dbri.c revision 1.38 1 /* $NetBSD: dbri.c,v 1.38 2018/01/12 05:59:20 mrg Exp $ */
2
3 /*
4 * Copyright (C) 1997 Rudolf Koenig (rfkoenig (at) immd4.informatik.uni-erlangen.de)
5 * Copyright (c) 1998, 1999 Brent Baccala (baccala (at) freesoft.org)
6 * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill (at) netbsd.org>
7 * Copyright (c) 2005 Michael Lorenz <macallan (at) netbsd.org>
8 * All rights reserved.
9 *
10 * This driver is losely based on a Linux driver written by Rudolf Koenig and
11 * Brent Baccala who kindly gave their permission to use their code in a
12 * BSD-licensed driver.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.38 2018/01/12 05:59:20 mrg Exp $");
38
39 #include "audio.h"
40 #if NAUDIO > 0
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50 #include <sys/kmem.h>
51
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/auconv.h>
59
60 #include <dev/ic/cs4215reg.h>
61 #include <dev/ic/cs4215var.h>
62 #include <dev/sbus/dbrireg.h>
63 #include <dev/sbus/dbrivar.h>
64
65 #include "opt_sbus_dbri.h"
66
67 #define DBRI_ROM_NAME_PREFIX "SUNW,DBRI"
68
69 #ifdef DBRI_DEBUG
70 # define DPRINTF aprint_normal
71 #else
72 # define DPRINTF while (0) printf
73 #endif
74
75 static const char *dbri_supported[] = {
76 "e",
77 "s3",
78 ""
79 };
80
81 enum ms {
82 CHImaster,
83 CHIslave
84 };
85
86 enum io {
87 PIPEinput,
88 PIPEoutput
89 };
90
91 /*
92 * Function prototypes
93 */
94
95 /* softc stuff */
96 static void dbri_attach_sbus(device_t, device_t, void *);
97 static int dbri_match_sbus(device_t, cfdata_t, void *);
98
99 static int dbri_config_interrupts(device_t);
100
101 /* interrupt handler */
102 static int dbri_intr(void *);
103 static void dbri_softint(void *);
104
105 /* supporting subroutines */
106 static int dbri_init(struct dbri_softc *);
107 static int dbri_reset(struct dbri_softc *);
108 static volatile uint32_t *dbri_command_lock(struct dbri_softc *);
109 static void dbri_command_send(struct dbri_softc *, volatile uint32_t *);
110 static void dbri_process_interrupt_buffer(struct dbri_softc *);
111 static void dbri_process_interrupt(struct dbri_softc *, int32_t);
112
113 /* mmcodec subroutines */
114 static int mmcodec_init(struct dbri_softc *);
115 static void mmcodec_init_data(struct dbri_softc *);
116 static void mmcodec_pipe_init(struct dbri_softc *);
117 static void mmcodec_default(struct dbri_softc *);
118 static void mmcodec_setgain(struct dbri_softc *, int);
119 static int mmcodec_setcontrol(struct dbri_softc *);
120
121 /* chi subroutines */
122 static void chi_reset(struct dbri_softc *, enum ms, int);
123
124 /* pipe subroutines */
125 static void pipe_setup(struct dbri_softc *, int, int);
126 static void pipe_reset(struct dbri_softc *, int);
127 static void pipe_receive_fixed(struct dbri_softc *, int,
128 volatile uint32_t *);
129 static void pipe_transmit_fixed(struct dbri_softc *, int, uint32_t);
130
131 static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
132 static int pipe_active(struct dbri_softc *, int);
133
134 /* audio(9) stuff */
135 static int dbri_query_encoding(void *, struct audio_encoding *);
136 static int dbri_set_params(void *, int, int, struct audio_params *,
137 struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
138 static int dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int dbri_halt_output(void *);
140 static int dbri_halt_input(void *);
141 static int dbri_getdev(void *, struct audio_device *);
142 static int dbri_set_port(void *, mixer_ctrl_t *);
143 static int dbri_get_port(void *, mixer_ctrl_t *);
144 static int dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static size_t dbri_round_buffersize(void *, int, size_t);
146 static int dbri_get_props(void *);
147 static int dbri_open(void *, int);
148 static void dbri_close(void *);
149
150 static void setup_ring_xmit(struct dbri_softc *, int, int, int, int,
151 void (*)(void *), void *);
152 static void setup_ring_recv(struct dbri_softc *, int, int, int, int,
153 void (*)(void *), void *);
154
155 static int dbri_trigger_output(void *, void *, void *, int,
156 void (*)(void *), void *, const struct audio_params *);
157 static int dbri_trigger_input(void *, void *, void *, int,
158 void (*)(void *), void *, const struct audio_params *);
159 static void dbri_get_locks(void *, kmutex_t **, kmutex_t **);
160
161 static void *dbri_malloc(void *, int, size_t);
162 static void dbri_free(void *, void *, size_t);
163 static paddr_t dbri_mappage(void *, void *, off_t, int);
164 static void dbri_set_power(struct dbri_softc *, int);
165 static void dbri_bring_up(struct dbri_softc *);
166 static bool dbri_suspend(device_t, const pmf_qual_t *);
167 static bool dbri_resume(device_t, const pmf_qual_t *);
168 static int dbri_commit(void *);
169
170 /* stupid support routines */
171 static uint32_t reverse_bytes(uint32_t, int);
172
173 struct audio_device dbri_device = {
174 "CS4215",
175 "",
176 "dbri"
177 };
178
179 struct audio_hw_if dbri_hw_if = {
180 .open = dbri_open,
181 .close = dbri_close,
182 .query_encoding = dbri_query_encoding,
183 .set_params = dbri_set_params,
184 .round_blocksize = dbri_round_blocksize,
185 .halt_output = dbri_halt_output,
186 .halt_input = dbri_halt_input,
187 .getdev = dbri_getdev,
188 .set_port = dbri_set_port,
189 .get_port = dbri_get_port,
190 .query_devinfo = dbri_query_devinfo,
191 .allocm = dbri_malloc,
192 .freem = dbri_free,
193 .round_buffersize = dbri_round_buffersize,
194 .mappage = dbri_mappage,
195 .get_props = dbri_get_props,
196 .trigger_output = dbri_trigger_output,
197 .trigger_input = dbri_trigger_input,
198 .get_locks = dbri_get_locks,
199 .commit_settings = dbri_commit,
200 };
201
202 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
203 dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
204
205 #define DBRI_NFORMATS 4
206 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
207 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
208 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
209 48000}},
210 /* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
211 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
212 48000}},
213 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
214 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
215 48000}},
216 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
217 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
218 48000}},*/
219 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
220 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
221 48000}},
222 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
223 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
224 48000}},
225 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
226 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
227 48000}},
228 };
229
230 enum {
231 DBRI_OUTPUT_CLASS,
232 DBRI_VOL_OUTPUT,
233 DBRI_ENABLE_MONO,
234 DBRI_ENABLE_HEADPHONE,
235 DBRI_ENABLE_LINE,
236 DBRI_MONITOR_CLASS,
237 DBRI_VOL_MONITOR,
238 DBRI_INPUT_CLASS,
239 DBRI_INPUT_GAIN,
