magma.c revision 1.10.4.2 1 1.10.4.2 fvdl /* $NetBSD: magma.c,v 1.10.4.2 2001/10/10 11:57:00 fvdl Exp $ */
2 1.1 pk /*
3 1.1 pk * magma.c
4 1.1 pk *
5 1.1 pk * Copyright (c) 1998 Iain Hibbert
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * Redistribution and use in source and binary forms, with or without
9 1.1 pk * modification, are permitted provided that the following conditions
10 1.1 pk * are met:
11 1.1 pk * 1. Redistributions of source code must retain the above copyright
12 1.1 pk * notice, this list of conditions and the following disclaimer.
13 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer in the
15 1.1 pk * documentation and/or other materials provided with the distribution.
16 1.1 pk * 3. All advertising materials mentioning features or use of this software
17 1.1 pk * must display the following acknowledgement:
18 1.1 pk * This product includes software developed by Iain Hibbert
19 1.1 pk * 4. The name of the author may not be used to endorse or promote products
20 1.1 pk * derived from this software without specific prior written permission.
21 1.1 pk *
22 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 1.1 pk * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 pk * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 pk * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 1.1 pk * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 1.1 pk * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 1.1 pk * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 1.1 pk * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 1.1 pk * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 1.1 pk * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 pk *
33 1.2 pk */
34 1.2 pk #if 0
35 1.1 pk #define MAGMA_DEBUG
36 1.2 pk #endif
37 1.1 pk
38 1.1 pk /*
39 1.1 pk * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
40 1.1 pk * CD1400 & CD1190 chips
41 1.1 pk */
42 1.1 pk
43 1.1 pk #include "magma.h"
44 1.1 pk #if NMAGMA > 0
45 1.1 pk
46 1.1 pk #include <sys/param.h>
47 1.1 pk #include <sys/systm.h>
48 1.1 pk #include <sys/proc.h>
49 1.1 pk #include <sys/device.h>
50 1.1 pk #include <sys/file.h>
51 1.1 pk #include <sys/ioctl.h>
52 1.1 pk #include <sys/malloc.h>
53 1.1 pk #include <sys/tty.h>
54 1.1 pk #include <sys/time.h>
55 1.1 pk #include <sys/kernel.h>
56 1.1 pk #include <sys/syslog.h>
57 1.1 pk #include <sys/conf.h>
58 1.1 pk #include <sys/errno.h>
59 1.10.4.2 fvdl #include <sys/vnode.h>
60 1.1 pk
61 1.1 pk #include <machine/bus.h>
62 1.8 pk #include <machine/intr.h>
63 1.4 pk #include <machine/autoconf.h>
64 1.8 pk #include <machine/conf.h>
65 1.8 pk
66 1.4 pk #include <dev/sbus/sbusvar.h>
67 1.1 pk
68 1.1 pk #include <dev/ic/cd1400reg.h>
69 1.1 pk #include <dev/ic/cd1190reg.h>
70 1.1 pk
71 1.4 pk #include <dev/sbus/mbppio.h>
72 1.4 pk #include <dev/sbus/magmareg.h>
73 1.1 pk
74 1.1 pk /*
75 1.1 pk * Select tty soft interrupt bit based on TTY ipl. (stole from zs.c)
76 1.1 pk */
77 1.1 pk #if PIL_TTY == 1
78 1.1 pk # define IE_MSOFT IE_L1
79 1.1 pk #elif PIL_TTY == 4
80 1.1 pk # define IE_MSOFT IE_L4
81 1.1 pk #elif PIL_TTY == 6
82 1.1 pk # define IE_MSOFT IE_L6
83 1.1 pk #else
84 1.1 pk # error "no suitable software interrupt bit"
85 1.1 pk #endif
86 1.1 pk
87 1.1 pk /* supported cards
88 1.1 pk *
89 1.1 pk * The table below lists the cards that this driver is likely to
90 1.1 pk * be able to support.
91 1.1 pk *
92 1.1 pk * Cards with parallel ports: except for the LC2+1Sp, they all use
93 1.1 pk * the CD1190 chip which I know nothing about. I've tried to leave
94 1.1 pk * hooks for it so it shouldn't be too hard to add support later.
