esp_sbus.c revision 1.55 1 /* $NetBSD: esp_sbus.c,v 1.55 2019/11/10 21:16:37 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum; Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center; Paul Kranenburg.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: esp_sbus.c,v 1.55 2019/11/10 21:16:37 chs Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/device.h>
39 #include <sys/buf.h>
40 #include <sys/malloc.h>
41
42 #include <dev/scsipi/scsi_all.h>
43 #include <dev/scsipi/scsipi_all.h>
44 #include <dev/scsipi/scsiconf.h>
45 #include <dev/scsipi/scsi_message.h>
46
47 #include <sys/bus.h>
48 #include <sys/intr.h>
49 #include <machine/autoconf.h>
50
51 #include <dev/ic/lsi64854reg.h>
52 #include <dev/ic/lsi64854var.h>
53
54 #include <dev/ic/ncr53c9xreg.h>
55 #include <dev/ic/ncr53c9xvar.h>
56
57 #include <dev/sbus/sbusvar.h>
58
59 #include "opt_ddb.h"
60
61 /* #define ESP_SBUS_DEBUG */
62
63 struct esp_softc {
64 struct ncr53c9x_softc sc_ncr53c9x; /* glue to MI code */
65
66 bus_space_tag_t sc_bustag;
67 bus_dma_tag_t sc_dmatag;
68
69 bus_space_handle_t sc_reg; /* the registers */
70 struct lsi64854_softc *sc_dma; /* pointer to my dma */
71
72 int sc_pri; /* SBUS priority */
73 };
74
75 int espmatch_sbus(device_t, cfdata_t, void *);
76 void espattach_sbus(device_t, device_t, void *);
77 void espattach_dma(device_t, device_t, void *);
78
79 static void espattach(struct esp_softc *, struct ncr53c9x_glue *);
80
81 CFATTACH_DECL_NEW(esp_sbus, sizeof(struct esp_softc),
82 espmatch_sbus, espattach_sbus, NULL, NULL);
83
84 CFATTACH_DECL_NEW(esp_dma, sizeof(struct esp_softc),
85 espmatch_sbus, espattach_dma, NULL, NULL);
86
87 /*
88 * Functions and the switch for the MI code.
89 */
90 static uint8_t esp_read_reg(struct ncr53c9x_softc *, int);
91 static void esp_write_reg(struct ncr53c9x_softc *, int, uint8_t);
92 static uint8_t esp_rdreg1(struct ncr53c9x_softc *, int);
93 static void esp_wrreg1(struct ncr53c9x_softc *, int, uint8_t);
94 static int esp_dma_isintr(struct ncr53c9x_softc *);
95 static void esp_dma_reset(struct ncr53c9x_softc *);
96 static int esp_dma_intr(struct ncr53c9x_softc *);
97 static int esp_dma_setup(struct ncr53c9x_softc *, uint8_t **,
98 size_t *, int, size_t *);
99 static void esp_dma_go(struct ncr53c9x_softc *);
100 static void esp_dma_stop(struct ncr53c9x_softc *);
101 static int esp_dma_isactive(struct ncr53c9x_softc *);
102
103 #ifdef DDB
104 static void esp_init_ddb_cmds(void);
105 #endif
106
107 static struct ncr53c9x_glue esp_sbus_glue = {
108 esp_read_reg,
109 esp_write_reg,
110 esp_dma_isintr,
111 esp_dma_reset,
112 esp_dma_intr,
113 esp_dma_setup,
114 esp_dma_go,
115 esp_dma_stop,
116 esp_dma_isactive,
117 NULL, /* gl_clear_latched_intr */
118 };
119
120 static struct ncr53c9x_glue esp_sbus_glue1 = {
121 esp_rdreg1,
122 esp_wrreg1,
123 esp_dma_isintr,
124 esp_dma_reset,
125 esp_dma_intr,
126 esp_dma_setup,
127 esp_dma_go,
128 esp_dma_stop,
129 esp_dma_isactive,
130 NULL, /* gl_clear_latched_intr */
131 };
132
133 int
134 espmatch_sbus(device_t parent, cfdata_t cf, void *aux)
135 {
136 int rv;
137 struct sbus_attach_args *sa = aux;
138
139 if (strcmp("SUNW,fas", sa->sa_name) == 0)
140 return 1;
141
142 rv = (strcmp(cf->cf_name, sa->sa_name) == 0 ||
143 strcmp("ptscII", sa->sa_name) == 0);
144 return rv;
145 }
146
147 void
148 espattach_sbus(device_t parent, device_t self, void *aux)
149 {
150 struct esp_softc *esc = device_private(self);
151 struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
152 struct sbus_softc *sbsc = device_private(parent);
153 struct sbus_attach_args *sa = aux;
154 struct lsi64854_softc *lsc;