240 DBRI_INPUT_SELECT,
241 DBRI_RECORD_CLASS,
242 DBRI_ENUM_LAST
243 };
244
245 /*
246 * Autoconfig routines
247 */
248 static int
249 dbri_match_sbus(device_t parent, cfdata_t match, void *aux)
250 {
251 struct sbus_attach_args *sa = aux;
252 char *ver;
253 int i;
254
255 if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
256 return (0);
257
258 ver = &sa->sa_name[9];
259
260 for (i = 0; dbri_supported[i][0] != '\0'; i++)
261 if (strcmp(dbri_supported[i], ver) == 0)
262 return (1);
263
264 return (0);
265 }
266
267 static void
268 dbri_attach_sbus(device_t parent, device_t self, void *aux)
269 {
270 struct dbri_softc *sc = device_private(self);
271 struct sbus_attach_args *sa = aux;
272 bus_space_handle_t ioh;
273 bus_size_t size;
274 int error, rseg, pwr, i;
275 char *ver = &sa->sa_name[9];
276
277 sc->sc_dev = self;
278 sc->sc_iot = sa->sa_bustag;
279 sc->sc_dmat = sa->sa_dmatag;
280 sc->sc_powerstate = 1;
281
282 sc->sc_whack_codec = 0;
283
284 pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
285 aprint_normal(": rev %s\n", ver);
286
287 if (pwr) {
288 /*
289 * we can control DBRI power via auxio and we're initially
290 * powered down
291 */
292
293 sc->sc_have_powerctl = 1;
294 sc->sc_powerstate = 0;
295 dbri_set_power(sc, 1);
296 if (!pmf_device_register(self, dbri_suspend, dbri_resume)) {
297 aprint_error_dev(self,
298 "cannot set power mgmt handler\n");
299 }
300 } else {
301 /* we can't control power so we're always up */
302 sc->sc_have_powerctl = 0;
303 sc->sc_powerstate = 1;
304 }
305
306 for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
307 sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
308 dbri_softint, &sc->sc_desc[i]);
309 }
310
311 if (sa->sa_npromvaddrs)
312 ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
313 else {
314 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
315 sa->sa_offset, sa->sa_size,
316 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
317 aprint_error("%s @ sbus: cannot map registers\n",
318 device_xname(self));
319 return;
320 }
321 }
322
323 sc->sc_ioh = ioh;
324
325 size = sizeof(struct dbri_dma);
326
327 /* get a DMA handle */
328 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
329 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
330 aprint_error_dev(self, "DMA map create error %d\n",
331 error);
332 return;
333 }
334
335 /* allocate DMA buffer */
336 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
337 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
338 aprint_error_dev(self, "DMA buffer alloc error %d\n",
339 error);
340 return;
341 }
342
343 /* map DMA buffer into CPU addressable space */
344 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
345 &sc->sc_membase,
346 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
347 aprint_error_dev(self, "DMA buffer map error %d\n",
348 error);
349 return;
350 }
351
352 /* load the buffer */
353 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
354 sc->sc_membase, size, NULL,
355 BUS_DMA_NOWAIT)) != 0) {
356 aprint_error_dev(self, "DMA buffer map load error %d\n",
357 error);
358 bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
359 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
360 return;
361 }
362
363 /* map the registers into memory */
364
365 /* kernel virtual address of DMA buffer */
366 sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
367 /* physical address of DMA buffer */
368 sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
369 sc->sc_bufsiz = size;
370
371 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
372 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
373
374 #ifndef DBRI_SPIN
375 cv_init(&sc->sc_cv, "dbricv");
376 #endif
377
378 bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_AUDIO, dbri_intr,
379 sc);
380
381 sc->sc_locked = 0;
382 sc->sc_desc_used = 0;
383 sc->sc_refcount = 0;
384 sc->sc_playing = 0;
385 sc->sc_recording = 0;
386 sc->sc_init_done = 0;
387 config_finalize_register(self, &dbri_config_interrupts);
388
389 return;
390 }
391
392 /*
393 * lowlevel routine to switch power for the DBRI chip
394 */
395 static void
396 dbri_set_power(struct dbri_softc *sc, int state)
397 {
398 int s;
399
400 if (sc->sc_have_powerctl == 0)
401 return;
402 if (sc->sc_powerstate == state)
403 return;
404
405 if (state) {
406 DPRINTF("%s: waiting to power up... ",
407 device_xname(sc->sc_dev));
408 s = splhigh();
409 *AUXIO4M_REG |= (AUXIO4M_MMX);
410 splx(s);
411 delay(10000);
412 DPRINTF("done (%02x)\n", *AUXIO4M_REG);
413 } else {
414 DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
415 s = splhigh();
416 *AUXIO4M_REG &= ~AUXIO4M_MMX;
417 splx(s);
418 DPRINTF("done (%02x})\n", *AUXIO4M_REG);
419 }
420 sc->sc_powerstate = state;
421 }
422
423 /*
424 * power up and re-initialize the chip
425 */
426 static void
427 dbri_bring_up(struct dbri_softc *sc)
428 {
429
430 if (sc->sc_have_powerctl == 0)
431 return;
432
433 if (sc->sc_powerstate == 1)
434 return;
435
436 /* ok, we really need to do something */
437 dbri_set_power(sc, 1);
438
439 /*
440 * re-initialize the chip but skip all the probing, don't overwrite
441 * any other settings either
442 */
443 dbri_init(sc);
444 mmcodec_setgain(sc, 1);
445 mmcodec_pipe_init(sc);
446 mmcodec_init_data(sc);
447 mmcodec_setgain(sc, 0);
448 }
449
450 static int
451 dbri_config_interrupts(device_t dev)
452 {
453 struct dbri_softc *sc = device_private(dev);
454
455 mutex_spin_enter(&sc->sc_intr_lock);
456 if (sc->sc_init_done != 0) {
457 mutex_spin_exit(&sc->sc_intr_lock);
458 return 0;
459 }
460 sc->sc_init_done = 1;
461
462 dbri_init(sc);
463
464 /* talking to the codec needs working interrupts */
465 if (mmcodec_init(sc) == -1) {
466 mutex_spin_exit(&sc->sc_intr_lock);
467 printf("%s: no codec detected, aborting\n",
468 device_xname(dev));
469 return 0;
470 }
471 mutex_spin_exit(&sc->sc_intr_lock);
472
473 /* Attach ourselves to the high level audio interface */
474 audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
475
476 /* power down until open() */
477 mutex_spin_enter(&sc->sc_intr_lock);
478 dbri_set_power(sc, 0);
479 mutex_spin_exit(&sc->sc_intr_lock);
480
481 return 0;
482 }
483
484 static int
485 dbri_intr(void *hdl)
486 {
487 struct dbri_softc *sc = hdl;
488 bus_space_tag_t iot = sc->sc_iot;
489 bus_space_handle_t ioh = sc->sc_ioh;
490 int x;
491
492 mutex_spin_enter(&sc->sc_intr_lock);
493
494 /* clear interrupt */
495 x = bus_space_read_4(iot, ioh, DBRI_REG1);
496 if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
497 uint32_t tmp;
498
499 if (x & DBRI_MRR)
500 aprint_debug_dev(sc->sc_dev,
501 "multiple ack error on sbus\n");
502 if (x & DBRI_MLE)
503 aprint_debug_dev(sc->sc_dev,
504 "multiple late error on sbus\n");
505 if (x & DBRI_LBG)
506 aprint_debug_dev(sc->sc_dev,
507 "lost bus grant on sbus\n");
508 if (x & DBRI_MBE)
509 aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
510
511 /*
512 * Some of these errors disable the chip's circuitry.
513 * Re-enable the circuitry and keep on going.