95 1.1 pk * (I think somebody is working on this separately)
96 1.1 pk *
97 1.1 pk * Thanks to Bruce at Magma for telling me the hardware offsets.
98 1.1 pk */
99 1.1 pk static struct magma_board_info supported_cards[] = {
100 1.1 pk {
101 1.1 pk "MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
102 1.1 pk 1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
103 1.1 pk 0, { 0, 0 }
104 1.1 pk },
105 1.1 pk {
106 1.1 pk "MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
107 1.1 pk 2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
108 1.1 pk 0, { 0, 0 }
109 1.1 pk },
110 1.1 pk {
111 1.1 pk "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
112 1.1 pk 2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
113 1.1 pk 0, { 0, 0 }
114 1.1 pk },
115 1.1 pk {
116 1.1 pk "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
117 1.1 pk 2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
118 1.1 pk 0, { 0, 0 }
119 1.1 pk },
120 1.1 pk {
121 1.1 pk "MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
122 1.1 pk 3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
123 1.1 pk 0, { 0, 0 }
124 1.1 pk },
125 1.1 pk {
126 1.1 pk "MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
127 1.1 pk 4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
128 1.1 pk 0, { 0, 0 }
129 1.1 pk },
130 1.1 pk {
131 1.1 pk "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
132 1.1 pk 4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
133 1.1 pk 0, { 0, 0 }
134 1.1 pk },
135 1.1 pk {
136 1.1 pk "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
137 1.1 pk 4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
138 1.1 pk 0, { 0, 0 }
139 1.1 pk },
140 1.1 pk {
141 1.1 pk "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
142 1.1 pk 1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
143 1.1 pk 0, { 0, 0 }
144 1.1 pk },
145 1.1 pk {
146 1.1 pk "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
147 1.1 pk 1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
148 1.1 pk 1, { 0x6000, 0 }
149 1.1 pk },
150 1.1 pk {
151 1.1 pk "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
152 1.1 pk 1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
153 1.1 pk 1, { 0x6000, 0 }
154 1.1 pk },
155 1.1 pk {
156 1.1 pk "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
157 1.1 pk 2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
158 1.1 pk 2, { 0xa000, 0xb000 }
159 1.1 pk },
160 1.1 pk {
161 1.1 pk "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
162 1.1 pk 0, 0, 0, 0, { 0, 0, 0, 0 },
163 1.1 pk 1, { 0x8000, 0 }
164 1.1 pk },
165 1.1 pk {
166 1.1 pk "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
167 1.1 pk 0, 0, 0, 0, { 0, 0, 0, 0 },
168 1.1 pk 2, { 0x4000, 0x8000 }
169 1.1 pk },
170 1.1 pk {
171 1.1 pk NULL, NULL, 0, 0,
172 1.1 pk 0, 0, 0, 0, { 0, 0, 0, 0 },
173 1.1 pk 0, { 0, 0 }
174 1.1 pk }
175 1.1 pk };
176 1.1 pk
177 1.1 pk /************************************************************************
