cs4231_sbus.c revision 1.6 1 /* $NetBSD: cs4231_sbus.c,v 1.6 1998/09/25 14:19:20 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47
48 #include <machine/autoconf.h>
49 #include <machine/cpu.h>
50
51 #include <sys/audioio.h>
52 #include <dev/audio_if.h>
53
54 #include <dev/ic/ad1848reg.h>
55 #include <dev/ic/cs4231reg.h>
56 #include <dev/ic/ad1848var.h>
57
58 #if 0
59 /* XXX- put these elsewhere */
60 #define SUNAUDIO_MIC_PORT 0
61 #define SUNAUDIO_SPEAKER 1
62 #define SUNAUDIO_HEADPHONES 2
63 #define SUNAUDIO_MONITOR 3
64 #define SUNAUDIO_SOURCE 4
65 #define SUNAUDIO_OUTPUT 5
66 #define SUNAUDIO_INPUT_CLASS 6
67 #define SUNAUDIO_OUTPUT_CLASS 7
68 #define SUNAUDIO_RECORD_CLASS 8
69 #define SUNAUDIO_MONITOR_CLASS 9
70 #endif
71
72 /*---*/
73 #define CSAUDIO_DAC_LVL 0
74 #define CSAUDIO_LINE_IN_LVL 1
75 #define CSAUDIO_MONO_LVL 2
76 #define CSAUDIO_CD_LVL 3
77 #define CSAUDIO_MONITOR_LVL 4
78 #define CSAUDIO_OUT_LVL 5
79 #define CSAUDIO_LINE_IN_MUTE 6
80 #define CSAUDIO_DAC_MUTE 7
81 #define CSAUDIO_CD_MUTE 8
82 #define CSAUDIO_MONO_MUTE 9
83 #define CSAUDIO_MONITOR_MUTE 10
84 #define CSAUDIO_REC_LVL 11
85 #define CSAUDIO_RECORD_SOURCE 12
86
87 #define CSAUDIO_INPUT_CLASS 13
88 #define CSAUDIO_OUTPUT_CLASS 14
89 #define CSAUDIO_RECORD_CLASS 15
90 #define CSAUDIO_MONITOR_CLASS 16
91
92 #define AUDIO_ROM_NAME "SUNW,CS4231"
93
94 #ifdef AUDIO_DEBUG
95 int cs4231debug = 0;
96 #define DPRINTF(x) if (cs4231debug) printf x
97 #else
98 #define DPRINTF(x)
99 #endif
100
101 /*
102 * Layout of 4231 registers.
103 *
104 struct cs4231_reg {
105 volatile u_int8_t iar; // Index Address Register
106 volatile u_int8_t pad0[3];
107 volatile u_int8_t idr; // Data Register
108 volatile u_int8_t pad1[3];
109 volatile u_int8_t status; // Status Register
110 volatile u_int8_t pad2[3];
111 volatile u_int8_t piodr; // PIO Data Register I/O
112 volatile u_int8_t pad3[3];
113 };
114 */
115 #define CS4231_REG_SIZE 16
116
117
118 /*
119 * APC DMA hardware; from SunOS header
120 * Thanks to Derrick J. Brashear for additional info on the
121 * meaning of some of these bits.
122 */
123 struct apc_dma {
124 volatile u_int32_t dmacsr; /* APC CSR */
125 volatile u_int32_t lpad[3]; /* */
126 volatile u_int32_t dmacva; /* Capture Virtual Address */
127 volatile u_int32_t dmacc; /* Capture Count */
128 volatile u_int32_t dmacnva; /* Capture Next Virtual Address */
129 volatile u_int32_t dmacnc; /* Capture next count */
130 volatile u_int32_t dmapva; /* Playback Virtual Address */
131 volatile u_int32_t dmapc; /* Playback Count */
132 volatile u_int32_t dmapnva; /* Playback Next VAddress */
133 volatile u_int32_t dmapnc; /* Playback Next Count */
134 };
135
136 /*
137 * APC CSR Register bit definitions
138 */
139 #define APC_IP 0x00800000 /* Interrupt Pending */
140 #define APC_PI 0x00400000 /* Playback interrupt */
141 #define APC_CI 0x00200000 /* Capture interrupt */
142 #define APC_EI 0x00100000 /* General interrupt */
143 #define APC_IE 0x00080000 /* General ext int. enable */
144 #define APC_PIE 0x00040000 /* Playback ext intr */
145 #define APC_CIE 0x00020000 /* Capture ext intr */
146 #define APC_EIE 0x00010000 /* Error ext intr */