155 device_t dma_dev;
156 int burst, sbusburst;
157
158 sc->sc_dev = self;
159
160 #ifdef DDB
161 esp_init_ddb_cmds();
162 #endif
163
164 esc->sc_bustag = sa->sa_bustag;
165 esc->sc_dmatag = sa->sa_dmatag;
166
167 sc->sc_id = prom_getpropint(sa->sa_node, "initiator-id", 7);
168 sc->sc_freq = prom_getpropint(sa->sa_node, "clock-frequency", -1);
169 if (sc->sc_freq < 0)
170 sc->sc_freq = sbsc->sc_clockfreq;
171
172 #ifdef ESP_SBUS_DEBUG
173 aprint_normal("\n");
174 aprint_normal_dev(self, "%s: sc_id %d, freq %d\n",
175 __func__, sc->sc_id, sc->sc_freq);
176 aprint_normal("%s", device_xname(self));
177 #endif
178
179 if (strcmp("SUNW,fas", sa->sa_name) == 0) {
180
181 /*
182 * fas has 2 register spaces: dma(lsi64854) and
183 * SCSI core (ncr53c9x)
184 */
185 if (sa->sa_nreg != 2) {
186 aprint_error(": %d register spaces\n", sa->sa_nreg);
187 return;
188 }
189
190 /*
191 * allocate space for dma, in SUNW,fas there are no separate
192 * dma device
193 */
194 lsc = malloc(sizeof(struct lsi64854_softc), M_DEVBUF, M_WAITOK);
195 lsc->sc_dev = malloc(sizeof(struct device), M_DEVBUF,
196 M_WAITOK | M_ZERO);
197 esc->sc_dma = lsc;
198
199 lsc->sc_bustag = sa->sa_bustag;
200 lsc->sc_dmatag = sa->sa_dmatag;
201
202 strlcpy(lsc->sc_dev->dv_xname, device_xname(sc->sc_dev),
203 sizeof(lsc->sc_dev->dv_xname));
204
205 /* Map dma registers */
206 if (sa->sa_npromvaddrs) {
207 sbus_promaddr_to_handle(sa->sa_bustag,
208 sa->sa_promvaddrs[0], &lsc->sc_regs);
209 } else {
210 if (sbus_bus_map(sa->sa_bustag,
211 sa->sa_reg[0].oa_space,
212 sa->sa_reg[0].oa_base,
213 sa->sa_reg[0].oa_size,
214 0, &lsc->sc_regs) != 0) {
215 aprint_error(": cannot map dma registers\n");
216 return;
217 }
218 }
219
220 /*
221 * XXX is this common(from bpp.c), the same in dma_sbus...etc.
222 *
223 * Get transfer burst size from PROM and plug it into the
224 * controller registers. This is needed on the Sun4m; do
225 * others need it too?
226 */
227 sbusburst = sbsc->sc_burst;
228 if (sbusburst == 0)
229 sbusburst = SBUS_BURST_32 - 1; /* 1->16 */
230
231 burst = prom_getpropint(sa->sa_node, "burst-sizes", -1);
232
233 #if ESP_SBUS_DEBUG
234 aprint_normal("%s: burst 0x%x, sbus 0x%x\n",
235 __func__, burst, sbusburst);
236 aprint_normal("%s", device_xname(self));
237 #endif
238
239 if (burst == -1)
240 /* take SBus burst sizes */
241 burst = sbusburst;
242
243 /* Clamp at parent's burst sizes */
244 burst &= sbusburst;
245 lsc->sc_burst = (burst & SBUS_BURST_32) ? 32 :
246 (burst & SBUS_BURST_16) ? 16 : 0;
247
248 lsc->sc_channel = L64854_CHANNEL_SCSI;
249 lsc->sc_client = sc;
250
251 lsi64854_attach(lsc);
252
253 /*
254 * map SCSI core registers
255 */
256 if (sa->sa_npromvaddrs > 1) {
257 sbus_promaddr_to_handle(sa->sa_bustag,
258 sa->sa_promvaddrs[1], &esc->sc_reg);
259 } else {
260 if (sbus_bus_map(sa->sa_bustag,
261 sa->sa_reg[1].oa_space,
262 sa->sa_reg[1].oa_base,
263 sa->sa_reg[1].oa_size,
264 0, &esc->sc_reg) != 0) {
265 aprint_error(": cannot map "
266 "scsi core registers\n");
267 return;
268 }
269 }
270
271 if (sa->sa_nintr == 0) {
272 aprint_error(": no interrupt property\n");
273 return;
274 }
275
276 esc->sc_pri = sa->sa_pri;
277
278 espattach(esc, &esp_sbus_glue);
279
280 return;
281 }
282
283 /*
284 * Find the DMA by poking around the dma device structures
285 *
286 * What happens here is that if the dma driver has not been
287 * configured, then this returns a NULL pointer. Then when the
288 * dma actually gets configured, it does the opposing test, and
289 * if the sc->sc_esp field in its softc is NULL, then tries to
290 * find the matching esp driver.
