 dip->mixer_class = CSAUDIO_INPUT_CLASS;
730 dip->type = AUDIO_MIXER_ENUM;
731 dip->prev = CSAUDIO_DAC_LVL;
732 dip->next = AUDIO_MIXER_LAST;
733 goto mute;
734
735 case CSAUDIO_CD_MUTE:
736 dip->mixer_class = CSAUDIO_INPUT_CLASS;
737 dip->type = AUDIO_MIXER_ENUM;
738 dip->prev = CSAUDIO_CD_LVL;
739 dip->next = AUDIO_MIXER_LAST;
740 goto mute;
741
742 case CSAUDIO_MONO_MUTE:
743 dip->mixer_class = CSAUDIO_INPUT_CLASS;
744 dip->type = AUDIO_MIXER_ENUM;
745 dip->prev = CSAUDIO_MONO_LVL;
746 dip->next = AUDIO_MIXER_LAST;
747 goto mute;
748
749 case CSAUDIO_MONITOR_MUTE:
750 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
751 dip->type = AUDIO_MIXER_ENUM;
752 dip->prev = CSAUDIO_MONITOR_LVL;
753 dip->next = AUDIO_MIXER_LAST;
754 mute:
755 strcpy(dip->label.name, AudioNmute);
756 dip->un.e.num_mem = 2;
757 strcpy(dip->un.e.member[0].label.name, AudioNoff);
758 dip->un.e.member[0].ord = 0;
759 strcpy(dip->un.e.member[1].label.name, AudioNon);
760 dip->un.e.member[1].ord = 1;
761 break;
762
763 case CSAUDIO_REC_LVL: /* record level */
764 dip->type = AUDIO_MIXER_VALUE;
765 dip->mixer_class = CSAUDIO_RECORD_CLASS;
766 dip->prev = AUDIO_MIXER_LAST;
767 dip->next = CSAUDIO_RECORD_SOURCE;
768 strcpy(dip->label.name, AudioNrecord);
769 dip->un.v.num_channels = 2;
770 strcpy(dip->un.v.units.name, AudioNvolume);
771 break;
772
773 case CSAUDIO_RECORD_SOURCE:
774 dip->mixer_class = CSAUDIO_RECORD_CLASS;
775 dip->type = AUDIO_MIXER_ENUM;
776 dip->prev = CSAUDIO_REC_LVL;
777 dip->next = AUDIO_MIXER_LAST;
778 strcpy(dip->label.name, AudioNsource);
779 dip->un.e.num_mem = 4;
780 strcpy(dip->un.e.member[0].label.name, AudioNoutput);
781 dip->un.e.member[0].ord = DAC_IN_PORT;
782 strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
783 dip->un.e.member[1].ord = MIC_IN_PORT;
784 strcpy(dip->un.e.member[2].label.name, AudioNdac);
785 dip->un.e.member[2].ord = AUX1_IN_PORT;
786 strcpy(dip->un.e.member[3].label.name, AudioNline);
787 dip->un.e.member[3].ord = LINE_IN_PORT;
788 break;
789
790 case CSAUDIO_INPUT_CLASS: /* input class descriptor */
791 dip->type = AUDIO_MIXER_CLASS;
792 dip->mixer_class = CSAUDIO_INPUT_CLASS;
793 dip->next = dip->prev = AUDIO_MIXER_LAST;
794 strcpy(dip->label.name, AudioCinputs);
795 break;
796
797 case CSAUDIO_OUTPUT_CLASS: /* output class descriptor */
798 dip->type = AUDIO_MIXER_CLASS;
799 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
800 dip->next = dip->prev = AUDIO_MIXER_LAST;
801 strcpy(dip->label.name, AudioCoutputs);
802 break;
803
804 case CSAUDIO_MONITOR_CLASS: /* monitor class descriptor */
805 dip->type = AUDIO_MIXER_CLASS;
806 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
807 dip->next = dip->prev = AUDIO_MIXER_LAST;
808 strcpy(dip->label.name, AudioCmonitor);
809 break;
810
811 case CSAUDIO_RECORD_CLASS: /* record source class */
812 dip->type = AUDIO_MIXER_CLASS;
813 dip->mixer_class = CSAUDIO_RECORD_CLASS;