178 1.1 pk *
179 1.1 pk * Autoconfig Stuff
180 1.1 pk */
181 1.1 pk
182 1.1 pk struct cfattach magma_ca = {
183 1.1 pk sizeof(struct magma_softc), magma_match, magma_attach
184 1.1 pk };
185 1.1 pk
186 1.1 pk struct cfattach mtty_ca = {
187 1.1 pk sizeof(struct mtty_softc), mtty_match, mtty_attach
188 1.1 pk };
189 1.1 pk
190 1.1 pk struct cfattach mbpp_ca = {
191 1.1 pk sizeof(struct mbpp_softc), mbpp_match, mbpp_attach
192 1.1 pk };
193 1.1 pk
194 1.1 pk extern struct cfdriver mtty_cd;
195 1.1 pk extern struct cfdriver mbpp_cd;
196 1.1 pk
197 1.1 pk /************************************************************************
198 1.1 pk *
199 1.1 pk * CD1400 Routines
200 1.1 pk *
201 1.1 pk * cd1400_compute_baud calculate COR/BPR register values
202 1.1 pk * cd1400_write_ccr write a value to CD1400 ccr
203 1.1 pk * cd1400_read_reg read from a CD1400 register
204 1.1 pk * cd1400_write_reg write to a CD1400 register
205 1.1 pk * cd1400_enable_transmitter enable transmitting on CD1400 channel
206 1.1 pk */
207 1.1 pk
208 1.1 pk /*
209 1.1 pk * compute the bpr/cor pair for any baud rate
210 1.1 pk * returns 0 for success, 1 for failure
211 1.1 pk */
212 1.1 pk int
213 1.1 pk cd1400_compute_baud(speed, clock, cor, bpr)
214 1.1 pk speed_t speed;
215 1.1 pk int clock;
216 1.1 pk int *cor, *bpr;
217 1.1 pk {
218 1.1 pk int c, co, br;
219 1.1 pk
220 1.1 pk if( speed < 50 || speed > 150000 )
221 1.1 pk return(1);
222 1.1 pk
223 1.1 pk for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) {
224 1.1 pk br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
225 1.1 pk if( br < 0x100 ) {
226 1.1 pk *bpr = br;
227 1.1 pk *cor = c;
228 1.1 pk return(0);
229 1.1 pk }
230 1.1 pk }
231 1.1 pk
232 1.1 pk return(1);
233 1.1 pk }
234 1.1 pk
235 1.1 pk /*
236 1.1 pk * Write a CD1400 channel command, should have a timeout?
237 1.1 pk */
238 1.1 pk __inline void
239 1.1 pk cd1400_write_ccr(cd, cmd)
240 1.1 pk struct cd1400 *cd;
241 1.1 pk u_char cmd;
242 1.1 pk {
243 1.1 pk while( cd1400_read_reg(cd, CD1400_CCR) )
244 1.1 pk ;
245 1.1 pk
246 1.1 pk cd1400_write_reg(cd, CD1400_CCR, cmd);
247 1.1 pk }
248 1.1 pk
249 1.1 pk /*
250 1.1 pk * read a value from a cd1400 register
251 1.1 pk */
252 1.1 pk __inline u_char
253 1.1 pk cd1400_read_reg(cd, reg)
254 1.1 pk struct cd1400 *cd;
255 1.1 pk int reg;
256 1.1 pk {
257 1.1 pk return(cd->cd_reg[reg]);
258 1.1 pk }
259 1.1 pk
260 1.1 pk /*
261 1.1 pk * write a value to a cd1400 register
262 1.1 pk */
263 1.1 pk __inline void
264 1.1 pk cd1400_write_reg(cd, reg, value)
265 1.1 pk struct cd1400 *cd;
266 1.1 pk int reg;
267 1.1 pk u_char value;
268 1.1 pk {
269 1.1 pk cd->cd_reg[reg] = value;
270 1.1 pk }
271 1.1 pk
272 1.1 pk /*
273 1.1 pk * enable transmit service requests for cd1400 channel
274 1.1 pk */
275 1.1 pk void
276 1.1 pk cd1400_enable_transmitter(cd, channel)
277 1.1 pk struct cd1400 *cd;
278 1.1 pk int channel;
279 1.1 pk {
280 1.1 pk int s, srer;