147 #define APC_PMI 0x00008000 /* Pipe empty interrupt */
148 #define APC_PM 0x00004000 /* Play pipe empty */
149 #define APC_PD 0x00002000 /* Playback NVA dirty */
150 #define APC_PMIE 0x00001000 /* play pipe empty Int enable */
151 #define APC_CM 0x00000800 /* Cap data dropped on floor */
152 #define APC_CD 0x00000400 /* Capture NVA dirty */
153 #define APC_CMI 0x00000200 /* Capture pipe empty interrupt */
154 #define APC_CMIE 0x00000100 /* Cap. pipe empty int enable */
155 #define APC_PPAUSE 0x00000080 /* Pause the play DMA */
156 #define APC_CPAUSE 0x00000040 /* Pause the capture DMA */
157 #define APC_CODEC_PDN 0x00000020 /* CODEC RESET */
158 #define PDMA_GO 0x00000008
159 #define CDMA_GO 0x00000004 /* bit 2 of the csr */
160 #define APC_RESET 0x00000001 /* Reset the chip */
161
162 #define APC_BITS \
163 "\20\30IP\27PI\26CI\25EI\24IE" \
164 "\23PIE\22CIE\21EIE\20PMI\17PM\16PD\15PMIE" \
165 "\14CM\13CD\12CMI\11CMIE\10PPAUSE\7CPAUSE\6PDN\4PGO\3CGO"
166
167 /*
168 * To start DMA, you write to dma[cp]nva and dma[cp]nc and set [CP]DMA_GO
169 * in dmacsr. dma[cp]va and dma[cp]c, when read, appear to be the live
170 * counter as the DMA operation progresses.
171 * Supposedly, you get an interrupt with the "dirty" bits (APC_PD,APC_CD)
172 * set, when the next DMA buffer can be programmed, while the current one
173 * is still in progress. We don't currently use this feature, since I
174 * haven't been able to make it work.. instead the next buffer goes in
175 * as soon as we see a "pipe empty" (APC_PM) interrupt.
176 */
177
178 /* It's not clear if there's a maximum DMA size.. */
179 #define APC_MAX (sc->sc_blksz)/*(16*1024)*/
180
181 /*
182 * List of device memory allocations (see cs4231_malloc/cs4231_free).
183 */
184 struct cs_dma {
185 struct cs_dma *next;
186 caddr_t addr;
187 bus_dma_segment_t segs[1];
188 int nsegs;
189 size_t size;
190 };
191
192
193 /*
194 * Software state, per CS4231 audio chip.
195 */
196 struct cs4231_softc {
197 struct ad1848_softc sc_ad1848; /* base device */
198 struct sbusdev sc_sd; /* sbus device */
199 bus_space_tag_t sc_bustag;
200 bus_dma_tag_t sc_dmatag;
201 struct evcnt sc_intrcnt; /* statistics */
202
203 struct cs_dma *sc_dmas;
204 struct cs_dma *sc_nowplaying; /*XXX*/
205 u_long sc_playsegsz; /*XXX*/
206 u_long sc_playcnt;
207 u_long sc_blksz;
208
209 int sc_open; /* single use device */
210 int sc_locked; /* true when transfering data */
211 struct apc_dma *sc_dmareg; /* DMA registers */
212
213 /* interfacing with the interrupt handlers */
214 void (*sc_rintr)(void*); /* input completion intr handler */
215 void *sc_rarg; /* arg for sc_rintr() */
216 void (*sc_pintr)(void*); /* output completion intr handler */
217 void *sc_parg; /* arg for sc_pintr() */
218 };
219
220 /* autoconfiguration driver */
221 void cs4231attach __P((struct device *, struct device *, void *));
222 int cs4231match __P((struct device *, struct cfdata *, void *));
223
224 struct cfattach audiocs_ca = {
225 sizeof(struct cs4231_softc), cs4231match, cs4231attach
226 };
227
228 struct audio_device cs4231_device = {
229 "cs4231",
230 "x",
231 "audio"
232 };
233
234
235 /*
236 * Define our interface to the higher level audio driver.