814 dip->next = dip->prev = AUDIO_MIXER_LAST;
815 strcpy(dip->label.name, AudioCrecord);
816 break;
817
818 default:
819 return ENXIO;
820 /*NOTREACHED*/
821 }
822 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
823
824 return (0);
825 }
826
827
828 int
829 cs4231_trigger_output(addr, start, end, blksize, intr, arg, param)
830 void *addr;
831 void *start, *end;
832 int blksize;
833 void (*intr) __P((void *));
834 void *arg;
835 struct audio_params *param;
836 {
837 struct cs4231_softc *sc = addr;
838 struct cs_dma *p;
839 volatile struct apc_dma *dma = sc->sc_dmareg;
840 int csr;
841 vsize_t n;
842
843 if (sc->sc_locked != 0) {
844 printf("cs4231_trigger_output: already running\n");
845 return (EINVAL);
846 }
847
848 sc->sc_locked = 1;
849 sc->sc_pintr = intr;
850 sc->sc_parg = arg;
851
852 for (p = sc->sc_dmas; p != NULL && p->addr != start; p = p->next)
853 /*void*/;
854 if (p == NULL) {
855 printf("cs4231_trigger_output: bad addr %p\n", start);
856 return (EINVAL);
857 }
858
859 n = (char *)end - (char *)start;
860
861 /* XXX
862 * Do only `blksize' at a time, so audio_pint() is kept
863 * synchronous with us...
864 */
865 /*XXX*/sc->sc_blksz = blksize;
866 /*XXX*/sc->sc_nowplaying = p;
867 /*XXX*/sc->sc_playsegsz = n;
868
869 if (n > APC_MAX)
870 n = APC_MAX;
871
872 sc->sc_playcnt = n;
873
874 DPRINTF(("trigger_out: start %p, end %p, size %lu; "
875 "dmaaddr 0x%lx, dmacnt %lu, segsize %lu\n",
876 start, end, (u_long)sc->sc_playsegsz,
877 (u_long)p->segs[0].ds_addr,
878 (u_long)n, (u_long)p->size));
879
880 csr = dma->dmacsr;
881 dma->dmapnva = (u_long)p->segs[0].ds_addr;
882 dma->dmapnc = (u_long)n;
883 if ((csr & PDMA_GO) == 0 || (csr & APC_PPAUSE) != 0) {
884 int reg;
885
886 dma->dmacsr &= ~(APC_PIE|APC_PPAUSE);
887 dma->dmacsr |= APC_EI|APC_IE|APC_PIE|APC_EIE|APC_PMIE|PDMA_GO;
888
889 /* Start chip */
890
891 /* Probably should just ignore this.. */
892 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
893 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
894
895 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
896 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG,
897 (PLAYBACK_ENABLE|reg));
898 }
899
900 return (0);
901 }
902
903 int
904 cs4231_trigger_input(addr, start, end, blksize, intr, arg, param)
905 void *addr;
906 void *start, *end;
907 int blksize;
908 void (*intr) __P((void *));
909 void *arg;
910 struct audio_params *param;
911 {
912 return (ENXIO);
913 }
914
915 int
916 cs4231_halt_output(addr)
917 void *addr;
918 {
919 struct cs4231_softc *sc = addr;
920 volatile struct apc_dma *dma = sc->sc_dmareg;
921 int reg;
922
923 dma->dmacsr &= ~(APC_EI | APC_IE | APC_PIE | APC_EIE | PDMA_GO | APC_PMIE);
924 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
925 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~PLAYBACK_ENABLE));
926 sc->sc_locked = 0;
927
928 return (0);
929 }
930
931 int
932 cs4231_halt_input(addr)
933 void *addr;
934 {