514 */
515
516 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
517 tmp &= ~(DBRI_DISABLE_MASTER);
518 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
519 }
520
521 #if 0
522 if (!x & 1) /* XXX: DBRI_INTR_REQ */
523 return (1);
524 #endif
525
526 dbri_process_interrupt_buffer(sc);
527
528 mutex_spin_exit(&sc->sc_intr_lock);
529
530 return (1);
531 }
532
533 static void
534 dbri_softint(void *cookie)
535 {
536 struct dbri_desc *dd = cookie;
537
538 if (dd->callback != NULL)
539 dd->callback(dd->callback_args);
540 }
541
542 static int
543 dbri_init(struct dbri_softc *sc)
544 {
545 bus_space_tag_t iot = sc->sc_iot;
546 bus_space_handle_t ioh = sc->sc_ioh;
547 uint32_t reg;
548 volatile uint32_t *cmd;
549 bus_addr_t dmaaddr;
550 int n;
551
552 KASSERT(mutex_owned(&sc->sc_intr_lock));
553
554 dbri_reset(sc);
555 sc->sc_mm.status = 0;
556
557 cmd = dbri_command_lock(sc);
558
559 /* XXX: Initialize interrupt ring buffer */
560 sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
561 sc->sc_irqp = 1;
562
563 /* Initialize pipes */
564 for (n = 0; n < DBRI_PIPE_MAX; n++)
565 sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
566
567 for (n = 1; n < DBRI_INT_BLOCKS; n++) {
568 sc->sc_dma->intr[n] = 0;
569 }
570
571 /* XXX 16 byte bursts cause errors, the rest works */
572 reg = bus_space_read_4(iot, ioh, DBRI_REG0);
573
574 /*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
575 reg |= (DBRI_BURST_4 | DBRI_BURST_8);
576 bus_space_write_4(iot, ioh, DBRI_REG0, reg);
577
578 /* setup interrupt queue */
579 dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
580 *(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
581 *(cmd++) = dmaaddr;
582
583 dbri_command_send(sc, cmd);
584
585 return (0);
586 }
587
588 static int
589 dbri_reset(struct dbri_softc *sc)
590 {
591 int bail = 0;
592
593 bus_space_tag_t iot = sc->sc_iot;
594 bus_space_handle_t ioh = sc->sc_ioh;
595
596 bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
597 while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
598 (bail < 100000)) {
599 bail++;
600 delay(10);
601 }
602 if (bail == 100000)
603 aprint_error_dev(sc->sc_dev, "reset timed out\n");
604 return (0);
605 }
606
607 static volatile uint32_t *
608 dbri_command_lock(struct dbri_softc *sc)
609 {
610
611 if (sc->sc_locked)
612 aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
613
614 sc->sc_locked++;
615
616 return (&sc->sc_dma->command[0]);
617 }
618
619 static void
620 dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd)
621 {
622 bus_space_handle_t ioh = sc->sc_ioh;
623 bus_space_tag_t iot = sc->sc_iot;
624 int maxloops = 1000000;
625
626 KASSERT(mutex_owned(&sc->sc_intr_lock));
627
628 sc->sc_locked--;
629
630 if (sc->sc_locked != 0) {
631 aprint_error_dev(sc->sc_dev,
632 "command buffer improperly locked\n");
633 } else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
634 aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
635 } else {
636 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
637 *(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
638 sc->sc_waitseen = 0;
639 bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
640 while ((--maxloops) > 0 &&
641 (bus_space_read_4(iot, ioh, DBRI_REG0)
642 & DBRI_COMMAND_VALID)) {
643 bus_space_barrier(iot, ioh, DBRI_REG0, 4,
644 BUS_SPACE_BARRIER_READ);
645 delay(1000);
646 }
647
648 if (maxloops == 0) {
649 aprint_error_dev(sc->sc_dev,
650 "chip never completed command buffer\n");
651 } else {
652
653 DPRINTF("%s: command completed\n",
654 device_xname(sc->sc_dev));
655
656 while ((--maxloops) > 0 && (!sc->sc_waitseen))
657 dbri_process_interrupt_buffer(sc);
658 if (maxloops == 0) {
659 aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
660 }
661 }
662 }
663
664 return;
665 }
666
667 static void
668 dbri_process_interrupt_buffer(struct dbri_softc *sc)
669 {
670 int32_t i;
671 int orig_irqp = sc->sc_irqp;
672
673 KASSERT(mutex_owned(&sc->sc_intr_lock));
674
675 while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
676 sc->sc_dma->intr[sc->sc_irqp] = 0;
677 sc->sc_irqp++;
678
679 if (sc->sc_irqp == DBRI_INT_BLOCKS)
680 sc->sc_irqp = 1;
681 else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
682 sc->sc_irqp++;
683
684 dbri_process_interrupt(sc, i);
685
686 /* don't loop more than once. */
687 if (orig_irqp == sc->sc_irqp)
688 break;
689 }
690
691 return;
692 }
693
694 static void
695 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
696 {
697 #if 0
698 const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
699 #endif
700 int val = DBRI_INTR_GETVAL(i);
701 int channel = DBRI_INTR_GETCHAN(i);
702 int command = DBRI_INTR_GETCMD(i);
703 int code = DBRI_INTR_GETCODE(i);
704 #if 0
705 int rval = DBRI_INTR_GETRVAL(i);
706 #endif
707 if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
708 sc->sc_waitseen++;
709
710 switch (code) {
711 case DBRI_INTR_XCMP: /* transmission complete */
712 {
713 int td;
714 struct dbri_desc *dd;
715
716 DPRINTF("%s:%d tx complete\n", __func__, channel);
717 td = sc->sc_pipe[channel].desc;
718 dd = &sc->sc_desc[td];
719
720 if (dd->callback != NULL)
721 softint_schedule(dd->softint);
722 break;
723 }
724 case DBRI_INTR_FXDT: /* fixed data change */
725 DPRINTF("%s:%d: Fixed data change: %x\n", __func__, channel,
726 val);
727 if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
728 val = reverse_bytes(val, sc->sc_pipe[channel].length);
729 if (sc->sc_pipe[channel].prec)
730 *(sc->sc_pipe[channel].prec) = val;
731 #ifndef DBRI_SPIN
732 DPRINTF("%s: cv_broadcast %p\n", device_xname(sc->sc_dev), sc);
733 cv_broadcast(&sc->sc_cv);
734 #endif
735 break;
736 case DBRI_INTR_SBRI:
737 DPRINTF("dbri_intr: SBRI\n");
738 break;
739 case DBRI_INTR_BRDY:
740 {
741 int td;
742 struct dbri_desc *dd;
743
744 DPRINTF("dbri_intr: buffer ready (%d)\n", channel);
745 td = sc->sc_pipe[channel].desc;
746 dd = &sc->sc_desc[td];
747
748 if (dd->callback != NULL)
749 softint_schedule(dd->softint);
750 break;
751 }
752 case DBRI_INTR_UNDR:
753 {
754 volatile uint32_t *cmd;
755 int td = sc->sc_pipe[channel].desc;
756
757 DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
758
759 sc->sc_dma->xmit[td].status = 0;
760
761 cmd = dbri_command_lock(sc);
762 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
763 sc->sc_pipe[channel].sdp |
764 DBRI_SDP_VALID_POINTER |
765 DBRI_SDP_CLEAR |
766 DBRI_SDP_2SAME);
767 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
768 dbri_command_send(sc, cmd);
769 break;
770 }
771 case DBRI_INTR_CMDI:
772 DPRINTF("ok");
773 break;
774 default:
775
776 aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
777 code);
778 break;
779 }
780
781 return;
782 }
783
784 /*
785 * mmcodec stuff
786 */
787
788 static int
789 mmcodec_init(struct dbri_softc *sc)
790 {
791 bus_space_handle_t ioh = sc->sc_ioh;
792 bus_space_tag_t iot = sc->sc_iot;
793 uint32_t reg2;
794 int bail;
795
796 reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
797 DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
798
799 if (reg2 & DBRI_PIO2) {
800 aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
801 sc->sc_mm.onboard = 1;
802 }
803
804 if (reg2 & DBRI_PIO0) {
805 aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
806 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
807 sc->sc_mm.onboard = 0;
808 }
809
810 if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
811 aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
812 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
813 sc->sc_mm.onboard = 0;
814 }
815
816 if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
817 aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
818 return -1;
819 }
820
821 sc->sc_version = 0xff;
822
823 mmcodec_pipe_init(sc);
824 mmcodec_default(sc);
825
826 sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
827
828 /*
829 * mmcodec_setcontrol() sometimes fails right after powerup
830 * so we just try again until we either get a useful response or run
831 * out of time
832 */
833 bail = 0;
834 while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
835
836 bail++;
837 if (bail > 100) {
838 DPRINTF("%s: cs4215 probe failed at offset %d\n",
839 device_xname(sc->sc_dev), sc->sc_mm.offset);
840 return (-1);
841 }
842 delay(10000);
843 }
844
845 aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
846 0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
847
848 /* set some sane defaults for mmcodec_init_data */
849 sc->sc_params.channels = 2;
850 sc->sc_params.precision = 16;
851
852 mmcodec_init_data(sc);
853
854 return (0);
855 }
856
857 static void
858 mmcodec_init_data(struct dbri_softc *sc)
859 {
860 bus_space_tag_t iot = sc->sc_iot;
861 bus_space_handle_t ioh = sc->sc_ioh;
862 uint32_t tmp;
863 int data_width;
864
865 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
866 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
867 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
868
869 /* switch CS4215 to data mode - set PIO3 to 1 */
870 tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
871
872 /* XXX */
873 tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
874
875 bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
876 chi_reset(sc, CHIslave, 128);
877
878 data_width = sc->sc_params.channels * sc->sc_params.precision;
879
880 if ((data_width != 32) && (data_width != 8))
881 aprint_error("%s: data_width is %d\n", __func__, data_width);
882
883 pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
884 pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
885 pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
886 #if 0
887 /* readback for the mixer registers - we don't use that */
888 pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
889
890 pipe_receive_fixed(sc, 21, &sc->sc_mm.d.ldata);
891 #endif
892 mmcodec_setgain(sc, 0);
893
894 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
895 tmp |= DBRI_CHI_ACTIVATE;
896 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
897
898 return;
899 }
900
901 static void
902 mmcodec_pipe_init(struct dbri_softc *sc)
903 {
904
905 pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
906 pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
907 pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
908 #if 0
909 pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
910 #endif
911 pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
912 pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
913 pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
914
915 pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
916 pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
917
918 return;
919 }
920
921 static void
922 mmcodec_default(struct dbri_softc *sc)
923 {
924 struct cs4215_state *mm = &sc->sc_mm;
925
926 /*
927 * no action, memory resetting only
928 *
929 * data time slots 5-8
930 * speaker, line and headphone enable. set gain to half.