237 */
238 int cs4231_open __P((void *, int));
239 void cs4231_close __P((void *));
240 u_long cs4231_round_buffersize __P((void *, u_long));
241 int cs4231_round_blocksize __P((void *, int));
242 int cs4231_halt_output __P((void *));
243 int cs4231_halt_input __P((void *));
244 int cs4231_getdev __P((void *, struct audio_device *));
245 int cs4231_set_port __P((void *, mixer_ctrl_t *));
246 int cs4231_get_port __P((void *, mixer_ctrl_t *));
247 int cs4231_query_devinfo __P((void *, mixer_devinfo_t *));
248 int cs4231_get_props __P((void *));
249
250 void *cs4231_malloc __P((void *, u_long, int, int));
251 void cs4231_free __P((void *, void *, int));
252 int cs4231_trigger_output __P((void *, void *, void *, int,
253 void (*)(void *), void *,
254 struct audio_params *));
255 int cs4231_trigger_input __P((void *, void *, void *, int,
256 void (*)(void *), void *,
257 struct audio_params *));
258
259 int cs4231_intr __P((void *));
260 void cs4231_init __P((struct cs4231_softc *));
261
262 #ifdef AUDIO_DEBUG
263 static void cs4231_regdump __P((char *, struct cs4231_softc *));
264 #endif
265
266 static int cs_read __P((struct ad1848_softc *, int));
267 static void cs_write __P((struct ad1848_softc *, int, int));
268
269 static int
270 cs_read(sc, index)
271 struct ad1848_softc *sc;
272 int index;
273 {
274 u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
275 int v;
276
277 v = *p;
278 return (v);
279 }
280
281 static void
282 cs_write(sc, index, value)
283 struct ad1848_softc *sc;
284 int index, value;
285 {
286 u_int8_t *p = (u_int8_t *)sc->sc_ioh + (index << 2);
287
288 *p = value;
289 }
290
291 static struct audio_hw_if hw_if = {
292 cs4231_open,
293 cs4231_close,
294 0,
295 ad1848_query_encoding,
296 ad1848_set_params,
297 cs4231_round_blocksize,
298 ad1848_commit_settings,
299 0,
300 0,
301 NULL,
302 NULL,
303 cs4231_halt_output,
304 cs4231_halt_input,
305 0,
306 cs4231_getdev,
307 0,
308 cs4231_set_port,
309 cs4231_get_port,
310 cs4231_query_devinfo,
311 cs4231_malloc,
312 cs4231_free,
313 cs4231_round_buffersize,
314 0,
315 cs4231_get_props,
316 cs4231_trigger_output,
317 cs4231_trigger_input
318 };
319
320 /* autoconfig routines */
321
322 int
323 cs4231match(parent, cf, aux)
324 struct device *parent;
325 struct cfdata *cf;
326 void *aux;
327 {
328 struct sbus_attach_args *sa = aux;
329
330 return (strcmp(AUDIO_ROM_NAME, sa->sa_name) == 0);
331 }
332
333 /*
334 * Audio chip found.
335 */
336 void
337 cs4231attach(parent, self, aux)
338 struct device *parent, *self;
339 void *aux;
340 {
341 struct cs4231_softc *sc = (struct cs4231_softc *)self;
342 struct sbus_attach_args *sa = aux;
343 bus_space_handle_t bh;
344
345 sc->sc_bustag = sa->sa_bustag;
346 sc->sc_dmatag = sa->sa_dmatag;
347
348 sc->sc_ad1848.parent = sc;
349 sc->sc_ad1848.sc_readreg = cs_read;
350 sc->sc_ad1848.sc_writereg = cs_write;
351
352 /*
353 * Map my registers in, if they aren't already in virtual
354 * address space.
355 */
356 if (sa->sa_npromvaddrs) {
357 bh = (bus_space_handle_t)sa->sa_promvaddrs[0];
358 } else {
359 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
360 sa->sa_offset,
361 sa->sa_size,
362 BUS_SPACE_MAP_LINEAR,
363 0, &bh) != 0) {
364 printf("%s @ sbus: cannot map registers\n",
365 self->dv_xname);
366 return;
367 }
368 }
369
370 sc->sc_ad1848.sc_ioh = bh;
371 sc->sc_dmareg = (struct apc_dma *)((int)bh + CS4231_REG_SIZE);
372
373 cs4231_init(sc);
374
375 /* Put ad1848 driver in `MODE 2' mode */
376 sc->sc_ad1848.mode = 2;
377 ad1848_attach(&sc->sc_ad1848);
378
379 printf("\n");
380
381 sbus_establish(&sc->sc_sd, &sc->sc_ad1848.sc_dev);
382
383 /* Establish interrupt channel */
384 bus_intr_establish(sa->sa_bustag,
385 sa->sa_pri, 0,
386 cs4231_intr, sc);
387
388 evcnt_attach(&sc->sc_ad1848.sc_dev, "intr", &sc->sc_intrcnt);
389 audio_attach_mi(&hw_if, sc, &sc->sc_ad1848.sc_dev);
390 }
391
392
393 #ifdef AUDIO_DEBUG
394 static void
395 cs4231_regdump(label, sc)
