dbri.c revision 1.31 1 /* $NetBSD: dbri.c,v 1.31 2010/02/24 22:38:08 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1997 Rudolf Koenig (rfkoenig (at) immd4.informatik.uni-erlangen.de)
5 * Copyright (c) 1998, 1999 Brent Baccala (baccala (at) freesoft.org)
6 * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill (at) netbsd.org>
7 * Copyright (c) 2005 Michael Lorenz <macallan (at) netbsd.org>
8 * All rights reserved.
9 *
10 * This driver is losely based on a Linux driver written by Rudolf Koenig and
11 * Brent Baccala who kindly gave their permission to use their code in a
12 * BSD-licensed driver.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.31 2010/02/24 22:38:08 dyoung Exp $");
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/intr.h>
51
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/auconv.h>
59
60 #include <dev/ic/cs4215reg.h>
61 #include <dev/ic/cs4215var.h>
62 #include <dev/sbus/dbrireg.h>
63 #include <dev/sbus/dbrivar.h>
64
65 #include "opt_sbus_dbri.h"
66
67 #define DBRI_ROM_NAME_PREFIX "SUNW,DBRI"
68
69 #ifdef DBRI_DEBUG
70 # define DPRINTF aprint_normal
71 #else
72 # define DPRINTF while (0) printf
73 #endif
74
75 static const char *dbri_supported[] = {
76 "e",
77 "s3",
78 ""
79 };
80
81 enum ms {
82 CHImaster,
83 CHIslave
84 };
85
86 enum io {
87 PIPEinput,
88 PIPEoutput
89 };
90
91 /*
92 * Function prototypes
93 */
94
95 /* softc stuff */
96 static void dbri_attach_sbus(device_t, device_t, void *);
97 static int dbri_match_sbus(device_t, cfdata_t, void *);
98
99 static void dbri_config_interrupts(device_t);
100
101 /* interrupt handler */
102 static int dbri_intr(void *);
103 static void dbri_softint(void *);
104
105 /* supporting subroutines */
106 static int dbri_init(struct dbri_softc *);
107 static int dbri_reset(struct dbri_softc *);
108 static volatile uint32_t *dbri_command_lock(struct dbri_softc *);
109 static void dbri_command_send(struct dbri_softc *, volatile uint32_t *);
110 static void dbri_process_interrupt_buffer(struct dbri_softc *);
111 static void dbri_process_interrupt(struct dbri_softc *, int32_t);
112
113 /* mmcodec subroutines */
114 static int mmcodec_init(struct dbri_softc *);
115 static void mmcodec_init_data(struct dbri_softc *);
116 static void mmcodec_pipe_init(struct dbri_softc *);
117 static void mmcodec_default(struct dbri_softc *);
118 static void mmcodec_setgain(struct dbri_softc *, int);
119 static int mmcodec_setcontrol(struct dbri_softc *);
120
121 /* chi subroutines */
122 static void chi_reset(struct dbri_softc *, enum ms, int);
123
124 /* pipe subroutines */
125 static void pipe_setup(struct dbri_softc *, int, int);
126 static void pipe_reset(struct dbri_softc *, int);
127 static void pipe_receive_fixed(struct dbri_softc *, int,
128 volatile uint32_t *);
129 static void pipe_transmit_fixed(struct dbri_softc *, int, uint32_t);
130
131 static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
132 static int pipe_active(struct dbri_softc *, int);
133
134 /* audio(9) stuff */
135 static int dbri_query_encoding(void *, struct audio_encoding *);
136 static int dbri_set_params(void *, int, int, struct audio_params *,
137 struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
138 static int dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int dbri_halt_output(void *);
140 static int dbri_halt_input(void *);
141 static int dbri_getdev(void *, struct audio_device *);
142 static int dbri_set_port(void *, mixer_ctrl_t *);
143 static int dbri_get_port(void *, mixer_ctrl_t *);
144 static int dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static size_t dbri_round_buffersize(void *, int, size_t);
146 static int dbri_get_props(void *);
147 static int dbri_open(void *, int);
148 static void dbri_close(void *);
149
150 static void setup_ring_xmit(struct dbri_softc *, int, int, int, int,
151 void (*)(void *), void *);
152 static void setup_ring_recv(struct dbri_softc *, int, int, int, int,
153 void (*)(void *), void *);
154
155 static int dbri_trigger_output(void *, void *, void *, int,
156 void (*)(void *), void *, const struct audio_params *);
157 static int dbri_trigger_input(void *, void *, void *, int,
158 void (*)(void *), void *, const struct audio_params *);
159
160 static void *dbri_malloc(void *, int, size_t, struct malloc_type *, int);
161 static void dbri_free(void *, void *, struct malloc_type *);
162 static paddr_t dbri_mappage(void *, void *, off_t, int);
163 static void dbri_set_power(struct dbri_softc *, int);
164 static void dbri_bring_up(struct dbri_softc *);
165 static bool dbri_suspend(device_t, const pmf_qual_t *);
166 static bool dbri_resume(device_t, const pmf_qual_t *);
167
168 /* stupid support routines */
169 static uint32_t reverse_bytes(uint32_t, int);
170
171 struct audio_device dbri_device = {
172 "CS4215",
173 "",
174 "dbri"
175 };
176
177 struct audio_hw_if dbri_hw_if = {
178 dbri_open,
179 dbri_close,
180 NULL, /* drain */
181 dbri_query_encoding,
182 dbri_set_params,
183 dbri_round_blocksize,
184 NULL, /* commit_settings */
185 NULL, /* init_output */
186 NULL, /* init_input */
187 NULL, /* start_output */
188 NULL, /* start_input */
189 dbri_halt_output,
190 dbri_halt_input,
191 NULL, /* speaker_ctl */
192 dbri_getdev,
193 NULL, /* setfd */
194 dbri_set_port,
195 dbri_get_port,
196 dbri_query_devinfo,
197 dbri_malloc,
198 dbri_free,
199 dbri_round_buffersize,
200 dbri_mappage,
201 dbri_get_props,
202 dbri_trigger_output,
203 dbri_trigger_input
204 };
205
206 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
207 dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
208
209 #define DBRI_NFORMATS 4
210 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
212 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
213 48000}},
214 /* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
215 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
216 48000}},
217 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
218 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
219 48000}},
220 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
221 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
222 48000}},*/
223 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
224 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
225 48000}},
226 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
227 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
228 48000}},
229 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
230 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
231 48000}},