931 * input is line
932 */
933 mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
934 mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
935 sc->sc_linp = 128;
936 sc->sc_rinp = 128;
937 sc->sc_monitor = 0;
938 sc->sc_input = 1; /* line */
939 mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
940 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
941 mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
942 CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
943
944
945 /*
946 * control time slots 1-4
947 *
948 * 0: default I/O voltage scale
949 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
950 * 2: serial enable, CHI master, 128 bits per frame, clock 1
951 * 3: tests disabled
952 */
953 mm->c.bcontrol[0] = CS4215_ONE | CS4215_MLB;
954 mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
955 mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
956 mm->c.bcontrol[3] = 0;
957
958 return;
959 }
960
961 static void
962 mmcodec_setgain(struct dbri_softc *sc, int mute)
963 {
964 if (mute) {
965 /* disable all outputs, max. attenuation */
966 sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
967 sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
968 } else {
969
970 sc->sc_mm.d.bdata[0] = sc->sc_latt;
971 sc->sc_mm.d.bdata[1] = sc->sc_ratt;
972 }
973
974 /* input stuff */
975 sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
976 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
977 sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
978 (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
979
980 if (sc->sc_powerstate == 0)
981 return;
982 pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
983
984 DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
985 /* give the chip some time to execute the command */
986 delay(250);
987
988 return;
989 }
990
991 static int
992 mmcodec_setcontrol(struct dbri_softc *sc)
993 {
994 bus_space_tag_t iot = sc->sc_iot;
995 bus_space_handle_t ioh = sc->sc_ioh;
996 uint32_t val;
997 uint32_t tmp;
998 int ret = 0;
999 #ifdef DBRI_SPIN
1000 int i;
1001 #else
1002 int error, bail = 0;
1003 #endif
1004
1005 KASSERT(mutex_owned(&sc->sc_intr_lock));
1006
1007 /*
1008 * Temporarily mute outputs and wait 125 us to make sure that it
1009 * happens. This avoids clicking noises.
1010 */
1011 mmcodec_setgain(sc, 1);
1012 delay(125);
1013
1014 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1015 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
1016 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1017
1018 bus_space_write_4(iot, ioh, DBRI_REG2, 0);
1019 delay(125);
1020
1021 /* enable control mode */
1022 val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */
1023
1024 /* XXX */
1025 val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
1026
1027 bus_space_write_4(iot, ioh, DBRI_REG2, val);
1028 delay(34);
1029
1030 /*
1031 * in control mode, the cs4215 is the slave device, so the
1032 * DBRI must act as the CHI master.
1033 *
1034 * in data mode, the cs4215 must be the CHI master to insure
1035 * that the data stream is in sync with its codec
1036 */
1037 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1038 tmp &= ~DBRI_COMMAND_CHI;
1039 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1040
1041 chi_reset(sc, CHImaster, 128);
1042
1043 /* control mode */
1044 pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1045 pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1046 pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1047
1048 pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
1049
1050 /* wait for the chip to echo back CLB as zero */
1051 sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1052 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1053
1054 tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1055 tmp |= DBRI_CHI_ACTIVATE;
1056 bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1057
1058 #ifdef DBRI_SPIN
1059 i = 1024;
1060 while (((sc->sc_mm.status & 0xe4) != CS4215_ONE) && (i > 0)) {
1061 i--;
1062 delay(125);
1063 }
1064
1065 if (i == 0) {
1066 DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1067 device_xname(sc->sc_dev), sc->sc_mm.status);
1068 ret = -1;
1069 goto fail;
1070 }
1071 #else
1072 while (((sc->sc_mm.status & 0xe4) != CS4215_ONE) && (bail < 10)) {
1073 DPRINTF("%s: cv_wait_sig %p\n", device_xname(sc->sc_dev), sc);
1074 error = cv_timedwait_sig(&sc->sc_cv, &sc->sc_intr_lock, hz);
1075 if (error == EINTR) {
1076 DPRINTF("%s: interrupted\n", device_xname(sc->sc_dev));
1077 ret = -1;
1078 mutex_spin_exit(&sc->sc_intr_lock);
1079 goto fail;
1080 }
1081 bail++;
1082 }
1083 if (bail >= 10) {
1084 aprint_error("%s: switching to control mode timed out (%x %x)\n",
1085 device_xname(sc->sc_dev), sc->sc_mm.status,
1086 bus_space_read_4(iot, ioh, DBRI_REG2));
1087 ret = -1;
1088 goto fail;
1089 }
1090 #endif
1091
1092 /* copy the version information before it becomes unreadable again */
1093 sc->sc_version = sc->sc_mm.version;
1094 sc->sc_whack_codec = 0;
1095
1096 fail:
1097 /* terminate cs4215 control mode */
1098 sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1099 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1100
1101 /* two frames of control info @ 8kHz frame rate = 250us delay */
1102 delay(250);
1103
1104 mmcodec_setgain(sc, 0);
1105
1106 return ret;
1107
1108 }
1109
1110 /*
1111 * CHI combo
1112 */
1113 static void
1114 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1115 {
1116 volatile uint32_t *cmd;
1117 int val;
1118 int clockrate, divisor;
1119
1120 cmd = dbri_command_lock(sc);
1121
1122 /* set CHI anchor: pipe 16 */
1123 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1124 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1125 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1126 *(cmd++) = 0;
1127
1128 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1129 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1130 *(cmd++) = 0;
1131 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1132
1133 sc->sc_pipe[16].sdp = 1;
1134 sc->sc_pipe[16].next = 16;
1135 sc->sc_chi_pipe_in = 16;
1136 sc->sc_chi_pipe_out = 16;
1137
1138 switch (ms) {
1139 case CHIslave:
1140 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1141 break;
1142 case CHImaster:
1143 clockrate = bpf * 8;
1144 divisor = 12288 / clockrate;
1145
1146 if (divisor > 255 || divisor * clockrate != 12288)
1147 aprint_error_dev(sc->sc_dev,
1148 "illegal bits-per-frame %d\n", bpf);
1149
1150 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1151 DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1152 break;
1153 default:
1154 aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
1155 break;
1156 }
1157
1158 sc->sc_chi_bpf = bpf;
1159
1160 /* CHI data mode */
1161 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1162 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1163 DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1164
1165 dbri_command_send(sc, cmd);
1166
1167 return;
1168 }
1169
1170 /*
1171 * pipe stuff
1172 */
1173 static void
1174 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1175 {
1176 DPRINTF("pipe setup: %d\n", pipe);
1177 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1178 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1179 pipe);
1180 return;
1181 }
1182
1183 if ((sdp & 0xf800) != sdp)
1184 aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
1185 sdp);
1186