396 char *label;
397 struct cs4231_softc *sc;
398 {
399 char bits[128];
400 volatile struct apc_dma *dma = sc->sc_dmareg;
401
402 printf("cs4231regdump(%s): regs:", label);
403 printf("dmapva: 0x%lx; ", (u_long)dma->dmapva);
404 printf("dmapc: 0x%lx; ", (u_long)dma->dmapc);
405 printf("dmapnva: 0x%lx; ", (u_long)dma->dmapnva);
406 printf("dmapnc: 0x%lx\n", (u_long)dma->dmapnc);
407 printf("dmacva: 0x%lx; ", (u_long)dma->dmacva);
408 printf("dmacc: 0x%lx; ", (u_long)dma->dmacc);
409 printf("dmacnva: 0x%lx; ", (u_long)dma->dmacnva);
410 printf("dmacnc: 0x%lx\n", (u_long)dma->dmacnc);
411
412 printf("apc_dmacsr=%s\n",
413 bitmask_snprintf(dma->dmacsr, APC_BITS, bits, sizeof(bits)) );
414
415 ad1848_dump_regs(&sc->sc_ad1848);
416 }
417 #endif
418
419 void
420 cs4231_init(sc)
421 register struct cs4231_softc *sc;
422 {
423 char *buf;
424 #if 0
425 volatile struct apc_dma *dma = sc->sc_dmareg;
426 #endif
427 int reg;
428
429 #if 0
430 dma->dmacsr = APC_CODEC_PDN;
431 delay(20);
432 dma->dmacsr &= ~APC_CODEC_PDN;
433 #endif
434 /* First, put chip in native mode */
435 reg = ad_read(&sc->sc_ad1848, SP_MISC_INFO);
436 ad_write(&sc->sc_ad1848, SP_MISC_INFO, reg | MODE2);
437
438 /* Read version numbers from I25 */
439 reg = ad_read(&sc->sc_ad1848, CS_VERSION_ID);
440 switch (reg & (CS_VERSION_NUMBER | CS_VERSION_CHIPID)) {
441 case 0xa0:
442 sc->sc_ad1848.chip_name = "CS4231A";
443 break;
444 case 0x80:
445 sc->sc_ad1848.chip_name = "CS4231";
446 break;
447 case 0x82:
448 sc->sc_ad1848.chip_name = "CS4232";
449 break;
450 default:
451 if ((buf = malloc(32, M_TEMP, M_NOWAIT)) != NULL) {
452 sprintf(buf, "unknown rev: %x/%x", reg&0xe, reg&7);
453 sc->sc_ad1848.chip_name = buf;
454 }
455 }
456 }
457
458 void *
459 cs4231_malloc(addr, size, pool, flags)
460 void *addr;
461 u_long size;
462 int pool;
463 int flags;
464 {
465 struct cs4231_softc *sc = addr;
466 struct cs_dma *p;
467 int error;
468
469 p = malloc(sizeof(*p), pool, flags);
470 if (p == NULL)
471 return (NULL);
472
473 p->size = size;
474 error = bus_dmamem_alloc(sc->sc_dmatag, size, 64*1024, 0,
475 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
476 &p->nsegs, BUS_DMA_NOWAIT);
477 if (error) {
478 free(p, pool);
479 return (NULL);
480 }
481
482 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
483 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
484 if (error) {
485 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
486 free(p, pool);
487 return (NULL);
488 }
489
490 p->next = sc->sc_dmas;
491 sc->sc_dmas = p;
492 return (p->addr);
493 }
494
495 void
496 cs4231_free(addr, ptr, pool)
497 void *addr;
498 void *ptr;
499 int pool;
500 {
501 struct cs4231_softc *sc = addr;
502 struct cs_dma *p, **pp;
503
504 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &(*pp)->next) {
505 if (p->addr != ptr)
506 continue;
507 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
508 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
509 *pp = p->next;
510 free(p, pool);
511 return;
512 }
513 printf("cs4231_free: rogue pointer\n");
514 }
515
516 int
517 cs4231_open(addr, flags)
518 void *addr;
519 int flags;
520 {
521 struct cs4231_softc *sc = addr;
522 #if 0
523 struct apc_dma *dma = sc->sc_dmareg;
524 #endif
525
526 DPRINTF(("sa_open: unit %p\n", sc));
527
528 if (sc->sc_open)
529 return (EBUSY);
530 sc->sc_open = 1;
531 sc->sc_locked = 0;
532 sc->sc_rintr = 0;
533 sc->sc_rarg = 0;
534 sc->sc_pintr = 0;
535 sc->sc_parg = 0;
536 #if 1
537 /*No interrupts from ad1848 */
538 ad_write(&sc->sc_ad1848, SP_PIN_CONTROL, 0);
539 #endif
540 #if 0
541 dma->dmacsr = APC_RESET;
542 delay(10);
543 dma->dmacsr = 0;
544 delay(10);
545 ad1848_reset(&sc->sc_ad1848);
546 #endif
547
548 DPRINTF(("saopen: ok -> sc=%p\n", sc));
549 return (0);
550 }
551
552 void
553 cs4231_close(addr)
554 void *addr;
555 {
556 register struct cs4231_softc *sc = addr;
557
558 DPRINTF(("sa_close: sc=%p\n", sc));
559 /*
560 * halt i/o, clear open flag, and done.
