dbri.c revision 1.17 1 /* $NetBSD: dbri.c,v 1.17 2007/12/03 15:34:33 ad Exp $ */
2
3 /*
4 * Copyright (C) 1997 Rudolf Koenig (rfkoenig (at) immd4.informatik.uni-erlangen.de)
5 * Copyright (c) 1998, 1999 Brent Baccala (baccala (at) freesoft.org)
6 * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill (at) netbsd.org>
7 * Copyright (c) 2005, 2007 Michael Lorenz <macallan (at) netbsd.org>
8 * All rights reserved.
9 *
10 * This driver is losely based on a Linux driver written by Rudolf Koenig and
11 * Brent Baccala who kindly gave their permission to use their code in a
12 * BSD-licensed driver.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by Rudolf Koenig, Brent
25 * Baccala, Jared D. McNeill.
26 * 4. Neither the name of the author nor the names of any contributors may
27 * be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.17 2007/12/03 15:34:33 ad Exp $");
46
47 #include "audio.h"
48 #if NAUDIO > 0
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/errno.h>
53 #include <sys/device.h>
54 #include <sys/malloc.h>
55 #include <sys/proc.h>
56 #include <sys/kernel.h>
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59
60 #include <dev/sbus/sbusvar.h>
61 #include <sparc/sparc/auxreg.h>
62 #include <machine/autoconf.h>
63
64 #include <sys/audioio.h>
65 #include <dev/audio_if.h>
66 #include <dev/auconv.h>
67
68 #include <dev/ic/cs4215reg.h>
69 #include <dev/ic/cs4215var.h>
70 #include <dev/sbus/dbrireg.h>
71 #include <dev/sbus/dbrivar.h>
72
73 #include "opt_sbus_dbri.h"
74
75 #define DBRI_ROM_NAME_PREFIX "SUNW,DBRI"
76
77 #ifdef DBRI_DEBUG
78 # define DPRINTF aprint_normal
79 #else
80 # define DPRINTF while (0) printf
81 #endif
82
83 static const char *dbri_supported[] = {
84 "e",
85 "s3",
86 ""
87 };
88
89 enum ms {
90 CHImaster,
91 CHIslave
92 };
93
94 enum io {
95 PIPEinput,
96 PIPEoutput
97 };
98
99 /*
100 * Function prototypes
101 */
102
103 /* softc stuff */
104 static void dbri_attach_sbus(struct device *, struct device *, void *);
105 static int dbri_match_sbus(struct device *, struct cfdata *, void *);
106
107 static void dbri_config_interrupts(struct device *);
108
109 /* interrupt handler */
110 static int dbri_intr(void *);
111 static void dbri_softint(void *);
112
113 /* supporting subroutines */
114 static int dbri_init(struct dbri_softc *);
115 static int dbri_reset(struct dbri_softc *);
116 static volatile u_int32_t *dbri_command_lock(struct dbri_softc *);
117 static void dbri_command_send(struct dbri_softc *, volatile u_int32_t *);
118 static void dbri_process_interrupt_buffer(struct dbri_softc *);
119 static void dbri_process_interrupt(struct dbri_softc *, int32_t);
120
121 /* mmcodec subroutines */
122 static int mmcodec_init(struct dbri_softc *);
123 static void mmcodec_init_data(struct dbri_softc *);
124 static void mmcodec_pipe_init(struct dbri_softc *);
125 static void mmcodec_default(struct dbri_softc *);
126 static void mmcodec_setgain(struct dbri_softc *, int);
127 static int mmcodec_setcontrol(struct dbri_softc *);
128
129 /* chi subroutines */
130 static void chi_reset(struct dbri_softc *, enum ms, int);
131
132 /* pipe subroutines */
133 static void pipe_setup(struct dbri_softc *, int, int);
134 static void pipe_reset(struct dbri_softc *, int);
135 static void pipe_receive_fixed(struct dbri_softc *, int,
136 volatile u_int32_t *);
137 static void pipe_transmit_fixed(struct dbri_softc *, int, u_int32_t);
138
139 static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
140 static int pipe_active(struct dbri_softc *, int);
141
142 /* audio(9) stuff */
143 static int dbri_query_encoding(void *, struct audio_encoding *);
144 static int dbri_set_params(void *, int, int, struct audio_params *,
145 struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
146 static int dbri_round_blocksize(void *, int, int, const audio_params_t *);
147 static int dbri_halt_output(void *);
148 static int dbri_halt_input(void *);
149 static int dbri_getdev(void *, struct audio_device *);
150 static int dbri_set_port(void *, mixer_ctrl_t *);
151 static int dbri_get_port(void *, mixer_ctrl_t *);
152 static int dbri_query_devinfo(void *, mixer_devinfo_t *);
153 static size_t dbri_round_buffersize(void *, int, size_t);
154 static int dbri_get_props(void *);
155 static int dbri_open(void *, int);
156 static void dbri_close(void *);
157
158 static void setup_ring_xmit(struct dbri_softc *, int, int, int, int,
159 void (*)(void *), void *);
160 static void setup_ring_recv(struct dbri_softc *, int, int, int, int,
161 void (*)(void *), void *);
162
163 static int dbri_trigger_output(void *, void *, void *, int,
164 void (*)(void *), void *, const struct audio_params *);
165 static int dbri_trigger_input(void *, void *, void *, int,
166 void (*)(void *), void *, const struct audio_params *);
167
168 static void *dbri_malloc(void *, int, size_t, struct malloc_type *, int);
169 static void dbri_free(void *, void *, struct malloc_type *);
170 static paddr_t dbri_mappage(void *, void *, off_t, int);
171 static void dbri_set_power(struct dbri_softc *, int);
172 static void dbri_bring_up(struct dbri_softc *);
173 static void dbri_powerhook(int, void *);
174
175 /* stupid support routines */
176 static u_int32_t reverse_bytes(u_int32_t, int);
177
178 struct audio_device dbri_device = {
179 "CS4215",
180 "",
181 "dbri"
182 };
183
184 struct audio_hw_if dbri_hw_if = {
185 dbri_open,
186 dbri_close,
187 NULL, /* drain */
188 dbri_query_encoding,
189 dbri_set_params,
190 dbri_round_blocksize,
191 NULL, /* commit_settings */
192 NULL, /* init_output */
193 NULL, /* init_input */
194 NULL, /* start_output */
195 NULL, /* start_input */
196 dbri_halt_output,
197 dbri_halt_input,
198 NULL, /* speaker_ctl */
199 dbri_getdev,
200 NULL, /* setfd */
201 dbri_set_port,
202 dbri_get_port,
203 dbri_query_devinfo,
204 dbri_malloc,
205 dbri_free,
206 dbri_round_buffersize,
207 dbri_mappage,
208 dbri_get_props,
209 dbri_trigger_output,
210 dbri_trigger_input
211 };
212
213 CFATTACH_DECL(dbri, sizeof(struct dbri_softc),
214 dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
215
216 #define DBRI_NFORMATS 4
217 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
218 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
219 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
220 48000}},
221 /* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
222 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
223 48000}},
224 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
225 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
226 48000}},
227 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
228 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
229 48000}},*/
230 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
231 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
