cs4231_sbus.c revision 1.3 1 /* $NetBSD: cs4231_sbus.c,v 1.3 1998/08/29 19:52:09 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/ioctl.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49
50 #include <machine/autoconf.h>
51 #include <machine/cpu.h>
52
53 #include <sys/audioio.h>
54 #include <dev/audio_if.h>
55
56 #include <dev/ic/ad1848reg.h>
57 #include <dev/ic/cs4231reg.h>
58 #include <dev/ic/ad1848var.h>
59
60 #if 0
61 /* XXX- put these elsewhere */
62 #define SUNAUDIO_MIC_PORT 0
63 #define SUNAUDIO_SPEAKER 1
64 #define SUNAUDIO_HEADPHONES 2
65 #define SUNAUDIO_MONITOR 3
66 #define SUNAUDIO_SOURCE 4
67 #define SUNAUDIO_OUTPUT 5
68 #define SUNAUDIO_INPUT_CLASS 6
69 #define SUNAUDIO_OUTPUT_CLASS 7
70 #define SUNAUDIO_RECORD_CLASS 8
71 #define SUNAUDIO_MONITOR_CLASS 9
72 #endif
73
74 /*---*/
75 #define CSAUDIO_DAC_LVL 0
76 #define CSAUDIO_LINE_IN_LVL 1
77 #define CSAUDIO_MONO_LVL 2
78 #define CSAUDIO_CD_LVL 3
79 #define CSAUDIO_MONITOR_LVL 4
80 #define CSAUDIO_OUT_LVL 5
81 #define CSAUDIO_LINE_IN_MUTE 6
82 #define CSAUDIO_DAC_MUTE 7
83 #define CSAUDIO_CD_MUTE 8
84 #define CSAUDIO_MONO_MUTE 9
85 #define CSAUDIO_MONITOR_MUTE 10
86 #define CSAUDIO_REC_LVL 11
87 #define CSAUDIO_RECORD_SOURCE 12
88
89 #define CSAUDIO_INPUT_CLASS 13
90 #define CSAUDIO_OUTPUT_CLASS 14
91 #define CSAUDIO_RECORD_CLASS 15
92 #define CSAUDIO_MONITOR_CLASS 16
93
94 #define AUDIO_ROM_NAME "SUNW,CS4231"
95
96 #ifdef AUDIO_DEBUG
97 int cs4231debug = 0;
98 #define DPRINTF(x) if (cs4231debug) printf x
99 #else
100 #define DPRINTF(x)
101 #endif
102
103 /*
104 * Layout of 4231 registers.
105 *
106 struct cs4231_reg {
107 volatile u_int8_t iar; // Index Address Register
108 volatile u_int8_t pad0[3];
109 volatile u_int8_t idr; // Data Register
110 volatile u_int8_t pad1[3];
111 volatile u_int8_t status; // Status Register
112 volatile u_int8_t pad2[3];
113 volatile u_int8_t piodr; // PIO Data Register I/O
114 volatile u_int8_t pad3[3];
115 };
116 */
117 #define CS4231_REG_SIZE 16
118
119
120 /*
121 * APC DMA hardware; from SunOS header
122 * Thanks to Derrick J. Brashear for additional info on the
123 * meaning of some of these bits.
124 */
125 struct apc_dma {
126 volatile u_int32_t dmacsr; /* APC CSR */
127 volatile u_int32_t lpad[3]; /* */
128 volatile u_int32_t dmacva; /* Capture Virtual Address */
129 volatile u_int32_t dmacc; /* Capture Count */
130 volatile u_int32_t dmacnva; /* Capture Next Virtual Address */
131 volatile u_int32_t dmacnc; /* Capture next count */
132 volatile u_int32_t dmapva; /* Playback Virtual Address */
133 volatile u_int32_t dmapc; /* Playback Count */
134 volatile u_int32_t dmapnva; /* Playback Next VAddress */
135 volatile u_int32_t dmapnc; /* Playback Next Count */
136 };
137
138 /*
139 * APC CSR Register bit definitions
140 */
141 #define APC_IP 0x00800000 /* Interrupt Pending */
142 #define APC_PI 0x00400000 /* Playback interrupt */
143 #define APC_CI 0x00200000 /* Capture interrupt */
144 #define APC_EI 0x00100000 /* General interrupt */
145 #define APC_IE 0x00080000 /* General ext int. enable */
146 #define APC_PIE 0x00040000 /* Playback ext intr */
147 #define APC_CIE 0x00020000 /* Capture ext intr */
148 #define APC_EIE 0x00010000 /* Error ext intr */