281 1.1 pk
282 1.1 pk s = spltty();
283 1.1 pk cd1400_write_reg(cd, CD1400_CAR, channel);
284 1.1 pk srer = cd1400_read_reg(cd, CD1400_SRER);
285 1.1 pk SET(srer, CD1400_SRER_TXRDY);
286 1.1 pk cd1400_write_reg(cd, CD1400_SRER, srer);
287 1.1 pk splx(s);
288 1.1 pk }
289 1.1 pk
290 1.1 pk /************************************************************************
291 1.1 pk *
292 1.1 pk * CD1190 Routines
293 1.1 pk */
294 1.1 pk
295 1.1 pk /* well, there are none yet */
296 1.1 pk
297 1.1 pk /************************************************************************
298 1.1 pk *
299 1.1 pk * Magma Routines
300 1.1 pk *
301 1.1 pk * magma_match reports if we have a magma board available
302 1.1 pk * magma_attach attaches magma boards to the sbus
303 1.1 pk * magma_hard hardware level interrupt routine
304 1.1 pk * magma_soft software level interrupt routine
305 1.1 pk */
306 1.1 pk
307 1.1 pk int
308 1.1 pk magma_match(parent, cf, aux)
309 1.1 pk struct device *parent;
310 1.1 pk struct cfdata *cf;
311 1.1 pk void *aux;
312 1.1 pk {
313 1.1 pk struct sbus_attach_args *sa = aux;
314 1.1 pk
315 1.1 pk /* is it a magma Sp card? */
316 1.1 pk if( strcmp(sa->sa_name, "MAGMA_Sp") != 0 )
317 1.1 pk return(0);
318 1.1 pk
319 1.3 pk dprintf(("magma: matched `%s'\n", sa->sa_name));
320 1.3 pk dprintf(("magma: magma_prom `%s'\n",
321 1.10.4.1 fvdl PROM_getpropstring(sa->sa_node, "magma_prom")));
322 1.3 pk dprintf(("magma: intlevels `%s'\n",
323 1.10.4.1 fvdl PROM_getpropstring(sa->sa_node, "intlevels")));
324 1.3 pk dprintf(("magma: chiprev `%s'\n",
325 1.10.4.1 fvdl PROM_getpropstring(sa->sa_node, "chiprev")));
326 1.3 pk dprintf(("magma: clock `%s'\n",
327 1.10.4.1 fvdl PROM_getpropstring(sa->sa_node, "clock")));
328 1.1 pk
329 1.1 pk return (1);
330 1.1 pk }
331 1.1 pk
332 1.1 pk void
333 1.1 pk magma_attach(parent, self, aux)
334 1.1 pk struct device *parent;
335 1.1 pk struct device *self;
336 1.1 pk void *aux;
337 1.1 pk {
338 1.1 pk struct sbus_attach_args *sa = aux;
339 1.1 pk struct magma_softc *sc = (struct magma_softc *)self;
340 1.1 pk struct magma_board_info *card = supported_cards;
341 1.1 pk bus_space_handle_t bh;
342 1.1 pk char *magma_prom;
343 1.1 pk int node, chip;
344 1.1 pk
345 1.1 pk node = sa->sa_node;
346 1.10.4.1 fvdl magma_prom = PROM_getpropstring(node, "magma_prom");
347 1.1 pk
348 1.1 pk /* find the card type */
349 1.1 pk while (card->mb_name && strcmp(magma_prom, card->mb_name) != 0)
350 1.1 pk card++;
351 1.1 pk
352 1.2 pk dprintf((" addr %p", sc));
353 1.1 pk printf(" softpri %d:", PIL_TTY);
354 1.1 pk
355 1.1 pk if( card->mb_name == NULL ) {
356 1.1 pk printf(" %s (unsupported)\n", magma_prom);
357 1.1 pk return;
358 1.1 pk }
359 1.1 pk
360 1.1 pk printf(" %s\n", card->mb_realname);
361 1.1 pk
362 1.1 pk sc->ms_board = card;
363 1.1 pk sc->ms_ncd1400 = card->mb_ncd1400;
364 1.1 pk sc->ms_ncd1190 = card->mb_ncd1190;
365 1.1 pk
366 1.1 pk if (sbus_bus_map(sa->sa_bustag,
