dbri.c revision 1.32 1 /* $NetBSD: dbri.c,v 1.32 2011/01/11 00:49:50 macallan Exp $ */
2
3 /*
4 * Copyright (C) 1997 Rudolf Koenig (rfkoenig (at) immd4.informatik.uni-erlangen.de)
5 * Copyright (c) 1998, 1999 Brent Baccala (baccala (at) freesoft.org)
6 * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill (at) netbsd.org>
7 * Copyright (c) 2005 Michael Lorenz <macallan (at) netbsd.org>
8 * All rights reserved.
9 *
10 * This driver is losely based on a Linux driver written by Rudolf Koenig and
11 * Brent Baccala who kindly gave their permission to use their code in a
12 * BSD-licensed driver.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.32 2011/01/11 00:49:50 macallan Exp $");
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/intr.h>
51
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/auconv.h>
59
60 #include <dev/ic/cs4215reg.h>
61 #include <dev/ic/cs4215var.h>
62 #include <dev/sbus/dbrireg.h>
63 #include <dev/sbus/dbrivar.h>
64
65 #include "opt_sbus_dbri.h"
66
67 #define DBRI_ROM_NAME_PREFIX "SUNW,DBRI"
68
69 #ifdef DBRI_DEBUG
70 # define DPRINTF aprint_normal
71 #else
72 # define DPRINTF while (0) printf
73 #endif
74
75 static const char *dbri_supported[] = {
76 "e",
77 "s3",
78 ""
79 };
80
81 enum ms {
82 CHImaster,
83 CHIslave
84 };
85
86 enum io {
87 PIPEinput,
88 PIPEoutput
89 };
90
91 /*
92 * Function prototypes
93 */
94
95 /* softc stuff */
96 static void dbri_attach_sbus(device_t, device_t, void *);
97 static int dbri_match_sbus(device_t, cfdata_t, void *);
98
99 static int dbri_config_interrupts(device_t);
100
101 /* interrupt handler */
102 static int dbri_intr(void *);
103 static void dbri_softint(void *);
104
105 /* supporting subroutines */
106 static int dbri_init(struct dbri_softc *);
107 static int dbri_reset(struct dbri_softc *);
108 static volatile uint32_t *dbri_command_lock(struct dbri_softc *);
109 static void dbri_command_send(struct dbri_softc *, volatile uint32_t *);
110 static void dbri_process_interrupt_buffer(struct dbri_softc *);
111 static void dbri_process_interrupt(struct dbri_softc *, int32_t);
112
113 /* mmcodec subroutines */
114 static int mmcodec_init(struct dbri_softc *);
115 static void mmcodec_init_data(struct dbri_softc *);
116 static void mmcodec_pipe_init(struct dbri_softc *);
117 static void mmcodec_default(struct dbri_softc *);
118 static void mmcodec_setgain(struct dbri_softc *, int);
119 static int mmcodec_setcontrol(struct dbri_softc *);
120
121 /* chi subroutines */
122 static void chi_reset(struct dbri_softc *, enum ms, int);
123
124 /* pipe subroutines */
125 static void pipe_setup(struct dbri_softc *, int, int);
126 static void pipe_reset(struct dbri_softc *, int);
127 static void pipe_receive_fixed(struct dbri_softc *, int,
128 volatile uint32_t *);
129 static void pipe_transmit_fixed(struct dbri_softc *, int, uint32_t);
130
131 static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
132 static int pipe_active(struct dbri_softc *, int);
133
134 /* audio(9) stuff */
135 static int dbri_query_encoding(void *, struct audio_encoding *);
136 static int dbri_set_params(void *, int, int, struct audio_params *,
137 struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
138 static int dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int dbri_halt_output(void *);
140 static int dbri_halt_input(void *);
141 static int dbri_getdev(void *, struct audio_device *);
142 static int dbri_set_port(void *, mixer_ctrl_t *);
143 static int dbri_get_port(void *, mixer_ctrl_t *);
144 static int dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static size_t dbri_round_buffersize(void *, int, size_t);
146 static int dbri_get_props(void *);
147 static int dbri_open(void *, int);
148 static void dbri_close(void *);
149
150 static void setup_ring_xmit(struct dbri_softc *, int, int, int, int,
151 void (*)(void *), void *);
152 static void setup_ring_recv(struct dbri_softc *, int, int, int, int,
153 void (*)(void *), void *);
154
155 static int dbri_trigger_output(void *, void *, void *, int,
156 void (*)(void *), void *, const struct audio_params *);
157 static int dbri_trigger_input(void *, void *, void *, int,
158 void (*)(void *), void *, const struct audio_params *);
159
160 static void *dbri_malloc(void *, int, size_t, struct malloc_type *, int);
161 static void dbri_free(void *, void *, struct malloc_type *);
162 static paddr_t dbri_mappage(void *, void *, off_t, int);
163 static void dbri_set_power(struct dbri_softc *, int);
164 static void dbri_bring_up(struct dbri_softc *);
165 static bool dbri_suspend(device_t, const pmf_qual_t *);
166 static bool dbri_resume(device_t, const pmf_qual_t *);
167
168 /* stupid support routines */
169 static uint32_t reverse_bytes(uint32_t, int);
170
171 struct audio_device dbri_device = {
172 "CS4215",
173 "",
174 "dbri"
175 };
176
177 struct audio_hw_if dbri_hw_if = {
178 dbri_open,
179 dbri_close,
180 NULL, /* drain */
181 dbri_query_encoding,
182 dbri_set_params,
183 dbri_round_blocksize,
184 NULL, /* commit_settings */
185 NULL, /* init_output */
186 NULL, /* init_input */
187 NULL, /* start_output */
188 NULL, /* start_input */
189 dbri_halt_output,
190 dbri_halt_input,
191 NULL, /* speaker_ctl */
192 dbri_getdev,
193 NULL, /* setfd */
194 dbri_set_port,
195 dbri_get_port,
196 dbri_query_devinfo,
197 dbri_malloc,
198 dbri_free,
199 dbri_round_buffersize,
200 dbri_mappage,
201 dbri_get_props,
202 dbri_trigger_output,
203 dbri_trigger_input
204 };
205
206 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
207 dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
208
209 #define DBRI_NFORMATS 4
210 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
212 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
213 48000}},
214 /* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
215 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
216 48000}},
217 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
218 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
219 48000}},
220 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
221 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
222 48000}},*/
223 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
224 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
225 48000}},
226 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
227 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
228 48000}},
229 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
230 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
231 48000}},
232 };
233
234 enum {
235 DBRI_OUTPUT_CLASS,
236 DBRI_VOL_OUTPUT,