149 #define APC_PMI 0x00008000 /* Pipe empty interrupt */
150 #define APC_PM 0x00004000 /* Play pipe empty */
151 #define APC_PD 0x00002000 /* Playback NVA dirty */
152 #define APC_PMIE 0x00001000 /* play pipe empty Int enable */
153 #define APC_CM 0x00000800 /* Cap data dropped on floor */
154 #define APC_CD 0x00000400 /* Capture NVA dirty */
155 #define APC_CMI 0x00000200 /* Capture pipe empty interrupt */
156 #define APC_CMIE 0x00000100 /* Cap. pipe empty int enable */
157 #define APC_PPAUSE 0x00000080 /* Pause the play DMA */
158 #define APC_CPAUSE 0x00000040 /* Pause the capture DMA */
159 #define APC_CODEC_PDN 0x00000020 /* CODEC RESET */
160 #define PDMA_GO 0x00000008
161 #define CDMA_GO 0x00000004 /* bit 2 of the csr */
162 #define APC_RESET 0x00000001 /* Reset the chip */
163
164 #define APC_BITS \
165 "\20\30IP\27PI\26CI\25EI\24IE" \
166 "\23PIE\22CIE\21EIE\20PMI\17PM\16PD\15PMIE" \
167 "\14CM\13CD\12CMI\11CMIE\10PPAUSE\7CPAUSE\6PDN\4PGO\3CGO"
168
169 /*
170 * To start DMA, you write to dma[cp]nva and dma[cp]nc and set [CP]DMA_GO
171 * in dmacsr. dma[cp]va and dma[cp]c, when read, appear to be the live
172 * counter as the DMA operation progresses.
173 * Supposedly, you get an interrupt with the "dirty" bits (APC_PD,APC_CD)
174 * set, when the next DMA buffer can be programmed, while the current one
175 * is still in progress. We don't currently use this feature, since I
176 * haven't been able to make it work.. instead the next buffer goes in
177 * as soon as we see a "pipe empty" (APC_PM) interrupt.
178 */
179
180 /* It's not clear if there's a maximum DMA size.. */
181 #define APC_MAX (sc->sc_blksz)/*(16*1024)*/
182
183 /*
184 * List of device memory allocations (see cs4231_malloc/cs4231_free).
185 */
186 struct cs_dma {
187 struct cs_dma *next;
188 caddr_t addr;
189 bus_dma_segment_t segs[1];
190 int nsegs;
191 size_t size;
192 };
193
194
195 /*
196 * Software state, per CS4231 audio chip.
197 */
198 struct cs4231_softc {
199 struct ad1848_softc sc_ad1848; /* base device */
200 struct sbusdev sc_sd; /* sbus device */
201 bus_space_tag_t sc_bustag;
202 bus_dma_tag_t sc_dmatag;
203 struct evcnt sc_intrcnt; /* statistics */
204
205 struct cs_dma *sc_dmas;
206 struct cs_dma *sc_nowplaying; /*XXX*/
207 u_long sc_playsegsz; /*XXX*/
208 u_long sc_playcnt;
209 u_long sc_blksz;
210
211 int sc_open; /* single use device */
212 int sc_locked; /* true when transfering data */
213 struct apc_dma *sc_dmareg; /* DMA registers */
214
215 /* interfacing with the interrupt handlers */
216 void (*sc_rintr)(void*); /* input completion intr handler */
217 void *sc_rarg; /* arg for sc_rintr() */
218 void (*sc_pintr)(void*); /* output completion intr handler */
219 void *sc_parg; /* arg for sc_pintr() */
220 };
221
222 /* autoconfiguration driver */
223 void cs4231attach __P((struct device *, struct device *, void *));
224 int cs4231match __P((struct device *, struct cfdata *, void *));
225
226 struct cfattach audiocs_ca = {
227 sizeof(struct cs4231_softc), cs4231match, cs4231attach
228 };
229
230 struct audio_device cs4231_device = {
231 "cs4231",
232 "x",
233 "audio"
234 };
235
236
237 /*
238 * Define our interface to the higher level audio driver.