1187 if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1188 !(sdp & DBRI_SDP_TO_SER))
1189 sdp |= DBRI_SDP_CHANGE;
1190
1191 sdp |= DBRI_PIPE(pipe);
1192
1193 sc->sc_pipe[pipe].sdp = sdp;
1194 sc->sc_pipe[pipe].desc = -1;
1195
1196 pipe_reset(sc, pipe);
1197
1198 return;
1199 }
1200
1201 static void
1202 pipe_reset(struct dbri_softc *sc, int pipe)
1203 {
1204 struct dbri_desc *dd;
1205 int sdp;
1206 int desc;
1207 volatile uint32_t *cmd;
1208
1209 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1210 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1211 pipe);
1212 return;
1213 }
1214
1215 sdp = sc->sc_pipe[pipe].sdp;
1216 if (sdp == 0) {
1217 aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
1218 pipe);
1219 return;
1220 }
1221
1222 cmd = dbri_command_lock(sc);
1223 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1224 sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1225 *(cmd++) = 0;
1226 dbri_command_send(sc, cmd);
1227
1228 desc = sc->sc_pipe[pipe].desc;
1229
1230 dd = &sc->sc_desc[desc];
1231
1232 dd->busy = 0;
1233
1234 #if 0
1235 if (dd->callback)
1236 softint_schedule(dd->softint);
1237 #endif
1238
1239 sc->sc_pipe[pipe].desc = -1;
1240
1241 return;
1242 }
1243
1244 static void
1245 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec)
1246 {
1247
1248 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1249 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1250 pipe);
1251 return;
1252 }
1253
1254 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1255 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1256 pipe);
1257 return;
1258 }
1259
1260 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1261 aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
1262 pipe);
1263 return;
1264 }
1265
1266 sc->sc_pipe[pipe].prec = prec;
1267
1268 return;
1269 }
1270
1271 static void
1272 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data)
1273 {
1274 volatile uint32_t *cmd;
1275
1276 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1277 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1278 pipe);
1279 return;
1280 }
1281
1282 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1283 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1284 pipe);
1285 return;
1286 }
1287
1288 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1289 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1290 pipe);
1291 return;
1292 }
1293
1294 if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1295 aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
1296 pipe);
1297 return;
1298 }
1299
1300 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1301 data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1302
1303 cmd = dbri_command_lock(sc);
1304 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1305 *(cmd++) = data;
1306
1307 dbri_command_send(sc, cmd);
1308
1309 return;
1310 }
1311
1312 static void
1313 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1314 void (*callback)(void *), void *callback_args)
1315 {
1316 volatile uint32_t *cmd;
1317 int i;
1318 #if 0
1319 int td;
1320 int td_first, td_last;
1321 #endif
1322 bus_addr_t dmabuf, dmabase;
1323 struct dbri_desc *dd = &sc->sc_desc[which];
1324
1325 switch (pipe) {
1326 case 4:
1327 /* output, offset 0 */
1328 break;
1329 default:
1330 aprint_error("%s: illegal pipe number (%d)\n",
1331 __func__, pipe);
1332 return;
1333 }
1334
1335 #if 0
1336 td = 0;
1337 td_first = td_last = -1;
1338 #endif
1339
1340 if (sc->sc_pipe[pipe].sdp == 0) {
1341 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1342 pipe);
1343 return;
1344 }
1345
1346 dmabuf = dd->dmabase;
1347 dmabase = sc->sc_dmabase;
1348
1349 for (i = 0; i < (num - 1); i++) {
1350
1351 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1352 | TX_EOF | TX_BINT;
1353 sc->sc_dma->xmit[i].ba = dmabuf;
1354 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1355 sc->sc_dma->xmit[i].status = 0;
1356
1357 #if 0
1358 td_last = td;
1359 #endif
1360 dmabuf += blksz;
1361 }
1362
1363 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1364
1365 sc->sc_dma->xmit[i].ba = dmabuf;
1366 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1367 sc->sc_dma->xmit[i].status = 0;
1368
1369 dd->callback = callback;
1370 dd->callback_args = callback_args;
1371
1372 /* the pipe shouldn't be active */
1373 if (pipe_active(sc, pipe)) {
1374 aprint_error("pipe active (CDP)\n");
1375 /* pipe is already active */
1376 #if 0
1377 td_last = sc->sc_pipe[pipe].desc;
1378 while (sc->sc_desc[td_last].next != -1)
1379 td_last = sc->sc_desc[td_last].next;
1380
1381 sc->sc_desc[td_last].next = td_first;
1382 sc->sc_dma->desc[td_last].nda =
1383 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1384
1385 cmd = dbri_command_lock(sc);
1386 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1387 dbri_command_send(sc, cmd);
1388 #endif
1389 } else {
1390 /*
1391 * pipe isn't active - issue an SDP command to start our
1392 * chain of TDs running
1393 */
1394 sc->sc_pipe[pipe].desc = which;
1395 cmd = dbri_command_lock(sc);
1396 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1397 sc->sc_pipe[pipe].sdp |
1398 DBRI_SDP_VALID_POINTER |
1399 DBRI_SDP_EVERY |
1400 DBRI_SDP_CLEAR);
1401 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1402 dbri_command_send(sc, cmd);
1403 DPRINTF("%s: starting DMA\n", __func__);
1404 }
1405
1406 return;
1407 }
1408
1409 static void
1410 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1411 void (*callback)(void *), void *callback_args)
1412 {
1413 volatile uint32_t *cmd;
1414 int i;
1415 #if 0
1416 int td_first, td_last;
1417 #endif
1418 bus_addr_t dmabuf, dmabase;
1419 struct dbri_desc *dd = &sc->sc_desc[which];
1420
1421 switch (pipe) {
1422 case 6:
1423 break;
1424 default:
1425 aprint_error("%s: illegal pipe number (%d)\n",
1426 __func__, pipe);
1427 return;
1428 }
1429
1430 #if 0
1431 td_first = td_last = -1;
1432 #endif
1433
1434 if (sc->sc_pipe[pipe].sdp == 0) {
1435 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1436 pipe);
1437 return;
1438 }
1439
1440 dmabuf = dd->dmabase;
1441 dmabase = sc->sc_dmabase;
1442
1443 for (i = 0; i < (num - 1); i++) {
1444
1445 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1446 sc->sc_dma->recv[i].ba = dmabuf;
1447 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1448 sc->sc_dma->recv[i].status = RX_EOF;
1449
1450 #if 0
1451 td_last = i;
1452 #endif
1453 dmabuf += blksz;
1454 }
1455
1456 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1457
1458 sc->sc_dma->recv[i].ba = dmabuf;
1459 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1460 sc->sc_dma->recv[i].status = RX_EOF;
1461
1462 dd->callback = callback;
1463 dd->callback_args = callback_args;
1464
1465 /* the pipe shouldn't be active */
1466 if (pipe_active(sc, pipe)) {
1467 aprint_error("pipe active (CDP)\n");
1468 /* pipe is already active */
1469 #if 0
1470 td_last = sc->sc_pipe[pipe].desc;
1471 while (sc->sc_desc[td_last].next != -1)
1472 td_last = sc->sc_desc[td_last].next;
1473
1474 sc->sc_desc[td_last].next = td_first;
1475 sc->sc_dma->desc[td_last].nda =
1476 sc->sc_dmabase + dbri_dma_off(desc, td_first);
1477
1478 cmd = dbri_command_lock(sc);
1479 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1480 dbri_command_send(sc, cmd);
1481 #endif
1482 } else {
1483 /*
1484 * pipe isn't active - issue an SDP command to start our
1485 * chain of TDs running
1486 */
1487 sc->sc_pipe[pipe].desc = which;