291 */
292 dma_dev = device_find_by_driver_unit("dma", device_unit(self));
293 if (dma_dev == NULL) {
294 aprint_error(": no corresponding DMA device\n");
295 return;
296 }
297 esc->sc_dma = device_private(dma_dev);
298 esc->sc_dma->sc_client = sc;
299
300 /*
301 * The `ESC' DMA chip must be reset before we can access
302 * the esp registers.
303 */
304 if (esc->sc_dma->sc_rev == DMAREV_ESC)
305 DMA_RESET(esc->sc_dma);
306
307 /*
308 * Map my registers in, if they aren't already in virtual
309 * address space.
310 */
311 if (sa->sa_npromvaddrs) {
312 sbus_promaddr_to_handle(sa->sa_bustag,
313 sa->sa_promvaddrs[0], &esc->sc_reg);
314 } else {
315 if (sbus_bus_map(sa->sa_bustag,
316 sa->sa_slot, sa->sa_offset, sa->sa_size,
317 0, &esc->sc_reg) != 0) {
318 aprint_error(": cannot map registers\n");
319 return;
320 }
321 }
322
323 if (sa->sa_nintr == 0) {
324 /*
325 * No interrupt properties: we quit; this might
326 * happen on e.g. a Sparc X terminal.
327 */
328 aprint_error(": no interrupt property\n");
329 return;
330 }
331
332 esc->sc_pri = sa->sa_pri;
333
334 if (strcmp("ptscII", sa->sa_name) == 0) {
335 espattach(esc, &esp_sbus_glue1);
336 } else {
337 espattach(esc, &esp_sbus_glue);
338 }
339 }
340
341 void
342 espattach_dma(device_t parent, device_t self, void *aux)
343 {
344 struct esp_softc *esc = device_private(self);
345 struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
346 struct sbus_attach_args *sa = aux;
347
348 if (strcmp("ptscII", sa->sa_name) == 0) {
349 return;
350 }
351
352 sc->sc_dev = self;
353
354 esc->sc_bustag = sa->sa_bustag;
355 esc->sc_dmatag = sa->sa_dmatag;
356
357 sc->sc_id = prom_getpropint(sa->sa_node, "initiator-id", 7);
358 sc->sc_freq = prom_getpropint(sa->sa_node, "clock-frequency", -1);
359
360 esc->sc_dma = device_private(parent);
361 esc->sc_dma->sc_client = sc;
362
363 /*
364 * Map my registers in, if they aren't already in virtual
365 * address space.
366 */
367 if (sa->sa_npromvaddrs) {
368 sbus_promaddr_to_handle(sa->sa_bustag,
369 sa->sa_promvaddrs[0], &esc->sc_reg);
370 } else {
371 if (sbus_bus_map(sa->sa_bustag,
372 sa->sa_slot, sa->sa_offset, sa->sa_size,
373 0, &esc->sc_reg) != 0) {
374 aprint_error(": cannot map registers\n");
375 return;
376 }
377 }
378
379 if (sa->sa_nintr == 0) {
380 /*
381 * No interrupt properties: we quit; this might
382 * happen on e.g. a Sparc X terminal.
383 */
384 aprint_error(": no interrupt property\n");
385 return;
386 }
387
388 esc->sc_pri = sa->sa_pri;
389
390 espattach(esc, &esp_sbus_glue);
391 }
392
393
394 /*
395 * Attach this instance, and then all the sub-devices
396 */
397 void
398 espattach(struct esp_softc *esc, struct ncr53c9x_glue *gluep)
399 {
400 struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
401 unsigned int uid = 0;
402
403 /*
404 * Set up glue for MI code early; we use some of it here.