232 };
233
234 enum {
235 DBRI_OUTPUT_CLASS,
236 DBRI_VOL_OUTPUT,
237 DBRI_ENABLE_MONO,
238 DBRI_ENABLE_HEADPHONE,
239 DBRI_ENABLE_LINE,
240 DBRI_MONITOR_CLASS,
241 DBRI_VOL_MONITOR,
242 DBRI_INPUT_CLASS,
243 DBRI_INPUT_GAIN,
244 DBRI_INPUT_SELECT,
245 DBRI_RECORD_CLASS,
246 DBRI_ENUM_LAST
247 };
248
249 /*
250 * Autoconfig routines
251 */
252 static int
253 dbri_match_sbus(device_t parent, cfdata_t match, void *aux)
254 {
255 struct sbus_attach_args *sa = aux;
256 char *ver;
257 int i;
258
259 if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
260 return (0);
261
262 ver = &sa->sa_name[9];
263
264 for (i = 0; dbri_supported[i][0] != '\0'; i++)
265 if (strcmp(dbri_supported[i], ver) == 0)
266 return (1);
267
268 return (0);
269 }
270
271 static void
272 dbri_attach_sbus(device_t parent, device_t self, void *aux)
273 {
274 struct dbri_softc *sc = device_private(self);
275 struct sbus_attach_args *sa = aux;
276 bus_space_handle_t ioh;
277 bus_size_t size;
278 int error, rseg, pwr, i;
279 char *ver = &sa->sa_name[9];
280
281 sc->sc_dev = self;
282 sc->sc_iot = sa->sa_bustag;
283 sc->sc_dmat = sa->sa_dmatag;
284 sc->sc_powerstate = 1;
285
286 pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
287 aprint_normal(": rev %s\n", ver);
288
289 if (pwr) {
290 /*
291 * we can control DBRI power via auxio and we're initially
292 * powered down
293 */
294
295 sc->sc_have_powerctl = 1;
296 sc->sc_powerstate = 0;
297 dbri_set_power(sc, 1);
298 if (!pmf_device_register(self, dbri_suspend, dbri_resume)) {
299 aprint_error_dev(self,
300 "cannot set power mgmt handler\n");
301 }
302 } else {
303 /* we can't control power so we're always up */
304 sc->sc_have_powerctl = 0;
305 sc->sc_powerstate = 1;
306 }
307
308 for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
309 sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
310 dbri_softint, &sc->sc_desc[i]);
311 }
312
313 if (sa->sa_npromvaddrs)
314 ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
315 else {
316 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
317 sa->sa_offset, sa->sa_size,
318 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
319 aprint_error("%s @ sbus: cannot map registers\n",
320 device_xname(self));
321 return;
322 }
323 }
324
325 sc->sc_ioh = ioh;
326
327 size = sizeof(struct dbri_dma);
328
329 /* get a DMA handle */
330 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
331 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
332 aprint_error_dev(self, "DMA map create error %d\n",
333 error);
334 return;
335 }
336
337 /* allocate DMA buffer */
338 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
339 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
340 aprint_error_dev(self, "DMA buffer alloc error %d\n",
341 error);
342 return;
343 }
344
345 /* map DMA buffer into CPU addressable space */
346 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
347 &sc->sc_membase,
348 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
349 aprint_error_dev(self, "DMA buffer map error %d\n",
350 error);
351 return;
352 }
353
354 /* load the buffer */
355 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
356 sc->sc_membase, size, NULL,
357 BUS_DMA_NOWAIT)) != 0) {
358 aprint_error_dev(self, "DMA buffer map load error %d\n",
359 error);
360 bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
361 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
362 return;
363 }
364
365 /* map the registers into memory */
366
367 /* kernel virtual address of DMA buffer */
368 sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
369 /* physical address of DMA buffer */
370 sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
371 sc->sc_bufsiz = size;
372
373 bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr,
374 sc);
375
376 sc->sc_locked = 0;
377 sc->sc_desc_used = 0;
378 sc->sc_refcount = 0;
379 sc->sc_playing = 0;
380 sc->sc_recording = 0;
381 config_interrupts(self, &dbri_config_interrupts);
382
383 return;
384 }
385
386 /*
387 * lowlevel routine to switch power for the DBRI chip
388 */
389 static void
390 dbri_set_power(struct dbri_softc *sc, int state)
391 {
392 int s;
393
394 if (sc->sc_have_powerctl == 0)
395 return;
396 if (sc->sc_powerstate == state)
397 return;
398
399 if (state) {
400 DPRINTF("%s: waiting to power up... ",
401 device_xname(sc->sc_dev));
402 s = splhigh();
403 *AUXIO4M_REG |= (AUXIO4M_MMX);
404 splx(s);
405 delay(10000);
406 DPRINTF("done (%02x)\n", *AUXIO4M_REG);
407 } else {
408 DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
409 s = splhigh();
410 *AUXIO4M_REG &= ~AUXIO4M_MMX;
411 splx(s);
412 DPRINTF("done (%02x})\n", *AUXIO4M_REG);
413 }
414 sc->sc_powerstate = state;
415 }
416
417 /*
418 * power up and re-initialize the chip
419 */
420 static void
421 dbri_bring_up(struct dbri_softc *sc)
422 {
423
424 if (sc->sc_have_powerctl == 0)
425 return;
426
427 if (sc->sc_powerstate == 1)
428 return;
429
430 /* ok, we really need to do something */
431 dbri_set_power(sc, 1);
432
433 /*
434 * re-initialize the chip but skip all the probing, don't overwrite
435 * any other settings either
436 */
437 dbri_init(sc);
438 mmcodec_setgain(sc, 1);
439 mmcodec_pipe_init(sc);
440 mmcodec_init_data(sc);
441 mmcodec_setgain(sc, 0);
442 }
443
444 static void
445 dbri_config_interrupts(device_t dev)
446 {
447 struct dbri_softc *sc = device_private(dev);
448
449 dbri_init(sc);
450 if (mmcodec_init(sc) == -1) {
451 printf("%s: no codec detected, aborting\n",
452 device_xname(dev));
453 return;
454 }
455
456 /* Attach ourselves to the high level audio interface */
457 audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
458
459 /* power down until open() */
460 dbri_set_power(sc, 0);
461 return;
462 }
463
464 static int
465 dbri_intr(void *hdl)
466 {
467 struct dbri_softc *sc = hdl;
468 bus_space_tag_t iot = sc->sc_iot;
469 bus_space_handle_t ioh = sc->sc_ioh;
470 int x;
471
472 /* clear interrupt */
473 x = bus_space_read_4(iot, ioh, DBRI_REG1);
474 if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
475 uint32_t tmp;
476
477 if (x & DBRI_MRR)
478 aprint_debug_dev(sc->sc_dev,
479 "multiple ack error on sbus\n");
480 if (x & DBRI_MLE)
481 aprint_debug_dev(sc->sc_dev,
482 "multiple late error on sbus\n");
483 if (x & DBRI_LBG)
484 aprint_debug_dev(sc->sc_dev,
485 "lost bus grant on sbus\n");
486 if (x & DBRI_MBE)
487 aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
488
489 /*
490 * Some of these errors disable the chip's circuitry.
491 * Re-enable the circuitry and keep on going.