1488 cmd = dbri_command_lock(sc);
1489 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1490 sc->sc_pipe[pipe].sdp |
1491 DBRI_SDP_VALID_POINTER |
1492 DBRI_SDP_EVERY |
1493 DBRI_SDP_CLEAR);
1494 *(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1495 dbri_command_send(sc, cmd);
1496 DPRINTF("%s: starting DMA\n", __func__);
1497 }
1498
1499 return;
1500 }
1501
1502 static void
1503 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1504 int len, int cycle)
1505 {
1506 volatile uint32_t *cmd;
1507 int prevpipe, nextpipe;
1508 int val;
1509
1510 DPRINTF("%s: %d\n", __func__, pipe);
1511 if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1512 basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1513 aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1514 pipe, basepipe);
1515 return;
1516 }
1517
1518 if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1519 aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1520 pipe, basepipe);
1521 return;
1522 }
1523
1524 if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1525 cycle = sc->sc_chi_bpf;
1526
1527 if (basepipe == pipe)
1528 prevpipe = nextpipe = pipe;
1529 else {
1530 if (basepipe == 16) {
1531 if (dir == PIPEinput) {
1532 prevpipe = sc->sc_chi_pipe_in;
1533 } else {
1534 prevpipe = sc->sc_chi_pipe_out;
1535 }
1536 } else
1537 prevpipe = basepipe;
1538
1539 nextpipe = sc->sc_pipe[prevpipe].next;
1540
1541 while (sc->sc_pipe[nextpipe].cycle < cycle &&
1542 sc->sc_pipe[nextpipe].next != basepipe) {
1543 prevpipe = nextpipe;
1544 nextpipe = sc->sc_pipe[nextpipe].next;
1545 }
1546 }
1547
1548 if (prevpipe == 16) {
1549 if (dir == PIPEinput) {
1550 sc->sc_chi_pipe_in = pipe;
1551 } else {
1552 sc->sc_chi_pipe_out = pipe;
1553 }
1554 } else
1555 sc->sc_pipe[prevpipe].next = pipe;
1556
1557 sc->sc_pipe[pipe].next = nextpipe;
1558 sc->sc_pipe[pipe].cycle = cycle;
1559 sc->sc_pipe[pipe].length = len;
1560
1561 cmd = dbri_command_lock(sc);
1562
1563 switch (dir) {
1564 case PIPEinput:
1565 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1566 val |= pipe;
1567 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1568 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1569 DBRI_TS_NEXT(nextpipe);
1570 *(cmd++) = 0;
1571 break;
1572 case PIPEoutput:
1573 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1574 val |= pipe;
1575 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1576 *(cmd++) = 0;
1577 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1578 DBRI_TS_NEXT(nextpipe);
1579 break;
1580 default:
1581 DPRINTF("%s: should not have happened!\n",
1582 device_xname(sc->sc_dev));
1583 break;
1584 }
1585
1586 dbri_command_send(sc, cmd);
1587
1588 return;
1589 }
1590
1591 static int
1592 pipe_active(struct dbri_softc *sc, int pipe)
1593 {
1594
1595 return (sc->sc_pipe[pipe].desc != -1);
1596 }
1597
1598 /*
1599 * subroutines required to interface with audio(9)
1600 */
1601
1602 static int
1603 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1604 {
1605
1606 switch (ae->index) {
1607 case 0:
1608 strcpy(ae->name, AudioEulinear);
1609 ae->encoding = AUDIO_ENCODING_ULINEAR;
1610 ae->precision = 8;
1611 ae->flags = 0;
1612 break;
1613 case 1:
1614 strcpy(ae->name, AudioEmulaw);
1615 ae->encoding = AUDIO_ENCODING_ULAW;
1616 ae->precision = 8;
1617 ae->flags = 0;
1618 break;
1619 case 2:
1620 strcpy(ae->name, AudioEalaw);
1621 ae->encoding = AUDIO_ENCODING_ALAW;
1622 ae->precision = 8;
1623 ae->flags = 0;
1624 break;
1625 case 3:
1626 strcpy(ae->name, AudioEslinear);
1627 ae->encoding = AUDIO_ENCODING_SLINEAR;
1628 ae->precision = 8;
1629 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1630 break;
1631 case 4:
1632 strcpy(ae->name, AudioEslinear_le);
1633 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1634 ae->precision = 16;
1635 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1636 break;
1637 case 5:
1638 strcpy(ae->name, AudioEulinear_le);
1639 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1640 ae->precision = 16;
1641 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1642 break;
1643 case 6:
1644 strcpy(ae->name, AudioEslinear_be);
1645 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1646 ae->precision = 16;
1647 ae->flags = 0;
1648 break;
1649 case 7:
1650 strcpy(ae->name, AudioEulinear_be);
1651 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1652 ae->precision = 16;
1653 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1654 break;
1655 case 8:
1656 strcpy(ae->name, AudioEslinear);
1657 ae->encoding = AUDIO_ENCODING_SLINEAR;
1658 ae->precision = 16;
1659 ae->flags = 0;
1660 break;
1661 default:
1662 return (EINVAL);
1663 }
1664
1665 return (0);
1666 }
1667
1668 static int
1669 dbri_set_params(void *hdl, int setmode, int usemode,
1670 struct audio_params *play, struct audio_params *rec,
1671 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1672 {
1673 struct dbri_softc *sc = hdl;
1674 int rate;
1675 audio_params_t *p = NULL;
1676 stream_filter_list_t *fil;
1677 int mode;
1678
1679 /*
1680 * This device only has one clock, so make the sample rates match.
1681 */
1682 if (play->sample_rate != rec->sample_rate &&
1683 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1684 if (setmode == AUMODE_PLAY) {
1685 rec->sample_rate = play->sample_rate;
1686 setmode |= AUMODE_RECORD;
1687 } else if (setmode == AUMODE_RECORD) {
1688 play->sample_rate = rec->sample_rate;
1689 setmode |= AUMODE_PLAY;
1690 } else
1691 return EINVAL;
1692 }
1693
1694 for (mode = AUMODE_RECORD; mode != -1;
1695 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1696 if ((setmode & mode) == 0)
1697 continue;
1698
1699 p = mode == AUMODE_PLAY ? play : rec;
1700 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1701 DPRINTF("dbri_set_params: invalid rate %d\n",
1702 p->sample_rate);
1703 return EINVAL;
1704 }
1705
1706 fil = mode == AUMODE_PLAY ? pfil : rfil;
1707 DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1708 p->sample_rate, p->precision, p->channels);
1709 if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1710 mode, p, true, fil) < 0) {
1711 aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1712 return EINVAL;
1713 }
1714 if (fil->req_size > 0)
1715 p = &fil->filters[0].param;
1716 }
1717
1718 if (p == NULL) {
1719 DPRINTF("dbri_set_params: no parameters to set\n");
1720 return 0;
1721 }
1722
1723 DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1724 p->sample_rate, p->precision, p->channels);
1725
1726 for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1727 if (CS4215_FREQ[rate].freq == p->sample_rate)
1728 break;
1729
1730 if (CS4215_FREQ[rate].freq == 0)
1731 return (EINVAL);
1732
1733 /* set frequency */
1734 sc->sc_mm.c.bcontrol[1] &= ~0x38;
1735 sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1736 sc->sc_mm.c.bcontrol[2] &= ~0x70;
1737 sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1738
1739 switch (p->encoding) {
1740 case AUDIO_ENCODING_ULAW:
1741 sc->sc_mm.c.bcontrol[1] &= ~3;
1742 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1743 break;
1744 case AUDIO_ENCODING_ALAW:
1745 sc->sc_mm.c.bcontrol[1] &= ~3;
1746 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1747 break;
1748 case AUDIO_ENCODING_ULINEAR:
1749 sc->sc_mm.c.bcontrol[1] &= ~3;
1750 if (p->precision == 8) {
1751 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1752 } else {
1753 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1754 }
1755 break;