405 */
406 sc->sc_glue = gluep;
407
408 /* gimme MHz */
409 sc->sc_freq /= 1000000;
410
411 /*
412 * XXX More of this should be in ncr53c9x_attach(), but
413 * XXX should we really poke around the chip that much in
414 * XXX the MI code? Think about this more...
415 */
416
417 /*
418 * It is necessary to try to load the 2nd config register here,
419 * to find out what rev the esp chip is, else the ncr53c9x_reset
420 * will not set up the defaults correctly.
421 */
422 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
423 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_RPE;
424 sc->sc_cfg3 = NCRCFG3_CDB;
425 NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
426
427 if ((NCR_READ_REG(sc, NCR_CFG2) & ~NCRCFG2_RSVD) !=
428 (NCRCFG2_SCSI2 | NCRCFG2_RPE)) {
429 sc->sc_rev = NCR_VARIANT_ESP100;
430 } else {
431 sc->sc_cfg2 = NCRCFG2_SCSI2;
432 NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
433 sc->sc_cfg3 = 0;
434 NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
435 sc->sc_cfg3 = (NCRCFG3_CDB | NCRCFG3_FCLK);
436 NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
437 if (NCR_READ_REG(sc, NCR_CFG3) !=
438 (NCRCFG3_CDB | NCRCFG3_FCLK)) {
439 sc->sc_rev = NCR_VARIANT_ESP100A;
440 } else {
441 /* NCRCFG2_FE enables > 64K transfers */
442 sc->sc_cfg2 |= NCRCFG2_FE;
443 sc->sc_cfg3 = 0;
444 NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
445 sc->sc_rev = NCR_VARIANT_ESP200;
446
447 /*
448 * XXX spec says it's valid after power up or
449 * chip reset
450 */
451 uid = NCR_READ_REG(sc, NCR_UID);
452 if (((uid & 0xf8) >> 3) == 0x0a) /* XXX */
453 sc->sc_rev = NCR_VARIANT_FAS366;
454 }
455 }
456
457 #ifdef ESP_SBUS_DEBUG
458 aprint_debug("%s: revision %d, uid 0x%x\n", __func__, sc->sc_rev, uid);
459 aprint_normal("%s", device_xname(sc->sc_dev));
460 #endif
461
462 /*
463 * XXX minsync and maxxfer _should_ be set up in MI code,
464 * XXX but it appears to have some dependency on what sort
465 * XXX of DMA we're hooked up to, etc.
466 */
467
468 /*
469 * This is the value used to start sync negotiations
470 * Note that the NCR register "SYNCTP" is programmed
471 * in "clocks per byte", and has a minimum value of 4.
472 * The SCSI period used in negotiation is one-fourth
473 * of the time (in nanoseconds) needed to transfer one byte.
474 * Since the chip's clock is given in MHz, we have the following
475 * formula: 4 * period = (1000 / freq) * 4
476 */
477 sc->sc_minsync = 1000 / sc->sc_freq;
478
479 /*
480 * Alas, we must now modify the value a bit, because it's
481 * only valid when can switch on FASTCLK and FASTSCSI bits
482 * in config register 3...
483 */
484 switch (sc->sc_rev) {
485 case NCR_VARIANT_ESP100:
486 sc->sc_maxxfer = 64 * 1024;
487 sc->sc_minsync = 0; /* No synch on old chip? */
488 break;
489
490 case NCR_VARIANT_ESP100A:
491 sc->sc_maxxfer = 64 * 1024;
492 /* Min clocks/byte is 5 */
493 sc->sc_minsync = ncr53c9x_cpb2stp(sc, 5);
494 break;
495
496 case NCR_VARIANT_ESP200:
497 case NCR_VARIANT_FAS366:
498 sc->sc_maxxfer = 16 * 1024 * 1024;
499 /* XXX - do actually set FAST* bits */
500 break;
501 }
502
503 /* Establish interrupt channel */
504 bus_intr_establish(esc->sc_bustag, esc->sc_pri, IPL_BIO,
505 ncr53c9x_intr, sc);
506
507 /* register interrupt stats */
508 evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
509 device_xname(sc->sc_dev), "intr");
510
511 /* Turn on target selection using the `dma' method */
512 if (sc->sc_rev != NCR_VARIANT_FAS366)
513 sc->sc_features |= NCR_F_DMASELECT;
514
515 /* Do the common parts of attachment. */
516 sc->sc_adapter.adapt_minphys = minphys;
517 sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
518 ncr53c9x_attach(sc);
519 }
520
521 /*
522 * Glue functions.