561 */
562 cs4231_halt_input(sc);
563 cs4231_halt_output(sc);
564 sc->sc_open = 0;
565
566 DPRINTF(("sa_close: closed.\n"));
567 }
568
569 u_long
570 cs4231_round_buffersize(addr, size)
571 void *addr;
572 u_long size;
573 {
574 #if 0
575 if (size > APC_MAX)
576 size = APC_MAX;
577 #endif
578 return (size);
579 }
580
581 int
582 cs4231_round_blocksize(addr, blk)
583 void *addr;
584 int blk;
585 {
586 return (blk & -4);
587 }
588
589 int
590 cs4231_getdev(addr, retp)
591 void *addr;
592 struct audio_device *retp;
593 {
594 *retp = cs4231_device;
595 return (0);
596 }
597
598 static ad1848_devmap_t csmapping[] = {
599 { CSAUDIO_DAC_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
600 { CSAUDIO_LINE_IN_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
601 { CSAUDIO_MONO_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
602 { CSAUDIO_CD_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
603 { CSAUDIO_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
604 { CSAUDIO_OUT_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
605 { CSAUDIO_DAC_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
606 { CSAUDIO_LINE_IN_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
607 { CSAUDIO_MONO_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
608 { CSAUDIO_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
609 { CSAUDIO_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
610 { CSAUDIO_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
611 { CSAUDIO_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1 }
612 };
613
614 static int nummap = sizeof(csmapping) / sizeof(csmapping[0]);
615
616
617 int
618 cs4231_set_port(addr, cp)
619 void *addr;
620 mixer_ctrl_t *cp;
621 {
622 struct ad1848_softc *ac = addr;
623
624 DPRINTF(("cs4231_set_port: port=%d", cp->dev));
625 return (ad1848_mixer_set_port(ac, csmapping, nummap, cp));
626 }
627
628 int
629 cs4231_get_port(addr, cp)
630 void *addr;
631 mixer_ctrl_t *cp;
632 {
633 struct ad1848_softc *ac = addr;
634
635 DPRINTF(("cs4231_get_port: port=%d", cp->dev));
636 return (ad1848_mixer_get_port(ac, csmapping, nummap, cp));
637 }
638
639 int
640 cs4231_get_props(addr)
641 void *addr;
642 {
643 return (AUDIO_PROP_FULLDUPLEX);
644 }
645
646 int
647 cs4231_query_devinfo(addr, dip)
648 void *addr;
649 register mixer_devinfo_t *dip;
650 {
651
652 switch(dip->index) {
653 #if 0
654 case CSAUDIO_MIC_IN_LVL: /* Microphone */
655 dip->type = AUDIO_MIXER_VALUE;
656 dip->mixer_class = CSAUDIO_INPUT_CLASS;
657 dip->prev = AUDIO_MIXER_LAST;
658 dip->next = CSAUDIO_MIC_IN_MUTE;
659 strcpy(dip->label.name, AudioNmicrophone);
660 dip->un.v.num_channels = 2;
661 strcpy(dip->un.v.units.name, AudioNvolume);
662 break;
663 #endif
664
665 case CSAUDIO_MONO_LVL: /* mono/microphone mixer */
666 dip->type = AUDIO_MIXER_VALUE;
667 dip->mixer_class = CSAUDIO_INPUT_CLASS;
668 dip->prev = AUDIO_MIXER_LAST;
669 dip->next = CSAUDIO_MONO_MUTE;
670 strcpy(dip->label.name, AudioNmicrophone);
671 dip->un.v.num_channels = 1;
672 strcpy(dip->un.v.units.name, AudioNvolume);
673 break;
674
675 case CSAUDIO_DAC_LVL: /* dacout */
676 dip->type = AUDIO_MIXER_VALUE;
677 dip->mixer_class = CSAUDIO_INPUT_CLASS;
678 dip->prev = AUDIO_MIXER_LAST;
679 dip->next = CSAUDIO_DAC_MUTE;
680 strcpy(dip->label.name, AudioNdac);
681 dip->un.v.num_channels = 2;
682 strcpy(dip->un.v.units.name, AudioNvolume);
683 break;
684
685 case CSAUDIO_LINE_IN_LVL: /* line */
