dbri.c revision 1.19 1 /* $NetBSD: dbri.c,v 1.19 2008/05/09 03:12:49 macallan Exp $ */
2
3 /*
4 * Copyright (C) 1997 Rudolf Koenig (rfkoenig (at) immd4.informatik.uni-erlangen.de)
5 * Copyright (c) 1998, 1999 Brent Baccala (baccala (at) freesoft.org)
6 * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill (at) netbsd.org>
7 * Copyright (c) 2005 Michael Lorenz <macallan (at) netbsd.org>
8 * All rights reserved.
9 *
10 * This driver is losely based on a Linux driver written by Rudolf Koenig and
11 * Brent Baccala who kindly gave their permission to use their code in a
12 * BSD-licensed driver.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.19 2008/05/09 03:12:49 macallan Exp $");
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/intr.h>
51
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/auconv.h>
59
60 #include <dev/ic/cs4215reg.h>
61 #include <dev/ic/cs4215var.h>
62 #include <dev/sbus/dbrireg.h>
63 #include <dev/sbus/dbrivar.h>
64
65 #include "opt_sbus_dbri.h"
66
67 #define DBRI_ROM_NAME_PREFIX "SUNW,DBRI"
68
69 #ifdef DBRI_DEBUG
70 # define DPRINTF aprint_normal
71 #else
72 # define DPRINTF while (0) printf
73 #endif
74
75 static const char *dbri_supported[] = {
76 "e",
77 "s3",
78 ""
79 };
80
81 enum ms {
82 CHImaster,
83 CHIslave
84 };
85
86 enum io {
87 PIPEinput,
88 PIPEoutput
89 };
90
91 /*
92 * Function prototypes
93 */
94
95 /* softc stuff */
96 static void dbri_attach_sbus(struct device *, struct device *, void *);
97 static int dbri_match_sbus(struct device *, struct cfdata *, void *);
98
99 static void dbri_config_interrupts(struct device *);
100
101 /* interrupt handler */
102 static int dbri_intr(void *);
103 static void dbri_softint(void *);
104
105 /* supporting subroutines */
106 static int dbri_init(struct dbri_softc *);
107 static int dbri_reset(struct dbri_softc *);
108 static volatile u_int32_t *dbri_command_lock(struct dbri_softc *);
109 static void dbri_command_send(struct dbri_softc *, volatile u_int32_t *);
110 static void dbri_process_interrupt_buffer(struct dbri_softc *);
111 static void dbri_process_interrupt(struct dbri_softc *, int32_t);
112
113 /* mmcodec subroutines */
114 static int mmcodec_init(struct dbri_softc *);
115 static void mmcodec_init_data(struct dbri_softc *);
116 static void mmcodec_pipe_init(struct dbri_softc *);
117 static void mmcodec_default(struct dbri_softc *);
118 static void mmcodec_setgain(struct dbri_softc *, int);
119 static int mmcodec_setcontrol(struct dbri_softc *);
120
121 /* chi subroutines */
122 static void chi_reset(struct dbri_softc *, enum ms, int);
123
124 /* pipe subroutines */
125 static void pipe_setup(struct dbri_softc *, int, int);
126 static void pipe_reset(struct dbri_softc *, int);
127 static void pipe_receive_fixed(struct dbri_softc *, int,
128 volatile u_int32_t *);
129 static void pipe_transmit_fixed(struct dbri_softc *, int, u_int32_t);
130
131 static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
132 static int pipe_active(struct dbri_softc *, int);
133
134 /* audio(9) stuff */
135 static int dbri_query_encoding(void *, struct audio_encoding *);
136 static int dbri_set_params(void *, int, int, struct audio_params *,
137 struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
138 static int dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int dbri_halt_output(void *);
140 static int dbri_halt_input(void *);
141 static int dbri_getdev(void *, struct audio_device *);
142 static int dbri_set_port(void *, mixer_ctrl_t *);
143 static int dbri_get_port(void *, mixer_ctrl_t *);
144 static int dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static size_t dbri_round_buffersize(void *, int, size_t);
146 static int dbri_get_props(void *);
147 static int dbri_open(void *, int);
148 static void dbri_close(void *);
149
150 static void setup_ring_xmit(struct dbri_softc *, int, int, int, int,
151 void (*)(void *), void *);
152 static void setup_ring_recv(struct dbri_softc *, int, int, int, int,
153 void (*)(void *), void *);
154
155 static int dbri_trigger_output(void *, void *, void *, int,
156 void (*)(void *), void *, const struct audio_params *);
157 static int dbri_trigger_input(void *, void *, void *, int,
158 void (*)(void *), void *, const struct audio_params *);
159
160 static void *dbri_malloc(void *, int, size_t, struct malloc_type *, int);
161 static void dbri_free(void *, void *, struct malloc_type *);
162 static paddr_t dbri_mappage(void *, void *, off_t, int);
163 static void dbri_set_power(struct dbri_softc *, int);
164 static void dbri_bring_up(struct dbri_softc *);
165 static void dbri_powerhook(int, void *);
166
167 /* stupid support routines */
168 static u_int32_t reverse_bytes(u_int32_t, int);
169
170 struct audio_device dbri_device = {
171 "CS4215",
172 "",
173 "dbri"
174 };
175
176 struct audio_hw_if dbri_hw_if = {
177 dbri_open,
178 dbri_close,
179 NULL, /* drain */
180 dbri_query_encoding,
181 dbri_set_params,
182 dbri_round_blocksize,
183 NULL, /* commit_settings */
184 NULL, /* init_output */
185 NULL, /* init_input */
186 NULL, /* start_output */
187 NULL, /* start_input */
188 dbri_halt_output,
189 dbri_halt_input,
190 NULL, /* speaker_ctl */
191 dbri_getdev,
192 NULL, /* setfd */
193 dbri_set_port,
194 dbri_get_port,
195 dbri_query_devinfo,
196 dbri_malloc,
197 dbri_free,
198 dbri_round_buffersize,
199 dbri_mappage,
200 dbri_get_props,
201 dbri_trigger_output,
202 dbri_trigger_input
203 };
204
205 CFATTACH_DECL(dbri, sizeof(struct dbri_softc),
206 dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
207
208 #define DBRI_NFORMATS 4
209 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
210 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
211 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
212 48000}},
213 /* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
214 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
215 48000}},
216 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
217 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
218 48000}},
219 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
220 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
221 48000}},*/
222 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
223 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
224 48000}},
225 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
226 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
227 48000}},
228 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