367 1.1 pk sa->sa_slot,
368 1.1 pk sa->sa_offset,
369 1.1 pk sa->sa_size,
370 1.1 pk BUS_SPACE_MAP_LINEAR,
371 1.1 pk 0, &bh) != 0) {
372 1.1 pk printf("%s @ sbus: cannot map registers\n", self->dv_xname);
373 1.1 pk return;
374 1.1 pk }
375 1.1 pk
376 1.1 pk /* the SVCACK* lines are daisychained */
377 1.1 pk sc->ms_svcackr = (caddr_t)bh + card->mb_svcackr;
378 1.1 pk sc->ms_svcackt = (caddr_t)bh + card->mb_svcackt;
379 1.1 pk sc->ms_svcackm = (caddr_t)bh + card->mb_svcackm;
380 1.1 pk
381 1.1 pk /* init the cd1400 chips */
382 1.1 pk for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) {
383 1.1 pk struct cd1400 *cd = &sc->ms_cd1400[chip];
384 1.1 pk
385 1.1 pk cd->cd_reg = (caddr_t)bh + card->mb_cd1400[chip];
386 1.1 pk
387 1.10.4.1 fvdl /* XXX PROM_getpropstring(node, "clock") */
388 1.1 pk cd->cd_clock = 25;
389 1.1 pk
390 1.10.4.1 fvdl /* PROM_getpropstring(node, "chiprev"); */
391 1.1 pk /* seemingly the Magma drivers just ignore the propstring */
392 1.1 pk cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR);
393 1.1 pk
394 1.2 pk dprintf(("%s attach CD1400 %d addr %p rev %x clock %dMhz\n",
395 1.1 pk sc->ms_dev.dv_xname, chip,
396 1.1 pk cd->cd_reg, cd->cd_chiprev, cd->cd_clock));
397 1.1 pk
398 1.1 pk /* clear GFRCR */
399 1.1 pk cd1400_write_reg(cd, CD1400_GFRCR, 0x00);
400 1.1 pk
401 1.1 pk /* reset whole chip */
402 1.1 pk cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
403 1.1 pk
404 1.1 pk /* wait for revision code to be restored */
405 1.1 pk while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev )
406 1.1 pk ;
407 1.1 pk
408 1.1 pk /* set the Prescaler Period Register to tick at 1ms */
409 1.1 pk cd1400_write_reg(cd, CD1400_PPR,
410 1.1 pk ((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000));
411 1.1 pk
412 1.1 pk /* The LC2+1Sp card is the only card that doesn't have
413 1.1 pk * a CD1190 for the parallel port, but uses channel 0 of
414 1.1 pk * the CD1400, so we make a note of it for later and set up
415 1.1 pk * the CD1400 for parallel mode operation.
416 1.1 pk */
417 1.1 pk if( card->mb_npar && card->mb_ncd1190 == 0 ) {
418 1.1 pk cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
419 1.1 pk cd->cd_parmode = 1;
420 1.1 pk }
421 1.1 pk }
422 1.1 pk
423 1.1 pk /* init the cd1190 chips */
424 1.1 pk for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) {
425 1.1 pk struct cd1190 *cd = &sc->ms_cd1190[chip];
426 1.1 pk
427 1.1 pk cd->cd_reg = (caddr_t)bh + card->mb_cd1190[chip];
428 1.2 pk dprintf(("%s attach CD1190 %d addr %p (failed)\n",
429 1.1 pk self->dv_xname, chip, cd->cd_reg));
430 1.1 pk /* XXX don't know anything about these chips yet */
431 1.1 pk }
432 1.1 pk
433 1.1 pk sbus_establish(&sc->ms_sd, &sc->ms_dev);
434 1.1 pk
435 1.1 pk /* configure the children */
436 1.1 pk (void)config_found(self, mtty_match, NULL);
437 1.1 pk (void)config_found(self, mbpp_match, NULL);
438 1.1 pk
439 1.1 pk /*
440 1.1 pk * Establish the interrupt handlers.