1756 case AUDIO_ENCODING_SLINEAR_BE:
1757 case AUDIO_ENCODING_SLINEAR:
1758 sc->sc_mm.c.bcontrol[1] &= ~3;
1759 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1760 break;
1761 }
1762
1763 switch (p->channels) {
1764 case 1:
1765 sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1766 break;
1767 case 2:
1768 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1769 break;
1770 }
1771 sc->sc_whack_codec = 1;
1772 return (0);
1773 }
1774
1775 static int
1776 dbri_round_blocksize(void *hdl, int bs, int mode,
1777 const audio_params_t *param)
1778 {
1779
1780 /*
1781 * DBRI DMA segment size can be up to 0x1fff, sixes that are not powers
1782 * of two seem to confuse the upper audio layer so we're going with
1783 * 0x1000 here
1784 */
1785 return 0x1000;
1786 }
1787
1788 static int
1789 dbri_halt_output(void *hdl)
1790 {
1791 struct dbri_softc *sc = hdl;
1792
1793 if (!sc->sc_playing)
1794 return 0;
1795
1796 sc->sc_playing = 0;
1797 pipe_reset(sc, 4);
1798 return (0);
1799 }
1800
1801 static int
1802 dbri_getdev(void *hdl, struct audio_device *ret)
1803 {
1804
1805 *ret = dbri_device;
1806 return (0);
1807 }
1808
1809 static int
1810 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1811 {
1812 struct dbri_softc *sc = hdl;
1813 int latt = sc->sc_latt, ratt = sc->sc_ratt;
1814
1815 switch (mc->dev) {
1816 case DBRI_VOL_OUTPUT: /* master volume */
1817 latt = (latt & 0xc0) | (63 -
1818 min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1819 ratt = (ratt & 0xc0) | (63 -
1820 min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1821 break;
1822 case DBRI_ENABLE_MONO: /* built-in speaker */
1823 if (mc->un.ord == 1) {
1824 ratt |= CS4215_SE;
1825 } else
1826 ratt &= ~CS4215_SE;
1827 break;
1828 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1829 if (mc->un.ord == 1) {
1830 latt |= CS4215_HE;
1831 } else
1832 latt &= ~CS4215_HE;
1833 break;
1834 case DBRI_ENABLE_LINE: /* line out */
1835 if (mc->un.ord == 1) {
1836 latt |= CS4215_LE;
1837 } else
1838 latt &= ~CS4215_LE;
1839 break;
1840 case DBRI_VOL_MONITOR:
1841 if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1842 sc->sc_monitor)
1843 return 0;
1844 sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1845 break;
1846 case DBRI_INPUT_GAIN:
1847 sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1848 sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1849 break;
1850 case DBRI_INPUT_SELECT:
1851 if (mc->un.mask == sc->sc_input)
1852 return 0;
1853 sc->sc_input = mc->un.mask;
1854 break;
1855 }
1856
1857 sc->sc_latt = latt;
1858 sc->sc_ratt = ratt;
1859
1860 mmcodec_setgain(sc, 0);
1861
1862 return (0);
1863 }
1864
1865 static int
1866 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1867 {
1868 struct dbri_softc *sc = hdl;
1869
1870 switch (mc->dev) {
1871 case DBRI_VOL_OUTPUT: /* master volume */
1872 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1873 (63 - (sc->sc_latt & 0x3f)) << 2;
1874 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1875 (63 - (sc->sc_ratt & 0x3f)) << 2;
1876 return (0);
1877 case DBRI_ENABLE_MONO: /* built-in speaker */
1878 mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1879 return 0;
1880 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1881 mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1882 return 0;
1883 case DBRI_ENABLE_LINE: /* line out */
1884 mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1885 return 0;
1886 case DBRI_VOL_MONITOR:
1887 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1888 return 0;
1889 case DBRI_INPUT_GAIN:
1890 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1891 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1892 return 0;
1893 case DBRI_INPUT_SELECT:
1894 mc->un.mask = sc->sc_input;
1895 return 0;
1896 }
1897 return (EINVAL);
1898 }
1899
1900 static int
1901 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1902 {
1903
1904 switch (di->index) {
1905 case DBRI_MONITOR_CLASS:
1906 di->mixer_class = DBRI_MONITOR_CLASS;
1907 strcpy(di->label.name, AudioCmonitor);
1908 di->type = AUDIO_MIXER_CLASS;
1909 di->next = di->prev = AUDIO_MIXER_LAST;
1910 return 0;
1911 case DBRI_OUTPUT_CLASS:
1912 di->mixer_class = DBRI_OUTPUT_CLASS;
1913 strcpy(di->label.name, AudioCoutputs);
1914 di->type = AUDIO_MIXER_CLASS;
1915 di->next = di->prev = AUDIO_MIXER_LAST;
1916 return 0;
1917 case DBRI_INPUT_CLASS:
1918 di->mixer_class = DBRI_INPUT_CLASS;
1919 strcpy(di->label.name, AudioCinputs);
1920 di->type = AUDIO_MIXER_CLASS;
1921 di->next = di->prev = AUDIO_MIXER_LAST;
1922 return 0;
1923 case DBRI_VOL_OUTPUT: /* master volume */
1924 di->mixer_class = DBRI_OUTPUT_CLASS;
1925 di->next = di->prev = AUDIO_MIXER_LAST;
1926 strcpy(di->label.name, AudioNmaster);
1927 di->type = AUDIO_MIXER_VALUE;
1928 di->un.v.num_channels = 2;
1929 di->un.v.delta = 16;
1930 strcpy(di->un.v.units.name, AudioNvolume);
1931 return (0);
1932 case DBRI_INPUT_GAIN: /* input gain */
1933 di->mixer_class = DBRI_INPUT_CLASS;
1934 di->next = di->prev = AUDIO_MIXER_LAST;
1935 strcpy(di->label.name, AudioNrecord);
1936 di->type = AUDIO_MIXER_VALUE;
1937 di->un.v.num_channels = 2;
1938 strcpy(di->un.v.units.name, AudioNvolume);
1939 return (0);
1940 case DBRI_VOL_MONITOR: /* monitor volume */
1941 di->mixer_class = DBRI_MONITOR_CLASS;
1942 di->next = di->prev = AUDIO_MIXER_LAST;
1943 strcpy(di->label.name, AudioNmonitor);
1944 di->type = AUDIO_MIXER_VALUE;
1945 di->un.v.num_channels = 1;
1946 strcpy(di->un.v.units.name, AudioNvolume);
1947 return (0);
1948 case DBRI_ENABLE_MONO: /* built-in speaker */
1949 di->mixer_class = DBRI_OUTPUT_CLASS;
1950 di->next = di->prev = AUDIO_MIXER_LAST;
1951 strcpy(di->label.name, AudioNmono);
1952 di->type = AUDIO_MIXER_ENUM;
1953 di->un.e.num_mem = 2;
1954 strcpy(di->un.e.member[0].label.name, AudioNoff);
1955 di->un.e.member[0].ord = 0;
1956 strcpy(di->un.e.member[1].label.name, AudioNon);
1957 di->un.e.member[1].ord = 1;
1958 return (0);
1959 case DBRI_ENABLE_HEADPHONE: /* headphones output */
1960 di->mixer_class = DBRI_OUTPUT_CLASS;
1961 di->next = di->prev = AUDIO_MIXER_LAST;
1962 strcpy(di->label.name, AudioNheadphone);
1963 di->type = AUDIO_MIXER_ENUM;
1964 di->un.e.num_mem = 2;
1965 strcpy(di->un.e.member[0].label.name, AudioNoff);
1966 di->un.e.member[0].ord = 0;
1967 strcpy(di->un.e.member[1].label.name, AudioNon);
1968 di->un.e.member[1].ord = 1;
1969 return (0);
1970 case DBRI_ENABLE_LINE: /* line out */
1971 di->mixer_class = DBRI_OUTPUT_CLASS;
1972 di->next = di->prev = AUDIO_MIXER_LAST;
1973 strcpy(di->label.name, AudioNline);
1974 di->type = AUDIO_MIXER_ENUM;
1975 di->un.e.num_mem = 2;
1976 strcpy(di->un.e.member[0].label.name, AudioNoff);
1977 di->un.e.member[0].ord = 0;
1978 strcpy(di->un.e.member[1].label.name, AudioNon);
1979 di->un.e.member[1].ord = 1;
1980 return (0);
1981 case DBRI_INPUT_SELECT:
1982 di->mixer_class = DBRI_INPUT_CLASS;
1983 strcpy(di->label.name, AudioNsource);
1984 di->type = AUDIO_MIXER_SET;
1985 di->prev = di->next = AUDIO_MIXER_LAST;
1986 di->un.s.num_mem = 2;
1987 strcpy(di->un.s.member[0].label.name, AudioNline);
1988 di->un.s.member[0].mask = 1 << 0;
1989 strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1990 di->un.s.member[1].mask = 1 << 1;
1991 return 0;
1992 }
1993
1994 return (ENXIO);
1995 }
1996
1997 static size_t
1998 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1999 {
2000 #ifdef DBRI_BIG_BUFFER
2001 return 0x20000; /* use 128KB buffer */