232 48000}},
233 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
234 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
235 48000}},
236 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
237 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
238 48000}},
239 };
240
241 enum {
242 DBRI_OUTPUT_CLASS,
243 DBRI_VOL_OUTPUT,
244 DBRI_ENABLE_MONO,
245 DBRI_ENABLE_HEADPHONE,
246 DBRI_ENABLE_LINE,
247 DBRI_MONITOR_CLASS,
248 DBRI_VOL_MONITOR,
249 DBRI_INPUT_CLASS,
250 DBRI_INPUT_GAIN,
251 DBRI_INPUT_SELECT,
252 DBRI_RECORD_CLASS,
253 DBRI_ENUM_LAST
254 };
255
256 /*
257 * Autoconfig routines
258 */
259 static int
260 dbri_match_sbus(struct device *parent, struct cfdata *match, void *aux)
261 {
262 struct sbus_attach_args *sa = aux;
263 char *ver;
264 int i;
265
266 if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
267 return (0);
268
269 ver = &sa->sa_name[9];
270
271 for (i = 0; dbri_supported[i][0] != '\0'; i++)
272 if (strcmp(dbri_supported[i], ver) == 0)
273 return (1);
274
275 return (0);
276 }
277
278 static void
279 dbri_attach_sbus(struct device *parent, struct device *self, void *aux)
280 {
281 struct dbri_softc *sc = (struct dbri_softc *)self;
282 struct sbus_attach_args *sa = aux;
283 bus_space_handle_t ioh;
284 bus_size_t size;
285 int error, rseg, pwr, i;
286 char *ver = &sa->sa_name[9];
287
288 sc->sc_iot = sa->sa_bustag;
289 sc->sc_dmat = sa->sa_dmatag;
290 sc->sc_powerstate = 1;
291
292 pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
293 aprint_normal(": rev %s\n", ver);
294
295 if (pwr) {
296 /*
297 * we can control DBRI power via auxio and we're initially
298 * powered down
299 */
300
301 sc->sc_have_powerctl = 1;
302 sc->sc_powerstate = 0;
303 dbri_set_power(sc, 1);
304 powerhook_establish(self->dv_xname, dbri_powerhook, sc);
305 } else {
306 /* we can't control power so we're always up */
307 sc->sc_have_powerctl = 0;
308 sc->sc_powerstate = 1;
309 }
310
311 for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
312 sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
313 dbri_softint, &sc->sc_desc[i]);
314 }
315
316 if (sa->sa_npromvaddrs)
317 ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
318 else {
319 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
320 sa->sa_offset, sa->sa_size,
321 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
322 aprint_error("%s @ sbus: cannot map registers\n",
323 self->dv_xname);
324 return;
325 }
326 }
327
328 sc->sc_ioh = ioh;
329
330 size = sizeof(struct dbri_dma);
331
332 /* get a DMA handle */
333 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
334 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
335 aprint_error("%s: DMA map create error %d\n", self->dv_xname,
336 error);
337 return;
338 }
339
340 /* allocate DMA buffer */
341 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
342 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
343 aprint_error("%s: DMA buffer alloc error %d\n",
344 self->dv_xname, error);
345 return;
346 }
347
348 /* map DMA buffer into CPU addressable space */
349 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
350 &sc->sc_membase,
351 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
352 aprint_error("%s: DMA buffer map error %d\n",
353 self->dv_xname, error);
354 return;
355 }
356
357 /* load the buffer */
358 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
359 sc->sc_membase, size, NULL,
360 BUS_DMA_NOWAIT)) != 0) {
361 aprint_error("%s: DMA buffer map load error %d\n",
362 self->dv_xname, error);
363 bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
364 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
365 return;
366 }
367
368 /* map the registers into memory */
369
370 /* kernel virtual address of DMA buffer */
371 sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
372 /* physical address of DMA buffer */
373 sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
374 sc->sc_bufsiz = size;
375
376 sbus_establish(&sc->sc_sd, &sc->sc_dev);
377
378 bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr,
379 sc);
380
381 sc->sc_locked = 0;
382 sc->sc_desc_used = 0;
383 sc->sc_refcount = 0;
384 sc->sc_playing = 0;
385 sc->sc_recording = 0;
386 sc->sc_pmgrstate = PWR_RESUME;
387 config_interrupts(self, &dbri_config_interrupts);
388
389 return;
390 }
391
392 /*
393 * lowlevel routine to switch power for the DBRI chip
394 */
395 static void
396 dbri_set_power(struct dbri_softc *sc, int state)
397 {
398 int s;
399
400 if (sc->sc_have_powerctl == 0)
401 return;
402 if (sc->sc_powerstate == state)
403 return;
404
405 if (state) {
406 DPRINTF("%s: waiting to power up... ", sc->sc_dev.dv_xname);
407 s = splhigh();
408 *AUXIO4M_REG |= (AUXIO4M_MMX);
409 splx(s);
410 delay(10000);
411 DPRINTF("done (%02x)\n", *AUXIO4M_REG);
412 } else {
413 DPRINTF("%s: powering down\n", sc->sc_dev.dv_xname);
414 s = splhigh();
415 *AUXIO4M_REG &= ~AUXIO4M_MMX;
416 splx(s);
417 DPRINTF("done (%02x})\n", *AUXIO4M_REG);
418 }
419 sc->sc_powerstate = state;
420 }
421
422 /*
423 * power up and re-initialize the chip
424 */
425 static void
426 dbri_bring_up(struct dbri_softc *sc)
427 {
428
429 if (sc->sc_have_powerctl == 0)
430 return;
431
432 if (sc->sc_powerstate == 1)
433 return;
434
435 /* ok, we really need to do something */
436 dbri_set_power(sc, 1);
437
438 /*
439 * re-initialize the chip but skip all the probing, don't overwrite
440 * any other settings either
441 */
442 dbri_init(sc);
443 mmcodec_setgain(sc, 1);
444 mmcodec_pipe_init(sc);
445 mmcodec_init_data(sc);
446 mmcodec_setgain(sc, 0);
447 }
448
449 static void
450 dbri_config_interrupts(struct device *dev)
451 {
452 struct dbri_softc *sc = (struct dbri_softc *)dev;
453
454 dbri_init(sc);
455 mmcodec_init(sc);
456
457 /* Attach ourselves to the high level audio interface */
458 audio_attach_mi(&dbri_hw_if, sc, &sc->sc_dev);
459
460 /* power down until open() */
461 dbri_set_power(sc, 0);
462 return;
463 }
464
465 static int
466 dbri_intr(void *hdl)
467 {
468 struct dbri_softc *sc = hdl;
469 bus_space_tag_t iot = sc->sc_iot;
470 bus_space_handle_t ioh = sc->sc_ioh;
471 int x;
472
473 /* clear interrupt */
474 x = bus_space_read_4(iot, ioh, DBRI_REG1);
475 if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
476 u_int32_t tmp;
477
478 if (x & DBRI_MRR)
479 aprint_debug("%s: multiple ack error on sbus\n",
480 sc->sc_dev.dv_xname);
481 if (x & DBRI_MLE)
482 aprint_debug("%s: multiple late error on sbus\n",
483 sc->sc_dev.dv_xname);
484 if (x & DBRI_LBG)
485 aprint_debug("%s: lost bus grant on sbus\n",
486 sc->sc_dev.dv_xname);
487 if (x & DBRI_MBE)
488 aprint_debug("%s: burst error on sbus\n",
489 sc->sc_dev.dv_xname);
490
491 /*
492 * Some of these errors disable the chip's circuitry.
493 * Re-enable the circuitry and keep on going.