237 DBRI_ENABLE_MONO,
238 DBRI_ENABLE_HEADPHONE,
239 DBRI_ENABLE_LINE,
240 DBRI_MONITOR_CLASS,
241 DBRI_VOL_MONITOR,
242 DBRI_INPUT_CLASS,
243 DBRI_INPUT_GAIN,
244 DBRI_INPUT_SELECT,
245 DBRI_RECORD_CLASS,
246 DBRI_ENUM_LAST
247 };
248
249 /*
250 * Autoconfig routines
251 */
252 static int
253 dbri_match_sbus(device_t parent, cfdata_t match, void *aux)
254 {
255 struct sbus_attach_args *sa = aux;
256 char *ver;
257 int i;
258
259 if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
260 return (0);
261
262 ver = &sa->sa_name[9];
263
264 for (i = 0; dbri_supported[i][0] != '\0'; i++)
265 if (strcmp(dbri_supported[i], ver) == 0)
266 return (1);
267
268 return (0);
269 }
270
271 static void
272 dbri_attach_sbus(device_t parent, device_t self, void *aux)
273 {
274 struct dbri_softc *sc = device_private(self);
275 struct sbus_attach_args *sa = aux;
276 bus_space_handle_t ioh;
277 bus_size_t size;
278 int error, rseg, pwr, i;
279 char *ver = &sa->sa_name[9];
280
281 sc->sc_dev = self;
282 sc->sc_iot = sa->sa_bustag;
283 sc->sc_dmat = sa->sa_dmatag;
284 sc->sc_powerstate = 1;
285
286 pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
287 aprint_normal(": rev %s\n", ver);
288
289 if (pwr) {
290 /*
291 * we can control DBRI power via auxio and we're initially
292 * powered down
293 */
294
295 sc->sc_have_powerctl = 1;
296 sc->sc_powerstate = 0;
297 dbri_set_power(sc, 1);
298 if (!pmf_device_register(self, dbri_suspend, dbri_resume)) {
299 aprint_error_dev(self,
300 "cannot set power mgmt handler\n");
301 }
302 } else {
303 /* we can't control power so we're always up */
304 sc->sc_have_powerctl = 0;
305 sc->sc_powerstate = 1;
306 }
307
308 for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
309 sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
310 dbri_softint, &sc->sc_desc[i]);
311 }
312
313 if (sa->sa_npromvaddrs)
314 ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
315 else {
316 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
317 sa->sa_offset, sa->sa_size,
318 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
319 aprint_error("%s @ sbus: cannot map registers\n",
320 device_xname(self));
321 return;
322 }
323 }
324
325 sc->sc_ioh = ioh;
326
327 size = sizeof(struct dbri_dma);
328
329 /* get a DMA handle */
330 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
331 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
332 aprint_error_dev(self, "DMA map create error %d\n",
333 error);
334 return;
335 }
336
337 /* allocate DMA buffer */
338 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
339 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
340 aprint_error_dev(self, "DMA buffer alloc error %d\n",
341 error);
342 return;
343 }
344
345 /* map DMA buffer into CPU addressable space */
346 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
347 &sc->sc_membase,
348 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
349 aprint_error_dev(self, "DMA buffer map error %d\n",
350 error);
351 return;
352 }
353
354 /* load the buffer */
355 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
356 sc->sc_membase, size, NULL,
357 BUS_DMA_NOWAIT)) != 0) {
358 aprint_error_dev(self, "DMA buffer map load error %d\n",
359 error);
360 bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
361 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
362 return;
363 }
364
365 /* map the registers into memory */
366
367 /* kernel virtual address of DMA buffer */
368 sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
369 /* physical address of DMA buffer */
370 sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
371 sc->sc_bufsiz = size;
372
373 bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr,
374 sc);
375
376 sc->sc_locked = 0;
377 sc->sc_desc_used = 0;
378 sc->sc_refcount = 0;
379 sc->sc_playing = 0;
380 sc->sc_recording = 0;
381 sc->sc_init_done = 0;
382 config_finalize_register(self, &dbri_config_interrupts);
383
384 return;
385 }
386
387 /*
388 * lowlevel routine to switch power for the DBRI chip
389 */
390 static void
391 dbri_set_power(struct dbri_softc *sc, int state)
392 {
393 int s;
394
395 if (sc->sc_have_powerctl == 0)
396 return;
397 if (sc->sc_powerstate == state)
398 return;
399
400 if (state) {
401 DPRINTF("%s: waiting to power up... ",
402 device_xname(sc->sc_dev));
403 s = splhigh();
404 *AUXIO4M_REG |= (AUXIO4M_MMX);
405 splx(s);
406 delay(10000);
407 DPRINTF("done (%02x)\n", *AUXIO4M_REG);
408 } else {
409 DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
410 s = splhigh();
411 *AUXIO4M_REG &= ~AUXIO4M_MMX;
412 splx(s);
413 DPRINTF("done (%02x})\n", *AUXIO4M_REG);
414 }
415 sc->sc_powerstate = state;
416 }
417
418 /*
419 * power up and re-initialize the chip
420 */
421 static void
422 dbri_bring_up(struct dbri_softc *sc)
423 {
424
425 if (sc->sc_have_powerctl == 0)
426 return;
427
428 if (sc->sc_powerstate == 1)
429 return;
430
431 /* ok, we really need to do something */
432 dbri_set_power(sc, 1);
433
434 /*
435 * re-initialize the chip but skip all the probing, don't overwrite
436 * any other settings either
437 */
438 dbri_init(sc);
439 mmcodec_setgain(sc, 1);
440 mmcodec_pipe_init(sc);
441 mmcodec_init_data(sc);
442 mmcodec_setgain(sc, 0);
443 }
444
445 static int
446 dbri_config_interrupts(device_t dev)
447 {
448 struct dbri_softc *sc = device_private(dev);
449
450 if (sc->sc_init_done != 0)
451 return 0;
452
453 sc->sc_init_done = 1;
454
455 dbri_init(sc);
456 if (mmcodec_init(sc) == -1) {
457 printf("%s: no codec detected, aborting\n",
458 device_xname(dev));
459 return 0;
460 }
461
462 /* Attach ourselves to the high level audio interface */
463 audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
464
465 /* power down until open() */
466 dbri_set_power(sc, 0);
467 return 0;
468 }
469
470 static int
471 dbri_intr(void *hdl)
472 {
473 struct dbri_softc *sc = hdl;
474 bus_space_tag_t iot = sc->sc_iot;
475 bus_space_handle_t ioh = sc->sc_ioh;
476 int x;
477
478 /* clear interrupt */
479 x = bus_space_read_4(iot, ioh, DBRI_REG1);
480 if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
481 uint32_t tmp;
482
483 if (x & DBRI_MRR)
484 aprint_debug_dev(sc->sc_dev,
485 "multiple ack error on sbus\n");
486 if (x & DBRI_MLE)
487 aprint_debug_dev(sc->sc_dev,
488 "multiple late error on sbus\n");
489 if (x & DBRI_LBG)
490 aprint_debug_dev(sc->sc_dev,
491 "lost bus grant on sbus\n");
492 if (x & DBRI_MBE)
493 aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
494
495 /*
496 * Some of these errors disable the chip's circuitry.
497 * Re-enable the circuitry and keep on going.