239 */
240 int cs4231_open __P((void *, int));
241 void cs4231_close __P((void *));
242 u_long cs4231_round_buffersize __P((void *, u_long));
243 int cs4231_round_blocksize __P((void *, int));
244 int cs4231_halt_output __P((void *));
245 int cs4231_halt_input __P((void *));
246 int cs4231_getdev __P((void *, struct audio_device *));
247 int cs4231_set_port __P((void *, mixer_ctrl_t *));
248 int cs4231_get_port __P((void *, mixer_ctrl_t *));
249 int cs4231_query_devinfo __P((void *, mixer_devinfo_t *));
250 int cs4231_get_props __P((void *));
251
252 void *cs4231_malloc __P((void *, u_long, int, int));
253 void cs4231_free __P((void *, void *, int));
254 int cs4231_trigger_output __P((void *, void *, void *, int,
255 void (*)(void *), void *,
256 struct audio_params *));
257 int cs4231_trigger_input __P((void *, void *, void *, int,
258 void (*)(void *), void *,
259 struct audio_params *));
260
261 int cs4231_intr __P((void *));
262 void cs4231_init __P((struct cs4231_softc *));
263
264 #ifdef AUDIO_DEBUG
265 static void cs4231_regdump __P((char *, struct cs4231_softc *));
266 #endif
267
268 static int cs_read __P((struct ad1848_softc *, int));
269 static void cs_write __P((struct ad1848_softc *, int, int));
270
271 static int
272 cs_read(sc, index)
273 struct ad1848_softc *sc;
274 int index;
275 {
276 u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
277 int v;
278
279 v = *p;
280 return (v);
281 }
282
283 static void
284 cs_write(sc, index, value)
285 struct ad1848_softc *sc;
286 int index, value;
287 {
288 u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
289
290 *p = value;
291 }
292
293 static struct audio_hw_if hw_if = {
294 cs4231_open,
295 cs4231_close,
296 0,
297 ad1848_query_encoding,
298 ad1848_set_params,
299 cs4231_round_blocksize,
300 ad1848_commit_settings,
301 0,
302 0,
303 NULL,
304 NULL,
305 cs4231_halt_output,
306 cs4231_halt_input,
307 0,
308 cs4231_getdev,
309 0,
310 cs4231_set_port,
311 cs4231_get_port,
312 cs4231_query_devinfo,
313 cs4231_malloc,
314 cs4231_free,
315 cs4231_round_buffersize,
316 0,
317 cs4231_get_props,
318 cs4231_trigger_output,
319 cs4231_trigger_input
320 };
321
322 /* autoconfig routines */
323
324 int
325 cs4231match(parent, cf, aux)
326 struct device *parent;
327 struct cfdata *cf;
328 void *aux;
329 {
330 struct sbus_attach_args *sa = aux;
331
332 return (strcmp(AUDIO_ROM_NAME, sa->sa_name) == 0);
333 }
334
335 /*
336 * Audio chip found.
337 */
338 void
339 cs4231attach(parent, self, aux)
340 struct device *parent, *self;
341 void *aux;
342 {
343 struct cs4231_softc *sc = (struct cs4231_softc *)self;
344 struct sbus_attach_args *sa = aux;
345 bus_space_handle_t bh;
346
347 sc->sc_bustag = sa->sa_bustag;
348 sc->sc_dmatag = sa->sa_dmatag;
349
350 sc->sc_ad1848.parent = sc;
351 sc->sc_ad1848.sc_readreg = cs_read;
352 sc->sc_ad1848.sc_writereg = cs_write;
353
354 /*
355 * Map my registers in, if they aren't already in virtual
356 * address space.
357 */
358 if (sa->sa_npromvaddrs) {
359 bh = (bus_space_handle_t)sa->sa_promvaddrs[0];
360 } else {
361 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
362 sa->sa_offset,
363 sa->sa_size,
364 BUS_SPACE_MAP_LINEAR,
365 0, &bh) != 0) {
366 printf("%s @ sbus: cannot map registers\n",
367 self->dv_xname);
368 return;
369 }
370 }
371
372 sc->sc_ad1848.sc_ioh = bh;
373 sc->sc_dmareg = (struct apc_dma *)((int)bh + CS4231_REG_SIZE);
374
375 cs4231_init(sc);
376
377 /* Put ad1848 driver in `MODE 2' mode */
378 sc->sc_ad1848.mode = 2;
379 ad1848_attach(&sc->sc_ad1848);
380
381 printf("\n");
382
383 sbus_establish(&sc->sc_sd, &sc->sc_ad1848.sc_dev);
384
385 /* Establish interrupt channel */
386 bus_intr_establish(sa->sa_bustag,
387 sa->sa_pri, 0,
388 cs4231_intr, sc);
389
390 evcnt_attach(&sc->sc_ad1848.sc_dev, "intr", &sc->sc_intrcnt);
391 audio_attach_mi(&hw_if, sc, &sc->sc_ad1848.sc_dev);
392 }
393
394
395 #ifdef AUDIO_DEBUG
396 static void
397 cs4231_regdump(label, sc)
