cs4231_sbus.c revision 1.2 1 /* $NetBSD: cs4231_sbus.c,v 1.2 1998/08/28 08:58:24 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/ioctl.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49
50 #include <machine/autoconf.h>
51 #include <machine/cpu.h>
52
53 #include <sys/audioio.h>
54 #include <dev/audio_if.h>
55
56 #include <dev/ic/ad1848reg.h>
57 #include <dev/ic/cs4231reg.h>
58 #include <dev/ic/ad1848var.h>
59
60 #if 0
61 /* XXX- put these elsewhere */
62 #define SUNAUDIO_MIC_PORT 0
63 #define SUNAUDIO_SPEAKER 1
64 #define SUNAUDIO_HEADPHONES 2
65 #define SUNAUDIO_MONITOR 3
66 #define SUNAUDIO_SOURCE 4
67 #define SUNAUDIO_OUTPUT 5
68 #define SUNAUDIO_INPUT_CLASS 6
69 #define SUNAUDIO_OUTPUT_CLASS 7
70 #define SUNAUDIO_RECORD_CLASS 8
71 #define SUNAUDIO_MONITOR_CLASS 9
72 #endif
73
74 /*---*/
75 #define CSAUDIO_DAC_LVL 0
76 #define CSAUDIO_LINE_IN_LVL 1
77 #define CSAUDIO_MONO_LVL 2
78 #define CSAUDIO_CD_LVL 3
79 #define CSAUDIO_MONITOR_LVL 4
80 #define CSAUDIO_OUT_LVL 5
81 #define CSAUDIO_LINE_IN_MUTE 6
82 #define CSAUDIO_DAC_MUTE 7
83 #define CSAUDIO_CD_MUTE 8
84 #define CSAUDIO_MONO_MUTE 9
85 #define CSAUDIO_MONITOR_MUTE 10
86 #define CSAUDIO_REC_LVL 11
87 #define CSAUDIO_RECORD_SOURCE 12
88
89 #define CSAUDIO_INPUT_CLASS 13
90 #define CSAUDIO_OUTPUT_CLASS 14
91 #define CSAUDIO_RECORD_CLASS 15
92 #define CSAUDIO_MONITOR_CLASS 16
93
94 #define AUDIO_ROM_NAME "SUNW,CS4231"
95
96 #ifdef AUDIO_DEBUG
97 int cs4231debug = 0;
98 #define DPRINTF(x) if (cs4231debug) printf x
99 #else
100 #define DPRINTF(x)
101 #endif
102
103 /*
104 * Layout of 4231 registers.
105 *
106 struct cs4231_reg {
107 volatile u_int8_t iar; // Index Address Register
108 volatile u_int8_t pad0[3];
109 volatile u_int8_t idr; // Data Register
110 volatile u_int8_t pad1[3];
111 volatile u_int8_t status; // Status Register
112 volatile u_int8_t pad2[3];
113 volatile u_int8_t piodr; // PIO Data Register I/O
114 volatile u_int8_t pad3[3];
115 };
116 */
117 #define CS4231_REG_SIZE 16
118
119
120 /*
121 * APC DMA hardware; from SunOS header
122 * Thanks to Derrick J. Brashear for additional info on the
123 * meaning of some of these bits.