498 */
499
500 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
501 tmp &= ~(DBRI_DISABLE_MASTER);
502 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
503 }
504
505 #if 0
506 if (!x & 1) /* XXX: DBRI_INTR_REQ */
507 return (1);
508 #endif
509
510 dbri_process_interrupt_buffer(sc);
511
512 return (1);
513 }
514
515 static void
516 dbri_softint(void *cookie)
517 {
518 struct dbri_desc *dd = cookie;
519
520 if (dd->callback != NULL)
521 dd->callback(dd->callback_args);
522 }
523
524 static int
525 dbri_init(struct dbri_softc *sc)
526 {
527 bus_space_tag_t iot = sc->sc_iot;
528 bus_space_handle_t ioh = sc->sc_ioh;
529 uint32_t reg;
530 volatile uint32_t *cmd;
531 bus_addr_t dmaaddr;
532 int n;
533
534 dbri_reset(sc);
535
536 cmd = dbri_command_lock(sc);
537
538 /* XXX: Initialize interrupt ring buffer */
539 sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
540 sc->sc_irqp = 1;
541
542 /* Initialize pipes */
543 for (n = 0; n < DBRI_PIPE_MAX; n++)
544 sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
545
546 for (n = 1; n < DBRI_INT_BLOCKS; n++) {
547 sc->sc_dma->intr[n] = 0;
548 }
549
550 /* Disable all SBus bursts */
551 /* XXX 16 byte bursts cause errors, the rest works */
552 reg = bus_space_read_4(iot, ioh, DBRI_REG0);
553
554 /*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
555 reg |= (DBRI_BURST_4 | DBRI_BURST_8);
556 bus_space_write_4(iot, ioh, DBRI_REG0, reg);
557
558 /* setup interrupt queue */
559 dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
560 *(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
561 *(cmd++) = dmaaddr;
562
563 dbri_command_send(sc, cmd);
564 return (0);
565 }
566
567 static int
568 dbri_reset(struct dbri_softc *sc)
569 {
570 int bail = 0;
571
572 bus_space_tag_t iot = sc->sc_iot;
573 bus_space_handle_t ioh = sc->sc_ioh;
574
575 bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
576 while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
577 (bail < 100000)) {
578 bail++;
579 delay(10);
580 }
581 if (bail == 100000)
582 aprint_error_dev(sc->sc_dev, "reset timed out\n");
583 return (0);
584 }
585
586 static volatile uint32_t *
587 dbri_command_lock(struct dbri_softc *sc)
588 {
589
590 if (sc->sc_locked)
591 aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
592
593 sc->sc_locked++;
594
595 return (&sc->sc_dma->command[0]);
596 }
597
598 static void
599 dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd)
600 {
601 bus_space_handle_t ioh = sc->sc_ioh;
602 bus_space_tag_t iot = sc->sc_iot;
603 int maxloops = 1000000;
604 int x;
605
606 x = splsched();
607
608 sc->sc_locked--;
609
610 if (sc->sc_locked != 0) {
611 aprint_error_dev(sc->sc_dev,
612 "command buffer improperly locked\n");
613 } else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
614 aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
615 } else {
616 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
617 *(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
618 sc->sc_waitseen = 0;
619 bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
620 while ((--maxloops) > 0 &&
621 (bus_space_read_4(iot, ioh, DBRI_REG0)
622 & DBRI_COMMAND_VALID)) {
623 bus_space_barrier(iot, ioh, DBRI_REG0, 4,
624 BUS_SPACE_BARRIER_READ);
625 delay(1000);
626 }
627
628 if (maxloops == 0) {
629 aprint_error_dev(sc->sc_dev,
630 "chip never completed command buffer\n");
631 } else {
632
633 DPRINTF("%s: command completed\n",
634 device_xname(sc->sc_dev));
635
636 while ((--maxloops) > 0 && (!sc->sc_waitseen))
637 dbri_process_interrupt_buffer(sc);
638 if (maxloops == 0) {
639 aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
640 }
641 }
642 }
643
644 splx(x);
645
646 return;
647 }
648
649 static void
650 dbri_process_interrupt_buffer(struct dbri_softc *sc)
651 {
652 int32_t i;
653
654 while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
655 sc->sc_dma->intr[sc->sc_irqp] = 0;
656 sc->sc_irqp++;
657
658 if (sc->sc_irqp == DBRI_INT_BLOCKS)
659 sc->sc_irqp = 1;
660 else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
661 sc->sc_irqp++;
662
663 dbri_process_interrupt(sc, i);
664 }
665
666 return;
667 }
668
669 static void
670 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
671 {
672 #if 0
673 const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
674 #endif
675 int val = DBRI_INTR_GETVAL(i);
676 int channel = DBRI_INTR_GETCHAN(i);
677 int command = DBRI_INTR_GETCMD(i);
678 int code = DBRI_INTR_GETCODE(i);
679 #if 0
680 int rval = DBRI_INTR_GETRVAL(i);
681 #endif
682 if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
683 sc->sc_waitseen++;
684
685 switch (code) {
686 case DBRI_INTR_XCMP: /* transmission complete */
687 {
688 int td;
689 struct dbri_desc *dd;
690
691 td = sc->sc_pipe[channel].desc;
692 dd = &sc->sc_desc[td];
693
694 if (dd->callback != NULL)
695 softint_schedule(dd->softint);
696 break;
697 }
698 case DBRI_INTR_FXDT: /* fixed data change */
699 DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel,
700 val);
701 #if 0
702 printf("reg: %08x\n", sc->sc_mm.status);
703 #endif
704 if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
705 val = reverse_bytes(val, sc->sc_pipe[channel].length);
706 if (sc->sc_pipe[channel].prec)
707 *(sc->sc_pipe[channel].prec) = val;
708 #ifndef DBRI_SPIN
709 DPRINTF("%s: wakeup %p\n", device_xname(sc->sc_dev), sc);
710 wakeup(sc);
711 #endif
712 break;
713 case DBRI_INTR_SBRI:
714 DPRINTF("dbri_intr: SBRI\n");
715 break;
716 case DBRI_INTR_BRDY:
717 {
718 int td;
719 struct dbri_desc *dd;
720
721 td = sc->sc_pipe[channel].desc;
722 dd = &sc->sc_desc[td];
723
724 if (dd->callback != NULL)
725 softint_schedule(dd->softint);
726 break;
727 }
728 case DBRI_INTR_UNDR:
729 {
730 volatile uint32_t *cmd;
731 int td = sc->sc_pipe[channel].desc;
732
733 DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
734
735 sc->sc_dma->xmit[td].status = 0;
736
737 cmd = dbri_command_lock(sc);
738 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
739 sc->sc_pipe[channel].sdp |
740 DBRI_SDP_VALID_POINTER |
741 DBRI_SDP_CLEAR |
742 DBRI_SDP_2SAME);
743 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
744 dbri_command_send(sc, cmd);
745 break;
746 }
747 case DBRI_INTR_CMDI:
748 DPRINTF("ok");
749 break;
750 default:
751
752 aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
753 code);
754 break;
755 }
756
757 return;
758 }
759
760 /*
761 * mmcodec stuff
762 */
763
764 static int
765 mmcodec_init(struct dbri_softc *sc)
766 {
767 bus_space_handle_t ioh = sc->sc_ioh;
768 bus_space_tag_t iot = sc->sc_iot;
769 uint32_t reg2;
770 int bail;
771
772 reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
773 DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
774
775 if (reg2 & DBRI_PIO2) {
776 aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
777 sc->sc_mm.onboard = 1;
778 }
779
780 if (reg2 & DBRI_PIO0) {
781 aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
782 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
783 sc->sc_mm.onboard = 0;
784 }
785
786 if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
787 aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
788 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
789 sc->sc_mm.onboard = 0;
790 }
791
792 if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
793 aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
794 return -1;
795 }
796
797 sc->sc_version = 0xff;
798
799 mmcodec_pipe_init(sc);
800 mmcodec_default(sc);
801
802 sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
803
804 /*
805 * mmcodec_setcontrol() sometimes fails right after powerup
806 * so we just try again until we either get a useful response or run
807 * out of time
808 */
809 bail = 0;
810 while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
811
812 bail++;
813 if (bail > 100) {
814 DPRINTF("%s: cs4215 probe failed at offset %d\n",
815 device_xname(sc->sc_dev), sc->sc_mm.offset);
816 return (-1);
817 }
818 delay(10000);
819 }
820
821 aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
822 0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
823
824 /* set some sane defaults for mmcodec_init_data */
825 sc->sc_params.channels = 2;
826 sc->sc_params.precision = 16;
827
828 mmcodec_init_data(sc);
829
830 return (0);
831 }
832
833 static void
834 mmcodec_init_data(struct dbri_softc *sc)
835 {
836 bus_space_tag_t iot = sc->sc_iot;
837 bus_space_handle_t ioh = sc->sc_ioh;
838 uint32_t tmp;
839 int data_width;
840
841 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
842 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
843 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
844
845 /* switch CS4215 to data mode - set PIO3 to 1 */
846 tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
847
848 /* XXX */
849 tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
850
851 bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
852 chi_reset(sc, CHIslave, 128);
853
854 data_width = sc->sc_params.channels * sc->sc_params.precision;
855
856 if ((data_width != 32) && (data_width != 8))
857 aprint_error("%s: data_width is %d\n", __func__, data_width);
858
859 pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
860 pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
861 pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
862 pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
863
864 pipe_receive_fixed(sc, 21, &sc->sc_mm.status);
865
866 mmcodec_setgain(sc, 0);
867
868 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
869 tmp |= DBRI_CHI_ACTIVATE;
870 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
871
872 return;
873 }
874
875 static void
876 mmcodec_pipe_init(struct dbri_softc *sc)
877 {
878
879 pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
880 pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
881 pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
882 pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
883
884 pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
885 pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
886 pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
887
888 sc->sc_mm.status = 0;
889
890 pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
891 pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
892
893 return;
894 }
895
896 static void
897 mmcodec_default(struct dbri_softc *sc)
898 {
899 struct cs4215_state *mm = &sc->sc_mm;
900
901 /*
902 * no action, memory resetting only
903 *
904 * data time slots 5-8
905 * speaker, line and headphone enable. set gain to half.
