dbri.c revision 1.21 1 /* $NetBSD: dbri.c,v 1.21 2009/01/03 03:43:22 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1997 Rudolf Koenig (rfkoenig (at) immd4.informatik.uni-erlangen.de)
5 * Copyright (c) 1998, 1999 Brent Baccala (baccala (at) freesoft.org)
6 * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill (at) netbsd.org>
7 * Copyright (c) 2005 Michael Lorenz <macallan (at) netbsd.org>
8 * All rights reserved.
9 *
10 * This driver is losely based on a Linux driver written by Rudolf Koenig and
11 * Brent Baccala who kindly gave their permission to use their code in a
12 * BSD-licensed driver.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.21 2009/01/03 03:43:22 yamt Exp $");
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/intr.h>
51
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/auconv.h>
59
60 #include <dev/ic/cs4215reg.h>
61 #include <dev/ic/cs4215var.h>
62 #include <dev/sbus/dbrireg.h>
63 #include <dev/sbus/dbrivar.h>
64
65 #include "opt_sbus_dbri.h"
66
67 #define DBRI_ROM_NAME_PREFIX "SUNW,DBRI"
68
69 #ifdef DBRI_DEBUG
70 # define DPRINTF aprint_normal
71 #else
72 # define DPRINTF while (0) printf
73 #endif
74
75 static const char *dbri_supported[] = {
76 "e",
77 "s3",
78 ""
79 };
80
81 enum ms {
82 CHImaster,
83 CHIslave
84 };
85
86 enum io {
87 PIPEinput,
88 PIPEoutput
89 };
90
91 /*
92 * Function prototypes
93 */
94
95 /* softc stuff */
96 static void dbri_attach_sbus(device_t, device_t, void *);
97 static int dbri_match_sbus(device_t, struct cfdata *, void *);
98
99 static void dbri_config_interrupts(device_t);
100
101 /* interrupt handler */
102 static int dbri_intr(void *);
103 static void dbri_softint(void *);
104
105 /* supporting subroutines */
106 static int dbri_init(struct dbri_softc *);
107 static int dbri_reset(struct dbri_softc *);
108 static volatile u_int32_t *dbri_command_lock(struct dbri_softc *);
109 static void dbri_command_send(struct dbri_softc *, volatile u_int32_t *);
110 static void dbri_process_interrupt_buffer(struct dbri_softc *);
111 static void dbri_process_interrupt(struct dbri_softc *, int32_t);
112
113 /* mmcodec subroutines */
114 static int mmcodec_init(struct dbri_softc *);
115 static void mmcodec_init_data(struct dbri_softc *);
116 static void mmcodec_pipe_init(struct dbri_softc *);
117 static void mmcodec_default(struct dbri_softc *);
118 static void mmcodec_setgain(struct dbri_softc *, int);
119 static int mmcodec_setcontrol(struct dbri_softc *);
120
121 /* chi subroutines */
122 static void chi_reset(struct dbri_softc *, enum ms, int);
123
124 /* pipe subroutines */
125 static void pipe_setup(struct dbri_softc *, int, int);
126 static void pipe_reset(struct dbri_softc *, int);
127 static void pipe_receive_fixed(struct dbri_softc *, int,
128 volatile u_int32_t *);
129 static void pipe_transmit_fixed(struct dbri_softc *, int, u_int32_t);
130
131 static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
132 static int pipe_active(struct dbri_softc *, int);
133
134 /* audio(9) stuff */
135 static int dbri_query_encoding(void *, struct audio_encoding *);
136 static int dbri_set_params(void *, int, int, struct audio_params *,
137 struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
138 static int dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int dbri_halt_output(void *);
140 static int dbri_halt_input(void *);
141 static int dbri_getdev(void *, struct audio_device *);
142 static int dbri_set_port(void *, mixer_ctrl_t *);
143 static int dbri_get_port(void *, mixer_ctrl_t *);
144 static int dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static size_t dbri_round_buffersize(void *, int, size_t);
146 static int dbri_get_props(void *);
147 static int dbri_open(void *, int);
148 static void dbri_close(void *);
149
150 static void setup_ring_xmit(struct dbri_softc *, int, int, int, int,
151 void (*)(void *), void *);
152 static void setup_ring_recv(struct dbri_softc *, int, int, int, int,
153 void (*)(void *), void *);
154
155 static int dbri_trigger_output(void *, void *, void *, int,
156 void (*)(void *), void *, const struct audio_params *);
157 static int dbri_trigger_input(void *, void *, void *, int,
158 void (*)(void *), void *, const struct audio_params *);
159
160 static void *dbri_malloc(void *, int, size_t, struct malloc_type *, int);
161 static void dbri_free(void *, void *, struct malloc_type *);
162 static paddr_t dbri_mappage(void *, void *, off_t, int);
163 static void dbri_set_power(struct dbri_softc *, int);
164 static void dbri_bring_up(struct dbri_softc *);
165 static void dbri_powerhook(int, void *);
166
167 /* stupid support routines */
168 static u_int32_t reverse_bytes(u_int32_t, int);
169
170 struct audio_device dbri_device = {
171 "CS4215",
172 "",
173 "dbri"
174 };
175
176 struct audio_hw_if dbri_hw_if = {
177 dbri_open,
178 dbri_close,
179 NULL, /* drain */
180 dbri_query_encoding,
181 dbri_set_params,
182 dbri_round_blocksize,
183 NULL, /* commit_settings */
184 NULL, /* init_output */
185 NULL, /* init_input */
186 NULL, /* start_output */
187 NULL, /* start_input */
188 dbri_halt_output,
189 dbri_halt_input,
190 NULL, /* speaker_ctl */
191 dbri_getdev,
192 NULL, /* setfd */
193 dbri_set_port,
194 dbri_get_port,
195 dbri_query_devinfo,
196 dbri_malloc,
197 dbri_free,
198 dbri_round_buffersize,
199 dbri_mappage,
200 dbri_get_props,
201 dbri_trigger_output,
202 dbri_trigger_input
203 };
204
205 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
206 dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
207
208 #define DBRI_NFORMATS 4
209 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
210 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
211 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
212 48000}},
213 /* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
214 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
215 48000}},
216 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
217 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
218 48000}},
219 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
220 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
221 48000}},*/
222 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
223 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
224 48000}},
225 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
226 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
227 48000}},
228 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