398 char *label;
399 struct cs4231_softc *sc;
400 {
401 char bits[128];
402 volatile struct apc_dma *dma = sc->sc_dmareg;
403
404 printf("cs4231regdump(%s): regs:", label);
405 printf("dmapva: 0x%lx; ", (u_long)dma->dmapva);
406 printf("dmapc: 0x%lx; ", (u_long)dma->dmapc);
407 printf("dmapnva: 0x%lx; ", (u_long)dma->dmapnva);
408 printf("dmapnc: 0x%lx\n", (u_long)dma->dmapnc);
409 printf("dmacva: 0x%lx; ", (u_long)dma->dmacva);
410 printf("dmacc: 0x%lx; ", (u_long)dma->dmacc);
411 printf("dmacnva: 0x%lx; ", (u_long)dma->dmacnva);
412 printf("dmacnc: 0x%lx\n", (u_long)dma->dmacnc);
413
414 printf("apc_dmacsr=%s\n",
415 bitmask_snprintf(dma->dmacsr, APC_BITS, bits, sizeof(bits)) );
416
417 ad1848_dump_regs(&sc->sc_ad1848);
418 }
419 #endif
420
421 void
422 cs4231_init(sc)
423 register struct cs4231_softc *sc;
424 {
425 char *buf;
426 #if 0
427 volatile struct apc_dma *dma = sc->sc_dmareg;
428 #endif
429 int reg;
430
431 #if 0
432 dma->dmacsr = APC_CODEC_PDN;
433 delay(20);
434 dma->dmacsr &= ~APC_CODEC_PDN;
435 #endif
436 /* First, put chip in native mode */
437 reg = ad_read(&sc->sc_ad1848, SP_MISC_INFO);
438 ad_write(&sc->sc_ad1848, SP_MISC_INFO, reg | MODE2);
439
440 /* Read version numbers from I25 */
441 reg = ad_read(&sc->sc_ad1848, CS_VERSION_ID);
442 switch (reg & (CS_VERSION_NUMBER | CS_VERSION_CHIPID)) {
443 case 0xa0:
444 sc->sc_ad1848.chip_name = "CS4231A";
445 break;
446 case 0x80:
447 sc->sc_ad1848.chip_name = "CS4231";
448 break;
449 case 0x82:
450 sc->sc_ad1848.chip_name = "CS4232";
451 break;
452 default:
453 if ((buf = malloc(32, M_TEMP, M_NOWAIT)) != NULL) {
454 sprintf(buf, "unknown rev: %x/%x", reg&0xe, reg&7);
455 sc->sc_ad1848.chip_name = buf;
456 }
457 }
458 }
459
460 void *
461 cs4231_malloc(addr, size, pool, flags)
462 void *addr;
463 u_long size;
464 int pool;
465 int flags;
466 {
467 struct cs4231_softc *sc = addr;
468 struct cs_dma *p;
469 int error;
470
471 p = malloc(sizeof(*p), pool, flags);
472 if (p == NULL)
473 return (NULL);
474
475 p->size = size;
476 error = bus_dmamem_alloc(sc->sc_dmatag, size, 64*1024, 0,
477 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
478 &p->nsegs, BUS_DMA_NOWAIT);
479 if (error) {
480 free(p, pool);
481 return (NULL);
482 }
483
484 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
485 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
486 if (error) {
487 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
488 free(p, pool);
489 return (NULL);
490 }
491
492 p->next = sc->sc_dmas;
493 sc->sc_dmas = p;
494 return (p->addr);
495 }
496
497 void
498 cs4231_free(addr, ptr, pool)
499 void *addr;
500 void *ptr;
501 int pool;
502 {
503 struct cs4231_softc *sc = addr;
504 struct cs_dma *p, **pp;
505
506 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) {
507 if (p->addr != ptr)
508 continue;
509 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
510 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
511 *pp = p->next;
512 free(p, pool);
513 return;
514 }
515 printf("cs4231_free: rogue pointer\n");
516 }
517
518 int
519 cs4231_open(addr, flags)
520 void *addr;
521 int flags;
522 {
523 struct cs4231_softc *sc = addr;
524 #if 0
525 struct apc_dma *dma = sc->sc_dmareg;
526 #endif
527
528 DPRINTF(("sa_open: unit %p\n", sc));
529
530 if (sc->sc_open)
531 return (EBUSY);
532 sc->sc_open = 1;
533 sc->sc_locked = 0;
534 sc->sc_rintr = 0;
535 sc->sc_rarg = 0;
536 sc->sc_pintr = 0;
537 sc->sc_parg = 0;
538 #if 1
539 /*No interrupts from ad1848 */
540 ad_write(&sc->sc_ad1848, SP_PIN_CONTROL, 0);
541 #endif
542 #if 0
543 dma->dmacsr = APC_RESET;
544 delay(10);
545 dma->dmacsr = 0;
546 delay(10);
547 ad1848_reset(&sc->sc_ad1848);
548 #endif
549
550 DPRINTF(("saopen: ok -> sc=%p\n", sc));
551 return (0);
552 }
553
554 void
555 cs4231_close(addr)
556 void *addr;
557 {
558 register struct cs4231_softc *sc = addr;
559
560 DPRINTF(("sa_close: sc=%p\n", sc));
561 /*
562 * halt i/o, clear open flag, and done.