906 * input is line
907 */
908 mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
909 mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
910 sc->sc_linp = 128;
911 sc->sc_rinp = 128;
912 sc->sc_monitor = 0;
913 sc->sc_input = 1; /* line */
914 mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
915 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
916 mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
917 CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
918
919
920 /*
921 * control time slots 1-4
922 *
923 * 0: default I/O voltage scale
924 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
925 * 2: serial enable, CHI master, 128 bits per frame, clock 1
926 * 3: tests disabled
927 */
928 mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB;
929 mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
930 mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
931 mm->c.bcontrol[3] = 0;
932
933 return;
934 }
935
936 static void
937 mmcodec_setgain(struct dbri_softc *sc, int mute)
938 {
939 if (mute) {
940 /* disable all outputs, max. attenuation */
941 sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
942 sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
943 } else {
944
945 sc->sc_mm.d.bdata[0] = sc->sc_latt;
946 sc->sc_mm.d.bdata[1] = sc->sc_ratt;
947 }
948
949 /* input stuff */
950 sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
951 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
952 sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
953 (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
954
955 if (sc->sc_powerstate == 0)
956 return;
957 pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
958
959 DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
960 /* give the chip some time to execute the command */
961 delay(250);
962
963 return;
964 }
965
966 static int
967 mmcodec_setcontrol(struct dbri_softc *sc)
968 {
969 bus_space_tag_t iot = sc->sc_iot;
970 bus_space_handle_t ioh = sc->sc_ioh;
971 uint32_t val;
972 uint32_t tmp;
973 int bail = 0;
974 #if DBRI_SPIN
975 int i;
976 #endif
977
978 /*
979 * Temporarily mute outputs and wait 125 us to make sure that it
980 * happens. This avoids clicking noises.
981 */
982 mmcodec_setgain(sc, 1);
983 delay(125);
984
985 bus_space_write_4(iot, ioh, DBRI_REG2, 0);
986 delay(125);
987
988 /* enable control mode */
989 val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */
990
991 /* XXX */
992 val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
993
994 bus_space_write_4(iot, ioh, DBRI_REG2, val);
995
996 delay(34);
997
998 /*
999 * in control mode, the cs4215 is the slave device, so the
1000 * DBRI must act as the CHI master.
1001 *
1002 * in data mode, the cs4215 must be the CHI master to insure
1003 * that the data stream is in sync with its codec
1004 */
1005 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1006 tmp &= ~DBRI_COMMAND_CHI;
1007 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1008
1009 chi_reset(sc, CHImaster, 128);
1010
1011 /* control mode */
1012 pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1013 pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1014 pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1015
1016 /* wait for the chip to echo back CLB as zero */
1017 sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1018 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1019
1020 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1021 tmp |= DBRI_CHI_ACTIVATE;
1022 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1023
1024 #if DBRI_SPIN
1025 i = 1024;
1026 while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) {
1027 delay(125);
1028 }
1029
1030 if (i == 0) {
1031 DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1032 device_xname(sc->sc_dev), sc->sc_mm.status);
1033 return (-1);
1034 }
1035 #else
1036 while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) {
1037 DPRINTF("%s: tsleep %p\n", device_xname(sc->sc_dev), sc);
1038 tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz);
1039 bail++;
1040 }
1041 #endif
1042 if (bail >= 10) {
1043 DPRINTF("%s: switching to control mode timed out (%x %x)\n",
1044 device_xname(sc->sc_dev), sc->sc_mm.status,
1045 bus_space_read_4(iot, ioh, DBRI_REG2));
1046 return -1;
1047 }
1048
1049 /* copy the version information before it becomes unreadable again */
1050 sc->sc_version = sc->sc_mm.version;
1051
1052 /* terminate cs4215 control mode */
1053 sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1054 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1055
1056 /* two frames of control info @ 8kHz frame rate = 250us delay */
1057 delay(250);
1058
1059 mmcodec_setgain(sc, 0);
1060
1061 return (0);
1062
1063 }
1064
1065 /*
1066 * CHI combo
1067 */
1068 static void
1069 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1070 {
1071 volatile uint32_t *cmd;
1072 int val;
1073 int clockrate, divisor;
1074
1075 cmd = dbri_command_lock(sc);
1076
1077 /* set CHI anchor: pipe 16 */
1078 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1079 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1080 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1081 *(cmd++) = 0;
1082
1083 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1084 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1085 *(cmd++) = 0;
1086 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1087
1088 sc->sc_pipe[16].sdp = 1;
1089 sc->sc_pipe[16].next = 16;
1090 sc->sc_chi_pipe_in = 16;
1091 sc->sc_chi_pipe_out = 16;
1092
1093 switch (ms) {
1094 case CHIslave:
1095 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1096 break;
1097 case CHImaster:
1098 clockrate = bpf * 8;
1099 divisor = 12288 / clockrate;
1100
1101 if (divisor > 255 || divisor * clockrate != 12288)
1102 aprint_error_dev(sc->sc_dev,
1103 "illegal bits-per-frame %d\n", bpf);
1104
1105 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1106 DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1107 break;
1108 default:
1109 aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
1110 break;
1111 }
1112
1113 sc->sc_chi_bpf = bpf;
1114
1115 /* CHI data mode */
1116 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1117 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1118 DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1119
1120 dbri_command_send(sc, cmd);
1121
1122 return;
1123 }
1124
1125 /*
1126 * pipe stuff
1127 */
1128 static void
1129 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1130 {
1131 DPRINTF("pipe setup: %d\n", pipe);
1132 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1133 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1134 pipe);
1135 return;
1136 }
1137
1138 if ((sdp & 0xf800) != sdp)
1139 aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
1140 sdp);
1141
1142 if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1143 !(sdp & DBRI_SDP_TO_SER))
1144 sdp |= DBRI_SDP_CHANGE;
1145
1146 sdp |= DBRI_PIPE(pipe);
1147
1148 sc->sc_pipe[pipe].sdp = sdp;
1149 sc->sc_pipe[pipe].desc = -1;
1150
1151 pipe_reset(sc, pipe);
1152
1153 return;
1154 }
1155
1156 static void
1157 pipe_reset(struct dbri_softc *sc, int pipe)
1158 {