229 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
230 48000}},
231 };
232
233 enum {
234 DBRI_OUTPUT_CLASS,
235 DBRI_VOL_OUTPUT,
236 DBRI_ENABLE_MONO,
237 DBRI_ENABLE_HEADPHONE,
238 DBRI_ENABLE_LINE,
239 DBRI_MONITOR_CLASS,
240 DBRI_VOL_MONITOR,
241 DBRI_INPUT_CLASS,
242 DBRI_INPUT_GAIN,
243 DBRI_INPUT_SELECT,
244 DBRI_RECORD_CLASS,
245 DBRI_ENUM_LAST
246 };
247
248 /*
249 * Autoconfig routines
250 */
251 static int
252 dbri_match_sbus(struct device *parent, struct cfdata *match, void *aux)
253 {
254 struct sbus_attach_args *sa = aux;
255 char *ver;
256 int i;
257
258 if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
259 return (0);
260
261 ver = &sa->sa_name[9];
262
263 for (i = 0; dbri_supported[i][0] != '\0'; i++)
264 if (strcmp(dbri_supported[i], ver) == 0)
265 return (1);
266
267 return (0);
268 }
269
270 static void
271 dbri_attach_sbus(struct device *parent, struct device *self, void *aux)
272 {
273 struct dbri_softc *sc = (struct dbri_softc *)self;
274 struct sbus_attach_args *sa = aux;
275 bus_space_handle_t ioh;
276 bus_size_t size;
277 int error, rseg, pwr, i;
278 char *ver = &sa->sa_name[9];
279
280 sc->sc_iot = sa->sa_bustag;
281 sc->sc_dmat = sa->sa_dmatag;
282 sc->sc_powerstate = 1;
283
284 pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
285 aprint_normal(": rev %s\n", ver);
286
287 if (pwr) {
288 /*
289 * we can control DBRI power via auxio and we're initially
290 * powered down
291 */
292
293 sc->sc_have_powerctl = 1;
294 sc->sc_powerstate = 0;
295 dbri_set_power(sc, 1);
296 powerhook_establish(device_xname(self), dbri_powerhook, sc);
297 } else {
298 /* we can't control power so we're always up */
299 sc->sc_have_powerctl = 0;
300 sc->sc_powerstate = 1;
301 }
302
303 for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
304 sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
305 dbri_softint, &sc->sc_desc[i]);
306 }
307
308 if (sa->sa_npromvaddrs)
309 ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
310 else {
311 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
312 sa->sa_offset, sa->sa_size,
313 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
314 aprint_error("%s @ sbus: cannot map registers\n",
315 device_xname(self));
316 return;
317 }
318 }
319
320 sc->sc_ioh = ioh;
321
322 size = sizeof(struct dbri_dma);
323
324 /* get a DMA handle */
325 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
326 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
327 aprint_error_dev(self, "DMA map create error %d\n",
328 error);
329 return;
330 }
331
332 /* allocate DMA buffer */
333 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
334 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
335 aprint_error_dev(self, "DMA buffer alloc error %d\n",
336 error);
337 return;
338 }
339
340 /* map DMA buffer into CPU addressable space */
341 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
342 &sc->sc_membase,
343 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
344 aprint_error_dev(self, "DMA buffer map error %d\n",
345 error);
346 return;
347 }
348
349 /* load the buffer */
350 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
351 sc->sc_membase, size, NULL,
352 BUS_DMA_NOWAIT)) != 0) {
353 aprint_error_dev(self, "DMA buffer map load error %d\n",
354 error);
355 bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
356 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
357 return;
358 }
359
360 /* map the registers into memory */
361
362 /* kernel virtual address of DMA buffer */
363 sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
364 /* physical address of DMA buffer */
365 sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
366 sc->sc_bufsiz = size;
367
368 sbus_establish(&sc->sc_sd, &sc->sc_dev);
369
370 bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr,
371 sc);
372
373 sc->sc_locked = 0;
374 sc->sc_desc_used = 0;
375 sc->sc_refcount = 0;
376 sc->sc_playing = 0;
377 sc->sc_recording = 0;
378 sc->sc_pmgrstate = PWR_RESUME;
379 config_interrupts(self, &dbri_config_interrupts);
380
381 return;
382 }
383
384 /*
385 * lowlevel routine to switch power for the DBRI chip
386 */
387 static void
388 dbri_set_power(struct dbri_softc *sc, int state)
389 {
390 int s;
391
392 if (sc->sc_have_powerctl == 0)
393 return;
394 if (sc->sc_powerstate == state)
395 return;
396
397 if (state) {
398 DPRINTF("%s: waiting to power up... ", device_xname(&sc->sc_dev));
399 s = splhigh();
400 *AUXIO4M_REG |= (AUXIO4M_MMX);
401 splx(s);
402 delay(10000);
403 DPRINTF("done (%02x)\n", *AUXIO4M_REG);
404 } else {
405 DPRINTF("%s: powering down\n", device_xname(&sc->sc_dev));
406 s = splhigh();
407 *AUXIO4M_REG &= ~AUXIO4M_MMX;
408 splx(s);
409 DPRINTF("done (%02x})\n", *AUXIO4M_REG);
410 }
411 sc->sc_powerstate = state;
412 }
413
414 /*
415 * power up and re-initialize the chip
416 */
417 static void
418 dbri_bring_up(struct dbri_softc *sc)
419 {
420
421 if (sc->sc_have_powerctl == 0)
422 return;
423
424 if (sc->sc_powerstate == 1)
425 return;
426
427 /* ok, we really need to do something */
428 dbri_set_power(sc, 1);
429
430 /*
431 * re-initialize the chip but skip all the probing, don't overwrite
432 * any other settings either
433 */
434 dbri_init(sc);
435 mmcodec_setgain(sc, 1);
436 mmcodec_pipe_init(sc);
437 mmcodec_init_data(sc);
438 mmcodec_setgain(sc, 0);
439 }
440
441 static void
442 dbri_config_interrupts(struct device *dev)
443 {
444 struct dbri_softc *sc = (struct dbri_softc *)dev;
445
446 dbri_init(sc);
447 mmcodec_init(sc);
448
449 /* Attach ourselves to the high level audio interface */
450 audio_attach_mi(&dbri_hw_if, sc, &sc->sc_dev);
451
452 /* power down until open() */
453 dbri_set_power(sc, 0);
454 return;
455 }
456
457 static int
458 dbri_intr(void *hdl)
459 {
460 struct dbri_softc *sc = hdl;
461 bus_space_tag_t iot = sc->sc_iot;
462 bus_space_handle_t ioh = sc->sc_ioh;
463 int x;
464
465 /* clear interrupt */
466 x = bus_space_read_4(iot, ioh, DBRI_REG1);
467 if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
468 u_int32_t tmp;
469
470 if (x & DBRI_MRR)
471 aprint_debug_dev(&sc->sc_dev, "multiple ack error on sbus\n");
472 if (x & DBRI_MLE)
473 aprint_debug_dev(&sc->sc_dev, "multiple late error on sbus\n");
474 if (x & DBRI_LBG)
475 aprint_debug_dev(&sc->sc_dev, "lost bus grant on sbus\n");
476 if (x & DBRI_MBE)
477 aprint_debug_dev(&sc->sc_dev, "burst error on sbus\n");
478
479 /*
480 * Some of these errors disable the chip's circuitry.
481 * Re-enable the circuitry and keep on going.