229 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
230 48000}},
231 };
232
233 enum {
234 DBRI_OUTPUT_CLASS,
235 DBRI_VOL_OUTPUT,
236 DBRI_ENABLE_MONO,
237 DBRI_ENABLE_HEADPHONE,
238 DBRI_ENABLE_LINE,
239 DBRI_MONITOR_CLASS,
240 DBRI_VOL_MONITOR,
241 DBRI_INPUT_CLASS,
242 DBRI_INPUT_GAIN,
243 DBRI_INPUT_SELECT,
244 DBRI_RECORD_CLASS,
245 DBRI_ENUM_LAST
246 };
247
248 /*
249 * Autoconfig routines
250 */
251 static int
252 dbri_match_sbus(device_t parent, struct cfdata *match, void *aux)
253 {
254 struct sbus_attach_args *sa = aux;
255 char *ver;
256 int i;
257
258 if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
259 return (0);
260
261 ver = &sa->sa_name[9];
262
263 for (i = 0; dbri_supported[i][0] != '\0'; i++)
264 if (strcmp(dbri_supported[i], ver) == 0)
265 return (1);
266
267 return (0);
268 }
269
270 static void
271 dbri_attach_sbus(device_t parent, device_t self, void *aux)
272 {
273 struct dbri_softc *sc = device_private(self);
274 struct sbus_attach_args *sa = aux;
275 bus_space_handle_t ioh;
276 bus_size_t size;
277 int error, rseg, pwr, i;
278 char *ver = &sa->sa_name[9];
279
280 sc->sc_dev = self;
281 sc->sc_iot = sa->sa_bustag;
282 sc->sc_dmat = sa->sa_dmatag;
283 sc->sc_powerstate = 1;
284
285 pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
286 aprint_normal(": rev %s\n", ver);
287
288 if (pwr) {
289 /*
290 * we can control DBRI power via auxio and we're initially
291 * powered down
292 */
293
294 sc->sc_have_powerctl = 1;
295 sc->sc_powerstate = 0;
296 dbri_set_power(sc, 1);
297 powerhook_establish(device_xname(self), dbri_powerhook, sc);
298 } else {
299 /* we can't control power so we're always up */
300 sc->sc_have_powerctl = 0;
301 sc->sc_powerstate = 1;
302 }
303
304 for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
305 sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
306 dbri_softint, &sc->sc_desc[i]);
307 }
308
309 if (sa->sa_npromvaddrs)
310 ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
311 else {
312 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
313 sa->sa_offset, sa->sa_size,
314 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
315 aprint_error("%s @ sbus: cannot map registers\n",
316 device_xname(self));
317 return;
318 }
319 }
320
321 sc->sc_ioh = ioh;
322
323 size = sizeof(struct dbri_dma);
324
325 /* get a DMA handle */
326 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
327 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
328 aprint_error_dev(self, "DMA map create error %d\n",
329 error);
330 return;
331 }
332
333 /* allocate DMA buffer */
334 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
335 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
336 aprint_error_dev(self, "DMA buffer alloc error %d\n",
337 error);
338 return;
339 }
340
341 /* map DMA buffer into CPU addressable space */
342 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
343 &sc->sc_membase,
344 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
345 aprint_error_dev(self, "DMA buffer map error %d\n",
346 error);
347 return;
348 }
349
350 /* load the buffer */
351 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
352 sc->sc_membase, size, NULL,
353 BUS_DMA_NOWAIT)) != 0) {
354 aprint_error_dev(self, "DMA buffer map load error %d\n",
355 error);
356 bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
357 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
358 return;
359 }
360
361 /* map the registers into memory */
362
363 /* kernel virtual address of DMA buffer */
364 sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
365 /* physical address of DMA buffer */
366 sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
367 sc->sc_bufsiz = size;
368
369 sbus_establish(&sc->sc_sd, sc->sc_dev);
370
371 bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr,
372 sc);
373
374 sc->sc_locked = 0;
375 sc->sc_desc_used = 0;
376 sc->sc_refcount = 0;
377 sc->sc_playing = 0;
378 sc->sc_recording = 0;
379 sc->sc_pmgrstate = PWR_RESUME;
380 config_interrupts(self, &dbri_config_interrupts);
381
382 return;
383 }
384
385 /*
386 * lowlevel routine to switch power for the DBRI chip
387 */
388 static void
389 dbri_set_power(struct dbri_softc *sc, int state)
390 {
391 int s;
392
393 if (sc->sc_have_powerctl == 0)
394 return;
395 if (sc->sc_powerstate == state)
396 return;
397
398 if (state) {
399 DPRINTF("%s: waiting to power up... ",
400 device_xname(sc->sc_dev));
401 s = splhigh();
402 *AUXIO4M_REG |= (AUXIO4M_MMX);
403 splx(s);
404 delay(10000);
405 DPRINTF("done (%02x)\n", *AUXIO4M_REG);
406 } else {
407 DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
408 s = splhigh();
409 *AUXIO4M_REG &= ~AUXIO4M_MMX;
410 splx(s);
411 DPRINTF("done (%02x})\n", *AUXIO4M_REG);
412 }
413 sc->sc_powerstate = state;
414 }
415
416 /*
417 * power up and re-initialize the chip
418 */
419 static void
420 dbri_bring_up(struct dbri_softc *sc)
421 {
422
423 if (sc->sc_have_powerctl == 0)
424 return;
425
426 if (sc->sc_powerstate == 1)
427 return;
428
429 /* ok, we really need to do something */
430 dbri_set_power(sc, 1);
431
432 /*
433 * re-initialize the chip but skip all the probing, don't overwrite
434 * any other settings either
435 */
436 dbri_init(sc);
437 mmcodec_setgain(sc, 1);
438 mmcodec_pipe_init(sc);
439 mmcodec_init_data(sc);
440 mmcodec_setgain(sc, 0);
441 }
442
443 static void
444 dbri_config_interrupts(device_t dev)
445 {
446 struct dbri_softc *sc = device_private(dev);
447
448 dbri_init(sc);
449 mmcodec_init(sc);
450
451 /* Attach ourselves to the high level audio interface */
452 audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
453
454 /* power down until open() */
455 dbri_set_power(sc, 0);
456 return;
457 }
458
459 static int
460 dbri_intr(void *hdl)
461 {
462 struct dbri_softc *sc = hdl;
463 bus_space_tag_t iot = sc->sc_iot;
464 bus_space_handle_t ioh = sc->sc_ioh;
465 int x;
466
467 /* clear interrupt */
468 x = bus_space_read_4(iot, ioh, DBRI_REG1);
469 if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
470 u_int32_t tmp;
471
472 if (x & DBRI_MRR)
473 aprint_debug_dev(sc->sc_dev,
474 "multiple ack error on sbus\n");
475 if (x & DBRI_MLE)
476 aprint_debug_dev(sc->sc_dev,
477 "multiple late error on sbus\n");
478 if (x & DBRI_LBG)
479 aprint_debug_dev(sc->sc_dev,
480 "lost bus grant on sbus\n");
481 if (x & DBRI_MBE)
482 aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
483
484 /*
485 * Some of these errors disable the chip's circuitry.
486 * Re-enable the circuitry and keep on going.