686 dip->type = AUDIO_MIXER_VALUE;
687 dip->mixer_class = CSAUDIO_INPUT_CLASS;
688 dip->prev = AUDIO_MIXER_LAST;
689 dip->next = CSAUDIO_LINE_IN_MUTE;
690 strcpy(dip->label.name, AudioNline);
691 dip->un.v.num_channels = 2;
692 strcpy(dip->un.v.units.name, AudioNvolume);
693 break;
694
695 case CSAUDIO_CD_LVL: /* cd */
696 dip->type = AUDIO_MIXER_VALUE;
697 dip->mixer_class = CSAUDIO_INPUT_CLASS;
698 dip->prev = AUDIO_MIXER_LAST;
699 dip->next = CSAUDIO_CD_MUTE;
700 strcpy(dip->label.name, AudioNcd);
701 dip->un.v.num_channels = 2;
702 strcpy(dip->un.v.units.name, AudioNvolume);
703 break;
704
705
706 case CSAUDIO_MONITOR_LVL: /* monitor level */
707 dip->type = AUDIO_MIXER_VALUE;
708 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
709 dip->next = CSAUDIO_MONITOR_MUTE;
710 dip->prev = AUDIO_MIXER_LAST;
711 strcpy(dip->label.name, AudioNmonitor);
712 dip->un.v.num_channels = 1;
713 strcpy(dip->un.v.units.name, AudioNvolume);
714 break;
715
716 case CSAUDIO_OUT_LVL: /* cs4231 output volume: not useful? */
717 dip->type = AUDIO_MIXER_VALUE;
718 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
719 dip->prev = dip->next = AUDIO_MIXER_LAST;
720 strcpy(dip->label.name, AudioNoutput);
721 dip->un.v.num_channels = 2;
722 strcpy(dip->un.v.units.name, AudioNvolume);
723 break;
724
725 case CSAUDIO_LINE_IN_MUTE:
726 dip->mixer_class = CSAUDIO_INPUT_CLASS;
727 dip->type = AUDIO_MIXER_ENUM;
728 dip->prev = CSAUDIO_LINE_IN_LVL;
729 dip->next = AUDIO_MIXER_LAST;
730 goto mute;
731
732 case CSAUDIO_DAC_MUTE:
733 dip->mixer_class = CSAUDIO_INPUT_CLASS;
734 dip->type = AUDIO_MIXER_ENUM;
735 dip->prev = CSAUDIO_DAC_LVL;
736 dip->next = AUDIO_MIXER_LAST;
737 goto mute;
738
739 case CSAUDIO_CD_MUTE:
740 dip->mixer_class = CSAUDIO_INPUT_CLASS;
741 dip->type = AUDIO_MIXER_ENUM;
742 dip->prev = CSAUDIO_CD_LVL;
743 dip->next = AUDIO_MIXER_LAST;
744 goto mute;
745
746 case CSAUDIO_MONO_MUTE:
747 dip->mixer_class = CSAUDIO_INPUT_CLASS;
748 dip->type = AUDIO_MIXER_ENUM;
749 dip->prev = CSAUDIO_MONO_LVL;
750 dip->next = AUDIO_MIXER_LAST;
751 goto mute;
752
753 case CSAUDIO_MONITOR_MUTE:
754 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
755 dip->type = AUDIO_MIXER_ENUM;
756 dip->prev = CSAUDIO_MONITOR_LVL;
757 dip->next = AUDIO_MIXER_LAST;
758 mute:
759 strcpy(dip->label.name, AudioNmute);
760 dip->un.e.num_mem = 2;
761 strcpy(dip->un.e.member[0].label.name, AudioNoff);
762 dip->un.e.member[0].ord = 0;
763 strcpy(dip->un.e.member[1].label.name, AudioNon);
764 dip->un.e.member[1].ord = 1;
765 break;
766
767 case CSAUDIO_REC_LVL: /* record level */
768 dip->type = AUDIO_MIXER_VALUE;
769 dip->mixer_class = CSAUDIO_RECORD_CLASS;
770 dip->prev = AUDIO_MIXER_LAST;
771 dip->next = CSAUDIO_RECORD_SOURCE;
772 strcpy(dip->label.name, AudioNrecord);
773 dip->un.v.num_channels = 2;
774 strcpy(dip->un.v.units.name, AudioNvolume);
775 break;
776
777 case CSAUDIO_RECORD_SOURCE:
778 dip->mixer_class = CSAUDIO_RECORD_CLASS;
779 dip->type = AUDIO_MIXER_ENUM;
780 dip->prev = CSAUDIO_REC_LVL;
781 dip->next = AUDIO_MIXER_LAST;
782 strcpy(dip->label.name, AudioNsource);
783 dip->un.e.num_mem = 4;
784 strcpy(dip->un.e.member[0].label.name, AudioNoutput);
785 dip->un.e.member[0].ord = DAC_IN_PORT;
786 strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
787 dip->un.e.member[1].ord = MIC_IN_PORT;
788 strcpy(dip->un.e.member[2].label.name, AudioNdac);