492 */
493
494 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
495 tmp &= ~(DBRI_DISABLE_MASTER);
496 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
497 }
498
499 #if 0
500 if (!x & 1) /* XXX: DBRI_INTR_REQ */
501 return (1);
502 #endif
503
504 dbri_process_interrupt_buffer(sc);
505
506 return (1);
507 }
508
509 static void
510 dbri_softint(void *cookie)
511 {
512 struct dbri_desc *dd = cookie;
513
514 if (dd->callback != NULL)
515 dd->callback(dd->callback_args);
516 }
517
518 static int
519 dbri_init(struct dbri_softc *sc)
520 {
521 bus_space_tag_t iot = sc->sc_iot;
522 bus_space_handle_t ioh = sc->sc_ioh;
523 uint32_t reg;
524 volatile uint32_t *cmd;
525 bus_addr_t dmaaddr;
526 int n;
527
528 dbri_reset(sc);
529
530 cmd = dbri_command_lock(sc);
531
532 /* XXX: Initialize interrupt ring buffer */
533 sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
534 sc->sc_irqp = 1;
535
536 /* Initialize pipes */
537 for (n = 0; n < DBRI_PIPE_MAX; n++)
538 sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
539
540 for (n = 1; n < DBRI_INT_BLOCKS; n++) {
541 sc->sc_dma->intr[n] = 0;
542 }
543
544 /* Disable all SBus bursts */
545 /* XXX 16 byte bursts cause errors, the rest works */
546 reg = bus_space_read_4(iot, ioh, DBRI_REG0);
547
548 /*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
549 reg |= (DBRI_BURST_4 | DBRI_BURST_8);
550 bus_space_write_4(iot, ioh, DBRI_REG0, reg);
551
552 /* setup interrupt queue */
553 dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
554 *(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
555 *(cmd++) = dmaaddr;
556
557 dbri_command_send(sc, cmd);
558 return (0);
559 }
560
561 static int
562 dbri_reset(struct dbri_softc *sc)
563 {
564 int bail = 0;
565
566 bus_space_tag_t iot = sc->sc_iot;
567 bus_space_handle_t ioh = sc->sc_ioh;
568
569 bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
570 while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
571 (bail < 100000)) {
572 bail++;
573 delay(10);
574 }
575 if (bail == 100000)
576 aprint_error_dev(sc->sc_dev, "reset timed out\n");
577 return (0);
578 }
579
580 static volatile uint32_t *
581 dbri_command_lock(struct dbri_softc *sc)
582 {
583
584 if (sc->sc_locked)
585 aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
586
587 sc->sc_locked++;
588
589 return (&sc->sc_dma->command[0]);
590 }
591
592 static void
593 dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd)
594 {
595 bus_space_handle_t ioh = sc->sc_ioh;
596 bus_space_tag_t iot = sc->sc_iot;
597 int maxloops = 1000000;
598 int x;
599
600 x = splsched();
601
602 sc->sc_locked--;
603
604 if (sc->sc_locked != 0) {
605 aprint_error_dev(sc->sc_dev,
606 "command buffer improperly locked\n");
607 } else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
608 aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
609 } else {
610 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
611 *(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
612 sc->sc_waitseen = 0;
613 bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
614 while ((--maxloops) > 0 &&
615 (bus_space_read_4(iot, ioh, DBRI_REG0)
616 & DBRI_COMMAND_VALID)) {
617 bus_space_barrier(iot, ioh, DBRI_REG0, 4,
618 BUS_SPACE_BARRIER_READ);
619 delay(1000);
620 }
621
622 if (maxloops == 0) {
623 aprint_error_dev(sc->sc_dev,
624 "chip never completed command buffer\n");
625 } else {
626
627 DPRINTF("%s: command completed\n",
628 device_xname(sc->sc_dev));
629
630 while ((--maxloops) > 0 && (!sc->sc_waitseen))
631 dbri_process_interrupt_buffer(sc);
632 if (maxloops == 0) {
633 aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
634 }
635 }
636 }
637
638 splx(x);
639
640 return;
641 }
642
643 static void
644 dbri_process_interrupt_buffer(struct dbri_softc *sc)
645 {
646 int32_t i;
647
648 while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
649 sc->sc_dma->intr[sc->sc_irqp] = 0;
650 sc->sc_irqp++;
651
652 if (sc->sc_irqp == DBRI_INT_BLOCKS)
653 sc->sc_irqp = 1;
654 else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
655 sc->sc_irqp++;
656
657 dbri_process_interrupt(sc, i);
658 }
659
660 return;
661 }
662
663 static void
664 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
665 {
666 #if 0
667 const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
668 #endif
669 int val = DBRI_INTR_GETVAL(i);
670 int channel = DBRI_INTR_GETCHAN(i);
671 int command = DBRI_INTR_GETCMD(i);
672 int code = DBRI_INTR_GETCODE(i);
673 #if 0
674 int rval = DBRI_INTR_GETRVAL(i);
675 #endif
676 if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
677 sc->sc_waitseen++;
678
679 switch (code) {
680 case DBRI_INTR_XCMP: /* transmission complete */
681 {
682 int td;
683 struct dbri_desc *dd;
684
685 td = sc->sc_pipe[channel].desc;
686 dd = &sc->sc_desc[td];
687
688 if (dd->callback != NULL)
689 softint_schedule(dd->softint);
690 break;
691 }
692 case DBRI_INTR_FXDT: /* fixed data change */
693 DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel,
694 val);
695 #if 0
696 printf("reg: %08x\n", sc->sc_mm.status);
697 #endif
698 if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
699 val = reverse_bytes(val, sc->sc_pipe[channel].length);
700 if (sc->sc_pipe[channel].prec)
701 *(sc->sc_pipe[channel].prec) = val;
702 #ifndef DBRI_SPIN
703 DPRINTF("%s: wakeup %p\n", device_xname(sc->sc_dev), sc);
704 wakeup(sc);
705 #endif
706 break;
707 case DBRI_INTR_SBRI:
708 DPRINTF("dbri_intr: SBRI\n");
709 break;
710 case DBRI_INTR_BRDY:
711 {
712 int td;
713 struct dbri_desc *dd;
714
715 td = sc->sc_pipe[channel].desc;
716 dd = &sc->sc_desc[td];
717
718 if (dd->callback != NULL)
719 softint_schedule(dd->softint);
720 break;
721 }
722 case DBRI_INTR_UNDR:
723 {
724 volatile uint32_t *cmd;
725 int td = sc->sc_pipe[channel].desc;
726
727 DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
728
729 sc->sc_dma->xmit[td].status = 0;
730
731 cmd = dbri_command_lock(sc);
732 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
733 sc->sc_pipe[channel].sdp |
734 DBRI_SDP_VALID_POINTER |
735 DBRI_SDP_CLEAR |
736 DBRI_SDP_2SAME);
737 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
738 dbri_command_send(sc, cmd);
739 break;
740 }
741 case DBRI_INTR_CMDI:
742 DPRINTF("ok");
743 break;
744 default:
745
746 aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
747 code);
748 break;
749 }
750
751 return;
752 }
753
754 /*
755 * mmcodec stuff
756 */
757
758 static int
759 mmcodec_init(struct dbri_softc *sc)
760 {
761 bus_space_handle_t ioh = sc->sc_ioh;
762 bus_space_tag_t iot = sc->sc_iot;
763 uint32_t reg2;
764 int bail;
765
766 reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
767 DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
768
769 if (reg2 & DBRI_PIO2) {
770 aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
771 sc->sc_mm.onboard = 1;
772 }
773
774 if (reg2 & DBRI_PIO0) {
775 aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
776 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
777 sc->sc_mm.onboard = 0;
778 }
779
780 if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
781 aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
782 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
783 sc->sc_mm.onboard = 0;
784 }
785
786 if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
787 aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
788 return -1;
789 }
790
791 sc->sc_version = 0xff;
792
793 mmcodec_pipe_init(sc);
794 mmcodec_default(sc);
795
796 sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
797
798 /*
799 * mmcodec_setcontrol() sometimes fails right after powerup
800 * so we just try again until we either get a useful response or run
801 * out of time
802 */
803 bail = 0;
804 while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
805
806 bail++;
807 if (bail > 100) {
808 DPRINTF("%s: cs4215 probe failed at offset %d\n",
809 device_xname(sc->sc_dev), sc->sc_mm.offset);
810 return (-1);
811 }
812 delay(10000);
813 }
814
815 aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
816 0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
817
818 /* set some sane defaults for mmcodec_init_data */
819 sc->sc_params.channels = 2;
820 sc->sc_params.precision = 16;
821
822 mmcodec_init_data(sc);
823
824 return (0);
825 }
826
827 static void
828 mmcodec_init_data(struct dbri_softc *sc)
829 {
830 bus_space_tag_t iot = sc->sc_iot;
831 bus_space_handle_t ioh = sc->sc_ioh;
832 uint32_t tmp;
833 int data_width;
834
835 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
836 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
837 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
838
839 /* switch CS4215 to data mode - set PIO3 to 1 */
840 tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
841
842 /* XXX */
843 tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
844
845 bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
846 chi_reset(sc, CHIslave, 128);
847
848 data_width = sc->sc_params.channels * sc->sc_params.precision;
849
850 if ((data_width != 32) && (data_width != 8))
851 aprint_error("%s: data_width is %d\n", __func__, data_width);
852
853 pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
854 pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
855 pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
856 pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
857
858 pipe_receive_fixed(sc, 21, &sc->sc_mm.status);
859
860 mmcodec_setgain(sc, 0);
861
862 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
863 tmp |= DBRI_CHI_ACTIVATE;
864 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
865
866 return;
867 }
868
869 static void
870 mmcodec_pipe_init(struct dbri_softc *sc)
871 {
872
873 pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
874 pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
875 pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
876 pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
877
878 pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
879 pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
880 pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
881
882 sc->sc_mm.status = 0;
883
884 pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
885 pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
886
887 return;
888 }
889
890 static void
891 mmcodec_default(struct dbri_softc *sc)
892 {
893 struct cs4215_state *mm = &sc->sc_mm;
894
895 /*
896 * no action, memory resetting only
897 *
898 * data time slots 5-8
899 * speaker, line and headphone enable. set gain to half.