487 */
488
489 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
490 tmp &= ~(DBRI_DISABLE_MASTER);
491 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
492 }
493
494 #if 0
495 if (!x & 1) /* XXX: DBRI_INTR_REQ */
496 return (1);
497 #endif
498
499 dbri_process_interrupt_buffer(sc);
500
501 return (1);
502 }
503
504 static void
505 dbri_softint(void *cookie)
506 {
507 struct dbri_desc *dd = cookie;
508
509 if (dd->callback != NULL)
510 dd->callback(dd->callback_args);
511 }
512
513 static int
514 dbri_init(struct dbri_softc *sc)
515 {
516 bus_space_tag_t iot = sc->sc_iot;
517 bus_space_handle_t ioh = sc->sc_ioh;
518 u_int32_t reg;
519 volatile u_int32_t *cmd;
520 bus_addr_t dmaaddr;
521 int n;
522
523 dbri_reset(sc);
524
525 cmd = dbri_command_lock(sc);
526
527 /* XXX: Initialize interrupt ring buffer */
528 sc->sc_dma->intr[0] = (u_int32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
529 sc->sc_irqp = 1;
530
531 /* Initialize pipes */
532 for (n = 0; n < DBRI_PIPE_MAX; n++)
533 sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
534
535 for (n = 1; n < DBRI_INT_BLOCKS; n++) {
536 sc->sc_dma->intr[n] = 0;
537 }
538
539 /* Disable all SBus bursts */
540 /* XXX 16 byte bursts cause errors, the rest works */
541 reg = bus_space_read_4(iot, ioh, DBRI_REG0);
542
543 /*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
544 reg |= (DBRI_BURST_4 | DBRI_BURST_8);
545 bus_space_write_4(iot, ioh, DBRI_REG0, reg);
546
547 /* setup interrupt queue */
548 dmaaddr = (u_int32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
549 *(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
550 *(cmd++) = dmaaddr;
551
552 dbri_command_send(sc, cmd);
553 return (0);
554 }
555
556 static int
557 dbri_reset(struct dbri_softc *sc)
558 {
559 int bail = 0;
560
561 bus_space_tag_t iot = sc->sc_iot;
562 bus_space_handle_t ioh = sc->sc_ioh;
563
564 bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
565 while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
566 (bail < 100000)) {
567 bail++;
568 delay(10);
569 }
570 if (bail == 100000)
571 aprint_error_dev(sc->sc_dev, "reset timed out\n");
572 return (0);
573 }
574
575 static volatile u_int32_t *
576 dbri_command_lock(struct dbri_softc *sc)
577 {
578
579 if (sc->sc_locked)
580 aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
581
582 sc->sc_locked++;
583
584 return (&sc->sc_dma->command[0]);
585 }
586
587 static void
588 dbri_command_send(struct dbri_softc *sc, volatile u_int32_t *cmd)
589 {
590 bus_space_handle_t ioh = sc->sc_ioh;
591 bus_space_tag_t iot = sc->sc_iot;
592 int maxloops = 1000000;
593 int x;
594
595 x = splsched();
596
597 sc->sc_locked--;
598
599 if (sc->sc_locked != 0) {
600 aprint_error_dev(sc->sc_dev,
601 "command buffer improperly locked\n");
602 } else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
603 aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
604 } else {
605 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
606 *(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
607 sc->sc_waitseen = 0;
608 bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
609 while ((--maxloops) > 0 &&
610 (bus_space_read_4(iot, ioh, DBRI_REG0)
611 & DBRI_COMMAND_VALID)) {
612 bus_space_barrier(iot, ioh, DBRI_REG0, 4,
613 BUS_SPACE_BARRIER_READ);
614 delay(1000);
615 }
616
617 if (maxloops == 0) {
618 aprint_error_dev(sc->sc_dev,
619 "chip never completed command buffer\n");
620 } else {
621
622 DPRINTF("%s: command completed\n",
623 device_xname(sc->sc_dev));
624
625 while ((--maxloops) > 0 && (!sc->sc_waitseen))
626 dbri_process_interrupt_buffer(sc);
627 if (maxloops == 0) {
628 aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
629 }
630 }
631 }
632
633 splx(x);
634
635 return;
636 }
637
638 static void
639 dbri_process_interrupt_buffer(struct dbri_softc *sc)
640 {
641 int32_t i;
642
643 while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
644 sc->sc_dma->intr[sc->sc_irqp] = 0;
645 sc->sc_irqp++;
646
647 if (sc->sc_irqp == DBRI_INT_BLOCKS)
648 sc->sc_irqp = 1;
649 else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
650 sc->sc_irqp++;
651
652 dbri_process_interrupt(sc, i);
653 }
654
655 return;
656 }
657
658 static void
659 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
660 {
661 #if 0
662 const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
663 #endif
664 int val = DBRI_INTR_GETVAL(i);
665 int channel = DBRI_INTR_GETCHAN(i);
666 int command = DBRI_INTR_GETCMD(i);
667 int code = DBRI_INTR_GETCODE(i);
668 #if 0
669 int rval = DBRI_INTR_GETRVAL(i);
670 #endif
671 if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
672 sc->sc_waitseen++;
673
674 switch (code) {
675 case DBRI_INTR_XCMP: /* transmission complete */
676 {
677 int td;
678 struct dbri_desc *dd;
679
680 td = sc->sc_pipe[channel].desc;
681 dd = &sc->sc_desc[td];
682
683 if (dd->callback != NULL)
684 softint_schedule(dd->softint);
685 break;
686 }
687 case DBRI_INTR_FXDT: /* fixed data change */
688 DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel,
689 val);
690 #if 0
691 printf("reg: %08x\n", sc->sc_mm.status);
692 #endif
693 if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
694 val = reverse_bytes(val, sc->sc_pipe[channel].length);
695 if (sc->sc_pipe[channel].prec)
696 *(sc->sc_pipe[channel].prec) = val;
697 #ifndef DBRI_SPIN
698 DPRINTF("%s: wakeup %p\n", device_xname(sc->sc_dev), sc);
699 wakeup(sc);
700 #endif
701 break;
702 case DBRI_INTR_SBRI:
703 DPRINTF("dbri_intr: SBRI\n");
704 break;
705 case DBRI_INTR_BRDY:
706 {
707 int td;
708 struct dbri_desc *dd;
709
710 td = sc->sc_pipe[channel].desc;
711 dd = &sc->sc_desc[td];
712
713 if (dd->callback != NULL)
714 softint_schedule(dd->softint);
715 break;
716 }
717 case DBRI_INTR_UNDR:
718 {
719 volatile u_int32_t *cmd;
720 int td = sc->sc_pipe[channel].desc;
721
722 DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
723
724 sc->sc_dma->xmit[td].status = 0;
725
726 cmd = dbri_command_lock(sc);
727 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
728 sc->sc_pipe[channel].sdp |
729 DBRI_SDP_VALID_POINTER |
730 DBRI_SDP_CLEAR |
731 DBRI_SDP_2SAME);
732 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
733 dbri_command_send(sc, cmd);
734 break;
735 }
736 case DBRI_INTR_CMDI:
737 DPRINTF("ok");
738 break;
739 default:
740
741 aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
742 code);
743 break;
744 }
745
746 return;
747 }
748
749 /*
750 * mmcodec stuff
751 */
752
753 static int
754 mmcodec_init(struct dbri_softc *sc)
755 {
756 bus_space_handle_t ioh = sc->sc_ioh;
757 bus_space_tag_t iot = sc->sc_iot;
758 u_int32_t reg2;
759 int bail;
760
761 reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
762 DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
763
764 if (reg2 & DBRI_PIO2) {
765 aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
766 sc->sc_mm.onboard = 1;
767 }
768
769 if (reg2 & DBRI_PIO0) {
770 aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
771 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
772 sc->sc_mm.onboard = 0;
773 }
774
775 if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
776 aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
777 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
778 sc->sc_mm.onboard = 0;
779 }
780
781 if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
782 aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
783 return -1;
784 }
785
786 sc->sc_version = 0xff;
787
788 mmcodec_pipe_init(sc);
789 mmcodec_default(sc);
790
791 sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
792
793 /*
794 * mmcodec_setcontrol() sometimes fails right after powerup
795 * so we just try again until we either get a useful response or run
796 * out of time
797 */
798 bail = 0;
799 while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
800
801 bail++;
802 if (bail > 100) {
803 DPRINTF("%s: cs4215 probe failed at offset %d\n",
804 device_xname(sc->sc_dev), sc->sc_mm.offset);
805 return (-1);
806 }
807 delay(10000);
808 }
809
810 aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
811 0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
812
813 /* set some sane defaults for mmcodec_init_data */
814 sc->sc_params.channels = 2;
815 sc->sc_params.precision = 16;
816
817 mmcodec_init_data(sc);
818
819 return (0);
820 }
821
822 static void
823 mmcodec_init_data(struct dbri_softc *sc)
824 {
825 bus_space_tag_t iot = sc->sc_iot;
826 bus_space_handle_t ioh = sc->sc_ioh;
827 u_int32_t tmp;
828 int data_width;
829
830 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
831 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
832 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
833
834 /* switch CS4215 to data mode - set PIO3 to 1 */
835 tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
836
837 /* XXX */
838 tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
839
840 bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
841 chi_reset(sc, CHIslave, 128);
842
843 data_width = sc->sc_params.channels * sc->sc_params.precision;
844
845 if ((data_width != 32) && (data_width != 8))
846 aprint_error("%s: data_width is %d\n", __func__, data_width);
847
848 pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
849 pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
850 pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
851 pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
852
853 pipe_receive_fixed(sc, 21, &sc->sc_mm.status);
854
855 mmcodec_setgain(sc, 0);
856
857 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
858 tmp |= DBRI_CHI_ACTIVATE;
859 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
860
861 return;
862 }
863
864 static void
865 mmcodec_pipe_init(struct dbri_softc *sc)
866 {
867
868 pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
869 pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
870 pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
871 pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
872
873 pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
874 pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
875 pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
876
877 sc->sc_mm.status = 0;
878
879 pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
880 pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
881
882 return;
883 }
884
885 static void
886 mmcodec_default(struct dbri_softc *sc)
887 {
888 struct cs4215_state *mm = &sc->sc_mm;
889
890 /*
891 * no action, memory resetting only
892 *
893 * data time slots 5-8
894 * speaker, line and headphone enable. set gain to half.