494 */
495
496 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
497 tmp &= ~(DBRI_DISABLE_MASTER);
498 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
499 }
500
501 #if 0
502 if (!x & 1) /* XXX: DBRI_INTR_REQ */
503 return (1);
504 #endif
505
506 dbri_process_interrupt_buffer(sc);
507
508 return (1);
509 }
510
511 static void
512 dbri_softint(void *cookie)
513 {
514 struct dbri_desc *dd = cookie;
515
516 if (dd->callback != NULL)
517 dd->callback(dd->callback_args);
518 }
519
520 static int
521 dbri_init(struct dbri_softc *sc)
522 {
523 bus_space_tag_t iot = sc->sc_iot;
524 bus_space_handle_t ioh = sc->sc_ioh;
525 u_int32_t reg;
526 volatile u_int32_t *cmd;
527 bus_addr_t dmaaddr;
528 int n;
529
530 dbri_reset(sc);
531
532 cmd = dbri_command_lock(sc);
533
534 /* XXX: Initialize interrupt ring buffer */
535 sc->sc_dma->intr[0] = (u_int32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
536 sc->sc_irqp = 1;
537
538 /* Initialize pipes */
539 for (n = 0; n < DBRI_PIPE_MAX; n++)
540 sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
541
542 for (n = 1; n < DBRI_INT_BLOCKS; n++) {
543 sc->sc_dma->intr[n] = 0;
544 }
545
546 /* Disable all SBus bursts */
547 /* XXX 16 byte bursts cause errors, the rest works */
548 reg = bus_space_read_4(iot, ioh, DBRI_REG0);
549
550 /*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
551 reg |= (DBRI_BURST_4 | DBRI_BURST_8);
552 bus_space_write_4(iot, ioh, DBRI_REG0, reg);
553
554 /* setup interrupt queue */
555 dmaaddr = (u_int32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
556 *(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
557 *(cmd++) = dmaaddr;
558
559 dbri_command_send(sc, cmd);
560 return (0);
561 }
562
563 static int
564 dbri_reset(struct dbri_softc *sc)
565 {
566 int bail = 0;
567
568 bus_space_tag_t iot = sc->sc_iot;
569 bus_space_handle_t ioh = sc->sc_ioh;
570
571 bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
572 while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
573 (bail < 100000)) {
574 bail++;
575 delay(10);
576 }
577 if (bail == 100000) aprint_error("%s: reset timed out\n",
578 sc->sc_dev.dv_xname);
579 return (0);
580 }
581
582 static volatile u_int32_t *
583 dbri_command_lock(struct dbri_softc *sc)
584 {
585
586 if (sc->sc_locked)
587 aprint_debug("%s: command buffer locked\n",
588 sc->sc_dev.dv_xname);
589
590 sc->sc_locked++;
591
592 return (&sc->sc_dma->command[0]);
593 }
594
595 static void
596 dbri_command_send(struct dbri_softc *sc, volatile u_int32_t *cmd)
597 {
598 bus_space_handle_t ioh = sc->sc_ioh;
599 bus_space_tag_t iot = sc->sc_iot;
600 int maxloops = 1000000;
601 int x;
602
603 x = splsched();
604
605 sc->sc_locked--;
606
607 if (sc->sc_locked != 0) {
608 aprint_error("%s: command buffer improperly locked\n",
609 sc->sc_dev.dv_xname);
610 } else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
611 aprint_error("%s: command buffer overflow\n",
612 sc->sc_dev.dv_xname);
613 } else {
614 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
615 *(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
616 sc->sc_waitseen = 0;
617 bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
618 while ((--maxloops) > 0 &&
619 (bus_space_read_4(iot, ioh, DBRI_REG0)
620 & DBRI_COMMAND_VALID)) {
621 bus_space_barrier(iot, ioh, DBRI_REG0, 4,
622 BUS_SPACE_BARRIER_READ);
623 delay(1000);
624 }
625
626 if (maxloops == 0) {
627 aprint_error(
628 "%s: chip never completed command buffer\n",
629 sc->sc_dev.dv_xname);
630 } else {
631
632 DPRINTF("%s: command completed\n",
633 sc->sc_dev.dv_xname);
634
635 while ((--maxloops) > 0 && (!sc->sc_waitseen))
636 dbri_process_interrupt_buffer(sc);
637 if (maxloops == 0) {
638 aprint_error("%s: chip never acked WAIT\n",
639 sc->sc_dev.dv_xname);
640 }
641 }
642 }
643
644 splx(x);
645
646 return;
647 }
648
649 static void
650 dbri_process_interrupt_buffer(struct dbri_softc *sc)
651 {
652 int32_t i;
653
654 while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
655 sc->sc_dma->intr[sc->sc_irqp] = 0;
656 sc->sc_irqp++;
657
658 if (sc->sc_irqp == DBRI_INT_BLOCKS)
659 sc->sc_irqp = 1;
660 else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
661 sc->sc_irqp++;
662
663 dbri_process_interrupt(sc, i);
664 }
665
666 return;
667 }
668
669 static void
670 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
671 {
672 #if 0
673 const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
674 #endif
675 int val = DBRI_INTR_GETVAL(i);
676 int channel = DBRI_INTR_GETCHAN(i);
677 int command = DBRI_INTR_GETCMD(i);
678 int code = DBRI_INTR_GETCODE(i);
679 #if 0
680 int rval = DBRI_INTR_GETRVAL(i);
681 #endif
682 if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
683 sc->sc_waitseen++;
684
685 switch (code) {
686 case DBRI_INTR_XCMP: /* transmission complete */
687 {
688 int td;
689 struct dbri_desc *dd;
690
691 td = sc->sc_pipe[channel].desc;
692 dd = &sc->sc_desc[td];
693
694 if (dd->callback != NULL)
695 softint_schedule(dd->softint);
696 break;
697 }
698 case DBRI_INTR_FXDT: /* fixed data change */
699 DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel,
700 val);
701 #if 0
702 printf("reg: %08x\n", sc->sc_mm.status);
703 #endif
704 if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
705 val = reverse_bytes(val, sc->sc_pipe[channel].length);
706 if (sc->sc_pipe[channel].prec)
707 *(sc->sc_pipe[channel].prec) = val;
708 #ifndef DBRI_SPIN
709 DPRINTF("%s: wakeup %p\n", sc->sc_dev.dv_xname, sc);
710 wakeup(sc);
711 #endif
712 break;
713 case DBRI_INTR_SBRI:
714 DPRINTF("dbri_intr: SBRI\n");
715 break;
716 case DBRI_INTR_BRDY:
717 {
718 int td;
719 struct dbri_desc *dd;
720
721 td = sc->sc_pipe[channel].desc;
722 dd = &sc->sc_desc[td];
723
724 if (dd->callback != NULL)
725 softint_schedule(dd->softint);
726 break;
727 }
728 case DBRI_INTR_UNDR:
729 {
730 volatile u_int32_t *cmd;
731 int td = sc->sc_pipe[channel].desc;
732
733 DPRINTF("%s: DBRI_INTR_UNDR\n", sc->sc_dev.dv_xname);
734
735 sc->sc_dma->xmit[td].status = 0;
736
737 cmd = dbri_command_lock(sc);
738 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
739 sc->sc_pipe[channel].sdp |
740 DBRI_SDP_VALID_POINTER |
741 DBRI_SDP_CLEAR |
742 DBRI_SDP_2SAME);
743 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
744 dbri_command_send(sc, cmd);
745 break;
746 }
747 case DBRI_INTR_CMDI:
748 DPRINTF("ok");
749 break;
750 default:
751
752 aprint_error("%s: unknown interrupt code %d\n",
753 sc->sc_dev.dv_xname, code);
754 break;
755 }
756
757 return;
758 }
759
760 /*
761 * mmcodec stuff
762 */
763
764 static int
765 mmcodec_init(struct dbri_softc *sc)
766 {
767 bus_space_handle_t ioh = sc->sc_ioh;
768 bus_space_tag_t iot = sc->sc_iot;
769 u_int32_t reg2;
770 int bail;
771
772 reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
773 DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
774
775 if (reg2 & DBRI_PIO2) {
776 aprint_normal("%s: onboard CS4215 detected\n",
777 sc->sc_dev.dv_xname);
778 sc->sc_mm.onboard = 1;
779 }
780
781 if (reg2 & DBRI_PIO0) {
782 aprint_normal("%s: speakerbox detected\n",
783 sc->sc_dev.dv_xname);
784 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
785 sc->sc_mm.onboard = 0;
786 }
787
788 if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
789 aprint_normal("%s: using speakerbox\n",
790 sc->sc_dev.dv_xname);
791 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
792 sc->sc_mm.onboard = 0;
793 }
794
795 if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
796 aprint_normal("%s: no mmcodec found\n", sc->sc_dev.dv_xname);
797 return -1;
798 }
799
800 sc->sc_version = 0xff;
801
802 mmcodec_pipe_init(sc);
803 mmcodec_default(sc);
804
805 sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
806
807 /*
808 * mmcodec_setcontrol() sometimes fails right after powerup
809 * so we just try again until we either get a useful response or run
810 * out of time
811 */
812 bail = 0;
813 while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
814
815 bail++;
816 if (bail > 100) {
817 DPRINTF("%s: cs4215 probe failed at offset %d\n",
818 sc->sc_dev.dv_xname, sc->sc_mm.offset);
819 return (-1);
820 }
821 delay(10000);
822 }
823
824 aprint_normal("%s: cs4215 rev %c found at offset %d\n",
825 sc->sc_dev.dv_xname, 0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
826
827 /* set some sane defaults for mmcodec_init_data */
828 sc->sc_params.channels = 2;
829 sc->sc_params.precision = 16;
830
831 mmcodec_init_data(sc);
832
833 return (0);
834 }
835
836 static void
837 mmcodec_init_data(struct dbri_softc *sc)
838 {
839 bus_space_tag_t iot = sc->sc_iot;
840 bus_space_handle_t ioh = sc->sc_ioh;
841 u_int32_t tmp;
842 int data_width;
843
844 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
845 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
846 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
847
848 /* switch CS4215 to data mode - set PIO3 to 1 */
849 tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
850
851 /* XXX */
852 tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
853
854 bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
855 chi_reset(sc, CHIslave, 128);
856
857 data_width = sc->sc_params.channels * sc->sc_params.precision;
858
859 if ((data_width != 32) && (data_width != 8))
860 aprint_error("%s: data_width is %d\n", __func__, data_width);
861
862 pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
863 pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
864 pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
865 pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
866
867 pipe_receive_fixed(sc, 21, &sc->sc_mm.status);
868
869 mmcodec_setgain(sc, 0);
870
871 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
872 tmp |= DBRI_CHI_ACTIVATE;
873 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
874
875 return;
876 }
877
878 static void
879 mmcodec_pipe_init(struct dbri_softc *sc)
880 {
881
882 pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
883 pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
884 pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
885 pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
886
887 pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
888 pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
889 pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
890
891 sc->sc_mm.status = 0;
892
893 pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
894 pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
895
896 return;
897 }
898
899 static void
900 mmcodec_default(struct dbri_softc *sc)
901 {
902 struct cs4215_state *mm = &sc->sc_mm;
903
904 /*
905 * no action, memory resetting only
906 *
907 * data time slots 5-8
908 * speaker, line and headphone enable. set gain to half.