563 */
564 cs4231_halt_input(sc);
565 cs4231_halt_output(sc);
566 sc->sc_open = 0;
567
568 DPRINTF(("sa_close: closed.\n"));
569 }
570
571 u_long
572 cs4231_round_buffersize(addr, size)
573 void *addr;
574 u_long size;
575 {
576 #if 0
577 if (size > APC_MAX)
578 size = APC_MAX;
579 #endif
580 return (size);
581 }
582
583 int
584 cs4231_round_blocksize(addr, blk)
585 void *addr;
586 int blk;
587 {
588 return (blk & -4);
589 }
590
591 int
592 cs4231_getdev(addr, retp)
593 void *addr;
594 struct audio_device *retp;
595 {
596 *retp = cs4231_device;
597 return (0);
598 }
599
600 static ad1848_devmap_t csmapping[] = {
601 { CSAUDIO_DAC_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
602 { CSAUDIO_LINE_IN_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
603 { CSAUDIO_MONO_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
604 { CSAUDIO_CD_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
605 { CSAUDIO_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
606 { CSAUDIO_OUT_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
607 { CSAUDIO_DAC_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
608 { CSAUDIO_LINE_IN_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
609 { CSAUDIO_MONO_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
610 { CSAUDIO_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
611 { CSAUDIO_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
612 { CSAUDIO_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
613 { CSAUDIO_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1 }
614 };
615
616 static int nummap = sizeof(csmapping) / sizeof(csmapping[0]);
617
618
619 int
620 cs4231_set_port(addr, cp)
621 void *addr;
622 mixer_ctrl_t *cp;
623 {
624 struct ad1848_softc *ac = addr;
625
626 DPRINTF(("cs4231_set_port: port=%d", cp->dev));
627 return (ad1848_mixer_get_port(ac, csmapping, nummap, cp));
628 }
629
630 int
631 cs4231_get_port(addr, cp)
632 void *addr;
633 mixer_ctrl_t *cp;
634 {
635 struct ad1848_softc *ac = addr;
636
637 DPRINTF(("cs4231_get_port: port=%d", cp->dev));
638 return (ad1848_mixer_get_port(ac, csmapping, nummap, cp));
639 }
640
641 int
642 cs4231_get_props(addr)
643 void *addr;
644 {
645 return (AUDIO_PROP_FULLDUPLEX);
646 }
647
648 int
649 cs4231_query_devinfo(addr, dip)
650 void *addr;
651 register mixer_devinfo_t *dip;
652 {
653
654 switch(dip->index) {
655 #if 0
656 case CSAUDIO_MIC_IN_LVL: /* Microphone */
657 dip->type = AUDIO_MIXER_VALUE;
658 dip->mixer_class = CSAUDIO_INPUT_CLASS;
659 dip->prev = AUDIO_MIXER_LAST;
660 dip->next = CSAUDIO_MIC_IN_MUTE;
661 strcpy(dip->label.name, AudioNmicrophone);
662 dip->un.v.num_channels = 2;
663 strcpy(dip->un.v.units.name, AudioNvolume);
664 break;
665 #endif
666
667 case CSAUDIO_MONO_LVL: /* mono/microphone mixer */
668 dip->type = AUDIO_MIXER_VALUE;
669 dip->mixer_class = CSAUDIO_INPUT_CLASS;
670 dip->prev = AUDIO_MIXER_LAST;
671 dip->next = CSAUDIO_MONO_MUTE;
672 strcpy(dip->label.name, AudioNmicrophone);
673 dip->un.v.num_channels = 1;