441 1.1 pk */
442 1.5 pk if (sa->sa_nintr == 0)
443 1.5 pk return; /* No interrupts to service!? */
444 1.5 pk
445 1.8 pk (void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_TTY,
446 1.8 pk 0, magma_hard, sc);
447 1.8 pk (void)bus_intr_establish(sa->sa_bustag, PIL_TTY, IPL_SOFTSERIAL,
448 1.1 pk BUS_INTR_ESTABLISH_SOFTINTR,
449 1.1 pk magma_soft, sc);
450 1.7 cgd evcnt_attach_dynamic(&sc->ms_intrcnt, EVCNT_TYPE_INTR, NULL,
451 1.7 cgd sc->ms_dev.dv_xname, "intr");
452 1.1 pk }
453 1.1 pk
454 1.1 pk /*
455 1.1 pk * hard interrupt routine
456 1.1 pk *
457 1.1 pk * returns 1 if it handled it, otherwise 0
458 1.1 pk *
459 1.1 pk * runs at interrupt priority
460 1.1 pk */
461 1.1 pk int
462 1.1 pk magma_hard(arg)
463 1.1 pk void *arg;
464 1.1 pk {
465 1.1 pk struct magma_softc *sc = arg;
466 1.1 pk struct cd1400 *cd;
467 1.1 pk int chip, status = 0;
468 1.1 pk int serviced = 0;
469 1.1 pk int needsoftint = 0;
470 1.1 pk
471 1.1 pk /*
472 1.1 pk * check status of all the CD1400 chips
473 1.1 pk */
474 1.1 pk for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ )
475 1.1 pk status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR);
476 1.1 pk
477 1.1 pk if( ISSET(status, CD1400_SVRR_RXRDY) ) {
478 1.1 pk u_char rivr = *sc->ms_svcackr; /* enter rx service context */
479 1.1 pk int port = rivr >> 4;
480 1.1 pk
481 1.1 pk if( rivr & (1<<3) ) { /* parallel port */
482 1.3 pk struct mbpp_port *mbpp;
483 1.3 pk int n_chars;
484 1.1 pk
485 1.3 pk mbpp = &sc->ms_mbpp->ms_port[port];
486 1.1 pk cd = mbpp->mp_cd1400;
487 1.3 pk
488 1.3 pk /* don't think we have to handle exceptions */
489 1.3 pk n_chars = cd1400_read_reg(cd, CD1400_RDCR);
490 1.3 pk while (n_chars--) {
491 1.3 pk if( mbpp->mp_cnt == 0 ) {
492 1.3 pk SET(mbpp->mp_flags, MBPPF_WAKEUP);
493 1.3 pk needsoftint = 1;
494 1.3 pk break;
495 1.3 pk }
496 1.3 pk *mbpp->mp_ptr = cd1400_read_reg(cd,CD1400_RDSR);
497 1.3 pk mbpp->mp_ptr++;
498 1.3 pk mbpp->mp_cnt--;
499 1.3 pk }
500 1.1 pk } else { /* serial port */
501 1.1 pk struct mtty_port *mtty;
502 1.1 pk u_char *ptr, n_chars, line_stat;
503 1.1 pk
504 1.1 pk mtty = &sc->ms_mtty->ms_port[port];
505 1.1 pk cd = mtty->mp_cd1400;
506 1.1 pk
507 1.1 pk if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) {
508 1.1 pk line_stat = cd1400_read_reg(cd, CD1400_RDSR);
509 1.1 pk n_chars = 1;
510 1.1 pk } else { /* no exception, received data OK */
511 1.1 pk line_stat = 0;
512 1.1 pk n_chars = cd1400_read_reg(cd, CD1400_RDCR);
513 1.1 pk }
514 1.1 pk
515 1.1 pk ptr = mtty->mp_rput;
516 1.1 pk while( n_chars-- ) {
517 1.1 pk *ptr++ = line_stat;
518 1.1 pk *ptr++ = cd1400_read_reg(cd, CD1400_RDSR);
519 1.1 pk if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf;
520 1.1 pk if( ptr == mtty->mp_rget ) {
521 1.1 pk if( ptr == mtty->mp_rbuf )
522 1.1 pk ptr = mtty->mp_rend;
523 1.1 pk ptr -= 2;
524 1.1 pk SET(mtty->mp_flags, MTTYF_RING_OVERFLOW);
525 1.1 pk break;
526 1.1 pk }
527 1.1 pk }
528 1.1 pk mtty->mp_rput = ptr;
529 1.1 pk
530 1.1 pk needsoftint = 1;
531 1.1 pk }
532 1.1 pk
533 1.1 pk cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */
534 1.1 pk serviced = 1;
535 1.1 pk } /* if(rx_service...) */
536 1.1 pk
537 1.1 pk if( ISSET(status, CD1400_SVRR_MDMCH) ) {
538 1.1 pk u_char mivr = *sc->ms_svcackm; /* enter mdm service context */
539 1.1 pk int port = mivr >> 4;
540 1.1 pk struct mtty_port *mtty;
541 1.1 pk int carrier;
542 1.1 pk u_char msvr;
543 1.1 pk
544 1.1 pk /*
545 1.1 pk * Handle CD (LC2+1Sp = DSR) changes.