909 * input is line
910 */
911 mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
912 mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
913 sc->sc_linp = 128;
914 sc->sc_rinp = 128;
915 sc->sc_monitor = 0;
916 sc->sc_input = 1; /* line */
917 mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
918 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
919 mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
920 CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
921
922
923 /*
924 * control time slots 1-4
925 *
926 * 0: default I/O voltage scale
927 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
928 * 2: serial enable, CHI master, 128 bits per frame, clock 1
929 * 3: tests disabled
930 */
931 mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB;
932 mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
933 mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
934 mm->c.bcontrol[3] = 0;
935
936 return;
937 }
938
939 static void
940 mmcodec_setgain(struct dbri_softc *sc, int mute)
941 {
942 if (mute) {
943 /* disable all outputs, max. attenuation */
944 sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
945 sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
946 } else {
947
948 sc->sc_mm.d.bdata[0] = sc->sc_latt;
949 sc->sc_mm.d.bdata[1] = sc->sc_ratt;
950 }
951
952 /* input stuff */
953 sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
954 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
955 sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
956 (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
957
958 if (sc->sc_powerstate == 0)
959 return;
960 pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
961
962 DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
963 /* give the chip some time to execute the command */
964 delay(250);
965
966 return;
967 }
968
969 static int
970 mmcodec_setcontrol(struct dbri_softc *sc)
971 {
972 bus_space_tag_t iot = sc->sc_iot;
973 bus_space_handle_t ioh = sc->sc_ioh;
974 u_int32_t val;
975 u_int32_t tmp;
976 int bail = 0;
977 #if DBRI_SPIN
978 int i;
979 #endif
980
981 /*
982 * Temporarily mute outputs and wait 125 us to make sure that it
983 * happens. This avoids clicking noises.
984 */
985 mmcodec_setgain(sc, 1);
986 delay(125);
987
988 bus_space_write_4(iot, ioh, DBRI_REG2, 0);
989 delay(125);
990
991 /* enable control mode */
992 val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */
993
994 /* XXX */
995 val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
996
997 bus_space_write_4(iot, ioh, DBRI_REG2, val);
998
999 delay(34);
1000
1001 /*
1002 * in control mode, the cs4215 is the slave device, so the
1003 * DBRI must act as the CHI master.
1004 *
1005 * in data mode, the cs4215 must be the CHI master to insure
1006 * that the data stream is in sync with its codec
1007 */
1008 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1009 tmp &= ~DBRI_COMMAND_CHI;
1010 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1011
1012 chi_reset(sc, CHImaster, 128);
1013
1014 /* control mode */
1015 pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1016 pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1017 pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1018
1019 /* wait for the chip to echo back CLB as zero */
1020 sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1021 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1022
1023 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1024 tmp |= DBRI_CHI_ACTIVATE;
1025 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1026
1027 #if DBRI_SPIN
1028 i = 1024;
1029 while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) {
1030 delay(125);
1031 }
1032
1033 if (i == 0) {
1034 DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1035 sc->sc_dev.dv_xname, sc->sc_mm.status);
1036 return (-1);
1037 }
1038 #else
1039 while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) {
1040 DPRINTF("%s: tsleep %p\n", sc->sc_dev.dv_xname, sc);
1041 tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz);
1042 bail++;
1043 }
1044 #endif
1045 if (bail >= 10) {
1046 DPRINTF("%s: switching to control mode timed out (%x %x)\n",
1047 sc->sc_dev.dv_xname, sc->sc_mm.status,
1048 bus_space_read_4(iot, ioh, DBRI_REG2));
1049 return -1;
1050 }
1051
1052 /* copy the version information before it becomes unreadable again */
1053 sc->sc_version = sc->sc_mm.version;
1054
1055 /* terminate cs4215 control mode */
1056 sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1057 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1058
1059 /* two frames of control info @ 8kHz frame rate = 250us delay */
1060 delay(250);
1061
1062 mmcodec_setgain(sc, 0);
1063
1064 return (0);
1065
1066 }
1067
1068 /*
1069 * CHI combo
1070 */
1071 static void
1072 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1073 {
1074 volatile u_int32_t *cmd;
1075 int val;
1076 int clockrate, divisor;
1077
1078 cmd = dbri_command_lock(sc);
1079
1080 /* set CHI anchor: pipe 16 */
1081 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1082 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1083 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1084 *(cmd++) = 0;
1085
1086 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1087 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1088 *(cmd++) = 0;
1089 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1090
1091 sc->sc_pipe[16].sdp = 1;
1092 sc->sc_pipe[16].next = 16;
1093 sc->sc_chi_pipe_in = 16;
1094 sc->sc_chi_pipe_out = 16;
1095
1096 switch (ms) {
1097 case CHIslave:
1098 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1099 break;
1100 case CHImaster:
1101 clockrate = bpf * 8;
1102 divisor = 12288 / clockrate;
1103
1104 if (divisor > 255 || divisor * clockrate != 12288)
1105 aprint_error("%s: illegal bits-per-frame %d\n",
1106 sc->sc_dev.dv_xname, bpf);
1107
1108 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1109 DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1110 break;
1111 default:
1112 aprint_error("%s: unknown value for ms!\n",
1113 sc->sc_dev.dv_xname);
1114 break;
1115 }
1116
1117 sc->sc_chi_bpf = bpf;
1118
1119 /* CHI data mode */
1120 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1121 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1122 DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1123
1124 dbri_command_send(sc, cmd);
1125
1126 return;
1127 }
1128
1129 /*
1130 * pipe stuff
1131 */
1132 static void
1133 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1134 {