482 */
483
484 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
485 tmp &= ~(DBRI_DISABLE_MASTER);
486 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
487 }
488
489 #if 0
490 if (!x & 1) /* XXX: DBRI_INTR_REQ */
491 return (1);
492 #endif
493
494 dbri_process_interrupt_buffer(sc);
495
496 return (1);
497 }
498
499 static void
500 dbri_softint(void *cookie)
501 {
502 struct dbri_desc *dd = cookie;
503
504 if (dd->callback != NULL)
505 dd->callback(dd->callback_args);
506 }
507
508 static int
509 dbri_init(struct dbri_softc *sc)
510 {
511 bus_space_tag_t iot = sc->sc_iot;
512 bus_space_handle_t ioh = sc->sc_ioh;
513 u_int32_t reg;
514 volatile u_int32_t *cmd;
515 bus_addr_t dmaaddr;
516 int n;
517
518 dbri_reset(sc);
519
520 cmd = dbri_command_lock(sc);
521
522 /* XXX: Initialize interrupt ring buffer */
523 sc->sc_dma->intr[0] = (u_int32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
524 sc->sc_irqp = 1;
525
526 /* Initialize pipes */
527 for (n = 0; n < DBRI_PIPE_MAX; n++)
528 sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
529
530 for (n = 1; n < DBRI_INT_BLOCKS; n++) {
531 sc->sc_dma->intr[n] = 0;
532 }
533
534 /* Disable all SBus bursts */
535 /* XXX 16 byte bursts cause errors, the rest works */
536 reg = bus_space_read_4(iot, ioh, DBRI_REG0);
537
538 /*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
539 reg |= (DBRI_BURST_4 | DBRI_BURST_8);
540 bus_space_write_4(iot, ioh, DBRI_REG0, reg);
541
542 /* setup interrupt queue */
543 dmaaddr = (u_int32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
544 *(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
545 *(cmd++) = dmaaddr;
546
547 dbri_command_send(sc, cmd);
548 return (0);
549 }
550
551 static int
552 dbri_reset(struct dbri_softc *sc)
553 {
554 int bail = 0;
555
556 bus_space_tag_t iot = sc->sc_iot;
557 bus_space_handle_t ioh = sc->sc_ioh;
558
559 bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
560 while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
561 (bail < 100000)) {
562 bail++;
563 delay(10);
564 }
565 if (bail == 100000)
566 aprint_error_dev(&sc->sc_dev, "reset timed out\n");
567 return (0);
568 }
569
570 static volatile u_int32_t *
571 dbri_command_lock(struct dbri_softc *sc)
572 {
573
574 if (sc->sc_locked)
575 aprint_debug_dev(&sc->sc_dev, "command buffer locked\n");
576
577 sc->sc_locked++;
578
579 return (&sc->sc_dma->command[0]);
580 }
581
582 static void
583 dbri_command_send(struct dbri_softc *sc, volatile u_int32_t *cmd)
584 {
585 bus_space_handle_t ioh = sc->sc_ioh;
586 bus_space_tag_t iot = sc->sc_iot;
587 int maxloops = 1000000;
588 int x;
589
590 x = splsched();
591
592 sc->sc_locked--;
593
594 if (sc->sc_locked != 0) {
595 aprint_error_dev(&sc->sc_dev, "command buffer improperly locked\n");
596 } else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
597 aprint_error_dev(&sc->sc_dev, "command buffer overflow\n");
598 } else {
599 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
600 *(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
601 sc->sc_waitseen = 0;
602 bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
603 while ((--maxloops) > 0 &&
604 (bus_space_read_4(iot, ioh, DBRI_REG0)
605 & DBRI_COMMAND_VALID)) {
606 bus_space_barrier(iot, ioh, DBRI_REG0, 4,
607 BUS_SPACE_BARRIER_READ);
608 delay(1000);
609 }
610
611 if (maxloops == 0) {
612 aprint_error_dev(&sc->sc_dev,
613 "chip never completed command buffer\n");
614 } else {
615
616 DPRINTF("%s: command completed\n",
617 device_xname(&sc->sc_dev));
618
619 while ((--maxloops) > 0 && (!sc->sc_waitseen))
620 dbri_process_interrupt_buffer(sc);
621 if (maxloops == 0) {
622 aprint_error_dev(&sc->sc_dev, "chip never acked WAIT\n");
623 }
624 }
625 }
626
627 splx(x);
628
629 return;
630 }
631
632 static void
633 dbri_process_interrupt_buffer(struct dbri_softc *sc)
634 {
635 int32_t i;
636
637 while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
638 sc->sc_dma->intr[sc->sc_irqp] = 0;
639 sc->sc_irqp++;
640
641 if (sc->sc_irqp == DBRI_INT_BLOCKS)
642 sc->sc_irqp = 1;
643 else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
644 sc->sc_irqp++;
645
646 dbri_process_interrupt(sc, i);
647 }
648
649 return;
650 }
651
652 static void
653 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
654 {
655 #if 0
656 const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
657 #endif
658 int val = DBRI_INTR_GETVAL(i);
659 int channel = DBRI_INTR_GETCHAN(i);
660 int command = DBRI_INTR_GETCMD(i);
661 int code = DBRI_INTR_GETCODE(i);
662 #if 0
663 int rval = DBRI_INTR_GETRVAL(i);
664 #endif
665 if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
666 sc->sc_waitseen++;
667
668 switch (code) {
669 case DBRI_INTR_XCMP: /* transmission complete */
670 {
671 int td;
672 struct dbri_desc *dd;
673
674 td = sc->sc_pipe[channel].desc;
675 dd = &sc->sc_desc[td];
676
677 if (dd->callback != NULL)
678 softint_schedule(dd->softint);
679 break;
680 }
681 case DBRI_INTR_FXDT: /* fixed data change */
682 DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel,
683 val);
684 #if 0
685 printf("reg: %08x\n", sc->sc_mm.status);
686 #endif
687 if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
688 val = reverse_bytes(val, sc->sc_pipe[channel].length);
689 if (sc->sc_pipe[channel].prec)
690 *(sc->sc_pipe[channel].prec) = val;
691 #ifndef DBRI_SPIN
692 DPRINTF("%s: wakeup %p\n", device_xname(&sc->sc_dev), sc);
693 wakeup(sc);
694 #endif
695 break;
696 case DBRI_INTR_SBRI:
697 DPRINTF("dbri_intr: SBRI\n");
698 break;
699 case DBRI_INTR_BRDY:
700 {
701 int td;
702 struct dbri_desc *dd;
703
704 td = sc->sc_pipe[channel].desc;
705 dd = &sc->sc_desc[td];
706
707 if (dd->callback != NULL)
708 softint_schedule(dd->softint);
709 break;
710 }
711 case DBRI_INTR_UNDR:
712 {
713 volatile u_int32_t *cmd;
714 int td = sc->sc_pipe[channel].desc;
715
716 DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(&sc->sc_dev));
717
718 sc->sc_dma->xmit[td].status = 0;
719
720 cmd = dbri_command_lock(sc);
721 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
722 sc->sc_pipe[channel].sdp |
723 DBRI_SDP_VALID_POINTER |
724 DBRI_SDP_CLEAR |
725 DBRI_SDP_2SAME);
726 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
727 dbri_command_send(sc, cmd);
728 break;
729 }
730 case DBRI_INTR_CMDI:
731 DPRINTF("ok");
732 break;
733 default:
734
735 aprint_error_dev(&sc->sc_dev, "unknown interrupt code %d\n",
736 code);
737 break;
738 }
739
740 return;
741 }
742
743 /*
744 * mmcodec stuff
745 */
746
747 static int
748 mmcodec_init(struct dbri_softc *sc)
749 {
750 bus_space_handle_t ioh = sc->sc_ioh;
751 bus_space_tag_t iot = sc->sc_iot;
752 u_int32_t reg2;
753 int bail;
754
755 reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
756 DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
757
758 if (reg2 & DBRI_PIO2) {
759 aprint_normal_dev(&sc->sc_dev, " onboard CS4215 detected\n");
760 sc->sc_mm.onboard = 1;
761 }
762
763 if (reg2 & DBRI_PIO0) {
764 aprint_normal_dev(&sc->sc_dev, "speakerbox detected\n");
765 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
766 sc->sc_mm.onboard = 0;
767 }
768
769 if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
770 aprint_normal_dev(&sc->sc_dev, "using speakerbox\n");
771 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
772 sc->sc_mm.onboard = 0;
773 }
774
775 if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
776 aprint_normal_dev(&sc->sc_dev, "no mmcodec found\n");
777 return -1;
778 }
779
780 sc->sc_version = 0xff;
781
782 mmcodec_pipe_init(sc);
783 mmcodec_default(sc);
784
785 sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
786
787 /*
788 * mmcodec_setcontrol() sometimes fails right after powerup
789 * so we just try again until we either get a useful response or run
790 * out of time
791 */
792 bail = 0;
793 while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
794
795 bail++;
796 if (bail > 100) {
797 DPRINTF("%s: cs4215 probe failed at offset %d\n",
798 device_xname(&sc->sc_dev), sc->sc_mm.offset);
799 return (-1);
800 }
801 delay(10000);
802 }
803
804 aprint_normal_dev(&sc->sc_dev, "cs4215 rev %c found at offset %d\n",
805 0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
806
807 /* set some sane defaults for mmcodec_init_data */
808 sc->sc_params.channels = 2;
809 sc->sc_params.precision = 16;
810
811 mmcodec_init_data(sc);
812
813 return (0);
814 }
815
816 static void
817 mmcodec_init_data(struct dbri_softc *sc)
818 {
819 bus_space_tag_t iot = sc->sc_iot;
820 bus_space_handle_t ioh = sc->sc_ioh;
821 u_int32_t tmp;
822 int data_width;
823
824 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
825 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
826 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
827
828 /* switch CS4215 to data mode - set PIO3 to 1 */
829 tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
830
831 /* XXX */
832 tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
833
834 bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
835 chi_reset(sc, CHIslave, 128);
836
837 data_width = sc->sc_params.channels * sc->sc_params.precision;
838
839 if ((data_width != 32) && (data_width != 8))
840 aprint_error("%s: data_width is %d\n", __func__, data_width);
841
842 pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
843 pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
844 pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
845 pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
846
847 pipe_receive_fixed(sc, 21, &sc->sc_mm.status);
848
849 mmcodec_setgain(sc, 0);
850
851 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
852 tmp |= DBRI_CHI_ACTIVATE;
853 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
854
855 return;
856 }
857
858 static void
859 mmcodec_pipe_init(struct dbri_softc *sc)
860 {
861
862 pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
863 pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
864 pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
865 pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
866
867 pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
868 pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
869 pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
870
871 sc->sc_mm.status = 0;
872
873 pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
874 pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
875
876 return;
877 }
878
879 static void
880 mmcodec_default(struct dbri_softc *sc)
881 {
882 struct cs4215_state *mm = &sc->sc_mm;
883
884 /*
885 * no action, memory resetting only
886 *
887 * data time slots 5-8
888 * speaker, line and headphone enable. set gain to half.