935 struct cs4231_softc *sc = addr;
936 int reg;
937
938 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
939 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~CAPTURE_ENABLE));
940 sc->sc_locked = 0;
941
942 return (0);
943 }
944
945
946 int
947 cs4231_intr(arg)
948 void *arg;
949 {
950 struct cs4231_softc *sc = arg;
951 volatile struct apc_dma *dma = sc->sc_dmareg;
952 struct cs_dma *p;
953 int ret = 0;
954 int csr;
955 int reg, status;
956 #if defined(DEBUG) || defined(AUDIO_DEBUG)
957 char bits[128];
958 #endif
959
960 #ifdef AUDIO_DEBUG
961 if (cs4231debug > 1)
962 cs4231_regdump("audiointr", sc);
963 #endif
964
965 /* Read DMA status */
966 csr = dma->dmacsr;
967 DPRINTF((
968 "intr: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
969 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
970 (u_long)dma->dmapva, (u_long)dma->dmapc,
971 (u_long)dma->dmapnva, (u_long)dma->dmapnc));
972
973 status = ADREAD(&sc->sc_ad1848, AD1848_STATUS);
974 DPRINTF(("%s: status: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
975 bitmask_snprintf(status, AD_R2_BITS, bits, sizeof(bits))));
976 if (status & (INTERRUPT_STATUS | SAMPLE_ERROR)) {
977 reg = ad_read(&sc->sc_ad1848, CS_IRQ_STATUS);
978 DPRINTF(("%s: i24: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
979 bitmask_snprintf(reg, CS_I24_BITS, bits, sizeof(bits))));
980
981 if (reg & CS_IRQ_PI) {
982 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
983 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
984 }
985 /* Clear interrupt bit */
986 ADWRITE(&sc->sc_ad1848, AD1848_STATUS, 0);
987 }
988
989 /* Write back DMA status (clears interrupt) */
990 dma->dmacsr = csr;
991
992 /*
993 * Simplistic.. if "play emtpy" is set advance to next chunk.
994 */
995 #if 1
996 /* Ack all play interrupts*/
997 if ((csr & (APC_PI|APC_PD|APC_PIE|APC_PMI)) != 0)
998 ret = 1;
999 #endif
1000 if (csr & APC_PM) {
1001 u_long nextaddr, togo;
1002
1003 p = sc->sc_nowplaying;
1004
1005 togo = sc->sc_playsegsz - sc->sc_playcnt;
1006 if (togo == 0) {
1007 /* Roll over */
1008 nextaddr = (u_long)p->segs[0].ds_addr;
1009 sc->sc_playcnt = togo = APC_MAX;
1010 } else {
1011 nextaddr = dma->dmapnva + APC_MAX;
1012 if (togo > APC_MAX)
1013 togo = APC_MAX;
1014 sc->sc_playcnt += togo;
1015 }
1016
1017 dma->dmapnva = nextaddr;
1018 dma->dmapnc = togo;
1019
1020 if (sc->sc_pintr != NULL)
1021 (*sc->sc_pintr)(sc->sc_parg);
1022
1023 ret = 1;
1024 }
1025
1026 if (csr & APC_CI) {
1027 if (sc->sc_rintr != NULL) {
1028 ret = 1;
1029 (*sc->sc_rintr)(sc->sc_rarg);
1030 }
1031 }
1032
1033 #ifdef DEBUG
1034 if (ret == 0) {
1035 printf(
1036 "oops: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
1037 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
1038 (u_long)dma->dmapva, (u_long)dma->dmapc,
1039 (u_long)dma->dmapnva, (u_long)dma->dmapnc);
1040 ret = 1;
1041 }
1042 #endif
1043
1044 return (ret);
1045 }
1046 #endif /* NAUDIO > 0 */
1047