1135 DPRINTF("pipe setup: %d\n", pipe);
1136 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1137 aprint_error("%s: illegal pipe number %d\n",
1138 sc->sc_dev.dv_xname, pipe);
1139 return;
1140 }
1141
1142 if ((sdp & 0xf800) != sdp)
1143 aprint_error("%s: strange SDP value %d\n", sc->sc_dev.dv_xname,
1144 sdp);
1145
1146 if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1147 !(sdp & DBRI_SDP_TO_SER))
1148 sdp |= DBRI_SDP_CHANGE;
1149
1150 sdp |= DBRI_PIPE(pipe);
1151
1152 sc->sc_pipe[pipe].sdp = sdp;
1153 sc->sc_pipe[pipe].desc = -1;
1154
1155 pipe_reset(sc, pipe);
1156
1157 return;
1158 }
1159
1160 static void
1161 pipe_reset(struct dbri_softc *sc, int pipe)
1162 {
1163 struct dbri_desc *dd;
1164 int sdp;
1165 int desc;
1166 volatile u_int32_t *cmd;
1167
1168 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1169 aprint_error("%s: illegal pipe number %d\n",
1170 sc->sc_dev.dv_xname, pipe);
1171 return;
1172 }
1173
1174 sdp = sc->sc_pipe[pipe].sdp;
1175 if (sdp == 0) {
1176 aprint_error("%s: can not reset uninitialized pipe %d\n",
1177 sc->sc_dev.dv_xname, pipe);
1178 return;
1179 }
1180
1181 cmd = dbri_command_lock(sc);
1182 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1183 sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1184 *(cmd++) = 0;
1185 dbri_command_send(sc, cmd);
1186
1187 desc = sc->sc_pipe[pipe].desc;
1188
1189 dd = &sc->sc_desc[desc];
1190
1191 dd->busy = 0;
1192
1193 #if 0
1194 if (dd->callback)
1195 softint_schedule(dd->softint);
1196 #endif
1197
1198 sc->sc_pipe[pipe].desc = -1;
1199
1200 return;
1201 }
1202
1203 static void
1204 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile u_int32_t *prec)
1205 {
1206
1207 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1208 aprint_error("%s: illegal pipe number %d\n",
1209 sc->sc_dev.dv_xname, pipe);
1210 return;
1211 }
1212
1213 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1214 aprint_error("%s: non-fixed pipe %d\n", sc->sc_dev.dv_xname,
1215 pipe);
1216 return;
1217 }
1218
1219 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1220 aprint_error("%s: can not receive on transmit pipe %d\b",
1221 sc->sc_dev.dv_xname, pipe);
1222 return;
1223 }
1224
1225 sc->sc_pipe[pipe].prec = prec;
1226
1227 return;
1228 }
1229
1230 static void
1231 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, u_int32_t data)
1232 {
1233 volatile u_int32_t *cmd;
1234
1235 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1236 aprint_error("%s: illegal pipe number %d\n",
1237 sc->sc_dev.dv_xname, pipe);
1238 return;
1239 }
1240
1241 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1242 aprint_error("%s: uninitialized pipe %d\n",
1243 sc->sc_dev.dv_xname, pipe);
1244 return;
1245 }
1246
1247 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1248 aprint_error("%s: non-fixed pipe %d\n", sc->sc_dev.dv_xname,
1249 pipe);
1250 return;
1251 }
1252
1253 if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1254 aprint_error("%s: called on receive pipe %d\n",
1255 sc->sc_dev.dv_xname, pipe);
1256 return;
1257 }
1258
1259 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1260 data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1261
1262 cmd = dbri_command_lock(sc);
1263 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1264 *(cmd++) = data;
1265
1266 dbri_command_send(sc, cmd);
1267
1268 return;
1269 }
1270
1271 static void
1272 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1273 void (*callback)(void *), void *callback_args)
1274 {
1275 volatile u_int32_t *cmd;
1276 int x, i;
1277 int td;
1278 int td_first, td_last;
1279 bus_addr_t dmabuf, dmabase;
1280 struct dbri_desc *dd = &sc->sc_desc[which];
1281
1282 switch (pipe) {
1283 case 4:
1284 /* output, offset 0 */
1285 break;
1286 default:
1287 aprint_error("%s: illegal pipe number (%d)\n",
1288 __func__, pipe);
1289 return;
1290 }
1291
1292 td = 0;
1293 td_first = td_last = -1;
1294
1295 if (sc->sc_pipe[pipe].sdp == 0) {
1296 aprint_error("%s: uninitialized pipe %d\n",
1297 sc->sc_dev.dv_xname, pipe);
1298 return;
1299 }
1300
1301 dmabuf = dd->dmabase;
1302 dmabase = sc->sc_dmabase;
1303 td = 0;
1304
1305 for (i = 0; i < (num - 1); i++) {
1306
1307 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1308 | TX_EOF | TX_BINT;
1309 sc->sc_dma->xmit[i].ba = dmabuf;
1310 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1311 sc->sc_dma->xmit[i].status = 0;
1312
1313 td_last = td;
1314 dmabuf += blksz;
1315 }
1316
1317 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1318
1319 sc->sc_dma->xmit[i].ba = dmabuf;
1320 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1321 sc->sc_dma->xmit[i].status = 0;
1322
1323 dd->callback = callback;
1324 dd->callback_args = callback_args;
1325
1326 x = splsched();
1327
1328 /* the pipe shouldn't be active */
1329 if (pipe_active(sc, pipe)) {
1330 aprint_error("pipe active (CDP)\n");
1331 /* pipe is already active */
1332 #if 0
1333 td_last = sc->sc_pipe[pipe].desc;
1334 while (sc->sc_desc[td_last].next != -1)
1335 td_last = sc->sc_desc[td_last].next;
1336
1337 sc->sc_desc[td_last].next = td_first;
1338 sc->sc_dma->desc[td_last].nda =
1339 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1340
1341 cmd = dbri_command_lock(sc);
1342 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1343 dbri_command_send(sc, cmd);
1344 #endif
1345 } else {
1346 /*
1347 * pipe isn't active - issue an SDP command to start our
1348 * chain of TDs running
1349 */
1350 sc->sc_pipe[pipe].desc = which;
1351 cmd = dbri_command_lock(sc);
1352 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1353 sc->sc_pipe[pipe].sdp |
1354 DBRI_SDP_VALID_POINTER |
1355 DBRI_SDP_EVERY |
1356 DBRI_SDP_CLEAR);
1357 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1358 dbri_command_send(sc, cmd);
1359 DPRINTF("%s: starting DMA\n", __func__);
1360 }
1361
1362 splx(x);
1363
1364 return;
1365 }
1366
1367 static void
1368 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1369 void (*callback)(void *), void *callback_args)
1370 {
1371 volatile u_int32_t *cmd;
1372 int x, i;
1373 int td_first, td_last;
1374 bus_addr_t dmabuf, dmabase;
1375 struct dbri_desc *dd = &sc->sc_desc[which];
1376
1377 switch (pipe) {
1378 case 6:
1379 break;
1380 default:
1381 aprint_error("%s: illegal pipe number (%d)\n",
1382 __func__, pipe);
1383 return;
1384 }
1385
1386 td_first = td_last = -1;
1387
1388 if (sc->sc_pipe[pipe].sdp == 0) {
1389 aprint_error("%s: uninitialized pipe %d\n",
1390 sc->sc_dev.dv_xname, pipe);
1391 return;
1392 }
1393