523 */
524
525 #ifdef ESP_SBUS_DEBUG
526 int esp_sbus_debug = 0;
527
528 static struct {
529 char *r_name;
530 int r_flag;
531 } esp__read_regnames [] = {
532 { "TCL", 0}, /* 0/00 */
533 { "TCM", 0}, /* 1/04 */
534 { "FIFO", 0}, /* 2/08 */
535 { "CMD", 0}, /* 3/0c */
536 { "STAT", 0}, /* 4/10 */
537 { "INTR", 0}, /* 5/14 */
538 { "STEP", 0}, /* 6/18 */
539 { "FFLAGS", 1}, /* 7/1c */
540 { "CFG1", 1}, /* 8/20 */
541 { "STAT2", 0}, /* 9/24 */
542 { "CFG4", 1}, /* a/28 */
543 { "CFG2", 1}, /* b/2c */
544 { "CFG3", 1}, /* c/30 */
545 { "-none", 1}, /* d/34 */
546 { "TCH", 1}, /* e/38 */
547 { "TCX", 1}, /* f/3c */
548 };
549
550 static struct {
551 char *r_name;
552 int r_flag;
553 } esp__write_regnames[] = {
554 { "TCL", 1}, /* 0/00 */
555 { "TCM", 1}, /* 1/04 */
556 { "FIFO", 0}, /* 2/08 */
557 { "CMD", 0}, /* 3/0c */
558 { "SELID", 1}, /* 4/10 */
559 { "TIMEOUT", 1}, /* 5/14 */
560 { "SYNCTP", 1}, /* 6/18 */
561 { "SYNCOFF", 1}, /* 7/1c */
562 { "CFG1", 1}, /* 8/20 */
563 { "CCF", 1}, /* 9/24 */
564 { "TEST", 1}, /* a/28 */
565 { "CFG2", 1}, /* b/2c */
566 { "CFG3", 1}, /* c/30 */
567 { "-none", 1}, /* d/34 */
568 { "TCH", 1}, /* e/38 */
569 { "TCX", 1}, /* f/3c */
570 };
571 #endif
572
573 uint8_t
574 esp_read_reg(struct ncr53c9x_softc *sc, int reg)
575 {
576 struct esp_softc *esc = (struct esp_softc *)sc;
577 uint8_t v;
578
579 v = bus_space_read_1(esc->sc_bustag, esc->sc_reg, reg * 4);
580 #ifdef ESP_SBUS_DEBUG
581 if (esp_sbus_debug && (reg < 0x10) && esp__read_regnames[reg].r_flag)
582 printf("RD:%x <%s> %x\n", reg * 4,
583 ((unsigned int)reg < 0x10) ?
584 esp__read_regnames[reg].r_name : "<***>", v);
585 #endif
586 return v;
587 }
588
589 void
590 esp_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t v)
591 {
592 struct esp_softc *esc = (struct esp_softc *)sc;
593
594 #ifdef ESP_SBUS_DEBUG
595 if (esp_sbus_debug && (reg < 0x10) && esp__write_regnames[reg].r_flag)
596 printf("WR:%x <%s> %x\n", reg * 4,
597 ((unsigned int)reg < 0x10) ?