895 * input is line
896 */
897 mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
898 mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
899 sc->sc_linp = 128;
900 sc->sc_rinp = 128;
901 sc->sc_monitor = 0;
902 sc->sc_input = 1; /* line */
903 mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
904 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
905 mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
906 CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
907
908
909 /*
910 * control time slots 1-4
911 *
912 * 0: default I/O voltage scale
913 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
914 * 2: serial enable, CHI master, 128 bits per frame, clock 1
915 * 3: tests disabled
916 */
917 mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB;
918 mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
919 mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
920 mm->c.bcontrol[3] = 0;
921
922 return;
923 }
924
925 static void
926 mmcodec_setgain(struct dbri_softc *sc, int mute)
927 {
928 if (mute) {
929 /* disable all outputs, max. attenuation */
930 sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
931 sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
932 } else {
933
934 sc->sc_mm.d.bdata[0] = sc->sc_latt;
935 sc->sc_mm.d.bdata[1] = sc->sc_ratt;
936 }
937
938 /* input stuff */
939 sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
940 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
941 sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
942 (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
943
944 if (sc->sc_powerstate == 0)
945 return;
946 pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
947
948 DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
949 /* give the chip some time to execute the command */
950 delay(250);
951
952 return;
953 }
954
955 static int
956 mmcodec_setcontrol(struct dbri_softc *sc)
957 {
958 bus_space_tag_t iot = sc->sc_iot;
959 bus_space_handle_t ioh = sc->sc_ioh;
960 u_int32_t val;
961 u_int32_t tmp;
962 int bail = 0;
963 #if DBRI_SPIN
964 int i;
965 #endif
966
967 /*
968 * Temporarily mute outputs and wait 125 us to make sure that it
969 * happens. This avoids clicking noises.
970 */
971 mmcodec_setgain(sc, 1);
972 delay(125);
973
974 bus_space_write_4(iot, ioh, DBRI_REG2, 0);
975 delay(125);
976
977 /* enable control mode */
978 val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */
979
980 /* XXX */
981 val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
982
983 bus_space_write_4(iot, ioh, DBRI_REG2, val);
984
985 delay(34);
986
987 /*
988 * in control mode, the cs4215 is the slave device, so the
989 * DBRI must act as the CHI master.
990 *
991 * in data mode, the cs4215 must be the CHI master to insure
992 * that the data stream is in sync with its codec
993 */
994 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
995 tmp &= ~DBRI_COMMAND_CHI;
996 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
997
998 chi_reset(sc, CHImaster, 128);
999
1000 /* control mode */
1001 pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1002 pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1003 pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1004
1005 /* wait for the chip to echo back CLB as zero */
1006 sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1007 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1008
1009 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1010 tmp |= DBRI_CHI_ACTIVATE;
1011 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1012
1013 #if DBRI_SPIN
1014 i = 1024;
1015 while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) {
1016 delay(125);
1017 }
1018
1019 if (i == 0) {
1020 DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1021 device_xname(sc->sc_dev), sc->sc_mm.status);
1022 return (-1);
1023 }
1024 #else
1025 while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) {
1026 DPRINTF("%s: tsleep %p\n", device_xname(sc->sc_dev), sc);
1027 tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz);
1028 bail++;
1029 }
1030 #endif
1031 if (bail >= 10) {
1032 DPRINTF("%s: switching to control mode timed out (%x %x)\n",
1033 device_xname(sc->sc_dev), sc->sc_mm.status,
1034 bus_space_read_4(iot, ioh, DBRI_REG2));
1035 return -1;
1036 }
1037
1038 /* copy the version information before it becomes unreadable again */
1039 sc->sc_version = sc->sc_mm.version;
1040
1041 /* terminate cs4215 control mode */
1042 sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1043 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1044
1045 /* two frames of control info @ 8kHz frame rate = 250us delay */
1046 delay(250);
1047
1048 mmcodec_setgain(sc, 0);
1049
1050 return (0);
1051
1052 }
1053
1054 /*
1055 * CHI combo
1056 */
1057 static void
1058 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1059 {
1060 volatile u_int32_t *cmd;
1061 int val;
1062 int clockrate, divisor;
1063
1064 cmd = dbri_command_lock(sc);
1065
1066 /* set CHI anchor: pipe 16 */
1067 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1068 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1069 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1070 *(cmd++) = 0;
1071
1072 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1073 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1074 *(cmd++) = 0;
1075 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1076
1077 sc->sc_pipe[16].sdp = 1;
1078 sc->sc_pipe[16].next = 16;
1079 sc->sc_chi_pipe_in = 16;
1080 sc->sc_chi_pipe_out = 16;
1081
1082 switch (ms) {
1083 case CHIslave:
1084 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1085 break;
1086 case CHImaster:
1087 clockrate = bpf * 8;
1088 divisor = 12288 / clockrate;
1089
1090 if (divisor > 255 || divisor * clockrate != 12288)
1091 aprint_error_dev(sc->sc_dev,
1092 "illegal bits-per-frame %d\n", bpf);
1093
1094 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1095 DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1096 break;
1097 default:
1098 aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
1099 break;
1100 }
1101
1102 sc->sc_chi_bpf = bpf;
1103
1104 /* CHI data mode */
1105 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1106 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1107 DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1108
1109 dbri_command_send(sc, cmd);
1110
1111 return;
1112 }
1113
1114 /*
1115 * pipe stuff
1116 */
1117 static void
1118 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1119 {
1120 DPRINTF("pipe setup: %d\n", pipe);
1121 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1122 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1123 pipe);
1124 return;
1125 }
1126
1127 if ((sdp & 0xf800) != sdp)
1128 aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
1129 sdp);
1130
1131 if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1132 !(sdp & DBRI_SDP_TO_SER))
1133 sdp |= DBRI_SDP_CHANGE;
1134
1135 sdp |= DBRI_PIPE(pipe);
1136
1137 sc->sc_pipe[pipe].sdp = sdp;
1138 sc->sc_pipe[pipe].desc = -1;
1139
1140 pipe_reset(sc, pipe);
1141
1142 return;
1143 }
1144
1145 static void