1394 dmabuf = dd->dmabase;
1395 dmabase = sc->sc_dmabase;
1396
1397 for (i = 0; i < (num - 1); i++) {
1398
1399 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1400 sc->sc_dma->recv[i].ba = dmabuf;
1401 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1402 sc->sc_dma->recv[i].status = RX_EOF;
1403
1404 td_last = i;
1405 dmabuf += blksz;
1406 }
1407
1408 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1409
1410 sc->sc_dma->recv[i].ba = dmabuf;
1411 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1412 sc->sc_dma->recv[i].status = RX_EOF;
1413
1414 dd->callback = callback;
1415 dd->callback_args = callback_args;
1416
1417 x = splsched();
1418
1419 /* the pipe shouldn't be active */
1420 if (pipe_active(sc, pipe)) {
1421 aprint_error("pipe active (CDP)\n");
1422 /* pipe is already active */
1423 #if 0
1424 td_last = sc->sc_pipe[pipe].desc;
1425 while (sc->sc_desc[td_last].next != -1)
1426 td_last = sc->sc_desc[td_last].next;
1427
1428 sc->sc_desc[td_last].next = td_first;
1429 sc->sc_dma->desc[td_last].nda =
1430 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1431
1432 cmd = dbri_command_lock(sc);
1433 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1434 dbri_command_send(sc, cmd);
1435 #endif
1436 } else {
1437 /*
1438 * pipe isn't active - issue an SDP command to start our
1439 * chain of TDs running
1440 */
1441 sc->sc_pipe[pipe].desc = which;
1442 cmd = dbri_command_lock(sc);
1443 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1444 sc->sc_pipe[pipe].sdp |
1445 DBRI_SDP_VALID_POINTER |
1446 DBRI_SDP_EVERY |
1447 DBRI_SDP_CLEAR);
1448 *(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1449 dbri_command_send(sc, cmd);
1450 DPRINTF("%s: starting DMA\n", __func__);
1451 }
1452
1453 splx(x);
1454
1455 return;
1456 }
1457
1458 static void
1459 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1460 int len, int cycle)
1461 {
1462 volatile u_int32_t *cmd;
1463 int prevpipe, nextpipe;
1464 int val;
1465
1466 DPRINTF("%s: %d\n", __func__, pipe);
1467 if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1468 basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1469 aprint_error("%s: illegal pipe numbers (%d, %d)\n",
1470 sc->sc_dev.dv_xname, pipe, basepipe);
1471 return;
1472 }
1473
1474 if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1475 aprint_error("%s: uninitialized pipe (%d, %d)\n",
1476 sc->sc_dev.dv_xname, pipe, basepipe);
1477 return;
1478 }
1479
1480 if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1481 cycle = sc->sc_chi_bpf;
1482
1483 if (basepipe == pipe)
1484 prevpipe = nextpipe = pipe;
1485 else {
1486 if (basepipe == 16) {
1487 if (dir == PIPEinput) {
1488 prevpipe = sc->sc_chi_pipe_in;
1489 } else {
1490 prevpipe = sc->sc_chi_pipe_out;
1491 }
1492 } else
1493 prevpipe = basepipe;
1494
1495 nextpipe = sc->sc_pipe[prevpipe].next;
1496
1497 while (sc->sc_pipe[nextpipe].cycle < cycle &&
1498 sc->sc_pipe[nextpipe].next != basepipe) {
1499 prevpipe = nextpipe;
1500 nextpipe = sc->sc_pipe[nextpipe].next;
1501 }
1502 }
1503
1504 if (prevpipe == 16) {
1505 if (dir == PIPEinput) {
1506 sc->sc_chi_pipe_in = pipe;
1507 } else {
1508 sc->sc_chi_pipe_out = pipe;
1509 }
1510 } else
1511 sc->sc_pipe[prevpipe].next = pipe;
1512
1513 sc->sc_pipe[pipe].next = nextpipe;
1514 sc->sc_pipe[pipe].cycle = cycle;
1515 sc->sc_pipe[pipe].length = len;
1516
1517 cmd = dbri_command_lock(sc);
1518
1519 switch (dir) {
1520 case PIPEinput:
1521 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1522 val |= pipe;
1523 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1524 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1525 DBRI_TS_NEXT(nextpipe);
1526 *(cmd++) = 0;
1527 break;
1528 case PIPEoutput:
1529 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1530 val |= pipe;
1531 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1532 *(cmd++) = 0;
1533 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1534 DBRI_TS_NEXT(nextpipe);
1535 break;
1536 default:
1537 DPRINTF("%s: should not have happened!\n",
1538 sc->sc_dev.dv_xname);
1539 break;
1540 }
1541
1542 dbri_command_send(sc, cmd);
1543
1544 return;
1545 }
1546
1547 static int
1548 pipe_active(struct dbri_softc *sc, int pipe)
1549 {
1550
1551 return (sc->sc_pipe[pipe].desc != -1);
1552 }
1553
1554 /*
1555 * subroutines required to interface with audio(9)
1556 */
1557
1558 static int
1559 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1560 {
1561
1562 switch (ae->index) {
1563 case 0:
1564 strcpy(ae->name, AudioEulinear);
1565 ae->encoding = AUDIO_ENCODING_ULINEAR;
1566 ae->precision = 8;
1567 ae->flags = 0;
1568 break;
1569 case 1:
1570 strcpy(ae->name, AudioEmulaw);
1571 ae->encoding = AUDIO_ENCODING_ULAW;
1572 ae->precision = 8;
1573 ae->flags = 0;
1574 break;
1575 case 2:
1576 strcpy(ae->name, AudioEalaw);
1577 ae->encoding = AUDIO_ENCODING_ALAW;
1578 ae->precision = 8;
1579 ae->flags = 0;
1580 break;
1581 case 3:
1582 strcpy(ae->name, AudioEslinear);
1583 ae->encoding = AUDIO_ENCODING_SLINEAR;
1584 ae->precision = 8;
1585 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1586 break;
1587 case 4:
1588 strcpy(ae->name, AudioEslinear_le);
1589 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1590 ae->precision = 16;
1591 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1592 break;
1593 case 5:
1594 strcpy(ae->name, AudioEulinear_le);
1595 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1596 ae->precision = 16;
1597 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1598 break;
1599 case 6:
1600 strcpy(ae->name, AudioEslinear_be);
1601 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1602 ae->precision = 16;
1603 ae->flags = 0;
1604 break;
1605 case 7:
1606 strcpy(ae->name, AudioEulinear_be);
1607 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1608 ae->precision = 16;
1609 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1610 break;
1611 case 8:
1612 strcpy(ae->name, AudioEslinear);
1613 ae->encoding = AUDIO_ENCODING_SLINEAR;
1614 ae->precision = 16;
1615 ae->flags = 0;
1616 break;
1617 default:
1618 return (EINVAL);
1619 }
1620
1621 return (0);
1622 }
1623
1624 static int
1625 dbri_set_params(void *hdl, int setmode, int usemode,
1626 struct audio_params *play, struct audio_params *rec,
1627 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1628 {
1629 struct dbri_softc *sc = hdl;
1630 int rate;
1631 audio_params_t *p = NULL;
1632 stream_filter_list_t *fil;
1633 int mode;
1634
1635 /*
1636 * This device only has one clock, so make the sample rates match.