1159 struct dbri_desc *dd;
1160 int sdp;
1161 int desc;
1162 volatile uint32_t *cmd;
1163
1164 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1165 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1166 pipe);
1167 return;
1168 }
1169
1170 sdp = sc->sc_pipe[pipe].sdp;
1171 if (sdp == 0) {
1172 aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
1173 pipe);
1174 return;
1175 }
1176
1177 cmd = dbri_command_lock(sc);
1178 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1179 sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1180 *(cmd++) = 0;
1181 dbri_command_send(sc, cmd);
1182
1183 desc = sc->sc_pipe[pipe].desc;
1184
1185 dd = &sc->sc_desc[desc];
1186
1187 dd->busy = 0;
1188
1189 #if 0
1190 if (dd->callback)
1191 softint_schedule(dd->softint);
1192 #endif
1193
1194 sc->sc_pipe[pipe].desc = -1;
1195
1196 return;
1197 }
1198
1199 static void
1200 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec)
1201 {
1202
1203 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1204 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1205 pipe);
1206 return;
1207 }
1208
1209 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1210 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1211 pipe);
1212 return;
1213 }
1214
1215 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1216 aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
1217 pipe);
1218 return;
1219 }
1220
1221 sc->sc_pipe[pipe].prec = prec;
1222
1223 return;
1224 }
1225
1226 static void
1227 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data)
1228 {
1229 volatile uint32_t *cmd;
1230
1231 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1232 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1233 pipe);
1234 return;
1235 }
1236
1237 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1238 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1239 pipe);
1240 return;
1241 }
1242
1243 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1244 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1245 pipe);
1246 return;
1247 }
1248
1249 if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1250 aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
1251 pipe);
1252 return;
1253 }
1254
1255 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1256 data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1257
1258 cmd = dbri_command_lock(sc);
1259 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1260 *(cmd++) = data;
1261
1262 dbri_command_send(sc, cmd);
1263
1264 return;
1265 }
1266
1267 static void
1268 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1269 void (*callback)(void *), void *callback_args)
1270 {
1271 volatile uint32_t *cmd;
1272 int x, i;
1273 int td;
1274 int td_first, td_last;
1275 bus_addr_t dmabuf, dmabase;
1276 struct dbri_desc *dd = &sc->sc_desc[which];
1277
1278 switch (pipe) {
1279 case 4:
1280 /* output, offset 0 */
1281 break;
1282 default:
1283 aprint_error("%s: illegal pipe number (%d)\n",
1284 __func__, pipe);
1285 return;
1286 }
1287
1288 td = 0;
1289 td_first = td_last = -1;
1290
1291 if (sc->sc_pipe[pipe].sdp == 0) {
1292 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1293 pipe);
1294 return;
1295 }
1296
1297 dmabuf = dd->dmabase;
1298 dmabase = sc->sc_dmabase;
1299 td = 0;
1300
1301 for (i = 0; i < (num - 1); i++) {
1302
1303 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1304 | TX_EOF | TX_BINT;
1305 sc->sc_dma->xmit[i].ba = dmabuf;
1306 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1307 sc->sc_dma->xmit[i].status = 0;
1308
1309 td_last = td;
1310 dmabuf += blksz;
1311 }
1312
1313 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1314
1315 sc->sc_dma->xmit[i].ba = dmabuf;
1316 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1317 sc->sc_dma->xmit[i].status = 0;
1318
1319 dd->callback = callback;
1320 dd->callback_args = callback_args;
1321
1322 x = splsched();
1323
1324 /* the pipe shouldn't be active */
1325 if (pipe_active(sc, pipe)) {
1326 aprint_error("pipe active (CDP)\n");
1327 /* pipe is already active */
1328 #if 0
1329 td_last = sc->sc_pipe[pipe].desc;
1330 while (sc->sc_desc[td_last].next != -1)
1331 td_last = sc->sc_desc[td_last].next;
1332
1333 sc->sc_desc[td_last].next = td_first;
1334 sc->sc_dma->desc[td_last].nda =
1335 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1336
1337 cmd = dbri_command_lock(sc);
1338 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1339 dbri_command_send(sc, cmd);
1340 #endif
1341 } else {
1342 /*
1343 * pipe isn't active - issue an SDP command to start our
1344 * chain of TDs running
1345 */
1346 sc->sc_pipe[pipe].desc = which;
1347 cmd = dbri_command_lock(sc);
1348 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1349 sc->sc_pipe[pipe].sdp |
1350 DBRI_SDP_VALID_POINTER |
1351 DBRI_SDP_EVERY |
1352 DBRI_SDP_CLEAR);
1353 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1354 dbri_command_send(sc, cmd);
1355 DPRINTF("%s: starting DMA\n", __func__);
1356 }
1357
1358 splx(x);
1359
1360 return;
1361 }
1362
1363 static void
1364 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1365 void (*callback)(void *), void *callback_args)
1366 {
1367 volatile uint32_t *cmd;
1368 int x, i;
1369 int td_first, td_last;
1370 bus_addr_t dmabuf, dmabase;
1371 struct dbri_desc *dd = &sc->sc_desc[which];
1372
1373 switch (pipe) {
1374 case 6:
1375 break;
1376 default:
1377 aprint_error("%s: illegal pipe number (%d)\n",
1378 __func__, pipe);
1379 return;
1380 }
1381
1382 td_first = td_last = -1;
1383
1384 if (sc->sc_pipe[pipe].sdp == 0) {
1385 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1386 pipe);
1387 return;
1388 }
1389
1390 dmabuf = dd->dmabase;
1391 dmabase = sc->sc_dmabase;
1392
1393 for (i = 0; i < (num - 1); i++) {
1394
1395 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1396 sc->sc_dma->recv[i].ba = dmabuf;
1397 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1398 sc->sc_dma->recv[i].status = RX_EOF;
1399
1400 td_last = i;
1401 dmabuf += blksz;
1402 }
1403
1404 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1405
1406 sc->sc_dma->recv[i].ba = dmabuf;
1407 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1408 sc->sc_dma->recv[i].status = RX_EOF;
1409
1410 dd->callback = callback;
1411 dd->callback_args = callback_args;
1412
1413 x = splsched();
1414
1415 /* the pipe shouldn't be active */
1416 if (pipe_active(sc, pipe)) {
1417 aprint_error("pipe active (CDP)\n");
1418 /* pipe is already active */
1419 #if 0
1420 td_last = sc->sc_pipe[pipe].desc;
1421 while (sc->sc_desc[td_last].next != -1)
1422 td_last = sc->sc_desc[td_last].next;
1423
1424 sc->sc_desc[td_last].next = td_first;
1425 sc->sc_dma->desc[td_last].nda =
1426 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1427
1428 cmd = dbri_command_lock(sc);
1429 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1430 dbri_command_send(sc, cmd);
1431 #endif
1432 } else {
1433 /*
1434 * pipe isn't active - issue an SDP command to start our
1435 * chain of TDs running
1436 */
1437 sc->sc_pipe[pipe].desc = which;
1438 cmd = dbri_command_lock(sc);
1439 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1440 sc->sc_pipe[pipe].sdp |