124 */
125 struct apc_dma {
126 volatile u_int32_t dmacsr; /* APC CSR */
127 volatile u_int32_t lpad[3]; /* */
128 volatile u_int32_t dmacva; /* Capture Virtual Address */
129 volatile u_int32_t dmacc; /* Capture Count */
130 volatile u_int32_t dmacnva; /* Capture Next Virtual Address */
131 volatile u_int32_t dmacnc; /* Capture next count */
132 volatile u_int32_t dmapva; /* Playback Virtual Address */
133 volatile u_int32_t dmapc; /* Playback Count */
134 volatile u_int32_t dmapnva; /* Playback Next VAddress */
135 volatile u_int32_t dmapnc; /* Playback Next Count */
136 };
137
138 /*
139 * APC CSR Register bit definitions
140 */
141 #define APC_IP 0x00800000 /* Interrupt Pending */
142 #define APC_PI 0x00400000 /* Playback interrupt */
143 #define APC_CI 0x00200000 /* Capture interrupt */
144 #define APC_EI 0x00100000 /* General interrupt */
145 #define APC_IE 0x00080000 /* General ext int. enable */
146 #define APC_PIE 0x00040000 /* Playback ext intr */
147 #define APC_CIE 0x00020000 /* Capture ext intr */
148 #define APC_EIE 0x00010000 /* Error ext intr */
149 #define APC_PMI 0x00008000 /* Pipe empty interrupt */
150 #define APC_PM 0x00004000 /* Play pipe empty */
151 #define APC_PD 0x00002000 /* Playback NVA dirty */
152 #define APC_PMIE 0x00001000 /* play pipe empty Int enable */
153 #define APC_CM 0x00000800 /* Cap data dropped on floor */
154 #define APC_CD 0x00000400 /* Capture NVA dirty */
155 #define APC_CMI 0x00000200 /* Capture pipe empty interrupt */
156 #define APC_CMIE 0x00000100 /* Cap. pipe empty int enable */
157 #define APC_PPAUSE 0x00000080 /* Pause the play DMA */
158 #define APC_CPAUSE 0x00000040 /* Pause the capture DMA */
159 #define APC_CODEC_PDN 0x00000020 /* CODEC RESET */
160 #define PDMA_GO 0x00000008
161 #define CDMA_GO 0x00000004 /* bit 2 of the csr */
162 #define APC_RESET 0x00000001 /* Reset the chip */
163
164 #define APC_BITS \
165 "\20\30IP\27PI\26CI\25EI\24IE" \
166 "\23PIE\22CIE\21EIE\20PMI\17PM\16PD\15PMIE" \
167 "\14CM\13CD\12CMI\11CMIE\10PPAUSE\7CPAUSE\6PDN\4PGO\3CGO"
168
169 /*
170 * To start DMA, you write to dma[cp]nva and dma[cp]nc and set [CP]DMA_GO
171 * in dmacsr. dma[cp]va and dma[cp]c, when read, appear to be the live
172 * counter as the DMA operation progresses.
173 * Supposedly, you get an interrupt with the "dirty" bits (APC_PD,APC_CD)
174 * set, when the next DMA buffer can be programmed, while the current one
175 * is still in progress. We don't currently use this feature, since I
176 * haven't been able to make it work.. instead the next buffer goes in
177 * as soon as we see a "pipe empty" (APC_PM) interrupt.
178 */
179
180 /* It's not clear if there's a maximum DMA size.. */
181 #define APC_MAX (sc->sc_blksz)/*(16*1024)*/
182
183 /*
184 * List of device memory allocations (see cs4231_malloc/cs4231_free).
185 */
186 struct cs_dma {
187 struct cs_dma *next;
188 caddr_t addr;
189 bus_dma_segment_t segs[1];
190 int nsegs;
191 size_t size;
192 };
193
194
195 /*
196 * Software state, per CS4231 audio chip.
197 */
198 struct cs4231_softc {
199 struct ad1848_softc sc_ad1848; /* base device */
200 struct sbusdev sc_sd; /* sbus device */
201 bus_space_tag_t sc_bustag;
202 bus_dma_tag_t sc_dmatag;
203 struct evcnt sc_intrcnt; /* statistics */
204
205 struct cs_dma *sc_dmas;
206 struct cs_dma *sc_nowplaying; /*XXX*/
207 u_long sc_playsegsz; /*XXX*/
208 u_long sc_playcnt;
209 u_long sc_blksz;
210
211 int sc_open; /* single use device */
212 int sc_locked; /* true when transfering data */
213 struct apc_dma *sc_dmareg; /* DMA registers */
214
215 /* interfacing with the interrupt handlers */
216 void (*sc_rintr)(void*); /* input completion intr handler */
217 void *sc_rarg; /* arg for sc_rintr() */
218 void (*sc_pintr)(void*); /* output completion intr handler */
219 void *sc_parg; /* arg for sc_pintr() */
220 };
221
222 /* autoconfiguration driver */
223 void cs4231attach __P((struct device *, struct device *, void *));
224 int cs4231match __P((struct device *, struct cfdata *, void *));
225
226 struct cfattach audiocs_ca = {
227 sizeof(struct cs4231_softc), cs4231match, cs4231attach
228 };
229
230 struct audio_device cs4231_device = {
231 "cs4231",
232 "x",
233 "audio"
234 };
235
236
237 /*
238 * Define our interface to the higher level audio driver.