674 strcpy(dip->un.v.units.name, AudioNvolume);
675 break;
676
677 case CSAUDIO_DAC_LVL: /* dacout */
678 dip->type = AUDIO_MIXER_VALUE;
679 dip->mixer_class = CSAUDIO_INPUT_CLASS;
680 dip->prev = AUDIO_MIXER_LAST;
681 dip->next = CSAUDIO_DAC_MUTE;
682 strcpy(dip->label.name, AudioNdac);
683 dip->un.v.num_channels = 2;
684 strcpy(dip->un.v.units.name, AudioNvolume);
685 break;
686
687 case CSAUDIO_LINE_IN_LVL: /* line */
688 dip->type = AUDIO_MIXER_VALUE;
689 dip->mixer_class = CSAUDIO_INPUT_CLASS;
690 dip->prev = AUDIO_MIXER_LAST;
691 dip->next = CSAUDIO_LINE_IN_MUTE;
692 strcpy(dip->label.name, AudioNline);
693 dip->un.v.num_channels = 2;
694 strcpy(dip->un.v.units.name, AudioNvolume);
695 break;
696
697 case CSAUDIO_CD_LVL: /* cd */
698 dip->type = AUDIO_MIXER_VALUE;
699 dip->mixer_class = CSAUDIO_INPUT_CLASS;
700 dip->prev = AUDIO_MIXER_LAST;
701 dip->next = CSAUDIO_CD_MUTE;
702 strcpy(dip->label.name, AudioNcd);
703 dip->un.v.num_channels = 2;
704 strcpy(dip->un.v.units.name, AudioNvolume);
705 break;
706
707
708 case CSAUDIO_MONITOR_LVL: /* monitor level */
709 dip->type = AUDIO_MIXER_VALUE;
710 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
711 dip->next = CSAUDIO_MONITOR_MUTE;
712 dip->prev = AUDIO_MIXER_LAST;
713 strcpy(dip->label.name, AudioNmonitor);
714 dip->un.v.num_channels = 1;
715 strcpy(dip->un.v.units.name, AudioNvolume);
716 break;
717
718 case CSAUDIO_OUT_LVL: /* cs4231 output volume: not useful? */
719 dip->type = AUDIO_MIXER_VALUE;
720 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
721 dip->prev = dip->next = AUDIO_MIXER_LAST;
722 strcpy(dip->label.name, AudioNoutput);
723 dip->un.v.num_channels = 2;
724 strcpy(dip->un.v.units.name, AudioNvolume);
725 break;
726
727 case CSAUDIO_LINE_IN_MUTE:
728 dip->mixer_class = CSAUDIO_INPUT_CLASS;
729 dip->type = AUDIO_MIXER_ENUM;
730 dip->prev = CSAUDIO_LINE_IN_LVL;
731 dip->next = AUDIO_MIXER_LAST;
732 goto mute;
733
734 case CSAUDIO_DAC_MUTE:
735 dip->mixer_class = CSAUDIO_INPUT_CLASS;
736 dip->type = AUDIO_MIXER_ENUM;
737 dip->prev = CSAUDIO_DAC_LVL;
738 dip->next = AUDIO_MIXER_LAST;
739 goto mute;
740
741 case CSAUDIO_CD_MUTE:
742 dip->mixer_class = CSAUDIO_INPUT_CLASS;
743 dip->type = AUDIO_MIXER_ENUM;
744 dip->prev = CSAUDIO_CD_LVL;
745 dip->next = AUDIO_MIXER_LAST;
746 goto mute;
747
748 case CSAUDIO_MONO_MUTE:
749 dip->mixer_class = CSAUDIO_INPUT_CLASS;
750 dip->type = AUDIO_MIXER_ENUM;
751 dip->prev = CSAUDIO_MONO_LVL;
752 dip->next = AUDIO_MIXER_LAST;
753 goto mute;
754
755 case CSAUDIO_MONITOR_MUTE:
756 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
757 dip->type = AUDIO_MIXER_ENUM;
758 dip->prev = CSAUDIO_MONITOR_LVL;
759 dip->next = AUDIO_MIXER_LAST;
760 mute:
761 strcpy(dip->label.name, AudioNmute);
762 dip->un.e.num_mem = 2;
763 strcpy(dip->un.e.member[0].label.name, AudioNoff);
764 dip->un.e.member[0].ord = 0;
765 strcpy(dip->un.e.member[1].label.name, AudioNon);
766 dip->un.e.member[1].ord = 1;
767 break;
768
769 case CSAUDIO_REC_LVL: /* record level */