1441 DBRI_SDP_VALID_POINTER |
1442 DBRI_SDP_EVERY |
1443 DBRI_SDP_CLEAR);
1444 *(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1445 dbri_command_send(sc, cmd);
1446 DPRINTF("%s: starting DMA\n", __func__);
1447 }
1448
1449 splx(x);
1450
1451 return;
1452 }
1453
1454 static void
1455 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1456 int len, int cycle)
1457 {
1458 volatile uint32_t *cmd;
1459 int prevpipe, nextpipe;
1460 int val;
1461
1462 DPRINTF("%s: %d\n", __func__, pipe);
1463 if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1464 basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1465 aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1466 pipe, basepipe);
1467 return;
1468 }
1469
1470 if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1471 aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1472 pipe, basepipe);
1473 return;
1474 }
1475
1476 if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1477 cycle = sc->sc_chi_bpf;
1478
1479 if (basepipe == pipe)
1480 prevpipe = nextpipe = pipe;
1481 else {
1482 if (basepipe == 16) {
1483 if (dir == PIPEinput) {
1484 prevpipe = sc->sc_chi_pipe_in;
1485 } else {
1486 prevpipe = sc->sc_chi_pipe_out;
1487 }
1488 } else
1489 prevpipe = basepipe;
1490
1491 nextpipe = sc->sc_pipe[prevpipe].next;
1492
1493 while (sc->sc_pipe[nextpipe].cycle < cycle &&
1494 sc->sc_pipe[nextpipe].next != basepipe) {
1495 prevpipe = nextpipe;
1496 nextpipe = sc->sc_pipe[nextpipe].next;
1497 }
1498 }
1499
1500 if (prevpipe == 16) {
1501 if (dir == PIPEinput) {
1502 sc->sc_chi_pipe_in = pipe;
1503 } else {
1504 sc->sc_chi_pipe_out = pipe;
1505 }
1506 } else
1507 sc->sc_pipe[prevpipe].next = pipe;
1508
1509 sc->sc_pipe[pipe].next = nextpipe;
1510 sc->sc_pipe[pipe].cycle = cycle;
1511 sc->sc_pipe[pipe].length = len;
1512
1513 cmd = dbri_command_lock(sc);
1514
1515 switch (dir) {
1516 case PIPEinput:
1517 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1518 val |= pipe;
1519 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1520 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1521 DBRI_TS_NEXT(nextpipe);
1522 *(cmd++) = 0;
1523 break;
1524 case PIPEoutput:
1525 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1526 val |= pipe;
1527 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1528 *(cmd++) = 0;
1529 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1530 DBRI_TS_NEXT(nextpipe);
1531 break;
1532 default:
1533 DPRINTF("%s: should not have happened!\n",
1534 device_xname(sc->sc_dev));
1535 break;
1536 }
1537
1538 dbri_command_send(sc, cmd);
1539
1540 return;
1541 }
1542
1543 static int
1544 pipe_active(struct dbri_softc *sc, int pipe)
1545 {
1546
1547 return (sc->sc_pipe[pipe].desc != -1);
1548 }
1549
1550 /*
1551 * subroutines required to interface with audio(9)
1552 */
1553
1554 static int
1555 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1556 {
1557
1558 switch (ae->index) {
1559 case 0:
1560 strcpy(ae->name, AudioEulinear);
1561 ae->encoding = AUDIO_ENCODING_ULINEAR;
1562 ae->precision = 8;
1563 ae->flags = 0;
1564 break;
1565 case 1:
1566 strcpy(ae->name, AudioEmulaw);
1567 ae->encoding = AUDIO_ENCODING_ULAW;
1568 ae->precision = 8;
1569 ae->flags = 0;
1570 break;
1571 case 2:
1572 strcpy(ae->name, AudioEalaw);
1573 ae->encoding = AUDIO_ENCODING_ALAW;
1574 ae->precision = 8;
1575 ae->flags = 0;
1576 break;
1577 case 3:
1578 strcpy(ae->name, AudioEslinear);
1579 ae->encoding = AUDIO_ENCODING_SLINEAR;
1580 ae->precision = 8;
1581 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1582 break;
1583 case 4:
1584 strcpy(ae->name, AudioEslinear_le);
1585 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1586 ae->precision = 16;
1587 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1588 break;
1589 case 5:
1590 strcpy(ae->name, AudioEulinear_le);
1591 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1592 ae->precision = 16;
1593 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1594 break;
1595 case 6:
1596 strcpy(ae->name, AudioEslinear_be);
1597 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1598 ae->precision = 16;
1599 ae->flags = 0;
1600 break;
1601 case 7:
1602 strcpy(ae->name, AudioEulinear_be);
1603 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1604 ae->precision = 16;
1605 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1606 break;
1607 case 8:
1608 strcpy(ae->name, AudioEslinear);
1609 ae->encoding = AUDIO_ENCODING_SLINEAR;
1610 ae->precision = 16;
1611 ae->flags = 0;
1612 break;
1613 default:
1614 return (EINVAL);
1615 }
1616
1617 return (0);
1618 }
1619
1620 static int
1621 dbri_set_params(void *hdl, int setmode, int usemode,
1622 struct audio_params *play, struct audio_params *rec,
1623 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1624 {
1625 struct dbri_softc *sc = hdl;
1626 int rate;
1627 audio_params_t *p = NULL;
1628 stream_filter_list_t *fil;
1629 int mode;
1630
1631 /*
1632 * This device only has one clock, so make the sample rates match.
1633 */
1634 if (play->sample_rate != rec->sample_rate &&
1635 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1636 if (setmode == AUMODE_PLAY) {
1637 rec->sample_rate = play->sample_rate;
1638 setmode |= AUMODE_RECORD;
1639 } else if (setmode == AUMODE_RECORD) {
1640 play->sample_rate = rec->sample_rate;
1641 setmode |= AUMODE_PLAY;
1642 } else
1643 return EINVAL;
1644 }
1645
1646 for (mode = AUMODE_RECORD; mode != -1;
1647 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1648 if ((setmode & mode) == 0)
1649 continue;
1650
1651 p = mode == AUMODE_PLAY ? play : rec;
1652 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1653 DPRINTF("dbri_set_params: invalid rate %d\n",
1654 p->sample_rate);
1655 return EINVAL;
1656 }
1657
1658 fil = mode == AUMODE_PLAY ? pfil : rfil;
1659 DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1660 p->sample_rate, p->precision, p->channels);
1661 if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1662 mode, p, true, fil) < 0) {
1663 aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1664 return EINVAL;
1665 }
1666 if (fil->req_size > 0)
1667 p = &fil->filters[0].param;
1668 }
1669
1670 if (p == NULL) {
1671 DPRINTF("dbri_set_params: no parameters to set\n");
1672 return 0;
1673 }
1674
1675 DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1676 p->sample_rate, p->precision, p->channels);
1677
1678 for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1679 if (CS4215_FREQ[rate].freq == p->sample_rate)
1680 break;
1681
1682 if (CS4215_FREQ[rate].freq == 0)
1683 return (EINVAL);
1684
1685 /* set frequency */
1686 sc->sc_mm.c.bcontrol[1] &= ~0x38;
1687 sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1688 sc->sc_mm.c.bcontrol[2] &= ~0x70;
1689 sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1690
1691 switch (p->encoding) {
1692 case AUDIO_ENCODING_ULAW:
1693 sc->sc_mm.c.bcontrol[1] &= ~3;
1694 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1695 break;
1696 case AUDIO_ENCODING_ALAW:
1697 sc->sc_mm.c.bcontrol[1] &= ~3;
1698 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1699 break;
1700 case AUDIO_ENCODING_ULINEAR:
1701 sc->sc_mm.c.bcontrol[1] &= ~3;
1702 if (p->precision == 8) {