239 */
240 int cs4231_open __P((void *, int));
241 void cs4231_close __P((void *));
242 u_long cs4231_round_buffersize __P((void *, u_long));
243 int cs4231_round_blocksize __P((void *, int));
244 int cs4231_halt_output __P((void *));
245 int cs4231_halt_input __P((void *));
246 int cs4231_getdev __P((void *, struct audio_device *));
247 int cs4231_set_port __P((void *, mixer_ctrl_t *));
248 int cs4231_get_port __P((void *, mixer_ctrl_t *));
249 int cs4231_query_devinfo __P((void *, mixer_devinfo_t *));
250 int cs4231_get_props __P((void *));
251
252 void *cs4231_malloc __P((void *, u_long, int, int));
253 void cs4231_free __P((void *, void *, int));
254 int cs4231_trigger_output __P((void *, void *, void *, int,
255 void (*)(void *), void *,
256 struct audio_params *));
257 int cs4231_trigger_input __P((void *, void *, void *, int,
258 void (*)(void *), void *,
259 struct audio_params *));
260
261 int cs4231_intr __P((void *));
262 void cs4231_init __P((struct cs4231_softc *));
263
264
265 static void cs4231_regdump __P((char *, struct cs4231_softc *));
266 static int cs_read __P((struct ad1848_softc *, int));
267 static void cs_write __P((struct ad1848_softc *, int, int));
268
269 static int
270 cs_read(sc, index)
271 struct ad1848_softc *sc;
272 int index;
273 {
274 u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
275 int v;
276
277 v = *p;
278 return (v);
279 }
280
281 static void
282 cs_write(sc, index, value)
283 struct ad1848_softc *sc;
284 int index, value;
285 {
286 u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
287
288 *p = value;
289 }
290
291 static struct audio_hw_if hw_if = {
292 cs4231_open,
293 cs4231_close,
294 0,
295 ad1848_query_encoding,
296 ad1848_set_params,
297 cs4231_round_blocksize,
298 ad1848_commit_settings,
299 0,
300 0,
301 NULL,
302 NULL,
303 cs4231_halt_output,
304 cs4231_halt_input,
305 0,
306 cs4231_getdev,
307 0,
308 cs4231_set_port,
309 cs4231_get_port,
310 cs4231_query_devinfo,
311 cs4231_malloc,
312 cs4231_free,
313 cs4231_round_buffersize,
314 0,
315 cs4231_get_props,
316 cs4231_trigger_output,
317 cs4231_trigger_input
318 };
319
320 /* autoconfig routines */
321
322 int
323 cs4231match(parent, cf, aux)
324 struct device *parent;
325 struct cfdata *cf;
326 void *aux;
327 {
328 struct sbus_attach_args *sa = aux;
329
330 return (strcmp(AUDIO_ROM_NAME, sa->sa_name) == 0);
331 }
332
333 /*
334 * Audio chip found.
335 */
336 void
337 cs4231attach(parent, self, aux)
338 struct device *parent, *self;
339 void *aux;
340 {
341 struct cs4231_softc *sc = (struct cs4231_softc *)self;
342 struct sbus_attach_args *sa = aux;
343 bus_space_handle_t bh;
344
345 sc->sc_bustag = sa->sa_bustag;
346 sc->sc_dmatag = sa->sa_dmatag;
347
348 sc->sc_ad1848.parent = sc;
349 sc->sc_ad1848.sc_readreg = cs_read;
350 sc->sc_ad1848.sc_writereg = cs_write;
351
352 /*
353 * Map my registers in, if they aren't already in virtual
354 * address space.
355 */
356 if (sa->sa_npromvaddrs) {
357 bh = (bus_space_handle_t)sa->sa_promvaddrs[0];
358 } else {
359 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
360 sa->sa_offset,
361 sa->sa_size,
362 BUS_SPACE_MAP_LINEAR,
363 0, &bh) != 0) {
364 printf("%s @ sbus: cannot map registers\n",
365 self->dv_xname);
366 return;
367 }
368 }
369
370 sc->sc_ad1848.sc_ioh = bh;
371 sc->sc_dmareg = (struct apc_dma *)((int)bh + CS4231_REG_SIZE);
372
373 cs4231_init(sc);
374
375 /* Put ad1848 driver in `MODE 2' mode */
376 sc->sc_ad1848.mode = 2;
377 ad1848_attach(&sc->sc_ad1848);
378
379 printf("\n");
380
381 sbus_establish(&sc->sc_sd, &sc->sc_ad1848.sc_dev);
382
383 /* Establish interrupt channel */
384 bus_intr_establish(sa->sa_bustag,
385 sa->sa_pri, 0,
386 cs4231_intr, sc);
387
388 evcnt_attach(&sc->sc_ad1848.sc_dev, "intr", &sc->sc_intrcnt);
389 audio_attach_mi(&hw_if, sc, &sc->sc_ad1848.sc_dev);
390 }
391
392
393 static void
394 cs4231_regdump(label, sc)
395 char *label;