770 dip->type = AUDIO_MIXER_VALUE;
771 dip->mixer_class = CSAUDIO_RECORD_CLASS;
772 dip->prev = AUDIO_MIXER_LAST;
773 dip->next = CSAUDIO_RECORD_SOURCE;
774 strcpy(dip->label.name, AudioNrecord);
775 dip->un.v.num_channels = 2;
776 strcpy(dip->un.v.units.name, AudioNvolume);
777 break;
778
779 case CSAUDIO_RECORD_SOURCE:
780 dip->mixer_class = CSAUDIO_RECORD_CLASS;
781 dip->type = AUDIO_MIXER_ENUM;
782 dip->prev = CSAUDIO_REC_LVL;
783 dip->next = AUDIO_MIXER_LAST;
784 strcpy(dip->label.name, AudioNsource);
785 dip->un.e.num_mem = 4;
786 strcpy(dip->un.e.member[0].label.name, AudioNoutput);
787 dip->un.e.member[0].ord = DAC_IN_PORT;
788 strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
789 dip->un.e.member[1].ord = MIC_IN_PORT;
790 strcpy(dip->un.e.member[2].label.name, AudioNdac);
791 dip->un.e.member[2].ord = AUX1_IN_PORT;
792 strcpy(dip->un.e.member[3].label.name, AudioNline);
793 dip->un.e.member[3].ord = LINE_IN_PORT;
794 break;
795
796 case CSAUDIO_INPUT_CLASS: /* input class descriptor */
797 dip->type = AUDIO_MIXER_CLASS;
798 dip->mixer_class = CSAUDIO_INPUT_CLASS;
799 dip->next = dip->prev = AUDIO_MIXER_LAST;
800 strcpy(dip->label.name, AudioCinputs);
801 break;
802
803 case CSAUDIO_OUTPUT_CLASS: /* output class descriptor */
804 dip->type = AUDIO_MIXER_CLASS;
805 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
806 dip->next = dip->prev = AUDIO_MIXER_LAST;
807 strcpy(dip->label.name, AudioCoutputs);
808 break;
809
810 case CSAUDIO_MONITOR_CLASS: /* monitor class descriptor */
811 dip->type = AUDIO_MIXER_CLASS;
812 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
813 dip->next = dip->prev = AUDIO_MIXER_LAST;
814 strcpy(dip->label.name, AudioCmonitor);
815 break;
816
817 case CSAUDIO_RECORD_CLASS: /* record source class */
818 dip->type = AUDIO_MIXER_CLASS;
819 dip->mixer_class = CSAUDIO_RECORD_CLASS;
820 dip->next = dip->prev = AUDIO_MIXER_LAST;
821 strcpy(dip->label.name, AudioCrecord);
822 break;
823
824 default:
825 return ENXIO;
826 /*NOTREACHED*/
827 }
828 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
829
830 return (0);
831 }
832
833
834 int
835 cs4231_trigger_output(addr, start, end, blksize, intr, arg, param)
836 void *addr;
837 void *start, *end;
838 int blksize;
839 void (*intr) __P((void *));
840 void *arg;
841 struct audio_params *param;
842 {
843 struct cs4231_softc *sc = addr;
844 struct cs_dma *p;
845 volatile struct apc_dma *dma = sc->sc_dmareg;
846 int csr;
847 u_long n;
848
849 if (sc->sc_locked != 0) {
850 printf("cs4231_trigger_output: already running\n");
851 return (EINVAL);
852 }
853
854 sc->sc_locked = 1;
855 sc->sc_pintr = intr;
856 sc->sc_parg = arg;
857
858 for (p = sc->sc_dmas; p != NULL && p->addr != start; p = p->next)
859 /*void*/;
860 if (p == NULL) {
861 printf("cs4231_trigger_output: bad addr %p\n", start);
862 return (EINVAL);
863 }
864
865 n = end - start;
866
867 /* XXX
868 * Do only `blksize' at a time, so audio_pint() is kept
869 * synchronous with us...