1637 */
1638 if (play->sample_rate != rec->sample_rate &&
1639 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1640 if (setmode == AUMODE_PLAY) {
1641 rec->sample_rate = play->sample_rate;
1642 setmode |= AUMODE_RECORD;
1643 } else if (setmode == AUMODE_RECORD) {
1644 play->sample_rate = rec->sample_rate;
1645 setmode |= AUMODE_PLAY;
1646 } else
1647 return EINVAL;
1648 }
1649
1650 for (mode = AUMODE_RECORD; mode != -1;
1651 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1652 if ((setmode & mode) == 0)
1653 continue;
1654
1655 p = mode == AUMODE_PLAY ? play : rec;
1656 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1657 DPRINTF("dbri_set_params: invalid rate %d\n",
1658 p->sample_rate);
1659 return EINVAL;
1660 }
1661
1662 fil = mode == AUMODE_PLAY ? pfil : rfil;
1663 DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1664 p->sample_rate, p->precision, p->channels);
1665 if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1666 mode, p, true, fil) < 0) {
1667 aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1668 return EINVAL;
1669 }
1670 if (fil->req_size > 0)
1671 p = &fil->filters[0].param;
1672 }
1673
1674 if (p == NULL) {
1675 DPRINTF("dbri_set_params: no parameters to set\n");
1676 return 0;
1677 }
1678
1679 DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1680 p->sample_rate, p->precision, p->channels);
1681
1682 for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1683 if (CS4215_FREQ[rate].freq == p->sample_rate)
1684 break;
1685
1686 if (CS4215_FREQ[rate].freq == 0)
1687 return (EINVAL);
1688
1689 /* set frequency */
1690 sc->sc_mm.c.bcontrol[1] &= ~0x38;
1691 sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1692 sc->sc_mm.c.bcontrol[2] &= ~0x70;
1693 sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1694
1695 switch (p->encoding) {
1696 case AUDIO_ENCODING_ULAW:
1697 sc->sc_mm.c.bcontrol[1] &= ~3;
1698 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1699 break;
1700 case AUDIO_ENCODING_ALAW:
1701 sc->sc_mm.c.bcontrol[1] &= ~3;
1702 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1703 break;
1704 case AUDIO_ENCODING_ULINEAR:
1705 sc->sc_mm.c.bcontrol[1] &= ~3;
1706 if (p->precision == 8) {
1707 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1708 } else {
1709 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1710 }
1711 break;
1712 case AUDIO_ENCODING_SLINEAR_BE:
1713 case AUDIO_ENCODING_SLINEAR:
1714 sc->sc_mm.c.bcontrol[1] &= ~3;
1715 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1716 break;
1717 }
1718
1719 switch (p->channels) {
1720 case 1:
1721 sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1722 break;
1723 case 2:
1724 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1725 break;
1726 }
1727
1728 return (0);
1729 }
1730
1731 static int
1732 dbri_round_blocksize(void *hdl, int bs, int mode,
1733 const audio_params_t *param)
1734 {
1735
1736 /* DBRI DMA segment size, rounded down to 32bit alignment */
1737 return 0x1ffc;
1738 }
1739
1740 static int
1741 dbri_halt_output(void *hdl)
1742 {
1743 struct dbri_softc *sc = hdl;
1744
1745 if (!sc->sc_playing)
1746 return 0;
1747
1748 sc->sc_playing = 0;
1749 pipe_reset(sc, 4);
1750 return (0);
1751 }
1752
1753 static int
1754 dbri_getdev(void *hdl, struct audio_device *ret)
1755 {
1756
1757 *ret = dbri_device;
1758 return (0);
1759 }
1760
1761 static int
1762 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1763 {
1764 struct dbri_softc *sc = hdl;
1765 int latt = sc->sc_latt, ratt = sc->sc_ratt;
1766
1767 switch (mc->dev) {
1768 case DBRI_VOL_OUTPUT: /* master volume */
1769 latt = (latt & 0xc0) | (63 -
1770 min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1771 ratt = (ratt & 0xc0) | (63 -
1772 min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1773 break;
1774 case DBRI_ENABLE_MONO: /* built-in speaker */
1775 if (mc->un.ord == 1) {
1776 ratt |= CS4215_SE;
1777 } else
1778 ratt &= ~CS4215_SE;
1779 break;
1780 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1781 if (mc->un.ord == 1) {
1782 latt |= CS4215_HE;
1783 } else
1784 latt &= ~CS4215_HE;
1785 break;
1786 case DBRI_ENABLE_LINE: /* line out */
1787 if (mc->un.ord == 1) {
1788 latt |= CS4215_LE;
1789 } else
1790 latt &= ~CS4215_LE;
1791 break;
1792 case DBRI_VOL_MONITOR:
1793 if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1794 sc->sc_monitor)
1795 return 0;
1796 sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1797 break;
1798 case DBRI_INPUT_GAIN:
1799 sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1800 sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1801 break;
1802 case DBRI_INPUT_SELECT:
1803 if (mc->un.mask == sc->sc_input)
1804 return 0;
1805 sc->sc_input = mc->un.mask;
1806 break;
1807 }
1808
1809 sc->sc_latt = latt;
1810 sc->sc_ratt = ratt;
1811
1812 mmcodec_setgain(sc, 0);
1813
1814 return (0);
1815 }
1816
1817 static int
1818 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1819 {
1820 struct dbri_softc *sc = hdl;
1821
1822 switch (mc->dev) {
1823 case DBRI_VOL_OUTPUT: /* master volume */
1824 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1825 (63 - (sc->sc_latt & 0x3f)) << 2;
1826 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1827 (63 - (sc->sc_ratt & 0x3f)) << 2;
1828 return (0);
1829 case DBRI_ENABLE_MONO: /* built-in speaker */
1830 mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1831 return 0;
1832 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1833 mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1834 return 0;
1835 case DBRI_ENABLE_LINE: /* line out */
1836 mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1837 return 0;
1838 case DBRI_VOL_MONITOR:
1839 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1840 return 0;
1841 case DBRI_INPUT_GAIN:
1842 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1843 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1844 return 0;
1845 case DBRI_INPUT_SELECT:
1846 mc->un.mask = sc->sc_input;
1847 return 0;
1848 }
1849 return (EINVAL);
1850 }
1851
1852 static int
1853 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1854 {
1855
1856 switch (di->index) {
1857 case DBRI_MONITOR_CLASS:
1858 di->mixer_class = DBRI_MONITOR_CLASS;
1859 strcpy(di->label.name, AudioCmonitor);
1860 di->type = AUDIO_MIXER_CLASS;
1861 di->next = di->prev = AUDIO_MIXER_LAST;
1862 return 0;
1863 case DBRI_OUTPUT_CLASS:
1864 di->mixer_class = DBRI_OUTPUT_CLASS;
1865 strcpy(di->label.name, AudioCoutputs);
1866 di->type = AUDIO_MIXER_CLASS;
1867 di->next = di->prev = AUDIO_MIXER_LAST;
1868 return 0;
1869 case DBRI_INPUT_CLASS:
1870 di->mixer_class = DBRI_INPUT_CLASS;
1871 strcpy(di->label.name, AudioCinputs);
1872 di->type = AUDIO_MIXER_CLASS;
1873 di->next = di->prev = AUDIO_MIXER_LAST;
1874 return 0;
1875 case DBRI_VOL_OUTPUT: /* master volume */
1876 di->mixer_class = DBRI_OUTPUT_CLASS;
1877 di->next = di->prev = AUDIO_MIXER_LAST;
1878 strcpy(di->label.name, AudioNmaster);
1879 di->type = AUDIO_MIXER_VALUE;
1880 di->un.v.num_channels = 2;
1881 strcpy(di->un.v.units.name, AudioNvolume);
1882 return (0);
1883 case DBRI_INPUT_GAIN: /* input gain */
1884 di->mixer_class = DBRI_INPUT_CLASS;
1885 di->next = di->prev = AUDIO_MIXER_LAST;
1886 strcpy(di->label.name, AudioNrecord);
1887 di->type = AUDIO_MIXER_VALUE;
1888 di->un.v.num_channels = 2;
1889 strcpy(di->un.v.units.name, AudioNvolume);
1890 return (0);
1891 case DBRI_VOL_MONITOR: /* monitor volume */
1892 di->mixer_class = DBRI_MONITOR_CLASS;
1893 di->next = di->prev = AUDIO_MIXER_LAST;
1894 strcpy(di->label.name, AudioNmonitor);
1895 di->type = AUDIO_MIXER_VALUE;
1896 di->un.v.num_channels = 1;
1897 strcpy(di->un.v.units.name, AudioNvolume);
1898 return (0);
1899 case DBRI_ENABLE_MONO: /* built-in speaker */
1900 di->mixer_class = DBRI_OUTPUT_CLASS;
1901 di->next = di->prev = AUDIO_MIXER_LAST;
1902 strcpy(di->label.name, AudioNmono);
1903 di->type = AUDIO_MIXER_ENUM;
1904 di->un.e.num_mem = 2;
1905 strcpy(di->un.e.member[0].label.name, AudioNoff);
1906 di->un.e.member[0].ord = 0;
1907 strcpy(di->un.e.member[1].label.name, AudioNon);
1908 di->un.e.member[1].ord = 1;
1909 return (0);