396 struct cs4231_softc *sc;
397 {
398 char bits[128];
399 volatile struct apc_dma *dma = sc->sc_dmareg;
400
401 printf("cs4231regdump(%s): regs:", label);
402 printf("dmapva: 0x%lx; ", (u_long)dma->dmapva);
403 printf("dmapc: 0x%lx; ", (u_long)dma->dmapc);
404 printf("dmapnva: 0x%lx; ", (u_long)dma->dmapnva);
405 printf("dmapnc: 0x%lx\n", (u_long)dma->dmapnc);
406 printf("dmacva: 0x%lx; ", (u_long)dma->dmacva);
407 printf("dmacc: 0x%lx; ", (u_long)dma->dmacc);
408 printf("dmacnva: 0x%lx; ", (u_long)dma->dmacnva);
409 printf("dmacnc: 0x%lx\n", (u_long)dma->dmacnc);
410
411 printf("apc_dmacsr=%s\n",
412 bitmask_snprintf(dma->dmacsr, APC_BITS, bits, sizeof(bits)) );
413
414 ad1848_dump_regs(&sc->sc_ad1848);
415 }
416
417 void
418 cs4231_init(sc)
419 register struct cs4231_softc *sc;
420 {
421 char *buf;
422 #if 0
423 volatile struct apc_dma *dma = sc->sc_dmareg;
424 #endif
425 int reg;
426
427 #if 0
428 dma->dmacsr = APC_CODEC_PDN;
429 delay(20);
430 dma->dmacsr &= ~APC_CODEC_PDN;
431 #endif
432 /* First, put chip in native mode */
433 reg = ad_read(&sc->sc_ad1848, SP_MISC_INFO);
434 ad_write(&sc->sc_ad1848, SP_MISC_INFO, reg | MODE2);
435
436 /* Read version numbers from I25 */
437 reg = ad_read(&sc->sc_ad1848, CS_VERSION_ID);
438 switch (reg & (CS_VERSION_NUMBER | CS_VERSION_CHIPID)) {
439 case 0xa0:
440 sc->sc_ad1848.chip_name = "CS4231A";
441 break;
442 case 0x80:
443 sc->sc_ad1848.chip_name = "CS4231";
444 break;
445 case 0x82:
446 sc->sc_ad1848.chip_name = "CS4232";
447 break;
448 default:
449 if ((buf = malloc(32, M_TEMP, M_NOWAIT)) != NULL) {
450 sprintf(buf, "unknown rev: %x/%x", reg&0xe, reg&7);
451 sc->sc_ad1848.chip_name = buf;
452 }
453 }
454 }
455
456 void *
457 cs4231_malloc(addr, size, pool, flags)
458 void *addr;
459 u_long size;
460 int pool;
461 int flags;
462 {
463 struct cs4231_softc *sc = addr;
464 struct cs_dma *p;
465 int error;
466
467 p = malloc(sizeof(*p), pool, flags);
468 if (p == NULL)
469 return (NULL);
470
471 p->size = size;
472 error = bus_dmamem_alloc(sc->sc_dmatag, size, 64*1024, 0,
473 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
474 &p->nsegs, BUS_DMA_NOWAIT);
475 if (error) {
476 free(p, pool);
477 return (NULL);
478 }
479
480 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
481 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
482 if (error) {
483 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
484 free(p, pool);
485 return (NULL);
486 }
487
488 p->next = sc->sc_dmas;
489 sc->sc_dmas = p;
490 return (p->addr);
491 }
492
493 void
494 cs4231_free(addr, ptr, pool)
495 void *addr;
496 void *ptr;
497 int pool;
498 {
499 struct cs4231_softc *sc = addr;
500 struct cs_dma *p, **pp;
501
502 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) {
503 if (p->addr != ptr)
504 continue;
505 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
506 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
507 *pp = p->next;
508 free(p, pool);
509 return;
510 }
511 printf("cs4231_free: rogue pointer\n");
512 }
513
514 int
515 cs4231_open(addr, flags)
516 void *addr;
517 int flags;
518 {
519 struct cs4231_softc *sc = addr;
520 #if 0
521 struct apc_dma *dma = sc->sc_dmareg;
522 #endif
523
524 DPRINTF(("sa_open: unit %p\n", sc));
525
526 if (sc->sc_open)
527 return (EBUSY);
528 sc->sc_open = 1;
529 sc->sc_locked = 0;
530 sc->sc_rintr = 0;
531 sc->sc_rarg = 0;
532 sc->sc_pintr = 0;
533 sc->sc_parg = 0;
534 #if 1
535 /*No interrupts from ad1848 */
536 ad_write(&sc->sc_ad1848, SP_PIN_CONTROL, 0);
537 #endif
538 #if 0
539 dma->dmacsr = APC_RESET;
540 delay(10);
541 dma->dmacsr = 0;
542 delay(10);
543 ad1848_reset(&sc->sc_ad1848);
544 #endif
545
546 DPRINTF(("saopen: ok -> sc=%p\n", sc));
547 return (0);
548 }
549
550 void
551 cs4231_close(addr)
552 void *addr;
553 {
554 register struct cs4231_softc *sc = addr;
555
556 DPRINTF(("sa_close: sc=%p\n", sc));
557 /*
558 * halt i/o, clear open flag, and done.