1703 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1704 } else {
1705 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1706 }
1707 break;
1708 case AUDIO_ENCODING_SLINEAR_BE:
1709 case AUDIO_ENCODING_SLINEAR:
1710 sc->sc_mm.c.bcontrol[1] &= ~3;
1711 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1712 break;
1713 }
1714
1715 switch (p->channels) {
1716 case 1:
1717 sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1718 break;
1719 case 2:
1720 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1721 break;
1722 }
1723
1724 return (0);
1725 }
1726
1727 static int
1728 dbri_round_blocksize(void *hdl, int bs, int mode,
1729 const audio_params_t *param)
1730 {
1731
1732 /* DBRI DMA segment size, rounded down to 32bit alignment */
1733 return 0x1ffc;
1734 }
1735
1736 static int
1737 dbri_halt_output(void *hdl)
1738 {
1739 struct dbri_softc *sc = hdl;
1740
1741 if (!sc->sc_playing)
1742 return 0;
1743
1744 sc->sc_playing = 0;
1745 pipe_reset(sc, 4);
1746 return (0);
1747 }
1748
1749 static int
1750 dbri_getdev(void *hdl, struct audio_device *ret)
1751 {
1752
1753 *ret = dbri_device;
1754 return (0);
1755 }
1756
1757 static int
1758 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1759 {
1760 struct dbri_softc *sc = hdl;
1761 int latt = sc->sc_latt, ratt = sc->sc_ratt;
1762
1763 switch (mc->dev) {
1764 case DBRI_VOL_OUTPUT: /* master volume */
1765 latt = (latt & 0xc0) | (63 -
1766 min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1767 ratt = (ratt & 0xc0) | (63 -
1768 min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1769 break;
1770 case DBRI_ENABLE_MONO: /* built-in speaker */
1771 if (mc->un.ord == 1) {
1772 ratt |= CS4215_SE;
1773 } else
1774 ratt &= ~CS4215_SE;
1775 break;
1776 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1777 if (mc->un.ord == 1) {
1778 latt |= CS4215_HE;
1779 } else
1780 latt &= ~CS4215_HE;
1781 break;
1782 case DBRI_ENABLE_LINE: /* line out */
1783 if (mc->un.ord == 1) {
1784 latt |= CS4215_LE;
1785 } else
1786 latt &= ~CS4215_LE;
1787 break;
1788 case DBRI_VOL_MONITOR:
1789 if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1790 sc->sc_monitor)
1791 return 0;
1792 sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1793 break;
1794 case DBRI_INPUT_GAIN:
1795 sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1796 sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1797 break;
1798 case DBRI_INPUT_SELECT:
1799 if (mc->un.mask == sc->sc_input)
1800 return 0;
1801 sc->sc_input = mc->un.mask;
1802 break;
1803 }
1804
1805 sc->sc_latt = latt;
1806 sc->sc_ratt = ratt;
1807
1808 mmcodec_setgain(sc, 0);
1809
1810 return (0);
1811 }
1812
1813 static int
1814 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1815 {
1816 struct dbri_softc *sc = hdl;
1817
1818 switch (mc->dev) {
1819 case DBRI_VOL_OUTPUT: /* master volume */
1820 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1821 (63 - (sc->sc_latt & 0x3f)) << 2;
1822 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1823 (63 - (sc->sc_ratt & 0x3f)) << 2;
1824 return (0);
1825 case DBRI_ENABLE_MONO: /* built-in speaker */
1826 mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1827 return 0;
1828 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1829 mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1830 return 0;
1831 case DBRI_ENABLE_LINE: /* line out */
1832 mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1833 return 0;
1834 case DBRI_VOL_MONITOR:
1835 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1836 return 0;
1837 case DBRI_INPUT_GAIN:
1838 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1839 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1840 return 0;
1841 case DBRI_INPUT_SELECT:
1842 mc->un.mask = sc->sc_input;
1843 return 0;
1844 }
1845 return (EINVAL);
1846 }
1847
1848 static int
1849 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1850 {
1851
1852 switch (di->index) {
1853 case DBRI_MONITOR_CLASS:
1854 di->mixer_class = DBRI_MONITOR_CLASS;
1855 strcpy(di->label.name, AudioCmonitor);
1856 di->type = AUDIO_MIXER_CLASS;
1857 di->next = di->prev = AUDIO_MIXER_LAST;
1858 return 0;
1859 case DBRI_OUTPUT_CLASS:
1860 di->mixer_class = DBRI_OUTPUT_CLASS;
1861 strcpy(di->label.name, AudioCoutputs);
1862 di->type = AUDIO_MIXER_CLASS;
1863 di->next = di->prev = AUDIO_MIXER_LAST;
1864 return 0;
1865 case DBRI_INPUT_CLASS:
1866 di->mixer_class = DBRI_INPUT_CLASS;
1867 strcpy(di->label.name, AudioCinputs);
1868 di->type = AUDIO_MIXER_CLASS;
1869 di->next = di->prev = AUDIO_MIXER_LAST;
1870 return 0;
1871 case DBRI_VOL_OUTPUT: /* master volume */
1872 di->mixer_class = DBRI_OUTPUT_CLASS;
1873 di->next = di->prev = AUDIO_MIXER_LAST;
1874 strcpy(di->label.name, AudioNmaster);
1875 di->type = AUDIO_MIXER_VALUE;
1876 di->un.v.num_channels = 2;
1877 di->un.v.delta = 16;
1878 strcpy(di->un.v.units.name, AudioNvolume);
1879 return (0);
1880 case DBRI_INPUT_GAIN: /* input gain */
1881 di->mixer_class = DBRI_INPUT_CLASS;
1882 di->next = di->prev = AUDIO_MIXER_LAST;
1883 strcpy(di->label.name, AudioNrecord);
1884 di->type = AUDIO_MIXER_VALUE;
1885 di->un.v.num_channels = 2;
1886 strcpy(di->un.v.units.name, AudioNvolume);
1887 return (0);
1888 case DBRI_VOL_MONITOR: /* monitor volume */
1889 di->mixer_class = DBRI_MONITOR_CLASS;
1890 di->next = di->prev = AUDIO_MIXER_LAST;
1891 strcpy(di->label.name, AudioNmonitor);
1892 di->type = AUDIO_MIXER_VALUE;
1893 di->un.v.num_channels = 1;
1894 strcpy(di->un.v.units.name, AudioNvolume);
1895 return (0);
1896 case DBRI_ENABLE_MONO: /* built-in speaker */
1897 di->mixer_class = DBRI_OUTPUT_CLASS;
1898 di->next = di->prev = AUDIO_MIXER_LAST;
1899 strcpy(di->label.name, AudioNmono);
1900 di->type = AUDIO_MIXER_ENUM;
1901 di->un.e.num_mem = 2;
1902 strcpy(di->un.e.member[0].label.name, AudioNoff);
1903 di->un.e.member[0].ord = 0;
1904 strcpy(di->un.e.member[1].label.name, AudioNon);
1905 di->un.e.member[1].ord = 1;
1906 return (0);
1907 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1908 di->mixer_class = DBRI_OUTPUT_CLASS;
1909 di->next = di->prev = AUDIO_MIXER_LAST;
1910 strcpy(di->label.name, AudioNheadphone);
1911 di->type = AUDIO_MIXER_ENUM;
1912 di->un.e.num_mem = 2;
1913 strcpy(di->un.e.member[0].label.name, AudioNoff);
1914 di->un.e.member[0].ord = 0;
1915 strcpy(di->un.e.member[1].label.name, AudioNon);
1916 di->un.e.member[1].ord = 1;
1917 return (0);
1918 case DBRI_ENABLE_LINE: /* line out */
1919 di->mixer_class = DBRI_OUTPUT_CLASS;
1920 di->next = di->prev = AUDIO_MIXER_LAST;
1921 strcpy(di->label.name, AudioNline);
1922 di->type = AUDIO_MIXER_ENUM;
1923 di->un.e.num_mem = 2;
1924 strcpy(di->un.e.member[0].label.name, AudioNoff);
1925 di->un.e.member[0].ord = 0;
1926 strcpy(di->un.e.member[1].label.name, AudioNon);
1927 di->un.e.member[1].ord = 1;
1928 return (0);
1929 case DBRI_INPUT_SELECT:
1930 di->mixer_class = DBRI_INPUT_CLASS;
1931 strcpy(di->label.name, AudioNsource);
1932 di->type = AUDIO_MIXER_SET;
1933 di->prev = di->next = AUDIO_MIXER_LAST;
1934 di->un.s.num_mem = 2;
1935 strcpy(di->un.s.member[0].label.name, AudioNline);
1936 di->un.s.member[0].mask = 1 << 0;