1146 pipe_reset(struct dbri_softc *sc, int pipe)
1147 {
1148 struct dbri_desc *dd;
1149 int sdp;
1150 int desc;
1151 volatile u_int32_t *cmd;
1152
1153 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1154 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1155 pipe);
1156 return;
1157 }
1158
1159 sdp = sc->sc_pipe[pipe].sdp;
1160 if (sdp == 0) {
1161 aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
1162 pipe);
1163 return;
1164 }
1165
1166 cmd = dbri_command_lock(sc);
1167 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1168 sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1169 *(cmd++) = 0;
1170 dbri_command_send(sc, cmd);
1171
1172 desc = sc->sc_pipe[pipe].desc;
1173
1174 dd = &sc->sc_desc[desc];
1175
1176 dd->busy = 0;
1177
1178 #if 0
1179 if (dd->callback)
1180 softint_schedule(dd->softint);
1181 #endif
1182
1183 sc->sc_pipe[pipe].desc = -1;
1184
1185 return;
1186 }
1187
1188 static void
1189 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile u_int32_t *prec)
1190 {
1191
1192 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1193 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1194 pipe);
1195 return;
1196 }
1197
1198 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1199 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1200 pipe);
1201 return;
1202 }
1203
1204 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1205 aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
1206 pipe);
1207 return;
1208 }
1209
1210 sc->sc_pipe[pipe].prec = prec;
1211
1212 return;
1213 }
1214
1215 static void
1216 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, u_int32_t data)
1217 {
1218 volatile u_int32_t *cmd;
1219
1220 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1221 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1222 pipe);
1223 return;
1224 }
1225
1226 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1227 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1228 pipe);
1229 return;
1230 }
1231
1232 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1233 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1234 pipe);
1235 return;
1236 }
1237
1238 if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1239 aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
1240 pipe);
1241 return;
1242 }
1243
1244 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1245 data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1246
1247 cmd = dbri_command_lock(sc);
1248 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1249 *(cmd++) = data;
1250
1251 dbri_command_send(sc, cmd);
1252
1253 return;
1254 }
1255
1256 static void
1257 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1258 void (*callback)(void *), void *callback_args)
1259 {
1260 volatile u_int32_t *cmd;
1261 int x, i;
1262 int td;
1263 int td_first, td_last;
1264 bus_addr_t dmabuf, dmabase;
1265 struct dbri_desc *dd = &sc->sc_desc[which];
1266
1267 switch (pipe) {
1268 case 4:
1269 /* output, offset 0 */
1270 break;
1271 default:
1272 aprint_error("%s: illegal pipe number (%d)\n",
1273 __func__, pipe);
1274 return;
1275 }
1276
1277 td = 0;
1278 td_first = td_last = -1;
1279
1280 if (sc->sc_pipe[pipe].sdp == 0) {
1281 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1282 pipe);
1283 return;
1284 }
1285
1286 dmabuf = dd->dmabase;
1287 dmabase = sc->sc_dmabase;
1288 td = 0;
1289
1290 for (i = 0; i < (num - 1); i++) {
1291
1292 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1293 | TX_EOF | TX_BINT;
1294 sc->sc_dma->xmit[i].ba = dmabuf;
1295 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1296 sc->sc_dma->xmit[i].status = 0;
1297
1298 td_last = td;
1299 dmabuf += blksz;
1300 }
1301
1302 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1303
1304 sc->sc_dma->xmit[i].ba = dmabuf;
1305 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1306 sc->sc_dma->xmit[i].status = 0;
1307
1308 dd->callback = callback;
1309 dd->callback_args = callback_args;
1310
1311 x = splsched();
1312
1313 /* the pipe shouldn't be active */
1314 if (pipe_active(sc, pipe)) {
1315 aprint_error("pipe active (CDP)\n");
1316 /* pipe is already active */
1317 #if 0
1318 td_last = sc->sc_pipe[pipe].desc;
1319 while (sc->sc_desc[td_last].next != -1)
1320 td_last = sc->sc_desc[td_last].next;
1321
1322 sc->sc_desc[td_last].next = td_first;
1323 sc->sc_dma->desc[td_last].nda =
1324 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1325
1326 cmd = dbri_command_lock(sc);
1327 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1328 dbri_command_send(sc, cmd);
1329 #endif
1330 } else {
1331 /*
1332 * pipe isn't active - issue an SDP command to start our
1333 * chain of TDs running
1334 */
1335 sc->sc_pipe[pipe].desc = which;
1336 cmd = dbri_command_lock(sc);
1337 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1338 sc->sc_pipe[pipe].sdp |
1339 DBRI_SDP_VALID_POINTER |
1340 DBRI_SDP_EVERY |
1341 DBRI_SDP_CLEAR);
1342 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1343 dbri_command_send(sc, cmd);
1344 DPRINTF("%s: starting DMA\n", __func__);
1345 }
1346
1347 splx(x);
1348
1349 return;
1350 }
1351
1352 static void
1353 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1354 void (*callback)(void *), void *callback_args)
1355 {
1356 volatile u_int32_t *cmd;
1357 int x, i;
1358 int td_first, td_last;
1359 bus_addr_t dmabuf, dmabase;
1360 struct dbri_desc *dd = &sc->sc_desc[which];
1361
1362 switch (pipe) {
1363 case 6:
1364 break;
1365 default:
1366 aprint_error("%s: illegal pipe number (%d)\n",
1367 __func__, pipe);
1368 return;
1369 }
1370
1371 td_first = td_last = -1;
1372
1373 if (sc->sc_pipe[pipe].sdp == 0) {
1374 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1375 pipe);
1376 return;
1377 }
1378
1379 dmabuf = dd->dmabase;
1380 dmabase = sc->sc_dmabase;
1381
1382 for (i = 0; i < (num - 1); i++) {
1383
1384 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1385 sc->sc_dma->recv[i].ba = dmabuf;
1386 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1387 sc->sc_dma->recv[i].status = RX_EOF;
1388
1389 td_last = i;
1390 dmabuf += blksz;
1391 }
1392
1393 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1394
1395 sc->sc_dma->recv[i].ba = dmabuf;
1396 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1397 sc->sc_dma->recv[i].status = RX_EOF;
1398
1399 dd->callback = callback;
1400 dd->callback_args = callback_args;
1401
1402 x = splsched();
1403
1404 /* the pipe shouldn't be active */
1405 if (pipe_active(sc, pipe)) {
1406 aprint_error("pipe active (CDP)\n");
1407 /* pipe is already active */
1408 #if 0
1409 td_last = sc->sc_pipe[pipe].desc;
1410 while (sc->sc_desc[td_last].next != -1)
1411 td_last = sc->sc_desc[td_last].next;
1412
1413 sc->sc_desc[td_last].next = td_first;
1414 sc->sc_dma->desc[td_last].nda =
1415 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1416
1417 cmd = dbri_command_lock(sc);
1418 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1419 dbri_command_send(sc, cmd);
1420 #endif
1421 } else {
1422 /*
1423 * pipe isn't active - issue an SDP command to start our
1424 * chain of TDs running
1425 */
1426 sc->sc_pipe[pipe].desc = which;