559 */
560 cs4231_halt_input(sc);
561 cs4231_halt_output(sc);
562 sc->sc_open = 0;
563
564 DPRINTF(("sa_close: closed.\n"));
565 }
566
567 u_long
568 cs4231_round_buffersize(addr, size)
569 void *addr;
570 u_long size;
571 {
572 #if 0
573 if (size > APC_MAX)
574 size = APC_MAX;
575 #endif
576 return (size);
577 }
578
579 int
580 cs4231_round_blocksize(addr, blk)
581 void *addr;
582 int blk;
583 {
584 return (blk & -4);
585 }
586
587 int
588 cs4231_getdev(addr, retp)
589 void *addr;
590 struct audio_device *retp;
591 {
592 *retp = cs4231_device;
593 return (0);
594 }
595
596 static ad1848_devmap_t csmapping[] = {
597 { CSAUDIO_DAC_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
598 { CSAUDIO_LINE_IN_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
599 { CSAUDIO_MONO_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
600 { CSAUDIO_CD_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
601 { CSAUDIO_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
602 { CSAUDIO_OUT_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
603 { CSAUDIO_DAC_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
604 { CSAUDIO_LINE_IN_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
605 { CSAUDIO_MONO_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
606 { CSAUDIO_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
607 { CSAUDIO_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
608 { CSAUDIO_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
609 { CSAUDIO_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1 }
610 };
611
612 static int nummap = sizeof(csmapping) / sizeof(csmapping[0]);
613
614
615 int
616 cs4231_set_port(addr, cp)
617 void *addr;
618 mixer_ctrl_t *cp;
619 {
620 struct ad1848_softc *ac = addr;
621
622 DPRINTF(("cs4231_set_port: port=%d", cp->dev));
623 return (ad1848_mixer_get_port(ac, csmapping, nummap, cp));
624 }
625
626 int
627 cs4231_get_port(addr, cp)
628 void *addr;
629 mixer_ctrl_t *cp;
630 {
631 struct ad1848_softc *ac = addr;
632
633 DPRINTF(("cs4231_get_port: port=%d", cp->dev));
634 return (ad1848_mixer_get_port(ac, csmapping, nummap, cp));
635 }
636
637 int
638 cs4231_get_props(addr)
639 void *addr;
640 {
641 return (AUDIO_PROP_FULLDUPLEX);
642 }
643
644 int
645 cs4231_query_devinfo(addr, dip)
646 void *addr;
647 register mixer_devinfo_t *dip;
648 {
649
650 switch(dip->index) {
651 #if 0
652 case CSAUDIO_MIC_IN_LVL: /* Microphone */
653 dip->type = AUDIO_MIXER_VALUE;
654 dip->mixer_class = CSAUDIO_INPUT_CLASS;
655 dip->prev = AUDIO_MIXER_LAST;
656 dip->next = CSAUDIO_MIC_IN_MUTE;
657 strcpy(dip->label.name, AudioNmicrophone);
658 dip->un.v.num_channels = 2;
659 strcpy(dip->un.v.units.name, AudioNvolume);
660 break;
661 #endif
662
663 case CSAUDIO_MONO_LVL: /* mono/microphone mixer */
664 dip->type = AUDIO_MIXER_VALUE;
665 dip->mixer_class = CSAUDIO_INPUT_CLASS;
666 dip->prev = AUDIO_MIXER_LAST;
667 dip->next = CSAUDIO_MONO_MUTE;
668 strcpy(dip->label.name, AudioNmicrophone);
669 dip->un.v.num_channels = 1;