598 esp__write_regnames[reg].r_name : "<***>", v);
599 #endif
600 bus_space_write_1(esc->sc_bustag, esc->sc_reg, reg * 4, v);
601 }
602
603 uint8_t
604 esp_rdreg1(struct ncr53c9x_softc *sc, int reg)
605 {
606 struct esp_softc *esc = (struct esp_softc *)sc;
607
608 return bus_space_read_1(esc->sc_bustag, esc->sc_reg, reg);
609 }
610
611 void
612 esp_wrreg1(struct ncr53c9x_softc *sc, int reg, uint8_t v)
613 {
614 struct esp_softc *esc = (struct esp_softc *)sc;
615
616 bus_space_write_1(esc->sc_bustag, esc->sc_reg, reg, v);
617 }
618
619 int
620 esp_dma_isintr(struct ncr53c9x_softc *sc)
621 {
622 struct esp_softc *esc = (struct esp_softc *)sc;
623
624 return DMA_ISINTR(esc->sc_dma);
625 }
626
627 void
628 esp_dma_reset(struct ncr53c9x_softc *sc)
629 {
630 struct esp_softc *esc = (struct esp_softc *)sc;
631
632 DMA_RESET(esc->sc_dma);
633 }
634
635 int
636 esp_dma_intr(struct ncr53c9x_softc *sc)
637 {
638 struct esp_softc *esc = (struct esp_softc *)sc;
639
640 return DMA_INTR(esc->sc_dma);
641 }
642
643 int
644 esp_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
645 int datain, size_t *dmasize)
646 {
647 struct esp_softc *esc = (struct esp_softc *)sc;
648
649 return DMA_SETUP(esc->sc_dma, addr, len, datain, dmasize);
650 }
651
652 void
653 esp_dma_go(struct ncr53c9x_softc *sc)
654 {
655 struct esp_softc *esc = (struct esp_softc *)sc;
656
657 DMA_GO(esc->sc_dma);
658 }
659
660 void
661 esp_dma_stop(struct ncr53c9x_softc *sc)
662 {
663 struct esp_softc *esc = (struct esp_softc *)sc;
664 uint32_t csr;
665
666 csr = L64854_GCSR(esc->sc_dma);
667 csr &= ~D_EN_DMA;
668 L64854_SCSR(esc->sc_dma, csr);
669 }
670
671 int
672 esp_dma_isactive(struct ncr53c9x_softc *sc)
673 {
674 struct esp_softc *esc = (struct esp_softc *)sc;
675
676 return DMA_ISACTIVE(esc->sc_dma);
677 }
678
679 #ifdef DDB
680 #include <machine/db_machdep.h>
681 #include <ddb/db_output.h>
682 #include <ddb/db_command.h>
683
684 void db_esp(db_expr_t, bool, db_expr_t, const char*);
685
686 const struct db_command db_esp_command_table[] = {
687 { DDB_ADD_CMD("esp", db_esp, 0,
688 "display status of all esp SCSI controllers and their devices",
689 NULL, NULL) },
690 { DDB_ADD_CMD(NULL, NULL, 0, NULL, NULL, NULL) }
691 };
692
693 static void
694 esp_init_ddb_cmds(void)
695 {
696 static int db_cmds_initialized = 0;
697
698 if (db_cmds_initialized)
699 return;
700 db_cmds_initialized = 1;
701 (void)db_register_tbl(DDB_MACH_CMD, db_esp_command_table);
702 }
703
704 void
705 db_esp(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif)
706 {
707 device_t dv;
708 struct ncr53c9x_softc *sc;
709 struct ncr53c9x_ecb *ecb;
710 struct ncr53c9x_linfo *li;
711 int u, t, i;
712
713 for (u = 0; u < 10; u++) {
714 dv = device_find_by_driver_unit("esp", u);
715 if (dv == NULL)
716 continue;
717 sc = device_private(dv);
718
719 db_printf("%s: nexus %p phase %x prev %x"
720 " dp %p dleft %lx ify %x\n", device_xname(dv),
721 sc->sc_nexus, sc->sc_phase, sc->sc_prevphase,
722 sc->sc_dp, sc->sc_dleft, sc->sc_msgify);
723 db_printf("\tmsgout %x msgpriq %x msgin %x:%x:%x:%x:%x\n",
724 sc->sc_msgout, sc->sc_msgpriq, sc->sc_imess[0],
725 sc->sc_imess[1], sc->sc_imess[2], sc->sc_imess[3],
726 sc->sc_imess[0]);
727 db_printf("ready: ");
728 for (ecb = TAILQ_FIRST(&sc->ready_list); ecb != NULL;
729 ecb = TAILQ_NEXT(ecb, chain)) {
730 db_printf("ecb %p ", ecb);
731 if (ecb == TAILQ_NEXT(ecb, chain)) {
732 db_printf("\nWARNING: tailq loop on ecb %p",
733 ecb);
734 break;
735 }
736 }
737 db_printf("\n");
738
739 for (t = 0; t < sc->sc_ntarg; t++) {
740 LIST_FOREACH(li, &sc->sc_tinfo[t].luns, link) {
741 db_printf("t%d lun %d untagged %p"
742 " busy %d used %x\n",
743 t, (int)li->lun, li->untagged, li->busy,
744 li->used);
745 for (i = 0; i < 256; i++) {
746 ecb = li->queued[i];
747 if (ecb != NULL) {
748 db_printf("ecb %p tag %x\n",
749 ecb, i);
750 }
751 }
752 }
753 }
754 }
755 }
756 #endif
757