889 * input is line
890 */
891 mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
892 mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
893 sc->sc_linp = 128;
894 sc->sc_rinp = 128;
895 sc->sc_monitor = 0;
896 sc->sc_input = 1; /* line */
897 mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
898 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
899 mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
900 CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
901
902
903 /*
904 * control time slots 1-4
905 *
906 * 0: default I/O voltage scale
907 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
908 * 2: serial enable, CHI master, 128 bits per frame, clock 1
909 * 3: tests disabled
910 */
911 mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB;
912 mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
913 mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
914 mm->c.bcontrol[3] = 0;
915
916 return;
917 }
918
919 static void
920 mmcodec_setgain(struct dbri_softc *sc, int mute)
921 {
922 if (mute) {
923 /* disable all outputs, max. attenuation */
924 sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
925 sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
926 } else {
927
928 sc->sc_mm.d.bdata[0] = sc->sc_latt;
929 sc->sc_mm.d.bdata[1] = sc->sc_ratt;
930 }
931
932 /* input stuff */
933 sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
934 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
935 sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
936 (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
937
938 if (sc->sc_powerstate == 0)
939 return;
940 pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
941
942 DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
943 /* give the chip some time to execute the command */
944 delay(250);
945
946 return;
947 }
948
949 static int
950 mmcodec_setcontrol(struct dbri_softc *sc)
951 {
952 bus_space_tag_t iot = sc->sc_iot;
953 bus_space_handle_t ioh = sc->sc_ioh;
954 u_int32_t val;
955 u_int32_t tmp;
956 int bail = 0;
957 #if DBRI_SPIN
958 int i;
959 #endif
960
961 /*
962 * Temporarily mute outputs and wait 125 us to make sure that it
963 * happens. This avoids clicking noises.
964 */
965 mmcodec_setgain(sc, 1);
966 delay(125);
967
968 bus_space_write_4(iot, ioh, DBRI_REG2, 0);
969 delay(125);
970
971 /* enable control mode */
972 val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */
973
974 /* XXX */
975 val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
976
977 bus_space_write_4(iot, ioh, DBRI_REG2, val);
978
979 delay(34);
980
981 /*
982 * in control mode, the cs4215 is the slave device, so the
983 * DBRI must act as the CHI master.
984 *
985 * in data mode, the cs4215 must be the CHI master to insure
986 * that the data stream is in sync with its codec
987 */
988 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
989 tmp &= ~DBRI_COMMAND_CHI;
990 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
991
992 chi_reset(sc, CHImaster, 128);
993
994 /* control mode */
995 pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
996 pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
997 pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
998
999 /* wait for the chip to echo back CLB as zero */
1000 sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1001 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1002
1003 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1004 tmp |= DBRI_CHI_ACTIVATE;
1005 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1006
1007 #if DBRI_SPIN
1008 i = 1024;
1009 while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) {
1010 delay(125);
1011 }
1012
1013 if (i == 0) {
1014 DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1015 device_xname(&sc->sc_dev), sc->sc_mm.status);
1016 return (-1);
1017 }
1018 #else
1019 while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) {
1020 DPRINTF("%s: tsleep %p\n", device_xname(&sc->sc_dev), sc);
1021 tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz);
1022 bail++;
1023 }
1024 #endif
1025 if (bail >= 10) {
1026 DPRINTF("%s: switching to control mode timed out (%x %x)\n",
1027 device_xname(&sc->sc_dev), sc->sc_mm.status,
1028 bus_space_read_4(iot, ioh, DBRI_REG2));
1029 return -1;
1030 }
1031
1032 /* copy the version information before it becomes unreadable again */
1033 sc->sc_version = sc->sc_mm.version;
1034
1035 /* terminate cs4215 control mode */
1036 sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1037 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1038
1039 /* two frames of control info @ 8kHz frame rate = 250us delay */
1040 delay(250);
1041
1042 mmcodec_setgain(sc, 0);
1043
1044 return (0);
1045
1046 }
1047
1048 /*
1049 * CHI combo
1050 */
1051 static void
1052 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1053 {
1054 volatile u_int32_t *cmd;
1055 int val;
1056 int clockrate, divisor;
1057
1058 cmd = dbri_command_lock(sc);
1059
1060 /* set CHI anchor: pipe 16 */
1061 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1062 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1063 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1064 *(cmd++) = 0;
1065
1066 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1067 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1068 *(cmd++) = 0;
1069 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1070
1071 sc->sc_pipe[16].sdp = 1;
1072 sc->sc_pipe[16].next = 16;
1073 sc->sc_chi_pipe_in = 16;
1074 sc->sc_chi_pipe_out = 16;
1075
1076 switch (ms) {
1077 case CHIslave:
1078 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1079 break;
1080 case CHImaster:
1081 clockrate = bpf * 8;
1082 divisor = 12288 / clockrate;
1083
1084 if (divisor > 255 || divisor * clockrate != 12288)
1085 aprint_error_dev(&sc->sc_dev, "illegal bits-per-frame %d\n",
1086 bpf);
1087
1088 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1089 DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1090 break;
1091 default:
1092 aprint_error_dev(&sc->sc_dev, "unknown value for ms!\n");
1093 break;
1094 }
1095
1096 sc->sc_chi_bpf = bpf;
1097
1098 /* CHI data mode */
1099 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1100 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1101 DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1102
1103 dbri_command_send(sc, cmd);
1104
1105 return;
1106 }
1107
1108 /*
1109 * pipe stuff
1110 */
1111 static void
1112 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1113 {
1114 DPRINTF("pipe setup: %d\n", pipe);
1115 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1116 aprint_error_dev(&sc->sc_dev, "illegal pipe number %d\n",
1117 pipe);
1118 return;
1119 }
1120
1121 if ((sdp & 0xf800) != sdp)
1122 aprint_error_dev(&sc->sc_dev, "strange SDP value %d\n",
1123 sdp);
1124
1125 if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1126 !(sdp & DBRI_SDP_TO_SER))
1127 sdp |= DBRI_SDP_CHANGE;
1128
1129 sdp |= DBRI_PIPE(pipe);
1130
1131 sc->sc_pipe[pipe].sdp = sdp;
1132 sc->sc_pipe[pipe].desc = -1;
1133
1134 pipe_reset(sc, pipe);
1135
1136 return;
1137 }
1138
1139 static void