900 * input is line
901 */
902 mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
903 mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
904 sc->sc_linp = 128;
905 sc->sc_rinp = 128;
906 sc->sc_monitor = 0;
907 sc->sc_input = 1; /* line */
908 mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
909 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
910 mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
911 CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
912
913
914 /*
915 * control time slots 1-4
916 *
917 * 0: default I/O voltage scale
918 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
919 * 2: serial enable, CHI master, 128 bits per frame, clock 1
920 * 3: tests disabled
921 */
922 mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB;
923 mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
924 mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
925 mm->c.bcontrol[3] = 0;
926
927 return;
928 }
929
930 static void
931 mmcodec_setgain(struct dbri_softc *sc, int mute)
932 {
933 if (mute) {
934 /* disable all outputs, max. attenuation */
935 sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
936 sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
937 } else {
938
939 sc->sc_mm.d.bdata[0] = sc->sc_latt;
940 sc->sc_mm.d.bdata[1] = sc->sc_ratt;
941 }
942
943 /* input stuff */
944 sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
945 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
946 sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
947 (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
948
949 if (sc->sc_powerstate == 0)
950 return;
951 pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
952
953 DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
954 /* give the chip some time to execute the command */
955 delay(250);
956
957 return;
958 }
959
960 static int
961 mmcodec_setcontrol(struct dbri_softc *sc)
962 {
963 bus_space_tag_t iot = sc->sc_iot;
964 bus_space_handle_t ioh = sc->sc_ioh;
965 uint32_t val;
966 uint32_t tmp;
967 int bail = 0;
968 #if DBRI_SPIN
969 int i;
970 #endif
971
972 /*
973 * Temporarily mute outputs and wait 125 us to make sure that it
974 * happens. This avoids clicking noises.
975 */
976 mmcodec_setgain(sc, 1);
977 delay(125);
978
979 bus_space_write_4(iot, ioh, DBRI_REG2, 0);
980 delay(125);
981
982 /* enable control mode */
983 val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */
984
985 /* XXX */
986 val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
987
988 bus_space_write_4(iot, ioh, DBRI_REG2, val);
989
990 delay(34);
991
992 /*
993 * in control mode, the cs4215 is the slave device, so the
994 * DBRI must act as the CHI master.
995 *
996 * in data mode, the cs4215 must be the CHI master to insure
997 * that the data stream is in sync with its codec
998 */
999 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1000 tmp &= ~DBRI_COMMAND_CHI;
1001 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1002
1003 chi_reset(sc, CHImaster, 128);
1004
1005 /* control mode */
1006 pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1007 pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1008 pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1009
1010 /* wait for the chip to echo back CLB as zero */
1011 sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1012 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1013
1014 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1015 tmp |= DBRI_CHI_ACTIVATE;
1016 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1017
1018 #if DBRI_SPIN
1019 i = 1024;
1020 while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) {
1021 delay(125);
1022 }
1023
1024 if (i == 0) {
1025 DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1026 device_xname(sc->sc_dev), sc->sc_mm.status);
1027 return (-1);
1028 }
1029 #else
1030 while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) {
1031 DPRINTF("%s: tsleep %p\n", device_xname(sc->sc_dev), sc);
1032 tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz);
1033 bail++;
1034 }
1035 #endif
1036 if (bail >= 10) {
1037 DPRINTF("%s: switching to control mode timed out (%x %x)\n",
1038 device_xname(sc->sc_dev), sc->sc_mm.status,
1039 bus_space_read_4(iot, ioh, DBRI_REG2));
1040 return -1;
1041 }
1042
1043 /* copy the version information before it becomes unreadable again */
1044 sc->sc_version = sc->sc_mm.version;
1045
1046 /* terminate cs4215 control mode */
1047 sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1048 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1049
1050 /* two frames of control info @ 8kHz frame rate = 250us delay */
1051 delay(250);
1052
1053 mmcodec_setgain(sc, 0);
1054
1055 return (0);
1056
1057 }
1058
1059 /*
1060 * CHI combo
1061 */
1062 static void
1063 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1064 {
1065 volatile uint32_t *cmd;
1066 int val;
1067 int clockrate, divisor;
1068
1069 cmd = dbri_command_lock(sc);
1070
1071 /* set CHI anchor: pipe 16 */
1072 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1073 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1074 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1075 *(cmd++) = 0;
1076
1077 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1078 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1079 *(cmd++) = 0;
1080 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1081
1082 sc->sc_pipe[16].sdp = 1;
1083 sc->sc_pipe[16].next = 16;
1084 sc->sc_chi_pipe_in = 16;
1085 sc->sc_chi_pipe_out = 16;
1086
1087 switch (ms) {
1088 case CHIslave:
1089 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1090 break;
1091 case CHImaster:
1092 clockrate = bpf * 8;
1093 divisor = 12288 / clockrate;
1094
1095 if (divisor > 255 || divisor * clockrate != 12288)
1096 aprint_error_dev(sc->sc_dev,
1097 "illegal bits-per-frame %d\n", bpf);
1098
1099 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1100 DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1101 break;
1102 default:
1103 aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
1104 break;
1105 }
1106
1107 sc->sc_chi_bpf = bpf;
1108
1109 /* CHI data mode */
1110 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1111 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1112 DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1113
1114 dbri_command_send(sc, cmd);
1115
1116 return;
1117 }
1118
1119 /*
1120 * pipe stuff
1121 */
1122 static void
1123 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1124 {
1125 DPRINTF("pipe setup: %d\n", pipe);
1126 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1127 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1128 pipe);
1129 return;
1130 }
1131
1132 if ((sdp & 0xf800) != sdp)
1133 aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
1134 sdp);
1135
1136 if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1137 !(sdp & DBRI_SDP_TO_SER))
1138 sdp |= DBRI_SDP_CHANGE;
1139
1140 sdp |= DBRI_PIPE(pipe);
1141
1142 sc->sc_pipe[pipe].sdp = sdp;
1143 sc->sc_pipe[pipe].desc = -1;
1144
1145 pipe_reset(sc, pipe);
1146
1147 return;
1148 }
1149
1150 static void
1151 pipe_reset(struct dbri_softc *sc, int pipe)
1152 {