1427 cmd = dbri_command_lock(sc);
1428 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1429 sc->sc_pipe[pipe].sdp |
1430 DBRI_SDP_VALID_POINTER |
1431 DBRI_SDP_EVERY |
1432 DBRI_SDP_CLEAR);
1433 *(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1434 dbri_command_send(sc, cmd);
1435 DPRINTF("%s: starting DMA\n", __func__);
1436 }
1437
1438 splx(x);
1439
1440 return;
1441 }
1442
1443 static void
1444 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1445 int len, int cycle)
1446 {
1447 volatile u_int32_t *cmd;
1448 int prevpipe, nextpipe;
1449 int val;
1450
1451 DPRINTF("%s: %d\n", __func__, pipe);
1452 if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1453 basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1454 aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1455 pipe, basepipe);
1456 return;
1457 }
1458
1459 if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1460 aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1461 pipe, basepipe);
1462 return;
1463 }
1464
1465 if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1466 cycle = sc->sc_chi_bpf;
1467
1468 if (basepipe == pipe)
1469 prevpipe = nextpipe = pipe;
1470 else {
1471 if (basepipe == 16) {
1472 if (dir == PIPEinput) {
1473 prevpipe = sc->sc_chi_pipe_in;
1474 } else {
1475 prevpipe = sc->sc_chi_pipe_out;
1476 }
1477 } else
1478 prevpipe = basepipe;
1479
1480 nextpipe = sc->sc_pipe[prevpipe].next;
1481
1482 while (sc->sc_pipe[nextpipe].cycle < cycle &&
1483 sc->sc_pipe[nextpipe].next != basepipe) {
1484 prevpipe = nextpipe;
1485 nextpipe = sc->sc_pipe[nextpipe].next;
1486 }
1487 }
1488
1489 if (prevpipe == 16) {
1490 if (dir == PIPEinput) {
1491 sc->sc_chi_pipe_in = pipe;
1492 } else {
1493 sc->sc_chi_pipe_out = pipe;
1494 }
1495 } else
1496 sc->sc_pipe[prevpipe].next = pipe;
1497
1498 sc->sc_pipe[pipe].next = nextpipe;
1499 sc->sc_pipe[pipe].cycle = cycle;
1500 sc->sc_pipe[pipe].length = len;
1501
1502 cmd = dbri_command_lock(sc);
1503
1504 switch (dir) {
1505 case PIPEinput:
1506 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1507 val |= pipe;
1508 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1509 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1510 DBRI_TS_NEXT(nextpipe);
1511 *(cmd++) = 0;
1512 break;
1513 case PIPEoutput:
1514 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1515 val |= pipe;
1516 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1517 *(cmd++) = 0;
1518 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1519 DBRI_TS_NEXT(nextpipe);
1520 break;
1521 default:
1522 DPRINTF("%s: should not have happened!\n",
1523 device_xname(sc->sc_dev));
1524 break;
1525 }
1526
1527 dbri_command_send(sc, cmd);
1528
1529 return;
1530 }
1531
1532 static int
1533 pipe_active(struct dbri_softc *sc, int pipe)
1534 {
1535
1536 return (sc->sc_pipe[pipe].desc != -1);
1537 }
1538
1539 /*
1540 * subroutines required to interface with audio(9)
1541 */
1542
1543 static int
1544 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1545 {
1546
1547 switch (ae->index) {
1548 case 0:
1549 strcpy(ae->name, AudioEulinear);
1550 ae->encoding = AUDIO_ENCODING_ULINEAR;
1551 ae->precision = 8;
1552 ae->flags = 0;
1553 break;
1554 case 1:
1555 strcpy(ae->name, AudioEmulaw);
1556 ae->encoding = AUDIO_ENCODING_ULAW;
1557 ae->precision = 8;
1558 ae->flags = 0;
1559 break;
1560 case 2:
1561 strcpy(ae->name, AudioEalaw);
1562 ae->encoding = AUDIO_ENCODING_ALAW;
1563 ae->precision = 8;
1564 ae->flags = 0;
1565 break;
1566 case 3:
1567 strcpy(ae->name, AudioEslinear);
1568 ae->encoding = AUDIO_ENCODING_SLINEAR;
1569 ae->precision = 8;
1570 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1571 break;
1572 case 4:
1573 strcpy(ae->name, AudioEslinear_le);
1574 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1575 ae->precision = 16;
1576 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1577 break;
1578 case 5:
1579 strcpy(ae->name, AudioEulinear_le);
1580 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1581 ae->precision = 16;
1582 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1583 break;
1584 case 6:
1585 strcpy(ae->name, AudioEslinear_be);
1586 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1587 ae->precision = 16;
1588 ae->flags = 0;
1589 break;
1590 case 7:
1591 strcpy(ae->name, AudioEulinear_be);
1592 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1593 ae->precision = 16;
1594 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1595 break;
1596 case 8:
1597 strcpy(ae->name, AudioEslinear);
1598 ae->encoding = AUDIO_ENCODING_SLINEAR;
1599 ae->precision = 16;
1600 ae->flags = 0;
1601 break;
1602 default:
1603 return (EINVAL);
1604 }
1605
1606 return (0);
1607 }
1608
1609 static int
1610 dbri_set_params(void *hdl, int setmode, int usemode,
1611 struct audio_params *play, struct audio_params *rec,
1612 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1613 {
1614 struct dbri_softc *sc = hdl;
1615 int rate;
1616 audio_params_t *p = NULL;
1617 stream_filter_list_t *fil;
1618 int mode;
1619
1620 /*
1621 * This device only has one clock, so make the sample rates match.
1622 */
1623 if (play->sample_rate != rec->sample_rate &&
1624 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1625 if (setmode == AUMODE_PLAY) {
1626 rec->sample_rate = play->sample_rate;
1627 setmode |= AUMODE_RECORD;
1628 } else if (setmode == AUMODE_RECORD) {
1629 play->sample_rate = rec->sample_rate;
1630 setmode |= AUMODE_PLAY;
1631 } else
1632 return EINVAL;
1633 }
1634
1635 for (mode = AUMODE_RECORD; mode != -1;
1636 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1637 if ((setmode & mode) == 0)
1638 continue;
1639
1640 p = mode == AUMODE_PLAY ? play : rec;
1641 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1642 DPRINTF("dbri_set_params: invalid rate %d\n",
1643 p->sample_rate);
1644 return EINVAL;
1645 }
1646
1647 fil = mode == AUMODE_PLAY ? pfil : rfil;
1648 DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1649 p->sample_rate, p->precision, p->channels);
1650 if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1651 mode, p, true, fil) < 0) {
1652 aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1653 return EINVAL;
1654 }
1655 if (fil->req_size > 0)
1656 p = &fil->filters[0].param;
1657 }
1658
1659 if (p == NULL) {
1660 DPRINTF("dbri_set_params: no parameters to set\n");
1661 return 0;
1662 }
1663
1664 DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1665 p->sample_rate, p->precision, p->channels);
1666
1667 for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1668 if (CS4215_FREQ[rate].freq == p->sample_rate)
1669 break;
1670
1671 if (CS4215_FREQ[rate].freq == 0)
1672 return (EINVAL);
1673
1674 /* set frequency */
1675 sc->sc_mm.c.bcontrol[1] &= ~0x38;
1676 sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1677 sc->sc_mm.c.bcontrol[2] &= ~0x70;
1678 sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1679
1680 switch (p->encoding) {
1681 case AUDIO_ENCODING_ULAW:
1682 sc->sc_mm.c.bcontrol[1] &= ~3;
1683 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1684 break;
1685 case AUDIO_ENCODING_ALAW:
1686 sc->sc_mm.c.bcontrol[1] &= ~3;
1687 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1688 break;
1689 case AUDIO_ENCODING_ULINEAR:
1690 sc->sc_mm.c.bcontrol[1] &= ~3;
1691 if (p->precision == 8) {
1692 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1693 } else {
1694 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1695 }
1696 break;
1697 case AUDIO_ENCODING_SLINEAR_BE:
1698 case AUDIO_ENCODING_SLINEAR:
1699 sc->sc_mm.c.bcontrol[1] &= ~3;
1700 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1701 break;
1702 }
1703
1704 switch (p->channels) {
1705 case 1:
1706 sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1707 break;
1708 case 2:
1709 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1710 break;
1711 }
1712
1713 return (0);
1714 }
1715
1716 static int
1717 dbri_round_blocksize(void *hdl, int bs, int mode,
1718 const audio_params_t *param)
1719 {
1720
1721 /* DBRI DMA segment size, rounded down to 32bit alignment */
1722 return 0x1ffc;
1723 }
1724
1725 static int
1726 dbri_halt_output(void *hdl)
1727 {
1728 struct dbri_softc *sc = hdl;
1729
1730 if (!sc->sc_playing)
1731 return 0;
1732
1733 sc->sc_playing = 0;
1734 pipe_reset(sc, 4);
1735 return (0);
1736 }
1737
1738 static int
1739 dbri_getdev(void *hdl, struct audio_device *ret)
1740 {
1741
1742 *ret = dbri_device;
1743 return (0);
1744 }
1745
1746 static int
1747 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1748 {
1749 struct dbri_softc *sc = hdl;
1750 int latt = sc->sc_latt, ratt = sc->sc_ratt;
1751
1752 switch (mc->dev) {
1753 case DBRI_VOL_OUTPUT: /* master volume */
1754 latt = (latt & 0xc0) | (63 -
1755 min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1756 ratt = (ratt & 0xc0) | (63 -
1757 min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1758 break;
1759 case DBRI_ENABLE_MONO: /* built-in speaker */
1760 if (mc->un.ord == 1) {
1761 ratt |= CS4215_SE;
1762 } else
1763 ratt &= ~CS4215_SE;
1764 break;
1765 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1766 if (mc->un.ord == 1) {
1767 latt |= CS4215_HE;
1768 } else
1769 latt &= ~CS4215_HE;
1770 break;
1771 case DBRI_ENABLE_LINE: /* line out */
1772 if (mc->un.ord == 1) {
1773 latt |= CS4215_LE;
1774 } else
1775 latt &= ~CS4215_LE;
1776 break;
1777 case DBRI_VOL_MONITOR:
1778 if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1779 sc->sc_monitor)
1780 return 0;
1781 sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1782 break;
1783 case DBRI_INPUT_GAIN:
1784 sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1785 sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1786 break;
1787 case DBRI_INPUT_SELECT:
1788 if (mc->un.mask == sc->sc_input)
1789 return 0;
1790 sc->sc_input = mc->un.mask;
1791 break;
1792 }
1793
1794 sc->sc_latt = latt;
1795 sc->sc_ratt = ratt;
1796
1797 mmcodec_setgain(sc, 0);
1798
1799 return (0);
1800 }
1801
1802 static int
1803 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1804 {
1805 struct dbri_softc *sc = hdl;
1806
1807 switch (mc->dev) {
1808 case DBRI_VOL_OUTPUT: /* master volume */
1809 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1810 (63 - (sc->sc_latt & 0x3f)) << 2;
1811 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1812 (63 - (sc->sc_ratt & 0x3f)) << 2;
1813 return (0);
1814 case DBRI_ENABLE_MONO: /* built-in speaker */
1815 mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1816 return 0;
1817 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1818 mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1819 return 0;
1820 case DBRI_ENABLE_LINE: /* line out */
1821 mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1822 return 0;
1823 case DBRI_VOL_MONITOR:
1824 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1825 return 0;
1826 case DBRI_INPUT_GAIN:
1827 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1828 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1829 return 0;
1830 case DBRI_INPUT_SELECT:
1831 mc->un.mask = sc->sc_input;
1832 return 0;
1833 }
1834 return (EINVAL);
1835 }
1836
1837 static int
1838 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1839 {
1840
1841 switch (di->index) {
1842 case DBRI_MONITOR_CLASS:
1843 di->mixer_class = DBRI_MONITOR_CLASS;
1844 strcpy(di->label.name, AudioCmonitor);
1845 di->type = AUDIO_MIXER_CLASS;
1846 di->next = di->prev = AUDIO_MIXER_LAST;
1847 return 0;
1848 case DBRI_OUTPUT_CLASS:
1849 di->mixer_class = DBRI_OUTPUT_CLASS;
1850 strcpy(di->label.name, AudioCoutputs);
1851 di->type = AUDIO_MIXER_CLASS;
1852 di->next = di->prev = AUDIO_MIXER_LAST;
1853 return 0;
1854 case DBRI_INPUT_CLASS:
1855 di->mixer_class = DBRI_INPUT_CLASS;
1856 strcpy(di->label.name, AudioCinputs);
1857 di->type = AUDIO_MIXER_CLASS;
1858 di->next = di->prev = AUDIO_MIXER_LAST;
1859 return 0;
1860 case DBRI_VOL_OUTPUT: /* master volume */
1861 di->mixer_class = DBRI_OUTPUT_CLASS;
1862 di->next = di->prev = AUDIO_MIXER_LAST;
1863 strcpy(di->label.name, AudioNmaster);
1864 di->type = AUDIO_MIXER_VALUE;
1865 di->un.v.num_channels = 2;
1866 strcpy(di->un.v.units.name, AudioNvolume);
1867 return (0);
1868 case DBRI_INPUT_GAIN: /* input gain */
1869 di->mixer_class = DBRI_INPUT_CLASS;
1870 di->next = di->prev = AUDIO_MIXER_LAST;
1871 strcpy(di->label.name, AudioNrecord);
1872 di->type = AUDIO_MIXER_VALUE;
1873 di->un.v.num_channels = 2;
1874 strcpy(di->un.v.units.name, AudioNvolume);
1875 return (0);
1876 case DBRI_VOL_MONITOR: /* monitor volume */
1877 di->mixer_class = DBRI_MONITOR_CLASS;
1878 di->next = di->prev = AUDIO_MIXER_LAST;
1879 strcpy(di->label.name, AudioNmonitor);
1880 di->type = AUDIO_MIXER_VALUE;
1881 di->un.v.num_channels = 1;
1882 strcpy(di->un.v.units.name, AudioNvolume);
1883 return (0);
1884 case DBRI_ENABLE_MONO: /* built-in speaker */
1885 di->mixer_class = DBRI_OUTPUT_CLASS;
1886 di->next = di->prev = AUDIO_MIXER_LAST;
1887 strcpy(di->label.name, AudioNmono);
1888 di->type = AUDIO_MIXER_ENUM;
1889 di->un.e.num_mem = 2;
1890 strcpy(di->un.e.member[0].label.name, AudioNoff);
1891 di->un.e.member[0].ord = 0;
1892 strcpy(di->un.e.member[1].label.name, AudioNon);
1893 di->un.e.member[1].ord = 1;
1894 return (0);
1895 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1896 di->mixer_class = DBRI_OUTPUT_CLASS;
1897 di->next = di->prev = AUDIO_MIXER_LAST;
1898 strcpy(di->label.name, AudioNheadphone);
1899 di->type = AUDIO_MIXER_ENUM;
1900 di->un.e.num_mem = 2;
1901 strcpy(di->un.e.member[0].label.name, AudioNoff);
1902 di->un.e.member[0].ord = 0;
1903 strcpy(di->un.e.member[1].label.name, AudioNon);
1904 di->un.e.member[1].ord = 1;
1905 return (0);
1906 case DBRI_ENABLE_LINE: /* line out */
1907 di->mixer_class = DBRI_OUTPUT_CLASS;
1908 di->next = di->prev = AUDIO_MIXER_LAST;
1909 strcpy(di->label.name, AudioNline);
1910 di->type = AUDIO_MIXER_ENUM;
1911 di->un.e.num_mem = 2;
1912 strcpy(di->un.e.member[0].label.name, AudioNoff);
1913 di->un.e.member[0].ord = 0;
1914 strcpy(di->un.e.member[1].label.name, AudioNon);
1915 di->un.e.member[1].ord = 1;
1916 return (0);
1917 case DBRI_INPUT_SELECT:
1918 di->mixer_class = DBRI_INPUT_CLASS;
1919 strcpy(di->label.name, AudioNsource);