1140 pipe_reset(struct dbri_softc *sc, int pipe)
1141 {
1142 struct dbri_desc *dd;
1143 int sdp;
1144 int desc;
1145 volatile u_int32_t *cmd;
1146
1147 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1148 aprint_error_dev(&sc->sc_dev, "illegal pipe number %d\n",
1149 pipe);
1150 return;
1151 }
1152
1153 sdp = sc->sc_pipe[pipe].sdp;
1154 if (sdp == 0) {
1155 aprint_error_dev(&sc->sc_dev, "can not reset uninitialized pipe %d\n",
1156 pipe);
1157 return;
1158 }
1159
1160 cmd = dbri_command_lock(sc);
1161 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1162 sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1163 *(cmd++) = 0;
1164 dbri_command_send(sc, cmd);
1165
1166 desc = sc->sc_pipe[pipe].desc;
1167
1168 dd = &sc->sc_desc[desc];
1169
1170 dd->busy = 0;
1171
1172 #if 0
1173 if (dd->callback)
1174 softint_schedule(dd->softint);
1175 #endif
1176
1177 sc->sc_pipe[pipe].desc = -1;
1178
1179 return;
1180 }
1181
1182 static void
1183 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile u_int32_t *prec)
1184 {
1185
1186 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1187 aprint_error_dev(&sc->sc_dev, "illegal pipe number %d\n",
1188 pipe);
1189 return;
1190 }
1191
1192 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1193 aprint_error_dev(&sc->sc_dev, "non-fixed pipe %d\n",
1194 pipe);
1195 return;
1196 }
1197
1198 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1199 aprint_error_dev(&sc->sc_dev, "can not receive on transmit pipe %d\b",
1200 pipe);
1201 return;
1202 }
1203
1204 sc->sc_pipe[pipe].prec = prec;
1205
1206 return;
1207 }
1208
1209 static void
1210 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, u_int32_t data)
1211 {
1212 volatile u_int32_t *cmd;
1213
1214 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1215 aprint_error_dev(&sc->sc_dev, "illegal pipe number %d\n",
1216 pipe);
1217 return;
1218 }
1219
1220 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1221 aprint_error_dev(&sc->sc_dev, "uninitialized pipe %d\n",
1222 pipe);
1223 return;
1224 }
1225
1226 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1227 aprint_error_dev(&sc->sc_dev, "non-fixed pipe %d\n",
1228 pipe);
1229 return;
1230 }
1231
1232 if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1233 aprint_error_dev(&sc->sc_dev, "called on receive pipe %d\n",
1234 pipe);
1235 return;
1236 }
1237
1238 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1239 data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1240
1241 cmd = dbri_command_lock(sc);
1242 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1243 *(cmd++) = data;
1244
1245 dbri_command_send(sc, cmd);
1246
1247 return;
1248 }
1249
1250 static void
1251 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1252 void (*callback)(void *), void *callback_args)
1253 {
1254 volatile u_int32_t *cmd;
1255 int x, i;
1256 int td;
1257 int td_first, td_last;
1258 bus_addr_t dmabuf, dmabase;
1259 struct dbri_desc *dd = &sc->sc_desc[which];
1260
1261 switch (pipe) {
1262 case 4:
1263 /* output, offset 0 */
1264 break;
1265 default:
1266 aprint_error("%s: illegal pipe number (%d)\n",
1267 __func__, pipe);
1268 return;
1269 }
1270
1271 td = 0;
1272 td_first = td_last = -1;
1273
1274 if (sc->sc_pipe[pipe].sdp == 0) {
1275 aprint_error_dev(&sc->sc_dev, "uninitialized pipe %d\n",
1276 pipe);
1277 return;
1278 }
1279
1280 dmabuf = dd->dmabase;
1281 dmabase = sc->sc_dmabase;
1282 td = 0;
1283
1284 for (i = 0; i < (num - 1); i++) {
1285
1286 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1287 | TX_EOF | TX_BINT;
1288 sc->sc_dma->xmit[i].ba = dmabuf;
1289 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1290 sc->sc_dma->xmit[i].status = 0;
1291
1292 td_last = td;
1293 dmabuf += blksz;
1294 }
1295
1296 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1297
1298 sc->sc_dma->xmit[i].ba = dmabuf;
1299 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1300 sc->sc_dma->xmit[i].status = 0;
1301
1302 dd->callback = callback;
1303 dd->callback_args = callback_args;
1304
1305 x = splsched();
1306
1307 /* the pipe shouldn't be active */
1308 if (pipe_active(sc, pipe)) {
1309 aprint_error("pipe active (CDP)\n");
1310 /* pipe is already active */
1311 #if 0
1312 td_last = sc->sc_pipe[pipe].desc;
1313 while (sc->sc_desc[td_last].next != -1)
1314 td_last = sc->sc_desc[td_last].next;
1315
1316 sc->sc_desc[td_last].next = td_first;
1317 sc->sc_dma->desc[td_last].nda =
1318 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1319
1320 cmd = dbri_command_lock(sc);
1321 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1322 dbri_command_send(sc, cmd);
1323 #endif
1324 } else {
1325 /*
1326 * pipe isn't active - issue an SDP command to start our
1327 * chain of TDs running
1328 */
1329 sc->sc_pipe[pipe].desc = which;
1330 cmd = dbri_command_lock(sc);
1331 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1332 sc->sc_pipe[pipe].sdp |
1333 DBRI_SDP_VALID_POINTER |
1334 DBRI_SDP_EVERY |
1335 DBRI_SDP_CLEAR);
1336 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1337 dbri_command_send(sc, cmd);
1338 DPRINTF("%s: starting DMA\n", __func__);
1339 }
1340
1341 splx(x);
1342
1343 return;
1344 }
1345
1346 static void
1347 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1348 void (*callback)(void *), void *callback_args)
1349 {
1350 volatile u_int32_t *cmd;
1351 int x, i;
1352 int td_first, td_last;
1353 bus_addr_t dmabuf, dmabase;
1354 struct dbri_desc *dd = &sc->sc_desc[which];
1355
1356 switch (pipe) {
1357 case 6:
1358 break;
1359 default:
1360 aprint_error("%s: illegal pipe number (%d)\n",
1361 __func__, pipe);
1362 return;
1363 }
1364
1365 td_first = td_last = -1;
1366
1367 if (sc->sc_pipe[pipe].sdp == 0) {
1368 aprint_error_dev(&sc->sc_dev, "uninitialized pipe %d\n",
1369 pipe);
1370 return;
1371 }
1372
1373 dmabuf = dd->dmabase;
1374 dmabase = sc->sc_dmabase;
1375
1376 for (i = 0; i < (num - 1); i++) {
1377
1378 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1379 sc->sc_dma->recv[i].ba = dmabuf;
1380 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1381 sc->sc_dma->recv[i].status = RX_EOF;
1382
1383 td_last = i;
1384 dmabuf += blksz;
1385 }
1386
1387 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1388
1389 sc->sc_dma->recv[i].ba = dmabuf;
1390 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1391 sc->sc_dma->recv[i].status = RX_EOF;
1392
1393 dd->callback = callback;
1394 dd->callback_args = callback_args;
1395
1396 x = splsched();
1397
1398 /* the pipe shouldn't be active */
1399 if (pipe_active(sc, pipe)) {
1400 aprint_error("pipe active (CDP)\n");
1401 /* pipe is already active */
1402 #if 0
1403 td_last = sc->sc_pipe[pipe].desc;
1404 while (sc->sc_desc[td_last].next != -1)
1405 td_last = sc->sc_desc[td_last].next;
1406
1407 sc->sc_desc[td_last].next = td_first;
1408 sc->sc_dma->desc[td_last].nda =
1409 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1410
1411 cmd = dbri_command_lock(sc);
1412 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1413 dbri_command_send(sc, cmd);
1414 #endif
1415 } else {
1416 /*
1417 * pipe isn't active - issue an SDP command to start our
1418 * chain of TDs running
1419 */