1153 struct dbri_desc *dd;
1154 int sdp;
1155 int desc;
1156 volatile uint32_t *cmd;
1157
1158 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1159 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1160 pipe);
1161 return;
1162 }
1163
1164 sdp = sc->sc_pipe[pipe].sdp;
1165 if (sdp == 0) {
1166 aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
1167 pipe);
1168 return;
1169 }
1170
1171 cmd = dbri_command_lock(sc);
1172 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1173 sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1174 *(cmd++) = 0;
1175 dbri_command_send(sc, cmd);
1176
1177 desc = sc->sc_pipe[pipe].desc;
1178
1179 dd = &sc->sc_desc[desc];
1180
1181 dd->busy = 0;
1182
1183 #if 0
1184 if (dd->callback)
1185 softint_schedule(dd->softint);
1186 #endif
1187
1188 sc->sc_pipe[pipe].desc = -1;
1189
1190 return;
1191 }
1192
1193 static void
1194 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec)
1195 {
1196
1197 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1198 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1199 pipe);
1200 return;
1201 }
1202
1203 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1204 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1205 pipe);
1206 return;
1207 }
1208
1209 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1210 aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
1211 pipe);
1212 return;
1213 }
1214
1215 sc->sc_pipe[pipe].prec = prec;
1216
1217 return;
1218 }
1219
1220 static void
1221 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data)
1222 {
1223 volatile uint32_t *cmd;
1224
1225 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1226 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1227 pipe);
1228 return;
1229 }
1230
1231 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1232 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1233 pipe);
1234 return;
1235 }
1236
1237 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1238 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1239 pipe);
1240 return;
1241 }
1242
1243 if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1244 aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
1245 pipe);
1246 return;
1247 }
1248
1249 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1250 data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1251
1252 cmd = dbri_command_lock(sc);
1253 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1254 *(cmd++) = data;
1255
1256 dbri_command_send(sc, cmd);
1257
1258 return;
1259 }
1260
1261 static void
1262 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1263 void (*callback)(void *), void *callback_args)
1264 {
1265 volatile uint32_t *cmd;
1266 int x, i;
1267 int td;
1268 int td_first, td_last;
1269 bus_addr_t dmabuf, dmabase;
1270 struct dbri_desc *dd = &sc->sc_desc[which];
1271
1272 switch (pipe) {
1273 case 4:
1274 /* output, offset 0 */
1275 break;
1276 default:
1277 aprint_error("%s: illegal pipe number (%d)\n",
1278 __func__, pipe);
1279 return;
1280 }
1281
1282 td = 0;
1283 td_first = td_last = -1;
1284
1285 if (sc->sc_pipe[pipe].sdp == 0) {
1286 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1287 pipe);
1288 return;
1289 }
1290
1291 dmabuf = dd->dmabase;
1292 dmabase = sc->sc_dmabase;
1293 td = 0;
1294
1295 for (i = 0; i < (num - 1); i++) {
1296
1297 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1298 | TX_EOF | TX_BINT;
1299 sc->sc_dma->xmit[i].ba = dmabuf;
1300 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1301 sc->sc_dma->xmit[i].status = 0;
1302
1303 td_last = td;
1304 dmabuf += blksz;
1305 }
1306
1307 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1308
1309 sc->sc_dma->xmit[i].ba = dmabuf;
1310 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1311 sc->sc_dma->xmit[i].status = 0;
1312
1313 dd->callback = callback;
1314 dd->callback_args = callback_args;
1315
1316 x = splsched();
1317
1318 /* the pipe shouldn't be active */
1319 if (pipe_active(sc, pipe)) {
1320 aprint_error("pipe active (CDP)\n");
1321 /* pipe is already active */
1322 #if 0
1323 td_last = sc->sc_pipe[pipe].desc;
1324 while (sc->sc_desc[td_last].next != -1)
1325 td_last = sc->sc_desc[td_last].next;
1326
1327 sc->sc_desc[td_last].next = td_first;
1328 sc->sc_dma->desc[td_last].nda =
1329 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1330
1331 cmd = dbri_command_lock(sc);
1332 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1333 dbri_command_send(sc, cmd);
1334 #endif
1335 } else {
1336 /*
1337 * pipe isn't active - issue an SDP command to start our
1338 * chain of TDs running
1339 */
1340 sc->sc_pipe[pipe].desc = which;
1341 cmd = dbri_command_lock(sc);
1342 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1343 sc->sc_pipe[pipe].sdp |
1344 DBRI_SDP_VALID_POINTER |
1345 DBRI_SDP_EVERY |
1346 DBRI_SDP_CLEAR);
1347 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1348 dbri_command_send(sc, cmd);
1349 DPRINTF("%s: starting DMA\n", __func__);
1350 }
1351
1352 splx(x);
1353
1354 return;
1355 }
1356
1357 static void
1358 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1359 void (*callback)(void *), void *callback_args)
1360 {
1361 volatile uint32_t *cmd;
1362 int x, i;
1363 int td_first, td_last;
1364 bus_addr_t dmabuf, dmabase;
1365 struct dbri_desc *dd = &sc->sc_desc[which];
1366
1367 switch (pipe) {
1368 case 6:
1369 break;
1370 default:
1371 aprint_error("%s: illegal pipe number (%d)\n",
1372 __func__, pipe);
1373 return;
1374 }
1375
1376 td_first = td_last = -1;
1377
1378 if (sc->sc_pipe[pipe].sdp == 0) {
1379 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1380 pipe);
1381 return;
1382 }
1383
1384 dmabuf = dd->dmabase;
1385 dmabase = sc->sc_dmabase;
1386
1387 for (i = 0; i < (num - 1); i++) {
1388
1389 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1390 sc->sc_dma->recv[i].ba = dmabuf;
1391 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1392 sc->sc_dma->recv[i].status = RX_EOF;
1393
1394 td_last = i;
1395 dmabuf += blksz;
1396 }
1397
1398 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1399
1400 sc->sc_dma->recv[i].ba = dmabuf;
1401 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1402 sc->sc_dma->recv[i].status = RX_EOF;
1403
1404 dd->callback = callback;
1405 dd->callback_args = callback_args;
1406
1407 x = splsched();
1408
1409 /* the pipe shouldn't be active */
1410 if (pipe_active(sc, pipe)) {
1411 aprint_error("pipe active (CDP)\n");
1412 /* pipe is already active */
1413 #if 0
1414 td_last = sc->sc_pipe[pipe].desc;
1415 while (sc->sc_desc[td_last].next != -1)
1416 td_last = sc->sc_desc[td_last].next;
1417
1418 sc->sc_desc[td_last].next = td_first;
1419 sc->sc_dma->desc[td_last].nda =
1420 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1421
1422 cmd = dbri_command_lock(sc);
1423 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1424 dbri_command_send(sc, cmd);
1425 #endif
1426 } else {
1427 /*
1428 * pipe isn't active - issue an SDP command to start our
1429 * chain of TDs running
1430 */
1431 sc->sc_pipe[pipe].desc = which;
1432 cmd = dbri_command_lock(sc);
1433 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1434 sc->sc_pipe[pipe].sdp |
1435 DBRI_SDP_VALID_POINTER |