1910 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1911 di->mixer_class = DBRI_OUTPUT_CLASS;
1912 di->next = di->prev = AUDIO_MIXER_LAST;
1913 strcpy(di->label.name, AudioNheadphone);
1914 di->type = AUDIO_MIXER_ENUM;
1915 di->un.e.num_mem = 2;
1916 strcpy(di->un.e.member[0].label.name, AudioNoff);
1917 di->un.e.member[0].ord = 0;
1918 strcpy(di->un.e.member[1].label.name, AudioNon);
1919 di->un.e.member[1].ord = 1;
1920 return (0);
1921 case DBRI_ENABLE_LINE: /* line out */
1922 di->mixer_class = DBRI_OUTPUT_CLASS;
1923 di->next = di->prev = AUDIO_MIXER_LAST;
1924 strcpy(di->label.name, AudioNline);
1925 di->type = AUDIO_MIXER_ENUM;
1926 di->un.e.num_mem = 2;
1927 strcpy(di->un.e.member[0].label.name, AudioNoff);
1928 di->un.e.member[0].ord = 0;
1929 strcpy(di->un.e.member[1].label.name, AudioNon);
1930 di->un.e.member[1].ord = 1;
1931 return (0);
1932 case DBRI_INPUT_SELECT:
1933 di->mixer_class = DBRI_INPUT_CLASS;
1934 strcpy(di->label.name, AudioNsource);
1935 di->type = AUDIO_MIXER_SET;
1936 di->prev = di->next = AUDIO_MIXER_LAST;
1937 di->un.s.num_mem = 2;
1938 strcpy(di->un.s.member[0].label.name, AudioNline);
1939 di->un.s.member[0].mask = 1 << 0;
1940 strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1941 di->un.s.member[1].mask = 1 << 1;
1942 return 0;
1943 }
1944
1945 return (ENXIO);
1946 }
1947
1948 static size_t
1949 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1950 {
1951 #ifdef DBRI_BIG_BUFFER
1952 return 16*0x1ffc; /* use ~128KB buffer */
1953 #else
1954 return bufsize;
1955 #endif
1956 }
1957
1958 static int
1959 dbri_get_props(void *hdl)
1960 {
1961
1962 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
1963 }
1964
1965 static int
1966 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
1967 void (*intr)(void *), void *intrarg,
1968 const struct audio_params *param)
1969 {
1970 struct dbri_softc *sc = hdl;
1971 unsigned long count, num;
1972
1973 if (sc->sc_playing)
1974 return 0;
1975
1976 count = (unsigned long)(((char *)end - (char *)start));
1977 num = count / blksize;
1978
1979 DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
1980 (unsigned long)intr,
1981 (unsigned long)intrarg, blksize, count, num);
1982
1983 sc->sc_params = *param;
1984
1985 if (sc->sc_recording == 0) {
1986 /* do not muck with the codec when it's already in use */
1987 if (mmcodec_setcontrol(sc) != 0)
1988 return -1;
1989 mmcodec_init_data(sc);
1990 }
1991
1992 /*
1993 * always use DMA descriptor 0 for output
1994 * no need to allocate them dynamically since we only ever have
1995 * exactly one input stream and exactly one output stream
1996 */
1997 setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
1998 sc->sc_playing = 1;
1999 return 0;
2000 }
2001
2002 static int
2003 dbri_halt_input(void *cookie)
2004 {
2005 struct dbri_softc *sc = cookie;
2006
2007 if (!sc->sc_recording)
2008 return 0;
2009
2010 sc->sc_recording = 0;
2011 pipe_reset(sc, 6);
2012 return 0;
2013 }
2014
2015 static int
2016 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
2017 void (*intr)(void *), void *intrarg,
2018 const struct audio_params *param)
2019 {
2020 struct dbri_softc *sc = hdl;
2021 unsigned long count, num;
2022
2023 if (sc->sc_recording)
2024 return 0;
2025
2026 count = (unsigned long)(((char *)end - (char *)start));
2027 num = count / blksize;
2028
2029 DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2030 (unsigned long)intr,
2031 (unsigned long)intrarg, blksize, count, num);
2032
2033 sc->sc_params = *param;
2034
2035 if (sc->sc_playing == 0) {
2036
2037 /*
2038 * we don't support different parameters for playing and
2039 * recording anyway so don't bother whacking the codec if
2040 * it's already set up
2041 */
2042 mmcodec_setcontrol(sc);
2043 mmcodec_init_data(sc);
2044 }
2045
2046 sc->sc_recording = 1;
2047 setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2048 return 0;
2049 }
2050
2051
2052 static u_int32_t
2053 reverse_bytes(u_int32_t b, int len)
2054 {
2055 switch (len) {
2056 case 32:
2057 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2058 case 16:
2059 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
2060 case 8:
2061 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
2062 case 4:
2063 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
2064 case 2:
2065 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
2066 case 1:
2067 case 0:
2068 break;
2069 default:
2070 DPRINTF("reverse_bytes: unsupported length\n");
2071 };
2072
2073 return (b);
2074 }
2075
2076 static void *
2077 dbri_malloc(void *v, int dir, size_t s, struct malloc_type *mt, int flags)
2078 {
2079 struct dbri_softc *sc = v;
2080 struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2081 int rseg;
2082
2083 if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2084 &dd->dmamap) == 0) {
2085 if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2086 1, &rseg, BUS_DMA_NOWAIT) == 0) {
2087 if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2088 &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2089 if (dd->buf != NULL) {
2090 if (bus_dmamap_load(sc->sc_dmat,
2091 dd->dmamap, dd->buf, s, NULL,
2092 BUS_DMA_NOWAIT) == 0) {
2093 dd->len = s;
2094 dd->busy = 0;
2095 dd->callback = NULL;
2096 dd->dmabase =
2097 dd->dmamap->dm_segs[0].ds_addr;
2098 DPRINTF("dbri_malloc: using buffer %d %08x\n",
2099 sc->sc_desc_used, (uint32_t)dd->buf);
2100 sc->sc_desc_used++;
2101 return dd->buf;
2102 } else
2103 aprint_error("dbri_malloc: load failed\n");
2104 } else
2105 aprint_error("dbri_malloc: map returned NULL\n");
2106 } else
2107 aprint_error("dbri_malloc: map failed\n");
2108 bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2109 } else
2110 aprint_error("dbri_malloc: malloc() failed\n");
2111 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2112 } else
2113 aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2114 return NULL;
2115 }
2116
2117 static void
2118 dbri_free(void *v, void *p, struct malloc_type *mt)
2119 {
2120 free(p, mt);
2121 }
2122
2123 static paddr_t
2124 dbri_mappage(void *v, void *mem, off_t off, int prot)
2125 {
2126 struct dbri_softc *sc = v;;
2127 int current;
2128
2129 if (off < 0)
2130 return -1;
2131
2132 current = 0;
2133 while ((current < sc->sc_desc_used) &&
2134 (sc->sc_desc[current].buf != mem))
2135 current++;
2136
2137 if (current < sc->sc_desc_used) {
2138 return bus_dmamem_mmap(sc->sc_dmat,
2139 &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2140 }
2141
2142 return -1;
2143 }
2144
2145 static int
2146 dbri_open(void *cookie, int flags)
2147 {
2148 struct dbri_softc *sc = cookie;
2149
2150 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2151
2152 if (sc->sc_refcount == 0)
2153 dbri_bring_up(sc);
2154
2155 sc->sc_refcount++;
2156
2157 return 0;
2158 }
2159
2160 static void
2161 dbri_close(void *cookie)
2162 {
2163 struct dbri_softc *sc = cookie;
2164
2165 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2166
2167 sc->sc_refcount--;
2168 KASSERT(sc->sc_refcount >= 0);
2169 if (sc->sc_refcount > 0)
2170 return;
2171
2172 dbri_set_power(sc, 0);
2173 sc->sc_playing = 0;
2174 sc->sc_recording = 0;
2175 }
2176
2177 static void
2178 dbri_powerhook(int why, void *cookie)
2179 {
2180 struct dbri_softc *sc = cookie;
2181
2182 if (why == sc->sc_pmgrstate)
2183 return;
2184
2185 switch(why)
2186 {
2187 case PWR_SUSPEND:
2188 dbri_set_power(sc, 0);
2189 break;
2190 case PWR_RESUME:
2191 if (sc->sc_powerstate != 0)
2192 break;
2193 aprint_verbose("resume: %d\n", sc->sc_refcount);
2194 sc->sc_pmgrstate = PWR_RESUME;
2195 if (sc->sc_playing) {
2196 volatile u_int32_t *cmd;
2197 int s;
2198
2199 dbri_bring_up(sc);
2200 s = splsched();
2201 cmd = dbri_command_lock(sc);
2202 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2203 0, sc->sc_pipe[4].sdp |
2204 DBRI_SDP_VALID_POINTER |
2205 DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2206 *(cmd++) = sc->sc_dmabase +
2207 dbri_dma_off(xmit, 0);
2208 dbri_command_send(sc, cmd);
2209 splx(s);
2210 }
2211 break;
2212 default:
2213 return;
2214 }
2215 sc->sc_pmgrstate = why;
2216 }
2217
2218 #endif /* NAUDIO > 0 */
2219