1420 sc->sc_pipe[pipe].desc = which;
1421 cmd = dbri_command_lock(sc);
1422 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1423 sc->sc_pipe[pipe].sdp |
1424 DBRI_SDP_VALID_POINTER |
1425 DBRI_SDP_EVERY |
1426 DBRI_SDP_CLEAR);
1427 *(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1428 dbri_command_send(sc, cmd);
1429 DPRINTF("%s: starting DMA\n", __func__);
1430 }
1431
1432 splx(x);
1433
1434 return;
1435 }
1436
1437 static void
1438 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1439 int len, int cycle)
1440 {
1441 volatile u_int32_t *cmd;
1442 int prevpipe, nextpipe;
1443 int val;
1444
1445 DPRINTF("%s: %d\n", __func__, pipe);
1446 if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1447 basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1448 aprint_error_dev(&sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1449 pipe, basepipe);
1450 return;
1451 }
1452
1453 if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1454 aprint_error_dev(&sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1455 pipe, basepipe);
1456 return;
1457 }
1458
1459 if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1460 cycle = sc->sc_chi_bpf;
1461
1462 if (basepipe == pipe)
1463 prevpipe = nextpipe = pipe;
1464 else {
1465 if (basepipe == 16) {
1466 if (dir == PIPEinput) {
1467 prevpipe = sc->sc_chi_pipe_in;
1468 } else {
1469 prevpipe = sc->sc_chi_pipe_out;
1470 }
1471 } else
1472 prevpipe = basepipe;
1473
1474 nextpipe = sc->sc_pipe[prevpipe].next;
1475
1476 while (sc->sc_pipe[nextpipe].cycle < cycle &&
1477 sc->sc_pipe[nextpipe].next != basepipe) {
1478 prevpipe = nextpipe;
1479 nextpipe = sc->sc_pipe[nextpipe].next;
1480 }
1481 }
1482
1483 if (prevpipe == 16) {
1484 if (dir == PIPEinput) {
1485 sc->sc_chi_pipe_in = pipe;
1486 } else {
1487 sc->sc_chi_pipe_out = pipe;
1488 }
1489 } else
1490 sc->sc_pipe[prevpipe].next = pipe;
1491
1492 sc->sc_pipe[pipe].next = nextpipe;
1493 sc->sc_pipe[pipe].cycle = cycle;
1494 sc->sc_pipe[pipe].length = len;
1495
1496 cmd = dbri_command_lock(sc);
1497
1498 switch (dir) {
1499 case PIPEinput:
1500 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1501 val |= pipe;
1502 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1503 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1504 DBRI_TS_NEXT(nextpipe);
1505 *(cmd++) = 0;
1506 break;
1507 case PIPEoutput:
1508 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1509 val |= pipe;
1510 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1511 *(cmd++) = 0;
1512 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1513 DBRI_TS_NEXT(nextpipe);
1514 break;
1515 default:
1516 DPRINTF("%s: should not have happened!\n",
1517 device_xname(&sc->sc_dev));
1518 break;
1519 }
1520
1521 dbri_command_send(sc, cmd);
1522
1523 return;
1524 }
1525
1526 static int
1527 pipe_active(struct dbri_softc *sc, int pipe)
1528 {
1529
1530 return (sc->sc_pipe[pipe].desc != -1);
1531 }
1532
1533 /*
1534 * subroutines required to interface with audio(9)
1535 */
1536
1537 static int
1538 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1539 {
1540
1541 switch (ae->index) {
1542 case 0:
1543 strcpy(ae->name, AudioEulinear);
1544 ae->encoding = AUDIO_ENCODING_ULINEAR;
1545 ae->precision = 8;
1546 ae->flags = 0;
1547 break;
1548 case 1:
1549 strcpy(ae->name, AudioEmulaw);
1550 ae->encoding = AUDIO_ENCODING_ULAW;
1551 ae->precision = 8;
1552 ae->flags = 0;
1553 break;
1554 case 2:
1555 strcpy(ae->name, AudioEalaw);
1556 ae->encoding = AUDIO_ENCODING_ALAW;
1557 ae->precision = 8;
1558 ae->flags = 0;
1559 break;
1560 case 3:
1561 strcpy(ae->name, AudioEslinear);
1562 ae->encoding = AUDIO_ENCODING_SLINEAR;
1563 ae->precision = 8;
1564 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1565 break;
1566 case 4:
1567 strcpy(ae->name, AudioEslinear_le);
1568 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1569 ae->precision = 16;
1570 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1571 break;
1572 case 5:
1573 strcpy(ae->name, AudioEulinear_le);
1574 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1575 ae->precision = 16;
1576 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1577 break;
1578 case 6:
1579 strcpy(ae->name, AudioEslinear_be);
1580 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1581 ae->precision = 16;
1582 ae->flags = 0;
1583 break;
1584 case 7:
1585 strcpy(ae->name, AudioEulinear_be);
1586 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1587 ae->precision = 16;
1588 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1589 break;
1590 case 8:
1591 strcpy(ae->name, AudioEslinear);
1592 ae->encoding = AUDIO_ENCODING_SLINEAR;
1593 ae->precision = 16;
1594 ae->flags = 0;
1595 break;
1596 default:
1597 return (EINVAL);
1598 }
1599
1600 return (0);
1601 }
1602
1603 static int
1604 dbri_set_params(void *hdl, int setmode, int usemode,
1605 struct audio_params *play, struct audio_params *rec,
1606 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1607 {
1608 struct dbri_softc *sc = hdl;
1609 int rate;
1610 audio_params_t *p = NULL;
1611 stream_filter_list_t *fil;
1612 int mode;
1613
1614 /*
1615 * This device only has one clock, so make the sample rates match.
1616 */
1617 if (play->sample_rate != rec->sample_rate &&
1618 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1619 if (setmode == AUMODE_PLAY) {
1620 rec->sample_rate = play->sample_rate;
1621 setmode |= AUMODE_RECORD;
1622 } else if (setmode == AUMODE_RECORD) {
1623 play->sample_rate = rec->sample_rate;
1624 setmode |= AUMODE_PLAY;
1625 } else
1626 return EINVAL;
1627 }
1628
1629 for (mode = AUMODE_RECORD; mode != -1;
1630 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1631 if ((setmode & mode) == 0)
1632 continue;
1633
1634 p = mode == AUMODE_PLAY ? play : rec;
1635 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1636 DPRINTF("dbri_set_params: invalid rate %d\n",
1637 p->sample_rate);
1638 return EINVAL;
1639 }
1640
1641 fil = mode == AUMODE_PLAY ? pfil : rfil;
1642 DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1643 p->sample_rate, p->precision, p->channels);
1644 if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1645 mode, p, true, fil) < 0) {
1646 aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1647 return EINVAL;
1648 }
1649 if (fil->req_size > 0)
1650 p = &fil->filters[0].param;
1651 }
1652
1653 if (p == NULL) {
1654 DPRINTF("dbri_set_params: no parameters to set\n");
1655 return 0;
1656 }
1657
1658 DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1659 p->sample_rate, p->precision, p->channels);
1660
1661 for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1662 if (CS4215_FREQ[rate].freq == p->sample_rate)
1663 break;
1664
1665 if (CS4215_FREQ[rate].freq == 0)
1666 return (EINVAL);
1667
1668 /* set frequency */
1669 sc->sc_mm.c.bcontrol[1] &= ~0x38;
1670 sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1671 sc->sc_mm.c.bcontrol[2] &= ~0x70;
1672 sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1673
1674 switch (p->encoding) {
1675 case AUDIO_ENCODING_ULAW:
1676 sc->sc_mm.c.bcontrol[1] &= ~3;
1677 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1678 break;