2002 #else
2003 return bufsize;
2004 #endif
2005 }
2006
2007 static int
2008 dbri_get_props(void *hdl)
2009 {
2010
2011 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
2012 }
2013
2014 static int
2015 dbri_commit(void *hdl)
2016 {
2017 struct dbri_softc *sc = hdl;
2018 int ret = 0;
2019
2020 /*
2021 * we only need to whack the codec if things like sample format or
2022 * frequency changed, not for mixer stuff
2023 */
2024 if (sc->sc_whack_codec == 0)
2025 return 0;
2026
2027 mutex_spin_enter(&sc->sc_intr_lock);
2028 ret = mmcodec_setcontrol(sc);
2029 if (ret) {
2030 DPRINTF("%s: control mode failed. Mutex %s PIL %x\n", __func__,
2031 mutex_owned(&sc->sc_intr_lock) ? "held" : "free",
2032 (getpsr() & PSR_PIL) >> 8);
2033 } else
2034 DPRINTF("%s: control mode ok\n", __func__);
2035 mmcodec_init_data(sc);
2036 mutex_spin_exit(&sc->sc_intr_lock);
2037 return 0;
2038 }
2039
2040 static int
2041 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
2042 void (*intr)(void *), void *intrarg,
2043 const struct audio_params *param)
2044 {
2045 struct dbri_softc *sc = hdl;
2046 unsigned long count, num;
2047
2048 if (sc->sc_playing)
2049 return 0;
2050
2051 count = (unsigned long)(((char *)end - (char *)start));
2052 num = count / blksize;
2053
2054 DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
2055 (unsigned long)intr,
2056 (unsigned long)intrarg, blksize, count, num);
2057
2058 sc->sc_params = *param;
2059
2060 /*
2061 * always use DMA descriptor 0 for output
2062 * no need to allocate them dynamically since we only ever have
2063 * exactly one input stream and exactly one output stream
2064 */
2065 setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
2066 sc->sc_playing = 1;
2067 return 0;
2068 }
2069
2070 static int
2071 dbri_halt_input(void *cookie)
2072 {
2073 struct dbri_softc *sc = cookie;
2074
2075 if (!sc->sc_recording)
2076 return 0;
2077
2078 sc->sc_recording = 0;
2079 pipe_reset(sc, 6);
2080 return 0;
2081 }
2082
2083 static int
2084 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
2085 void (*intr)(void *), void *intrarg,
2086 const struct audio_params *param)
2087 {
2088 struct dbri_softc *sc = hdl;
2089 unsigned long count, num;
2090
2091 if (sc->sc_recording)
2092 return 0;
2093
2094 count = (unsigned long)(((char *)end - (char *)start));
2095 num = count / blksize;
2096
2097 DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2098 (unsigned long)intr,
2099 (unsigned long)intrarg, blksize, count, num);
2100
2101 sc->sc_params = *param;
2102
2103 sc->sc_recording = 1;
2104 setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2105 return 0;
2106 }
2107
2108 static void
2109 dbri_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread)
2110 {
2111 struct dbri_softc *sc = opaque;
2112
2113 *intr = &sc->sc_intr_lock;
2114 *thread = &sc->sc_lock;
2115 }
2116
2117 static uint32_t
2118 reverse_bytes(uint32_t b, int len)
2119 {
2120 switch (len) {
2121 case 32:
2122 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2123 case 16:
2124 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
2125 case 8:
2126 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
2127 case 4:
2128 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
2129 case 2:
2130 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
2131 case 1:
2132 case 0:
2133 break;
2134 default:
2135 DPRINTF("reverse_bytes: unsupported length\n");
2136 };
2137
2138 return (b);
2139 }
2140
2141 static void *
2142 dbri_malloc(void *v, int dir, size_t s)
2143 {
2144 struct dbri_softc *sc = v;
2145 struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2146 int rseg;
2147
2148 if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2149 &dd->dmamap) == 0) {
2150 if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2151 1, &rseg, BUS_DMA_NOWAIT) == 0) {
2152 if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2153 &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2154 if (dd->buf != NULL) {
2155 if (bus_dmamap_load(sc->sc_dmat,
2156 dd->dmamap, dd->buf, s, NULL,
2157 BUS_DMA_NOWAIT) == 0) {
2158 dd->len = s;
2159 dd->busy = 0;
2160 dd->callback = NULL;
2161 dd->dmabase =
2162 dd->dmamap->dm_segs[0].ds_addr;
2163 DPRINTF("dbri_malloc: using buffer %d %08x\n",
2164 sc->sc_desc_used, (uint32_t)dd->buf);
2165 sc->sc_desc_used++;
2166 return dd->buf;
2167 } else
2168 aprint_error("dbri_malloc: load failed\n");
2169 } else
2170 aprint_error("dbri_malloc: map returned NULL\n");
2171 } else
2172 aprint_error("dbri_malloc: map failed\n");
2173 bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2174 } else
2175 aprint_error("dbri_malloc: malloc() failed\n");
2176 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2177 } else
2178 aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2179 return NULL;
2180 }
2181
2182 static void
2183 dbri_free(void *v, void *p, size_t size)
2184 {
2185 struct dbri_softc *sc = v;
2186 struct dbri_desc *dd;
2187 int i;
2188
2189 for (i = 0; i < sc->sc_desc_used; i++) {
2190 dd = &sc->sc_desc[i];
2191 if (dd->buf == p)
2192 break;
2193 }
2194 if (i >= sc->sc_desc_used)
2195 return;
2196 bus_dmamap_unload(sc->sc_dmat, dd->dmamap);
2197 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2198 }
2199
2200 static paddr_t
2201 dbri_mappage(void *v, void *mem, off_t off, int prot)
2202 {
2203 struct dbri_softc *sc = v;
2204 int current;
2205
2206 if (off < 0)
2207 return -1;
2208
2209 current = 0;
2210 while ((current < sc->sc_desc_used) &&
2211 (sc->sc_desc[current].buf != mem))
2212 current++;
2213
2214 if (current < sc->sc_desc_used) {
2215 return bus_dmamem_mmap(sc->sc_dmat,
2216 &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2217 }
2218
2219 return -1;
2220 }
2221
2222 static int
2223 dbri_open(void *cookie, int flags)
2224 {
2225 struct dbri_softc *sc = cookie;
2226
2227 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2228
2229 if (sc->sc_refcount == 0) {
2230 dbri_bring_up(sc);
2231 }
2232
2233 sc->sc_refcount++;
2234
2235 return 0;
2236 }
2237
2238 static void
2239 dbri_close(void *cookie)
2240 {
2241 struct dbri_softc *sc = cookie;
2242
2243 DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2244
2245 sc->sc_refcount--;
2246 KASSERT(sc->sc_refcount >= 0);
2247 if (sc->sc_refcount > 0)
2248 return;
2249
2250 dbri_set_power(sc, 0);
2251 sc->sc_playing = 0;
2252 sc->sc_recording = 0;
2253 }
2254
2255 static bool
2256 dbri_suspend(device_t self, const pmf_qual_t *qual)
2257 {
2258 struct dbri_softc *sc = device_private(self);
2259
2260 mutex_spin_enter(&sc->sc_intr_lock);
2261 dbri_set_power(sc, 0);
2262 mutex_spin_exit(&sc->sc_intr_lock);
2263 return true;
2264 }
2265
2266 static bool
2267 dbri_resume(device_t self, const pmf_qual_t *qual)
2268 {
2269 struct dbri_softc *sc = device_private(self);
2270
2271 if (sc->sc_powerstate != 0)
2272 return true;
2273 aprint_verbose("resume: %d\n", sc->sc_refcount);
2274 if (sc->sc_playing) {
2275 volatile uint32_t *cmd;
2276
2277 mutex_spin_enter(&sc->sc_intr_lock);
2278 dbri_bring_up(sc);
2279 cmd = dbri_command_lock(sc);
2280 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2281 0, sc->sc_pipe[4].sdp |
2282 DBRI_SDP_VALID_POINTER |
2283 DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2284 *(cmd++) = sc->sc_dmabase +
2285 dbri_dma_off(xmit, 0);
2286 dbri_command_send(sc, cmd);
2287 mutex_spin_exit(&sc->sc_intr_lock);
2288 }
2289 return true;
2290 }
2291
2292 #endif /* NAUDIO > 0 */
2293