870 */
871 /*XXX*/sc->sc_blksz = blksize;
872 /*XXX*/sc->sc_nowplaying = p;
873 /*XXX*/sc->sc_playsegsz = n;
874
875 if (n > APC_MAX)
876 n = APC_MAX;
877
878 sc->sc_playcnt = n;
879
880 DPRINTF(("trigger_out: start %p, end %p, size %lu; "
881 "dmaaddr 0x%lx, dmacnt %lu, segsize %lu\n",
882 start, end, sc->sc_playsegsz, p->segs[0].ds_addr,
883 n, (u_long)p->size));
884
885 csr = dma->dmacsr;
886 dma->dmapnva = (u_long)p->segs[0].ds_addr;
887 dma->dmapnc = n;
888 if ((csr & PDMA_GO) == 0 || (csr & APC_PPAUSE) != 0) {
889 int reg;
890
891 dma->dmacsr &= ~(APC_PIE|APC_PPAUSE);
892 dma->dmacsr |= APC_EI|APC_IE|APC_PIE|APC_EIE|APC_PMIE|PDMA_GO;
893
894 /* Start chip */
895
896 /* Probably should just ignore this.. */
897 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
898 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
899
900 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
901 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG,
902 (PLAYBACK_ENABLE|reg));
903 }
904
905 return (0);
906 }
907
908 int
909 cs4231_trigger_input(addr, start, end, blksize, intr, arg, param)
910 void *addr;
911 void *start, *end;
912 int blksize;
913 void (*intr) __P((void *));
914 void *arg;
915 struct audio_params *param;
916 {
917 return (ENXIO);
918 }
919
920 int
921 cs4231_halt_output(addr)
922 void *addr;
923 {
924 struct cs4231_softc *sc = addr;
925 volatile struct apc_dma *dma = sc->sc_dmareg;
926 int reg;
927
928 dma->dmacsr &= ~(APC_EI | APC_IE | APC_PIE | APC_EIE | PDMA_GO | APC_PMIE);
929 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
930 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~PLAYBACK_ENABLE));
931 sc->sc_locked = 0;
932
933 return (0);
934 }
935
936 int
937 cs4231_halt_input(addr)
938 void *addr;
939 {
940 struct cs4231_softc *sc = addr;
941 int reg;
942
943 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
944 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~CAPTURE_ENABLE));
945 sc->sc_locked = 0;
946
947 return (0);
948 }
949
950
951 int
952 cs4231_intr(arg)
953 void *arg;
954 {
955 struct cs4231_softc *sc = arg;
956 volatile struct apc_dma *dma = sc->sc_dmareg;
957 struct cs_dma *p;
958 int ret = 0;
959 int csr;
960 int reg, status;
961 #ifdef AUDIO_DEBUG
962 char bits[128];
963 #endif
964
965 #ifdef AUDIO_DEBUG
966 if (cs4231debug > 1)
967 cs4231_regdump("audiointr", sc);
968 #endif
969
970 /* Read DMA status */
971 csr = dma->dmacsr;
972 DPRINTF((
973 "intr: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
974 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
975 (u_long)dma->dmapva, (u_long)dma->dmapc,
976 (u_long)dma->dmapnva, (u_long)dma->dmapnc));
977
978 status = ADREAD(&sc->sc_ad1848, AD1848_STATUS);
979 DPRINTF(("%s: status: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
980 bitmask_snprintf(status, AD_R2_BITS, bits, sizeof(bits))));
981 if (status & (INTERRUPT_STATUS | SAMPLE_ERROR)) {
982 reg = ad_read(&sc->sc_ad1848, CS_IRQ_STATUS);
983 DPRINTF(("%s: i24: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
984 bitmask_snprintf(reg, CS_I24_BITS, bits, sizeof(bits))));
985
986 if (reg & CS_IRQ_PI) {
987 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
988 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
989 }
990 /* Clear interrupt bit */
991 ADWRITE(&sc->sc_ad1848, AD1848_STATUS, 0);
992 }
993
994 /* Write back DMA status (clears interrupt) */
995 dma->dmacsr = csr;
996
997 /*
998 * Simplistic.. if "play emtpy" is set advance to next chunk.
999 */
1000 #if 1
1001 /* Ack all play interrupts*/
1002 if ((csr & (APC_PI|APC_PD|APC_PIE|APC_PMI)) != 0)
1003 ret = 1;
1004 #endif
1005 if (csr & APC_PM) {
1006 u_long nextaddr, togo;
1007
1008 p = sc->sc_nowplaying;
1009
1010 togo = sc->sc_playsegsz - sc->sc_playcnt;
1011 if (togo == 0) {
1012 /* Roll over */
1013 nextaddr = (u_long)p->segs[0].ds_addr;
1014 sc->sc_playcnt = togo = APC_MAX;
1015 } else {
1016 nextaddr = dma->dmapnva + APC_MAX;
1017 if (togo > APC_MAX)
1018 togo = APC_MAX;
1019 sc->sc_playcnt += togo;
1020 }
1021
1022 dma->dmapnva = nextaddr;
1023 dma->dmapnc = togo;
1024
1025 if (sc->sc_pintr != NULL)
1026 (*sc->sc_pintr)(sc->sc_parg);
1027
1028 ret = 1;
1029 }
1030
1031 if (csr & APC_CI) {
1032 if (sc->sc_rintr != NULL) {
1033 ret = 1;
1034 (*sc->sc_rintr)(sc->sc_rarg);
1035 }
1036 }
1037
1038 #ifdef DEBUG
1039 if (ret == 0) {
1040 printf(
1041 "oops: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
1042 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
1043 (u_long)dma->dmapva, (u_long)dma->dmapc,
1044 (u_long)dma->dmapnva, (u_long)dma->dmapnc);
1045 ret = 1;
1046 }
1047 #endif
1048
1049 return (ret);
1050 }
1051 #endif /* NAUDIO > 0 */
1052