1679 case AUDIO_ENCODING_ALAW:
1680 sc->sc_mm.c.bcontrol[1] &= ~3;
1681 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1682 break;
1683 case AUDIO_ENCODING_ULINEAR:
1684 sc->sc_mm.c.bcontrol[1] &= ~3;
1685 if (p->precision == 8) {
1686 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1687 } else {
1688 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1689 }
1690 break;
1691 case AUDIO_ENCODING_SLINEAR_BE:
1692 case AUDIO_ENCODING_SLINEAR:
1693 sc->sc_mm.c.bcontrol[1] &= ~3;
1694 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1695 break;
1696 }
1697
1698 switch (p->channels) {
1699 case 1:
1700 sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1701 break;
1702 case 2:
1703 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1704 break;
1705 }
1706
1707 return (0);
1708 }
1709
1710 static int
1711 dbri_round_blocksize(void *hdl, int bs, int mode,
1712 const audio_params_t *param)
1713 {
1714
1715 /* DBRI DMA segment size, rounded down to 32bit alignment */
1716 return 0x1ffc;
1717 }
1718
1719 static int
1720 dbri_halt_output(void *hdl)
1721 {
1722 struct dbri_softc *sc = hdl;
1723
1724 if (!sc->sc_playing)
1725 return 0;
1726
1727 sc->sc_playing = 0;
1728 pipe_reset(sc, 4);
1729 return (0);
1730 }
1731
1732 static int
1733 dbri_getdev(void *hdl, struct audio_device *ret)
1734 {
1735
1736 *ret = dbri_device;
1737 return (0);
1738 }
1739
1740 static int
1741 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1742 {
1743 struct dbri_softc *sc = hdl;
1744 int latt = sc->sc_latt, ratt = sc->sc_ratt;
1745
1746 switch (mc->dev) {
1747 case DBRI_VOL_OUTPUT: /* master volume */
1748 latt = (latt & 0xc0) | (63 -
1749 min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1750 ratt = (ratt & 0xc0) | (63 -
1751 min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1752 break;
1753 case DBRI_ENABLE_MONO: /* built-in speaker */
1754 if (mc->un.ord == 1) {
1755 ratt |= CS4215_SE;
1756 } else
1757 ratt &= ~CS4215_SE;
1758 break;
1759 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1760 if (mc->un.ord == 1) {
1761 latt |= CS4215_HE;
1762 } else
1763 latt &= ~CS4215_HE;
1764 break;
1765 case DBRI_ENABLE_LINE: /* line out */
1766 if (mc->un.ord == 1) {
1767 latt |= CS4215_LE;
1768 } else
1769 latt &= ~CS4215_LE;
1770 break;
1771 case DBRI_VOL_MONITOR:
1772 if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1773 sc->sc_monitor)
1774 return 0;
1775 sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1776 break;
1777 case DBRI_INPUT_GAIN:
1778 sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1779 sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1780 break;
1781 case DBRI_INPUT_SELECT:
1782 if (mc->un.mask == sc->sc_input)
1783 return 0;
1784 sc->sc_input = mc->un.mask;
1785 break;
1786 }
1787
1788 sc->sc_latt = latt;
1789 sc->sc_ratt = ratt;
1790
1791 mmcodec_setgain(sc, 0);
1792
1793 return (0);
1794 }
1795
1796 static int
1797 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1798 {
1799 struct dbri_softc *sc = hdl;
1800
1801 switch (mc->dev) {
1802 case DBRI_VOL_OUTPUT: /* master volume */
1803 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1804 (63 - (sc->sc_latt & 0x3f)) << 2;
1805 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1806 (63 - (sc->sc_ratt & 0x3f)) << 2;
1807 return (0);
1808 case DBRI_ENABLE_MONO: /* built-in speaker */
1809 mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1810 return 0;
1811 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1812 mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1813 return 0;
1814 case DBRI_ENABLE_LINE: /* line out */
1815 mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1816 return 0;
1817 case DBRI_VOL_MONITOR:
1818 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1819 return 0;
1820 case DBRI_INPUT_GAIN:
1821 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1822 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1823 return 0;
1824 case DBRI_INPUT_SELECT:
1825 mc->un.mask = sc->sc_input;
1826 return 0;
1827 }
1828 return (EINVAL);
1829 }
1830
1831 static int
1832 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1833 {
1834
1835 switch (di->index) {
1836 case DBRI_MONITOR_CLASS:
1837 di->mixer_class = DBRI_MONITOR_CLASS;
1838 strcpy(di->label.name, AudioCmonitor);
1839 di->type = AUDIO_MIXER_CLASS;
1840 di->next = di->prev = AUDIO_MIXER_LAST;
1841 return 0;
1842 case DBRI_OUTPUT_CLASS:
1843 di->mixer_class = DBRI_OUTPUT_CLASS;
1844 strcpy(di->label.name, AudioCoutputs);
1845 di->type = AUDIO_MIXER_CLASS;
1846 di->next = di->prev = AUDIO_MIXER_LAST;
1847 return 0;
1848 case DBRI_INPUT_CLASS:
1849 di->mixer_class = DBRI_INPUT_CLASS;
1850 strcpy(di->label.name, AudioCinputs);
1851 di->type = AUDIO_MIXER_CLASS;
1852 di->next = di->prev = AUDIO_MIXER_LAST;
1853 return 0;
1854 case DBRI_VOL_OUTPUT: /* master volume */
1855 di->mixer_class = DBRI_OUTPUT_CLASS;
1856 di->next = di->prev = AUDIO_MIXER_LAST;
1857 strcpy(di->label.name, AudioNmaster);
1858 di->type = AUDIO_MIXER_VALUE;
1859 di->un.v.num_channels = 2;
1860 strcpy(di->un.v.units.name, AudioNvolume);
1861 return (0);
1862 case DBRI_INPUT_GAIN: /* input gain */
1863 di->mixer_class = DBRI_INPUT_CLASS;
1864 di->next = di->prev = AUDIO_MIXER_LAST;
1865 strcpy(di->label.name, AudioNrecord);
1866 di->type = AUDIO_MIXER_VALUE;
1867 di->un.v.num_channels = 2;
1868 strcpy(di->un.v.units.name, AudioNvolume);
1869 return (0);
1870 case DBRI_VOL_MONITOR: /* monitor volume */
1871 di->mixer_class = DBRI_MONITOR_CLASS;
1872 di->next = di->prev = AUDIO_MIXER_LAST;
1873 strcpy(di->label.name, AudioNmonitor);
1874 di->type = AUDIO_MIXER_VALUE;
1875 di->un.v.num_channels = 1;
1876 strcpy(di->un.v.units.name, AudioNvolume);
1877 return (0);
1878 case DBRI_ENABLE_MONO: /* built-in speaker */
1879 di->mixer_class = DBRI_OUTPUT_CLASS;
1880 di->next = di->prev = AUDIO_MIXER_LAST;
1881 strcpy(di->label.name, AudioNmono);
1882 di->type = AUDIO_MIXER_ENUM;
1883 di->un.e.num_mem = 2;
1884 strcpy(di->un.e.member[0].label.name, AudioNoff);
1885 di->un.e.member[0].ord = 0;
1886 strcpy(di->un.e.member[1].label.name, AudioNon);
1887 di->un.e.member[1].ord = 1;
1888 return (0);
1889 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1890 di->mixer_class = DBRI_OUTPUT_CLASS;
1891 di->next = di->prev = AUDIO_MIXER_LAST;
1892 strcpy(di->label.name, AudioNheadphone);
1893 di->type = AUDIO_MIXER_ENUM;
1894 di->un.e.num_mem = 2;
1895 strcpy(di->un.e.member[0].label.name, AudioNoff);
1896 di->un.e.member[0].ord = 0;
1897 strcpy(di->un.e.member[1].label.name, AudioNon);
1898 di->un.e.member[1].ord = 1;
1899 return (0);
1900 case DBRI_ENABLE_LINE: /* line out */
1901 di->mixer_class = DBRI_OUTPUT_CLASS;
1902 di->next = di->prev = AUDIO_MIXER_LAST;
1903 strcpy(di->label.name, AudioNline);
1904 di->type = AUDIO_MIXER_ENUM;
1905 di->un.e.num_mem = 2;
1906 strcpy(di->un.e.member[0].label.name, AudioNoff);
1907 di->un.e.member[0].ord = 0;
1908 strcpy(di->un.e.member[1].label.name, AudioNon);
1909 di->un.e.member[1].ord = 1;
1910 return (0);
1911 case DBRI_INPUT_SELECT:
1912 di->mixer_class = DBRI_INPUT_CLASS;
1913 strcpy(di->label.name, AudioNsource);