789 dip->un.e.member[2].ord = AUX1_IN_PORT;
790 strcpy(dip->un.e.member[3].label.name, AudioNline);
791 dip->un.e.member[3].ord = LINE_IN_PORT;
792 break;
793
794 case CSAUDIO_INPUT_CLASS: /* input class descriptor */
795 dip->type = AUDIO_MIXER_CLASS;
796 dip->mixer_class = CSAUDIO_INPUT_CLASS;
797 dip->next = dip->prev = AUDIO_MIXER_LAST;
798 strcpy(dip->label.name, AudioCinputs);
799 break;
800
801 case CSAUDIO_OUTPUT_CLASS: /* output class descriptor */
802 dip->type = AUDIO_MIXER_CLASS;
803 dip->mixer_class = CSAUDIO_OUTPUT_CLASS;
804 dip->next = dip->prev = AUDIO_MIXER_LAST;
805 strcpy(dip->label.name, AudioCoutputs);
806 break;
807
808 case CSAUDIO_MONITOR_CLASS: /* monitor class descriptor */
809 dip->type = AUDIO_MIXER_CLASS;
810 dip->mixer_class = CSAUDIO_MONITOR_CLASS;
811 dip->next = dip->prev = AUDIO_MIXER_LAST;
812 strcpy(dip->label.name, AudioCmonitor);
813 break;
814
815 case CSAUDIO_RECORD_CLASS: /* record source class */
816 dip->type = AUDIO_MIXER_CLASS;
817 dip->mixer_class = CSAUDIO_RECORD_CLASS;
818 dip->next = dip->prev = AUDIO_MIXER_LAST;
819 strcpy(dip->label.name, AudioCrecord);
820 break;
821
822 default:
823 return ENXIO;
824 /*NOTREACHED*/
825 }
826 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
827
828 return (0);
829 }
830
831
832 int
833 cs4231_trigger_output(addr, start, end, blksize, intr, arg, param)
834 void *addr;
835 void *start, *end;
836 int blksize;
837 void (*intr) __P((void *));
838 void *arg;
839 struct audio_params *param;
840 {
841 struct cs4231_softc *sc = addr;
842 struct cs_dma *p;
843 volatile struct apc_dma *dma = sc->sc_dmareg;
844 int csr;
845 u_long n;
846
847 if (sc->sc_locked != 0) {
848 printf("cs4231_trigger_output: already running\n");
849 return (EINVAL);
850 }
851
852 sc->sc_locked = 1;
853 sc->sc_pintr = intr;
854 sc->sc_parg = arg;
855
856 for (p = sc->sc_dmas; p != NULL && p->addr != start; p = p->next)
857 /*void*/;
858 if (p == NULL) {
859 printf("cs4231_trigger_output: bad addr %p\n", start);
860 return (EINVAL);
861 }
862
863 n = end - start;
864
865 /* XXX
866 * Do only `blksize' at a time, so audio_pint() is kept
867 * synchronous with us...
868 */
869 /*XXX*/sc->sc_blksz = blksize;
870 /*XXX*/sc->sc_nowplaying = p;
871 /*XXX*/sc->sc_playsegsz = n;
872
873 if (n > APC_MAX)
874 n = APC_MAX;
875
876 sc->sc_playcnt = n;
877
878 DPRINTF(("trigger_out: start %p, end %p, size %lu; "
879 "dmaaddr 0x%lx, dmacnt %lu, segsize %lu\n",
880 start, end, sc->sc_playsegsz, p->segs[0].ds_addr,
881 n, (u_long)p->size));
882
883 csr = dma->dmacsr;
884 dma->dmapnva = (u_long)p->segs[0].ds_addr;
885 dma->dmapnc = n;
886 if ((csr & PDMA_GO) == 0 || (csr & APC_PPAUSE) != 0) {
887 int reg;
888
889 dma->dmacsr &= ~(APC_PIE|APC_PPAUSE);
890 dma->dmacsr |= APC_EI|APC_IE|APC_PIE|APC_EIE|APC_PMIE|PDMA_GO;
891
892 /* Start chip */
893
894 /* Probably should just ignore this.. */
895 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
896 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
897
898 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
899 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG,
900 (PLAYBACK_ENABLE|reg));
901 }
902
903 return (0);
904 }
905
906 int
907 cs4231_trigger_input(addr, start, end, blksize, intr, arg, param)
908 void *addr;
909 void *start, *end;
910 int blksize;
911 void (*intr) __P((void *));
912 void *arg;
913 struct audio_params *param;
914 {
915 return (ENXIO);
916 }