670 strcpy(dip->un.v.units.name, AudioNvolume);
671 break;
672
673 case CSAUDIO_DAC_LVL: /* dacout */
674 dip->type = AUDIO_MIXER_VALUE;
675 dip->mixer_class = CSAUDIO_INPUT_CLASS;
676 dip->prev = AUDIO_MIXER_LAST;
677 dip->next = CSAUDIO_DAC_MUTE;
678 strcpy(dip->label.name, AudioNdac);
679 dip->un.v.num_channels = 2;
680 strcpy(dip->un.v.units.name, AudioNvolume);
681 break;
682
683 case CSAUDIO_LINE_IN_LVL: /* line */
684 dip->type = AUDIO_MIXER_VALUE;
685 dip->mixer_class = CSAUDIO_INPUT_CLASS;
686 dip->prev = AUDIO_MIXER_LAST;
687 dip->next = CSAUDIO_LINE_IN_MUTE;
688 strcpy(dip->label.name, AudioNline);
689 dip->un.v.num_channels = 2;
690 strcpy(dip->un.v.units.name, AudioNvolume);
691 break;
692
693 case CSAUDIO_CD_LVL: /* cd */
694 dip->type = AUDIO_MIXER_VALUE;
695 dip->mixer_class = CSAUDIO_INPUT_CLASS;
696 dip->prev = AUDIO_MIXER_LAST;
697 dip->next = CSAUDIO_CD_MUTE;
698 strcpy(dip->label.name, AudioNcd);
699 dip->un.v.num_channels = 2;
700 strcpy(dip->un.v.units.name, AudioNvolume);
701 break;
702
703
704 case CSAUDIO_MONITOR_LVL: /* monitor level */
705 dip->type = AUDIO_MIXER_VALUE;
706 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
707 dip->next = CSAUDIO_MONITOR_MUTE;
708 dip->prev = AUDIO_MIXER_LAST;
709 strcpy(dip->label.name, AudioNmonitor);
710 dip->un.v.num_channels = 1;
711 strcpy(dip->un.v.units.name, AudioNvolume);
712 break;
713
714 case CSAUDIO_OUT_LVL: /* cs4231 output volume: not useful? */
715 dip->type = AUDIO_MIXER_VALUE;
716 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
717 dip->prev = dip->next = AUDIO_MIXER_LAST;
718 strcpy(dip->label.name, AudioNoutput);
719 dip->un.v.num_channels = 2;
720 strcpy(dip->un.v.units.name, AudioNvolume);
721 break;
722
723 case CSAUDIO_LINE_IN_MUTE:
724 dip->mixer_class = CSAUDIO_INPUT_CLASS;
725 dip->type = AUDIO_MIXER_ENUM;
726 dip->prev = CSAUDIO_LINE_IN_LVL;
727 dip->next = AUDIO_MIXER_LAST;
728 goto mute;
729
730 case CSAUDIO_DAC_MUTE:
731 dip->mixer_class = CSAUDIO_INPUT_CLASS;
732 dip->type = AUDIO_MIXER_ENUM;
733 dip->prev = CSAUDIO_DAC_LVL;
734 dip->next = AUDIO_MIXER_LAST;
735 goto mute;
736
737 case CSAUDIO_CD_MUTE:
738 dip->mixer_class = CSAUDIO_INPUT_CLASS;
739 dip->type = AUDIO_MIXER_ENUM;
740 dip->prev = CSAUDIO_CD_LVL;
741 dip->next = AUDIO_MIXER_LAST;
742 goto mute;
743
744 case CSAUDIO_MONO_MUTE:
745 dip->mixer_class = CSAUDIO_INPUT_CLASS;
746 dip->type = AUDIO_MIXER_ENUM;
747 dip->prev = CSAUDIO_MONO_LVL;
748 dip->next = AUDIO_MIXER_LAST;
749 goto mute;
750
751 case CSAUDIO_MONITOR_MUTE:
752 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
753 dip->type = AUDIO_MIXER_ENUM;
754 dip->prev = CSAUDIO_MONITOR_LVL;
755 dip->next = AUDIO_MIXER_LAST;
756 mute:
757 strcpy(dip->label.name, AudioNmute);
758 dip->un.e.num_mem = 2;
759 strcpy(dip->un.e.member[0].label.name, AudioNoff);
760 dip->un.e.member[0].ord = 0;
761 strcpy(dip->un.e.member[1].label.name, AudioNon);
762 dip->un.e.member[1].ord = 1;
763 break;
764
765 case CSAUDIO_REC_LVL: /* record level */