1914 di->type = AUDIO_MIXER_SET;
1915 di->prev = di->next = AUDIO_MIXER_LAST;
1916 di->un.s.num_mem = 2;
1917 strcpy(di->un.s.member[0].label.name, AudioNline);
1918 di->un.s.member[0].mask = 1 << 0;
1919 strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1920 di->un.s.member[1].mask = 1 << 1;
1921 return 0;
1922 }
1923
1924 return (ENXIO);
1925 }
1926
1927 static size_t
1928 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1929 {
1930 #ifdef DBRI_BIG_BUFFER
1931 return 16*0x1ffc; /* use ~128KB buffer */
1932 #else
1933 return bufsize;
1934 #endif
1935 }
1936
1937 static int
1938 dbri_get_props(void *hdl)
1939 {
1940
1941 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
1942 }
1943
1944 static int
1945 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
1946 void (*intr)(void *), void *intrarg,
1947 const struct audio_params *param)
1948 {
1949 struct dbri_softc *sc = hdl;
1950 unsigned long count, num;
1951
1952 if (sc->sc_playing)
1953 return 0;
1954
1955 count = (unsigned long)(((char *)end - (char *)start));
1956 num = count / blksize;
1957
1958 DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
1959 (unsigned long)intr,
1960 (unsigned long)intrarg, blksize, count, num);
1961
1962 sc->sc_params = *param;
1963
1964 if (sc->sc_recording == 0) {
1965 /* do not muck with the codec when it's already in use */
1966 if (mmcodec_setcontrol(sc) != 0)
1967 return -1;
1968 mmcodec_init_data(sc);
1969 }
1970
1971 /*
1972 * always use DMA descriptor 0 for output
1973 * no need to allocate them dynamically since we only ever have
1974 * exactly one input stream and exactly one output stream
1975 */
1976 setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
1977 sc->sc_playing = 1;
1978 return 0;
1979 }
1980
1981 static int
1982 dbri_halt_input(void *cookie)
1983 {
1984 struct dbri_softc *sc = cookie;
1985
1986 if (!sc->sc_recording)
1987 return 0;
1988
1989 sc->sc_recording = 0;
1990 pipe_reset(sc, 6);
1991 return 0;
1992 }
1993
1994 static int
1995 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
1996 void (*intr)(void *), void *intrarg,
1997 const struct audio_params *param)
1998 {
1999 struct dbri_softc *sc = hdl;
2000 unsigned long count, num;
2001
2002 if (sc->sc_recording)
2003 return 0;
2004
2005 count = (unsigned long)(((char *)end - (char *)start));
2006 num = count / blksize;
2007
2008 DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2009 (unsigned long)intr,
2010 (unsigned long)intrarg, blksize, count, num);
2011
2012 sc->sc_params = *param;
2013
2014 if (sc->sc_playing == 0) {
2015
2016 /*
2017 * we don't support different parameters for playing and
2018 * recording anyway so don't bother whacking the codec if
2019 * it's already set up
2020 */
2021 mmcodec_setcontrol(sc);
2022 mmcodec_init_data(sc);
2023 }
2024
2025 sc->sc_recording = 1;
2026 setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2027 return 0;
2028 }
2029
2030
2031 static u_int32_t
2032 reverse_bytes(u_int32_t b, int len)
2033 {
2034 switch (len) {
2035 case 32:
2036 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2037 case 16:
2038 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
2039 case 8:
2040 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
2041 case 4:
2042 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
2043 case 2:
2044 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
2045 case 1:
2046 case 0:
2047 break;
2048 default:
2049 DPRINTF("reverse_bytes: unsupported length\n");
2050 };
2051
2052 return (b);
2053 }
2054
2055 static void *
2056 dbri_malloc(void *v, int dir, size_t s, struct malloc_type *mt, int flags)
2057 {
2058 struct dbri_softc *sc = v;
2059 struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2060 int rseg;
2061
2062 if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2063 &dd->dmamap) == 0) {
2064 if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2065 1, &rseg, BUS_DMA_NOWAIT) == 0) {
2066 if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2067 &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2068 if (dd->buf != NULL) {
2069 if (bus_dmamap_load(sc->sc_dmat,
2070 dd->dmamap, dd->buf, s, NULL,
2071 BUS_DMA_NOWAIT) == 0) {
2072 dd->len = s;
2073 dd->busy = 0;
2074 dd->callback = NULL;
2075 dd->dmabase =
2076 dd->dmamap->dm_segs[0].ds_addr;
2077 DPRINTF("dbri_malloc: using buffer %d %08x\n",
2078 sc->sc_desc_used, (uint32_t)dd->buf);
2079 sc->sc_desc_used++;
2080 return dd->buf;
2081 } else
2082 aprint_error("dbri_malloc: load failed\n");
2083 } else
2084 aprint_error("dbri_malloc: map returned NULL\n");
2085 } else
2086 aprint_error("dbri_malloc: map failed\n");
2087 bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2088 } else
2089 aprint_error("dbri_malloc: malloc() failed\n");
2090 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2091 } else
2092 aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2093 return NULL;
2094 }
2095
2096 static void
2097 dbri_free(void *v, void *p, struct malloc_type *mt)
2098 {
2099 free(p, mt);
2100 }
2101
2102 static paddr_t
2103 dbri_mappage(void *v, void *mem, off_t off, int prot)
2104 {
2105 struct dbri_softc *sc = v;;
2106 int current;
2107
2108 if (off < 0)
2109 return -1;
2110
2111 current = 0;
2112 while ((current < sc->sc_desc_used) &&
2113 (sc->sc_desc[current].buf != mem))
2114 current++;
2115
2116 if (current < sc->sc_desc_used) {
2117 return bus_dmamem_mmap(sc->sc_dmat,
2118 &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2119 }
2120
2121 return -1;
2122 }
2123
2124 static int
2125 dbri_open(void *cookie, int flags)
2126 {
2127 struct dbri_softc *sc = cookie;
2128
2129 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2130
2131 if (sc->sc_refcount == 0)
2132 dbri_bring_up(sc);
2133
2134 sc->sc_refcount++;
2135
2136 return 0;
2137 }
2138
2139 static void
2140 dbri_close(void *cookie)
2141 {
2142 struct dbri_softc *sc = cookie;
2143
2144 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2145
2146 sc->sc_refcount--;
2147 KASSERT(sc->sc_refcount >= 0);
2148 if (sc->sc_refcount > 0)
2149 return;
2150
2151 dbri_set_power(sc, 0);
2152 sc->sc_playing = 0;
2153 sc->sc_recording = 0;
2154 }
2155
2156 static void
2157 dbri_powerhook(int why, void *cookie)
2158 {
2159 struct dbri_softc *sc = cookie;
2160
2161 if (why == sc->sc_pmgrstate)
2162 return;
2163
2164 switch(why)
2165 {
2166 case PWR_SUSPEND:
2167 dbri_set_power(sc, 0);
2168 break;
2169 case PWR_RESUME:
2170 if (sc->sc_powerstate != 0)
2171 break;
2172 aprint_verbose("resume: %d\n", sc->sc_refcount);
2173 sc->sc_pmgrstate = PWR_RESUME;
2174 if (sc->sc_playing) {
2175 volatile u_int32_t *cmd;
2176 int s;
2177
2178 dbri_bring_up(sc);
2179 s = splsched();
2180 cmd = dbri_command_lock(sc);
2181 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2182 0, sc->sc_pipe[4].sdp |
2183 DBRI_SDP_VALID_POINTER |
2184 DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2185 *(cmd++) = sc->sc_dmabase +
2186 dbri_dma_off(xmit, 0);
2187 dbri_command_send(sc, cmd);
2188 splx(s);
2189 }
2190 break;
2191 default:
2192 return;
2193 }
2194 sc->sc_pmgrstate = why;
2195 }
2196
2197 #endif /* NAUDIO > 0 */
2198