1436 DBRI_SDP_EVERY |
1437 DBRI_SDP_CLEAR);
1438 *(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1439 dbri_command_send(sc, cmd);
1440 DPRINTF("%s: starting DMA\n", __func__);
1441 }
1442
1443 splx(x);
1444
1445 return;
1446 }
1447
1448 static void
1449 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1450 int len, int cycle)
1451 {
1452 volatile uint32_t *cmd;
1453 int prevpipe, nextpipe;
1454 int val;
1455
1456 DPRINTF("%s: %d\n", __func__, pipe);
1457 if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1458 basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1459 aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1460 pipe, basepipe);
1461 return;
1462 }
1463
1464 if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1465 aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1466 pipe, basepipe);
1467 return;
1468 }
1469
1470 if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1471 cycle = sc->sc_chi_bpf;
1472
1473 if (basepipe == pipe)
1474 prevpipe = nextpipe = pipe;
1475 else {
1476 if (basepipe == 16) {
1477 if (dir == PIPEinput) {
1478 prevpipe = sc->sc_chi_pipe_in;
1479 } else {
1480 prevpipe = sc->sc_chi_pipe_out;
1481 }
1482 } else
1483 prevpipe = basepipe;
1484
1485 nextpipe = sc->sc_pipe[prevpipe].next;
1486
1487 while (sc->sc_pipe[nextpipe].cycle < cycle &&
1488 sc->sc_pipe[nextpipe].next != basepipe) {
1489 prevpipe = nextpipe;
1490 nextpipe = sc->sc_pipe[nextpipe].next;
1491 }
1492 }
1493
1494 if (prevpipe == 16) {
1495 if (dir == PIPEinput) {
1496 sc->sc_chi_pipe_in = pipe;
1497 } else {
1498 sc->sc_chi_pipe_out = pipe;
1499 }
1500 } else
1501 sc->sc_pipe[prevpipe].next = pipe;
1502
1503 sc->sc_pipe[pipe].next = nextpipe;
1504 sc->sc_pipe[pipe].cycle = cycle;
1505 sc->sc_pipe[pipe].length = len;
1506
1507 cmd = dbri_command_lock(sc);
1508
1509 switch (dir) {
1510 case PIPEinput:
1511 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1512 val |= pipe;
1513 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1514 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1515 DBRI_TS_NEXT(nextpipe);
1516 *(cmd++) = 0;
1517 break;
1518 case PIPEoutput:
1519 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1520 val |= pipe;
1521 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1522 *(cmd++) = 0;
1523 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1524 DBRI_TS_NEXT(nextpipe);
1525 break;
1526 default:
1527 DPRINTF("%s: should not have happened!\n",
1528 device_xname(sc->sc_dev));
1529 break;
1530 }
1531
1532 dbri_command_send(sc, cmd);
1533
1534 return;
1535 }
1536
1537 static int
1538 pipe_active(struct dbri_softc *sc, int pipe)
1539 {
1540
1541 return (sc->sc_pipe[pipe].desc != -1);
1542 }
1543
1544 /*
1545 * subroutines required to interface with audio(9)
1546 */
1547
1548 static int
1549 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1550 {
1551
1552 switch (ae->index) {
1553 case 0:
1554 strcpy(ae->name, AudioEulinear);
1555 ae->encoding = AUDIO_ENCODING_ULINEAR;
1556 ae->precision = 8;
1557 ae->flags = 0;
1558 break;
1559 case 1:
1560 strcpy(ae->name, AudioEmulaw);
1561 ae->encoding = AUDIO_ENCODING_ULAW;
1562 ae->precision = 8;
1563 ae->flags = 0;
1564 break;
1565 case 2:
1566 strcpy(ae->name, AudioEalaw);
1567 ae->encoding = AUDIO_ENCODING_ALAW;
1568 ae->precision = 8;
1569 ae->flags = 0;
1570 break;
1571 case 3:
1572 strcpy(ae->name, AudioEslinear);
1573 ae->encoding = AUDIO_ENCODING_SLINEAR;
1574 ae->precision = 8;
1575 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1576 break;
1577 case 4:
1578 strcpy(ae->name, AudioEslinear_le);
1579 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1580 ae->precision = 16;
1581 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1582 break;
1583 case 5:
1584 strcpy(ae->name, AudioEulinear_le);
1585 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1586 ae->precision = 16;
1587 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1588 break;
1589 case 6:
1590 strcpy(ae->name, AudioEslinear_be);
1591 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1592 ae->precision = 16;
1593 ae->flags = 0;
1594 break;
1595 case 7:
1596 strcpy(ae->name, AudioEulinear_be);
1597 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1598 ae->precision = 16;
1599 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1600 break;
1601 case 8:
1602 strcpy(ae->name, AudioEslinear);
1603 ae->encoding = AUDIO_ENCODING_SLINEAR;
1604 ae->precision = 16;
1605 ae->flags = 0;
1606 break;
1607 default:
1608 return (EINVAL);
1609 }
1610
1611 return (0);
1612 }
1613
1614 static int
1615 dbri_set_params(void *hdl, int setmode, int usemode,
1616 struct audio_params *play, struct audio_params *rec,
1617 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1618 {
1619 struct dbri_softc *sc = hdl;
1620 int rate;
1621 audio_params_t *p = NULL;
1622 stream_filter_list_t *fil;
1623 int mode;
1624
1625 /*
1626 * This device only has one clock, so make the sample rates match.
1627 */
1628 if (play->sample_rate != rec->sample_rate &&
1629 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1630 if (setmode == AUMODE_PLAY) {
1631 rec->sample_rate = play->sample_rate;
1632 setmode |= AUMODE_RECORD;
1633 } else if (setmode == AUMODE_RECORD) {
1634 play->sample_rate = rec->sample_rate;
1635 setmode |= AUMODE_PLAY;
1636 } else
1637 return EINVAL;
1638 }
1639
1640 for (mode = AUMODE_RECORD; mode != -1;
1641 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1642 if ((setmode & mode) == 0)
1643 continue;
1644
1645 p = mode == AUMODE_PLAY ? play : rec;
1646 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1647 DPRINTF("dbri_set_params: invalid rate %d\n",
1648 p->sample_rate);
1649 return EINVAL;
1650 }
1651
1652 fil = mode == AUMODE_PLAY ? pfil : rfil;
1653 DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1654 p->sample_rate, p->precision, p->channels);
1655 if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1656 mode, p, true, fil) < 0) {
1657 aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1658 return EINVAL;
1659 }
1660 if (fil->req_size > 0)
1661 p = &fil->filters[0].param;
1662 }
1663
1664 if (p == NULL) {
1665 DPRINTF("dbri_set_params: no parameters to set\n");
1666 return 0;
1667 }
1668
1669 DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1670 p->sample_rate, p->precision, p->channels);
1671
1672 for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1673 if (CS4215_FREQ[rate].freq == p->sample_rate)
1674 break;
1675
1676 if (CS4215_FREQ[rate].freq == 0)
1677 return (EINVAL);
1678
1679 /* set frequency */
1680 sc->sc_mm.c.bcontrol[1] &= ~0x38;
1681 sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1682 sc->sc_mm.c.bcontrol[2] &= ~0x70;
1683 sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1684
1685 switch (p->encoding) {
1686 case AUDIO_ENCODING_ULAW:
1687 sc->sc_mm.c.bcontrol[1] &= ~3;
1688 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1689 break;
1690 case AUDIO_ENCODING_ALAW:
1691 sc->sc_mm.c.bcontrol[1] &= ~3;
1692 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1693 break;
1694 case AUDIO_ENCODING_ULINEAR:
1695 sc->sc_mm.c.bcontrol[1] &= ~3;
1696 if (p->precision == 8) {