766 dip->type = AUDIO_MIXER_VALUE;
767 dip->mixer_class = CSAUDIO_RECORD_CLASS;
768 dip->prev = AUDIO_MIXER_LAST;
769 dip->next = CSAUDIO_RECORD_SOURCE;
770 strcpy(dip->label.name, AudioNrecord);
771 dip->un.v.num_channels = 2;
772 strcpy(dip->un.v.units.name, AudioNvolume);
773 break;
774
775 case CSAUDIO_RECORD_SOURCE:
776 dip->mixer_class = CSAUDIO_RECORD_CLASS;
777 dip->type = AUDIO_MIXER_ENUM;
778 dip->prev = CSAUDIO_REC_LVL;
779 dip->next = AUDIO_MIXER_LAST;
780 strcpy(dip->label.name, AudioNsource);
781 dip->un.e.num_mem = 4;
782 strcpy(dip->un.e.member[0].label.name, AudioNoutput);
783 dip->un.e.member[0].ord = DAC_IN_PORT;
784 strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
785 dip->un.e.member[1].ord = MIC_IN_PORT;
786 strcpy(dip->un.e.member[2].label.name, AudioNdac);
787 dip->un.e.member[2].ord = AUX1_IN_PORT;
788 strcpy(dip->un.e.member[3].label.name, AudioNline);
789 dip->un.e.member[3].ord = LINE_IN_PORT;
790 break;
791
792 case CSAUDIO_INPUT_CLASS: /* input class descriptor */
793 dip->type = AUDIO_MIXER_CLASS;
794 dip->mixer_class = CSAUDIO_INPUT_CLASS;
795 dip->next = dip->prev = AUDIO_MIXER_LAST;
796 strcpy(dip->label.name, AudioCinputs);
797 break;
798
799 case CSAUDIO_OUTPUT_CLASS: /* output class descriptor */
800 dip->type = AUDIO_MIXER_CLASS;
801 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
802 dip->next = dip->prev = AUDIO_MIXER_LAST;
803 strcpy(dip->label.name, AudioCoutputs);
804 break;
805
806 case CSAUDIO_MONITOR_CLASS: /* monitor class descriptor */
807 dip->type = AUDIO_MIXER_CLASS;
808 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
809 dip->next = dip->prev = AUDIO_MIXER_LAST;
810 strcpy(dip->label.name, AudioCmonitor);
811 break;
812
813 case CSAUDIO_RECORD_CLASS: /* record source class */
814 dip->type = AUDIO_MIXER_CLASS;
815 dip->mixer_class = CSAUDIO_RECORD_CLASS;
816 dip->next = dip->prev = AUDIO_MIXER_LAST;
817 strcpy(dip->label.name, AudioCrecord);
818 break;
819
820 default:
821 return ENXIO;
822 /*NOTREACHED*/
823 }
824 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
825
826 return (0);
827 }
828
829
830 int
831 cs4231_trigger_output(addr, start, end, blksize, intr, arg, param)
832 void *addr;
833 void *start, *end;
834 int blksize;
835 void (*intr) __P((void *));
836 void *arg;
837 struct audio_params *param;
838 {
839 struct cs4231_softc *sc = addr;
840 struct cs_dma *p;
841 volatile struct apc_dma *dma = sc->sc_dmareg;
842 int csr;
843 u_long n;
844
845 if (sc->sc_locked != 0) {
846 printf("cs4231_trigger_output: already running\n");
847 return (EINVAL);
848 }
849
850 sc->sc_locked = 1;
851 sc->sc_pintr = intr;
852 sc->sc_parg = arg;
853
854 for (p = sc->sc_dmas; p != NULL && p->addr != start; p = p->next)
855 /*void*/;
856 if (p == NULL) {
857 printf("cs4231_trigger_output: bad addr %p\n", start);
858 return (EINVAL);
859 }
860
861 n = end - start;
862
863 /* XXX
864 * Do only `blksize' at a time, so audio_pint() is kept
865 * synchronous with us...