1920 di->type = AUDIO_MIXER_SET;
1921 di->prev = di->next = AUDIO_MIXER_LAST;
1922 di->un.s.num_mem = 2;
1923 strcpy(di->un.s.member[0].label.name, AudioNline);
1924 di->un.s.member[0].mask = 1 << 0;
1925 strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1926 di->un.s.member[1].mask = 1 << 1;
1927 return 0;
1928 }
1929
1930 return (ENXIO);
1931 }
1932
1933 static size_t
1934 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1935 {
1936 #ifdef DBRI_BIG_BUFFER
1937 return 16*0x1ffc; /* use ~128KB buffer */
1938 #else
1939 return bufsize;
1940 #endif
1941 }
1942
1943 static int
1944 dbri_get_props(void *hdl)
1945 {
1946
1947 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
1948 }
1949
1950 static int
1951 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
1952 void (*intr)(void *), void *intrarg,
1953 const struct audio_params *param)
1954 {
1955 struct dbri_softc *sc = hdl;
1956 unsigned long count, num;
1957
1958 if (sc->sc_playing)
1959 return 0;
1960
1961 count = (unsigned long)(((char *)end - (char *)start));
1962 num = count / blksize;
1963
1964 DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
1965 (unsigned long)intr,
1966 (unsigned long)intrarg, blksize, count, num);
1967
1968 sc->sc_params = *param;
1969
1970 if (sc->sc_recording == 0) {
1971 /* do not muck with the codec when it's already in use */
1972 if (mmcodec_setcontrol(sc) != 0)
1973 return -1;
1974 mmcodec_init_data(sc);
1975 }
1976
1977 /*
1978 * always use DMA descriptor 0 for output
1979 * no need to allocate them dynamically since we only ever have
1980 * exactly one input stream and exactly one output stream
1981 */
1982 setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
1983 sc->sc_playing = 1;
1984 return 0;
1985 }
1986
1987 static int
1988 dbri_halt_input(void *cookie)
1989 {
1990 struct dbri_softc *sc = cookie;
1991
1992 if (!sc->sc_recording)
1993 return 0;
1994
1995 sc->sc_recording = 0;
1996 pipe_reset(sc, 6);
1997 return 0;
1998 }
1999
2000 static int
2001 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
2002 void (*intr)(void *), void *intrarg,
2003 const struct audio_params *param)
2004 {
2005 struct dbri_softc *sc = hdl;
2006 unsigned long count, num;
2007
2008 if (sc->sc_recording)
2009 return 0;
2010
2011 count = (unsigned long)(((char *)end - (char *)start));
2012 num = count / blksize;
2013
2014 DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2015 (unsigned long)intr,
2016 (unsigned long)intrarg, blksize, count, num);
2017
2018 sc->sc_params = *param;
2019
2020 if (sc->sc_playing == 0) {
2021
2022 /*
2023 * we don't support different parameters for playing and
2024 * recording anyway so don't bother whacking the codec if
2025 * it's already set up
2026 */
2027 mmcodec_setcontrol(sc);
2028 mmcodec_init_data(sc);
2029 }
2030
2031 sc->sc_recording = 1;
2032 setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2033 return 0;
2034 }
2035
2036
2037 static u_int32_t
2038 reverse_bytes(u_int32_t b, int len)
2039 {
2040 switch (len) {
2041 case 32:
2042 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2043 case 16:
2044 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
2045 case 8:
2046 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
2047 case 4:
2048 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
2049 case 2:
2050 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
2051 case 1:
2052 case 0:
2053 break;
2054 default:
2055 DPRINTF("reverse_bytes: unsupported length\n");
2056 };
2057
2058 return (b);
2059 }
2060
2061 static void *
2062 dbri_malloc(void *v, int dir, size_t s, struct malloc_type *mt, int flags)
2063 {
2064 struct dbri_softc *sc = v;
2065 struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2066 int rseg;
2067
2068 if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2069 &dd->dmamap) == 0) {
2070 if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2071 1, &rseg, BUS_DMA_NOWAIT) == 0) {
2072 if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2073 &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2074 if (dd->buf != NULL) {
2075 if (bus_dmamap_load(sc->sc_dmat,
2076 dd->dmamap, dd->buf, s, NULL,
2077 BUS_DMA_NOWAIT) == 0) {
2078 dd->len = s;
2079 dd->busy = 0;
2080 dd->callback = NULL;
2081 dd->dmabase =
2082 dd->dmamap->dm_segs[0].ds_addr;
2083 DPRINTF("dbri_malloc: using buffer %d %08x\n",
2084 sc->sc_desc_used, (uint32_t)dd->buf);
2085 sc->sc_desc_used++;
2086 return dd->buf;
2087 } else
2088 aprint_error("dbri_malloc: load failed\n");
2089 } else
2090 aprint_error("dbri_malloc: map returned NULL\n");
2091 } else
2092 aprint_error("dbri_malloc: map failed\n");
2093 bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2094 } else
2095 aprint_error("dbri_malloc: malloc() failed\n");
2096 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2097 } else
2098 aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2099 return NULL;
2100 }
2101
2102 static void
2103 dbri_free(void *v, void *p, struct malloc_type *mt)
2104 {
2105 free(p, mt);
2106 }
2107
2108 static paddr_t
2109 dbri_mappage(void *v, void *mem, off_t off, int prot)
2110 {
2111 struct dbri_softc *sc = v;
2112 int current;
2113
2114 if (off < 0)
2115 return -1;
2116
2117 current = 0;
2118 while ((current < sc->sc_desc_used) &&
2119 (sc->sc_desc[current].buf != mem))
2120 current++;
2121
2122 if (current < sc->sc_desc_used) {
2123 return bus_dmamem_mmap(sc->sc_dmat,
2124 &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2125 }
2126
2127 return -1;
2128 }
2129
2130 static int
2131 dbri_open(void *cookie, int flags)
2132 {
2133 struct dbri_softc *sc = cookie;
2134
2135 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2136
2137 if (sc->sc_refcount == 0)
2138 dbri_bring_up(sc);
2139
2140 sc->sc_refcount++;
2141
2142 return 0;
2143 }
2144
2145 static void
2146 dbri_close(void *cookie)
2147 {
2148 struct dbri_softc *sc = cookie;
2149
2150 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2151
2152 sc->sc_refcount--;
2153 KASSERT(sc->sc_refcount >= 0);
2154 if (sc->sc_refcount > 0)
2155 return;
2156
2157 dbri_set_power(sc, 0);
2158 sc->sc_playing = 0;
2159 sc->sc_recording = 0;
2160 }
2161
2162 static void
2163 dbri_powerhook(int why, void *cookie)
2164 {
2165 struct dbri_softc *sc = cookie;
2166
2167 if (why == sc->sc_pmgrstate)
2168 return;
2169
2170 switch(why)
2171 {
2172 case PWR_SUSPEND:
2173 dbri_set_power(sc, 0);
2174 break;
2175 case PWR_RESUME:
2176 if (sc->sc_powerstate != 0)
2177 break;
2178 aprint_verbose("resume: %d\n", sc->sc_refcount);
2179 sc->sc_pmgrstate = PWR_RESUME;
2180 if (sc->sc_playing) {
2181 volatile u_int32_t *cmd;
2182 int s;
2183
2184 dbri_bring_up(sc);
2185 s = splsched();
2186 cmd = dbri_command_lock(sc);
2187 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2188 0, sc->sc_pipe[4].sdp |
2189 DBRI_SDP_VALID_POINTER |
2190 DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2191 *(cmd++) = sc->sc_dmabase +
2192 dbri_dma_off(xmit, 0);
2193 dbri_command_send(sc, cmd);
2194 splx(s);
2195 }
2196 break;
2197 default:
2198 return;
2199 }
2200 sc->sc_pmgrstate = why;
2201 }
2202
2203 #endif /* NAUDIO > 0 */
2204