1697 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1698 } else {
1699 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1700 }
1701 break;
1702 case AUDIO_ENCODING_SLINEAR_BE:
1703 case AUDIO_ENCODING_SLINEAR:
1704 sc->sc_mm.c.bcontrol[1] &= ~3;
1705 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1706 break;
1707 }
1708
1709 switch (p->channels) {
1710 case 1:
1711 sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1712 break;
1713 case 2:
1714 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1715 break;
1716 }
1717
1718 return (0);
1719 }
1720
1721 static int
1722 dbri_round_blocksize(void *hdl, int bs, int mode,
1723 const audio_params_t *param)
1724 {
1725
1726 /* DBRI DMA segment size, rounded down to 32bit alignment */
1727 return 0x1ffc;
1728 }
1729
1730 static int
1731 dbri_halt_output(void *hdl)
1732 {
1733 struct dbri_softc *sc = hdl;
1734
1735 if (!sc->sc_playing)
1736 return 0;
1737
1738 sc->sc_playing = 0;
1739 pipe_reset(sc, 4);
1740 return (0);
1741 }
1742
1743 static int
1744 dbri_getdev(void *hdl, struct audio_device *ret)
1745 {
1746
1747 *ret = dbri_device;
1748 return (0);
1749 }
1750
1751 static int
1752 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1753 {
1754 struct dbri_softc *sc = hdl;
1755 int latt = sc->sc_latt, ratt = sc->sc_ratt;
1756
1757 switch (mc->dev) {
1758 case DBRI_VOL_OUTPUT: /* master volume */
1759 latt = (latt & 0xc0) | (63 -
1760 min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1761 ratt = (ratt & 0xc0) | (63 -
1762 min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1763 break;
1764 case DBRI_ENABLE_MONO: /* built-in speaker */
1765 if (mc->un.ord == 1) {
1766 ratt |= CS4215_SE;
1767 } else
1768 ratt &= ~CS4215_SE;
1769 break;
1770 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1771 if (mc->un.ord == 1) {
1772 latt |= CS4215_HE;
1773 } else
1774 latt &= ~CS4215_HE;
1775 break;
1776 case DBRI_ENABLE_LINE: /* line out */
1777 if (mc->un.ord == 1) {
1778 latt |= CS4215_LE;
1779 } else
1780 latt &= ~CS4215_LE;
1781 break;
1782 case DBRI_VOL_MONITOR:
1783 if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1784 sc->sc_monitor)
1785 return 0;
1786 sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1787 break;
1788 case DBRI_INPUT_GAIN:
1789 sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1790 sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1791 break;
1792 case DBRI_INPUT_SELECT:
1793 if (mc->un.mask == sc->sc_input)
1794 return 0;
1795 sc->sc_input = mc->un.mask;
1796 break;
1797 }
1798
1799 sc->sc_latt = latt;
1800 sc->sc_ratt = ratt;
1801
1802 mmcodec_setgain(sc, 0);
1803
1804 return (0);
1805 }
1806
1807 static int
1808 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1809 {
1810 struct dbri_softc *sc = hdl;
1811
1812 switch (mc->dev) {
1813 case DBRI_VOL_OUTPUT: /* master volume */
1814 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1815 (63 - (sc->sc_latt & 0x3f)) << 2;
1816 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1817 (63 - (sc->sc_ratt & 0x3f)) << 2;
1818 return (0);
1819 case DBRI_ENABLE_MONO: /* built-in speaker */
1820 mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1821 return 0;
1822 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1823 mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1824 return 0;
1825 case DBRI_ENABLE_LINE: /* line out */
1826 mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1827 return 0;
1828 case DBRI_VOL_MONITOR:
1829 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1830 return 0;
1831 case DBRI_INPUT_GAIN:
1832 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1833 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1834 return 0;
1835 case DBRI_INPUT_SELECT:
1836 mc->un.mask = sc->sc_input;
1837 return 0;
1838 }
1839 return (EINVAL);
1840 }
1841
1842 static int
1843 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1844 {
1845
1846 switch (di->index) {
1847 case DBRI_MONITOR_CLASS:
1848 di->mixer_class = DBRI_MONITOR_CLASS;
1849 strcpy(di->label.name, AudioCmonitor);
1850 di->type = AUDIO_MIXER_CLASS;
1851 di->next = di->prev = AUDIO_MIXER_LAST;
1852 return 0;
1853 case DBRI_OUTPUT_CLASS:
1854 di->mixer_class = DBRI_OUTPUT_CLASS;
1855 strcpy(di->label.name, AudioCoutputs);
1856 di->type = AUDIO_MIXER_CLASS;
1857 di->next = di->prev = AUDIO_MIXER_LAST;
1858 return 0;
1859 case DBRI_INPUT_CLASS:
1860 di->mixer_class = DBRI_INPUT_CLASS;
1861 strcpy(di->label.name, AudioCinputs);
1862 di->type = AUDIO_MIXER_CLASS;
1863 di->next = di->prev = AUDIO_MIXER_LAST;
1864 return 0;
1865 case DBRI_VOL_OUTPUT: /* master volume */
1866 di->mixer_class = DBRI_OUTPUT_CLASS;
1867 di->next = di->prev = AUDIO_MIXER_LAST;
1868 strcpy(di->label.name, AudioNmaster);
1869 di->type = AUDIO_MIXER_VALUE;
1870 di->un.v.num_channels = 2;
1871 di->un.v.delta = 16;
1872 strcpy(di->un.v.units.name, AudioNvolume);
1873 return (0);
1874 case DBRI_INPUT_GAIN: /* input gain */
1875 di->mixer_class = DBRI_INPUT_CLASS;
1876 di->next = di->prev = AUDIO_MIXER_LAST;
1877 strcpy(di->label.name, AudioNrecord);
1878 di->type = AUDIO_MIXER_VALUE;
1879 di->un.v.num_channels = 2;
1880 strcpy(di->un.v.units.name, AudioNvolume);
1881 return (0);
1882 case DBRI_VOL_MONITOR: /* monitor volume */
1883 di->mixer_class = DBRI_MONITOR_CLASS;
1884 di->next = di->prev = AUDIO_MIXER_LAST;
1885 strcpy(di->label.name, AudioNmonitor);
1886 di->type = AUDIO_MIXER_VALUE;
1887 di->un.v.num_channels = 1;
1888 strcpy(di->un.v.units.name, AudioNvolume);
1889 return (0);
1890 case DBRI_ENABLE_MONO: /* built-in speaker */
1891 di->mixer_class = DBRI_OUTPUT_CLASS;
1892 di->next = di->prev = AUDIO_MIXER_LAST;
1893 strcpy(di->label.name, AudioNmono);
1894 di->type = AUDIO_MIXER_ENUM;
1895 di->un.e.num_mem = 2;
1896 strcpy(di->un.e.member[0].label.name, AudioNoff);
1897 di->un.e.member[0].ord = 0;
1898 strcpy(di->un.e.member[1].label.name, AudioNon);
1899 di->un.e.member[1].ord = 1;
1900 return (0);
1901 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1902 di->mixer_class = DBRI_OUTPUT_CLASS;
1903 di->next = di->prev = AUDIO_MIXER_LAST;
1904 strcpy(di->label.name, AudioNheadphone);
1905 di->type = AUDIO_MIXER_ENUM;
1906 di->un.e.num_mem = 2;
1907 strcpy(di->un.e.member[0].label.name, AudioNoff);
1908 di->un.e.member[0].ord = 0;
1909 strcpy(di->un.e.member[1].label.name, AudioNon);
1910 di->un.e.member[1].ord = 1;
1911 return (0);
1912 case DBRI_ENABLE_LINE: /* line out */
1913 di->mixer_class = DBRI_OUTPUT_CLASS;
1914 di->next = di->prev = AUDIO_MIXER_LAST;
1915 strcpy(di->label.name, AudioNline);
1916 di->type = AUDIO_MIXER_ENUM;
1917 di->un.e.num_mem = 2;
1918 strcpy(di->un.e.member[0].label.name, AudioNoff);
1919 di->un.e.member[0].ord = 0;
1920 strcpy(di->un.e.member[1].label.name, AudioNon);
1921 di->un.e.member[1].ord = 1;
1922 return (0);
1923 case DBRI_INPUT_SELECT:
1924 di->mixer_class = DBRI_INPUT_CLASS;
1925 strcpy(di->label.name, AudioNsource);
1926 di->type = AUDIO_MIXER_SET;
1927 di->prev = di->next = AUDIO_MIXER_LAST;
1928 di->un.s.num_mem = 2;
1929 strcpy(di->un.s.member[0].label.name, AudioNline);
1930 di->un.s.member[0].mask = 1 << 0;
1931 strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1932 di->un.s.member[1].mask = 1 << 1;