917
918 int
919 cs4231_halt_output(addr)
920 void *addr;
921 {
922 struct cs4231_softc *sc = addr;
923 volatile struct apc_dma *dma = sc->sc_dmareg;
924 int reg;
925
926 dma->dmacsr &= ~(APC_EI | APC_IE | APC_PIE | APC_EIE | PDMA_GO | APC_PMIE);
927 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
928 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~PLAYBACK_ENABLE));
929 sc->sc_locked = 0;
930
931 return (0);
932 }
933
934 int
935 cs4231_halt_input(addr)
936 void *addr;
937 {
938 struct cs4231_softc *sc = addr;
939 int reg;
940
941 reg = ad_read(&sc->sc_ad1848, SP_INTERFACE_CONFIG);
942 ad_write(&sc->sc_ad1848, SP_INTERFACE_CONFIG, (reg & ~CAPTURE_ENABLE));
943 sc->sc_locked = 0;
944
945 return (0);
946 }
947
948
949 int
950 cs4231_intr(arg)
951 void *arg;
952 {
953 struct cs4231_softc *sc = arg;
954 volatile struct apc_dma *dma = sc->sc_dmareg;
955 struct cs_dma *p;
956 int ret = 0;
957 int csr;
958 int reg, status;
959 #if defined(DEBUG) || defined(AUDIO_DEBUG)
960 char bits[128];
961 #endif
962
963 #ifdef AUDIO_DEBUG
964 if (cs4231debug > 1)
965 cs4231_regdump("audiointr", sc);
966 #endif
967
968 /* Read DMA status */
969 csr = dma->dmacsr;
970 DPRINTF((
971 "intr: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
972 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
973 (u_long)dma->dmapva, (u_long)dma->dmapc,
974 (u_long)dma->dmapnva, (u_long)dma->dmapnc));
975
976 status = ADREAD(&sc->sc_ad1848, AD1848_STATUS);
977 DPRINTF(("%s: status: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
978 bitmask_snprintf(status, AD_R2_BITS, bits, sizeof(bits))));
979 if (status & (INTERRUPT_STATUS | SAMPLE_ERROR)) {
980 reg = ad_read(&sc->sc_ad1848, CS_IRQ_STATUS);
981 DPRINTF(("%s: i24: %s\n", sc->sc_ad1848.sc_dev.dv_xname,
982 bitmask_snprintf(reg, CS_I24_BITS, bits, sizeof(bits))));
983
984 if (reg & CS_IRQ_PI) {
985 ad_write(&sc->sc_ad1848, SP_LOWER_BASE_COUNT, 0xff);
986 ad_write(&sc->sc_ad1848, SP_UPPER_BASE_COUNT, 0xff);
987 }
988 /* Clear interrupt bit */
989 ADWRITE(&sc->sc_ad1848, AD1848_STATUS, 0);
990 }
991
992 /* Write back DMA status (clears interrupt) */
993 dma->dmacsr = csr;
994
995 /*
996 * Simplistic.. if "play emtpy" is set advance to next chunk.
997 */
998 #if 1
999 /* Ack all play interrupts*/
1000 if ((csr & (APC_PI|APC_PD|APC_PIE|APC_PMI)) != 0)
1001 ret = 1;
1002 #endif
1003 if (csr & APC_PM) {
1004 u_long nextaddr, togo;
1005
1006 p = sc->sc_nowplaying;
1007
1008 togo = sc->sc_playsegsz - sc->sc_playcnt;
1009 if (togo == 0) {
1010 /* Roll over */
1011 nextaddr = (u_long)p->segs[0].ds_addr;
1012 sc->sc_playcnt = togo = APC_MAX;
1013 } else {
1014 nextaddr = dma->dmapnva + APC_MAX;
1015 if (togo > APC_MAX)
1016 togo = APC_MAX;
1017 sc->sc_playcnt += togo;
1018 }
1019
1020 dma->dmapnva = nextaddr;
1021 dma->dmapnc = togo;
1022
1023 if (sc->sc_pintr != NULL)
1024 (*sc->sc_pintr)(sc->sc_parg);
1025
1026 ret = 1;
1027 }
1028
1029 if (csr & APC_CI) {
1030 if (sc->sc_rintr != NULL) {
1031 ret = 1;
1032 (*sc->sc_rintr)(sc->sc_rarg);
1033 }
1034 }
1035
1036 #ifdef DEBUG
1037 if (ret == 0) {
1038 printf(
1039 "oops: csr=%s; dmapva=0x%lx,dmapc=%lu;dmapnva=0x%lx,dmapnc=%lu\n",
1040 bitmask_snprintf(csr, APC_BITS, bits, sizeof(bits)),
1041 (u_long)dma->dmapva, (u_long)dma->dmapc,
1042 (u_long)dma->dmapnva, (u_long)dma->dmapnc);
1043 ret = 1;
1044 }
1045 #endif
1046
1047 return (ret);
1048 }
1049 #endif /* NAUDIO > 0 */
1050