1937 strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1938 di->un.s.member[1].mask = 1 << 1;
1939 return 0;
1940 }
1941
1942 return (ENXIO);
1943 }
1944
1945 static size_t
1946 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1947 {
1948 #ifdef DBRI_BIG_BUFFER
1949 return 16*0x1ffc; /* use ~128KB buffer */
1950 #else
1951 return bufsize;
1952 #endif
1953 }
1954
1955 static int
1956 dbri_get_props(void *hdl)
1957 {
1958
1959 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
1960 }
1961
1962 static int
1963 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
1964 void (*intr)(void *), void *intrarg,
1965 const struct audio_params *param)
1966 {
1967 struct dbri_softc *sc = hdl;
1968 unsigned long count, num;
1969
1970 if (sc->sc_playing)
1971 return 0;
1972
1973 count = (unsigned long)(((char *)end - (char *)start));
1974 num = count / blksize;
1975
1976 DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
1977 (unsigned long)intr,
1978 (unsigned long)intrarg, blksize, count, num);
1979
1980 sc->sc_params = *param;
1981
1982 if (sc->sc_recording == 0) {
1983 /* do not muck with the codec when it's already in use */
1984 if (mmcodec_setcontrol(sc) != 0)
1985 return -1;
1986 mmcodec_init_data(sc);
1987 }
1988
1989 /*
1990 * always use DMA descriptor 0 for output
1991 * no need to allocate them dynamically since we only ever have
1992 * exactly one input stream and exactly one output stream
1993 */
1994 setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
1995 sc->sc_playing = 1;
1996 return 0;
1997 }
1998
1999 static int
2000 dbri_halt_input(void *cookie)
2001 {
2002 struct dbri_softc *sc = cookie;
2003
2004 if (!sc->sc_recording)
2005 return 0;
2006
2007 sc->sc_recording = 0;
2008 pipe_reset(sc, 6);
2009 return 0;
2010 }
2011
2012 static int
2013 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
2014 void (*intr)(void *), void *intrarg,
2015 const struct audio_params *param)
2016 {
2017 struct dbri_softc *sc = hdl;
2018 unsigned long count, num;
2019
2020 if (sc->sc_recording)
2021 return 0;
2022
2023 count = (unsigned long)(((char *)end - (char *)start));
2024 num = count / blksize;
2025
2026 DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2027 (unsigned long)intr,
2028 (unsigned long)intrarg, blksize, count, num);
2029
2030 sc->sc_params = *param;
2031
2032 if (sc->sc_playing == 0) {
2033
2034 /*
2035 * we don't support different parameters for playing and
2036 * recording anyway so don't bother whacking the codec if
2037 * it's already set up
2038 */
2039 mmcodec_setcontrol(sc);
2040 mmcodec_init_data(sc);
2041 }
2042
2043 sc->sc_recording = 1;
2044 setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2045 return 0;
2046 }
2047
2048
2049 static uint32_t
2050 reverse_bytes(uint32_t b, int len)
2051 {
2052 switch (len) {
2053 case 32:
2054 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2055 case 16:
2056 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
2057 case 8:
2058 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
2059 case 4:
2060 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
2061 case 2:
2062 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
2063 case 1:
2064 case 0:
2065 break;
2066 default:
2067 DPRINTF("reverse_bytes: unsupported length\n");
2068 };
2069
2070 return (b);
2071 }
2072
2073 static void *
2074 dbri_malloc(void *v, int dir, size_t s, struct malloc_type *mt, int flags)
2075 {
2076 struct dbri_softc *sc = v;
2077 struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2078 int rseg;
2079
2080 if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2081 &dd->dmamap) == 0) {
2082 if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2083 1, &rseg, BUS_DMA_NOWAIT) == 0) {
2084 if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2085 &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2086 if (dd->buf != NULL) {
2087 if (bus_dmamap_load(sc->sc_dmat,
2088 dd->dmamap, dd->buf, s, NULL,
2089 BUS_DMA_NOWAIT) == 0) {
2090 dd->len = s;
2091 dd->busy = 0;
2092 dd->callback = NULL;
2093 dd->dmabase =
2094 dd->dmamap->dm_segs[0].ds_addr;
2095 DPRINTF("dbri_malloc: using buffer %d %08x\n",
2096 sc->sc_desc_used, (uint32_t)dd->buf);
2097 sc->sc_desc_used++;
2098 return dd->buf;
2099 } else
2100 aprint_error("dbri_malloc: load failed\n");
2101 } else
2102 aprint_error("dbri_malloc: map returned NULL\n");
2103 } else
2104 aprint_error("dbri_malloc: map failed\n");
2105 bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2106 } else
2107 aprint_error("dbri_malloc: malloc() failed\n");
2108 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2109 } else
2110 aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2111 return NULL;
2112 }
2113
2114 static void
2115 dbri_free(void *v, void *p, struct malloc_type *mt)
2116 {
2117 struct dbri_softc *sc = v;
2118 struct dbri_desc *dd;
2119 int i;
2120
2121 for (i = 0; i < sc->sc_desc_used; i++) {
2122 dd = &sc->sc_desc[i];
2123 if (dd->buf == p)
2124 break;
2125 }
2126 if (i >= sc->sc_desc_used)
2127 return;
2128 bus_dmamap_unload(sc->sc_dmat, dd->dmamap);
2129 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2130 }
2131
2132 static paddr_t
2133 dbri_mappage(void *v, void *mem, off_t off, int prot)
2134 {
2135 struct dbri_softc *sc = v;
2136 int current;
2137
2138 if (off < 0)
2139 return -1;
2140
2141 current = 0;
2142 while ((current < sc->sc_desc_used) &&
2143 (sc->sc_desc[current].buf != mem))
2144 current++;
2145
2146 if (current < sc->sc_desc_used) {
2147 return bus_dmamem_mmap(sc->sc_dmat,
2148 &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2149 }
2150
2151 return -1;
2152 }
2153
2154 static int
2155 dbri_open(void *cookie, int flags)
2156 {
2157 struct dbri_softc *sc = cookie;
2158
2159 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2160
2161 if (sc->sc_refcount == 0)
2162 dbri_bring_up(sc);
2163
2164 sc->sc_refcount++;
2165
2166 return 0;
2167 }
2168
2169 static void
2170 dbri_close(void *cookie)
2171 {
2172 struct dbri_softc *sc = cookie;
2173
2174 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2175
2176 sc->sc_refcount--;
2177 KASSERT(sc->sc_refcount >= 0);
2178 if (sc->sc_refcount > 0)
2179 return;
2180
2181 dbri_set_power(sc, 0);
2182 sc->sc_playing = 0;
2183 sc->sc_recording = 0;
2184 }
2185
2186 static bool
2187 dbri_suspend(device_t self, const pmf_qual_t *qual)
2188 {
2189 struct dbri_softc *sc = device_private(self);
2190
2191 dbri_set_power(sc, 0);
2192 return true;
2193 }
2194
2195 static bool
2196 dbri_resume(device_t self, const pmf_qual_t *qual)
2197 {
2198 struct dbri_softc *sc = device_private(self);
2199
2200 if (sc->sc_powerstate != 0)
2201 return true;
2202 aprint_verbose("resume: %d\n", sc->sc_refcount);
2203 if (sc->sc_playing) {
2204 volatile uint32_t *cmd;
2205 int s;
2206
2207 dbri_bring_up(sc);
2208 s = splsched();
2209 cmd = dbri_command_lock(sc);
2210 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2211 0, sc->sc_pipe[4].sdp |
2212 DBRI_SDP_VALID_POINTER |
2213 DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2214 *(cmd++) = sc->sc_dmabase +
2215 dbri_dma_off(xmit, 0);
2216 dbri_command_send(sc, cmd);
2217 splx(s);
2218 }
2219 return true;
2220 }
2221
2222 #endif /* NAUDIO > 0 */
2223