1933 return 0;
1934 }
1935
1936 return (ENXIO);
1937 }
1938
1939 static size_t
1940 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1941 {
1942 #ifdef DBRI_BIG_BUFFER
1943 return 16*0x1ffc; /* use ~128KB buffer */
1944 #else
1945 return bufsize;
1946 #endif
1947 }
1948
1949 static int
1950 dbri_get_props(void *hdl)
1951 {
1952
1953 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
1954 }
1955
1956 static int
1957 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
1958 void (*intr)(void *), void *intrarg,
1959 const struct audio_params *param)
1960 {
1961 struct dbri_softc *sc = hdl;
1962 unsigned long count, num;
1963
1964 if (sc->sc_playing)
1965 return 0;
1966
1967 count = (unsigned long)(((char *)end - (char *)start));
1968 num = count / blksize;
1969
1970 DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
1971 (unsigned long)intr,
1972 (unsigned long)intrarg, blksize, count, num);
1973
1974 sc->sc_params = *param;
1975
1976 if (sc->sc_recording == 0) {
1977 /* do not muck with the codec when it's already in use */
1978 if (mmcodec_setcontrol(sc) != 0)
1979 return -1;
1980 mmcodec_init_data(sc);
1981 }
1982
1983 /*
1984 * always use DMA descriptor 0 for output
1985 * no need to allocate them dynamically since we only ever have
1986 * exactly one input stream and exactly one output stream
1987 */
1988 setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
1989 sc->sc_playing = 1;
1990 return 0;
1991 }
1992
1993 static int
1994 dbri_halt_input(void *cookie)
1995 {
1996 struct dbri_softc *sc = cookie;
1997
1998 if (!sc->sc_recording)
1999 return 0;
2000
2001 sc->sc_recording = 0;
2002 pipe_reset(sc, 6);
2003 return 0;
2004 }
2005
2006 static int
2007 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
2008 void (*intr)(void *), void *intrarg,
2009 const struct audio_params *param)
2010 {
2011 struct dbri_softc *sc = hdl;
2012 unsigned long count, num;
2013
2014 if (sc->sc_recording)
2015 return 0;
2016
2017 count = (unsigned long)(((char *)end - (char *)start));
2018 num = count / blksize;
2019
2020 DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2021 (unsigned long)intr,
2022 (unsigned long)intrarg, blksize, count, num);
2023
2024 sc->sc_params = *param;
2025
2026 if (sc->sc_playing == 0) {
2027
2028 /*
2029 * we don't support different parameters for playing and
2030 * recording anyway so don't bother whacking the codec if
2031 * it's already set up
2032 */
2033 mmcodec_setcontrol(sc);
2034 mmcodec_init_data(sc);
2035 }
2036
2037 sc->sc_recording = 1;
2038 setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2039 return 0;
2040 }
2041
2042
2043 static uint32_t
2044 reverse_bytes(uint32_t b, int len)
2045 {
2046 switch (len) {
2047 case 32:
2048 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2049 case 16:
2050 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
2051 case 8:
2052 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
2053 case 4:
2054 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
2055 case 2:
2056 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
2057 case 1:
2058 case 0:
2059 break;
2060 default:
2061 DPRINTF("reverse_bytes: unsupported length\n");
2062 };
2063
2064 return (b);
2065 }
2066
2067 static void *
2068 dbri_malloc(void *v, int dir, size_t s, struct malloc_type *mt, int flags)
2069 {
2070 struct dbri_softc *sc = v;
2071 struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2072 int rseg;
2073
2074 if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2075 &dd->dmamap) == 0) {
2076 if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2077 1, &rseg, BUS_DMA_NOWAIT) == 0) {
2078 if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2079 &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2080 if (dd->buf != NULL) {
2081 if (bus_dmamap_load(sc->sc_dmat,
2082 dd->dmamap, dd->buf, s, NULL,
2083 BUS_DMA_NOWAIT) == 0) {
2084 dd->len = s;
2085 dd->busy = 0;
2086 dd->callback = NULL;
2087 dd->dmabase =
2088 dd->dmamap->dm_segs[0].ds_addr;
2089 DPRINTF("dbri_malloc: using buffer %d %08x\n",
2090 sc->sc_desc_used, (uint32_t)dd->buf);
2091 sc->sc_desc_used++;
2092 return dd->buf;
2093 } else
2094 aprint_error("dbri_malloc: load failed\n");
2095 } else
2096 aprint_error("dbri_malloc: map returned NULL\n");
2097 } else
2098 aprint_error("dbri_malloc: map failed\n");
2099 bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2100 } else
2101 aprint_error("dbri_malloc: malloc() failed\n");
2102 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2103 } else
2104 aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2105 return NULL;
2106 }
2107
2108 static void
2109 dbri_free(void *v, void *p, struct malloc_type *mt)
2110 {
2111 struct dbri_softc *sc = v;
2112 struct dbri_desc *dd;
2113 int i;
2114
2115 for (i = 0; i < sc->sc_desc_used; i++) {
2116 dd = &sc->sc_desc[i];
2117 if (dd->buf == p)
2118 break;
2119 }
2120 if (i >= sc->sc_desc_used)
2121 return;
2122 bus_dmamap_unload(sc->sc_dmat, dd->dmamap);
2123 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2124 }
2125
2126 static paddr_t
2127 dbri_mappage(void *v, void *mem, off_t off, int prot)
2128 {
2129 struct dbri_softc *sc = v;
2130 int current;
2131
2132 if (off < 0)
2133 return -1;
2134
2135 current = 0;
2136 while ((current < sc->sc_desc_used) &&
2137 (sc->sc_desc[current].buf != mem))
2138 current++;
2139
2140 if (current < sc->sc_desc_used) {
2141 return bus_dmamem_mmap(sc->sc_dmat,
2142 &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2143 }
2144
2145 return -1;
2146 }
2147
2148 static int
2149 dbri_open(void *cookie, int flags)
2150 {
2151 struct dbri_softc *sc = cookie;
2152
2153 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2154
2155 if (sc->sc_refcount == 0)
2156 dbri_bring_up(sc);
2157
2158 sc->sc_refcount++;
2159
2160 return 0;
2161 }
2162
2163 static void
2164 dbri_close(void *cookie)
2165 {
2166 struct dbri_softc *sc = cookie;
2167
2168 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2169
2170 sc->sc_refcount--;
2171 KASSERT(sc->sc_refcount >= 0);
2172 if (sc->sc_refcount > 0)
2173 return;
2174
2175 dbri_set_power(sc, 0);
2176 sc->sc_playing = 0;
2177 sc->sc_recording = 0;
2178 }
2179
2180 static bool
2181 dbri_suspend(device_t self, const pmf_qual_t *qual)
2182 {
2183 struct dbri_softc *sc = device_private(self);
2184
2185 dbri_set_power(sc, 0);
2186 return true;
2187 }
2188
2189 static bool
2190 dbri_resume(device_t self, const pmf_qual_t *qual)
2191 {
2192 struct dbri_softc *sc = device_private(self);
2193
2194 if (sc->sc_powerstate != 0)
2195 return true;
2196 aprint_verbose("resume: %d\n", sc->sc_refcount);
2197 if (sc->sc_playing) {
2198 volatile uint32_t *cmd;
2199 int s;
2200
2201 dbri_bring_up(sc);
2202 s = splsched();
2203 cmd = dbri_command_lock(sc);
2204 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2205 0, sc->sc_pipe[4].sdp |
2206 DBRI_SDP_VALID_POINTER |
2207 DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2208 *(cmd++) = sc->sc_dmabase +
2209 dbri_dma_off(xmit, 0);
2210 dbri_command_send(sc, cmd);
2211 splx(s);
2212 }
2213 return true;
2214 }
2215
2216 #endif /* NAUDIO > 0 */
2217