866 */
867 /*XXX*/sc->sc_blksz = blksize;
868 /*XXX*/sc->sc_nowplaying = p;
869 /*XXX*/sc->sc_playsegsz = n;
870
871 if (n > APC_MAX)
872 n = APC_MAX;
873
874 sc->sc_playcnt = n;
875
876 DPRINTF(("trigger_out: start %p, end %p, size %lu; "
877 "dmaaddr 0x%lx, dmacnt %lu, segsize %lu\n",
878 start, end, sc->sc_playsegsz, p->segs[0].ds_addr,
879 n, (u_long)p->size));
880
881 csr = dma->dmacsr;
882 dma->dmapnva = (u_long)p->segs[0].ds_addr;
883 dma->dmapnc = n;
884 if ((csr & PDMA_GO) == 0 || (csr & APC_PPAUSE) != 0) {
885 int reg;
886
887 dma->dmacsr &= ~(APC_PIE|APC_PPAUSE);
888 dma->dmacsr |= APC_EI|APC_IE|APC_PIE|APC_EIE|APC_PMIE|PDMA_GO;
889
890 /* Start chip */
891
892 /* Probably should just ignore this.. */
893 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
894 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
895
896 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
897 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG,
898 (PLAYBACK_ENABLE|reg));
899 }
900
901 return (0);
902 }
903
904 int
905 cs4231_trigger_input(addr, start, end, blksize, intr, arg, param)
906 void *addr;
907 void *start, *end;
908 int blksize;
909 void (*intr) __P((void *));
910 void *arg;
911 struct audio_params *param;
912 {
913 return (ENXIO);
914 }
915
916 int
917 cs4231_halt_output(addr)
918 void *addr;
919 {
920 struct cs4231_softc *sc = addr;
921 volatile struct apc_dma *dma = sc->sc_dmareg;
922 int reg;
923
924 dma->dmacsr &= ~(APC_EI | APC_IE | APC_PIE | APC_EIE | PDMA_GO | APC_PMIE);
925 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
926 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~PLAYBACK_ENABLE));
927 sc->sc_locked = 0;
928
929 return (0);
930 }
931
932 int
933 cs4231_halt_input(addr)
934 void *addr;
935 {
936 struct cs4231_softc *sc = addr;
937 int reg;
938
939 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
940 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~CAPTURE_ENABLE));
941 sc->sc_locked = 0;
942
943 return (0);
944 }
945
946
947 int
948 cs4231_intr(arg)
949 void *arg;
950 {
951 struct cs4231_softc *sc = arg;
952 volatile struct apc_dma *dma = sc->sc_dmareg;
953 struct cs_dma *p;
954 int ret = 0;
955 int csr;
956 int reg, status;
957 char bits[128];
958
959 #ifdef AUDIO_DEBUG
960 if (cs4231debug > 1)
961 cs4231_regdump("audiointr", sc);
962 #endif
963
964 /* Read DMA status */
965 csr = dma->dmacsr;
966 DPRINTF((
967 "intr: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
968 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
969 (u_long)dma->dmapva, (u_long)dma->dmapc,
970 (u_long)dma->dmapnva, (u_long)dma->dmapnc));
971
972 status = ADREAD(&sc->sc_ad1848, AD1848_STATUS);
973 DPRINTF(("%s: status: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
974 bitmask_snprintf(status, AD_R2_BITS, bits, sizeof(bits))));
975 if (status & (INTERRUPT_STATUS | SAMPLE_ERROR)) {
976 reg = ad_read(&sc->sc_ad1848, CS_IRQ_STATUS);
977 DPRINTF(("%s: i24: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
978 bitmask_snprintf(reg, CS_I24_BITS, bits, sizeof(bits))));
979
980 if (reg & CS_IRQ_PI) {
981 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
982 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
983 }
984 /* Clear interrupt bit */
985 ADWRITE(&sc->sc_ad1848, AD1848_STATUS, 0);
986 }
987
988 /* Write back DMA status (clears interrupt) */
989 dma->dmacsr = csr;
990
991 /*
992 * Simplistic.. if "play emtpy" is set advance to next chunk.
993 */
994 #if 1
995 /* Ack all play interrupts*/
996 if ((csr & (APC_PI|APC_PD|APC_PIE|APC_PMI)) != 0)
997 ret = 1;
998 #endif
999 if (csr & APC_PM) {
1000 u_long nextaddr, togo;
1001
1002 p = sc->sc_nowplaying;
1003
1004 togo = sc->sc_playsegsz - sc->sc_playcnt;
1005 if (togo == 0) {
1006 /* Roll over */
1007 nextaddr = (u_long)p->segs[0].ds_addr;
1008 sc->sc_playcnt = togo = APC_MAX;
1009 } else {
1010 nextaddr = dma->dmapnva + APC_MAX;
1011 if (togo > APC_MAX)
1012 togo = APC_MAX;
1013 sc->sc_playcnt += togo;
1014 }
1015
1016 dma->dmapnva = nextaddr;
1017 dma->dmapnc = togo;
1018
1019 if (sc->sc_pintr != NULL)
1020 (*sc->sc_pintr)(sc->sc_parg);
1021
1022 ret = 1;
1023 }
1024
1025 if (csr & APC_CI) {
1026 if (sc->sc_rintr != NULL) {
1027 ret = 1;
1028 (*sc->sc_rintr)(sc->sc_rarg);
1029 }
1030 }
1031
1032 #ifdef DEBUG
1033 if (ret == 0) {
1034 printf(
1035 "oops: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
1036 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
1037 (u_long)dma->dmapva, (u_long)dma->dmapc,
1038 (u_long)dma->dmapnva, (u_long)dma->dmapnc);
1039 ret = 1;
1040 }
1041 #endif
1042
1043 return (ret);
1044 }
1045 #endif /* NAUDIO > 0 */
1046