546 1.1 pk */
547 1.1 pk mtty = &sc->ms_mtty->ms_port[port];
548 1.1 pk cd = mtty->mp_cd1400;
549 1.1 pk msvr = cd1400_read_reg(cd, CD1400_MSVR2);
550 1.1 pk carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
551 1.1 pk
552 1.1 pk if( mtty->mp_carrier != carrier ) {
553 1.1 pk SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
554 1.1 pk mtty->mp_carrier = carrier;
555 1.1 pk needsoftint = 1;
556 1.1 pk }
557 1.1 pk
558 1.1 pk cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */
559 1.1 pk serviced = 1;
560 1.1 pk } /* if(mdm_service...) */
561 1.1 pk
562 1.1 pk if( ISSET(status, CD1400_SVRR_TXRDY) ) {
563 1.2 pk u_char tivr = *sc->ms_svcackt; /* enter tx service context */
564 1.1 pk int port = tivr >> 4;
565 1.1 pk
566 1.1 pk if( tivr & (1<<3) ) { /* parallel port */
567 1.1 pk struct mbpp_port *mbpp;
568 1.1 pk
569 1.1 pk mbpp = &sc->ms_mbpp->ms_port[port];
570 1.1 pk cd = mbpp->mp_cd1400;
571 1.1 pk
572 1.3 pk if( mbpp->mp_cnt ) {
573 1.1 pk int count = 0;
574 1.1 pk
575 1.3 pk /* fill the fifo */
576 1.3 pk while (mbpp->mp_cnt &&
577 1.3 pk count++ < CD1400_PAR_FIFO_SIZE) {
578 1.3 pk cd1400_write_reg(cd, CD1400_TDR,
579 1.3 pk *mbpp->mp_ptr);
580 1.3 pk mbpp->mp_ptr++;
581 1.3 pk mbpp->mp_cnt--;
582 1.1 pk }
583 1.1 pk } else {
584 1.3 pk /*
585 1.3 pk * fifo is empty and we got no more data
586 1.3 pk * to send, so shut off interrupts and
587 1.3 pk * signal for a wakeup, which can't be
588 1.3 pk * done here in case we beat mbpp_send to
589 1.3 pk * the tsleep call (we are running at >spltty)
590 1.3 pk */
591 1.3 pk cd1400_write_reg(cd, CD1400_SRER, 0);
592 1.3 pk SET(mbpp->mp_flags, MBPPF_WAKEUP);
593 1.1 pk needsoftint = 1;
594 1.1 pk }
595 1.1 pk } else { /* serial port */
596 1.1 pk struct mtty_port *mtty;
597 1.1 pk struct tty *tp;
598 1.1 pk
599 1.1 pk mtty = &sc->ms_mtty->ms_port[port];
600 1.1 pk cd = mtty->mp_cd1400;
601 1.1 pk tp = mtty->mp_tty;
602 1.1 pk
603 1.1 pk if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) {
604 1.1 pk int count = 0;
605 1.1 pk
606 1.1 pk /* check if we should start/stop a break */
607 1.1 pk if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) {
608 1.1 pk cd1400_write_reg(cd, CD1400_TDR, 0);
609 1.1 pk cd1400_write_reg(cd, CD1400_TDR, 0x81);
610 1.1 pk /* should we delay too? */
611 1.1 pk CLR(mtty->mp_flags, MTTYF_SET_BREAK);
612 1.1 pk count += 2;
613 1.1 pk }
614 1.1 pk
615 1.1 pk if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) {
616 1.1 pk cd1400_write_reg(cd, CD1400_TDR, 0);
617 1.1 pk cd1400_write_reg(cd, CD1400_TDR, 0x83);
618 1.1 pk CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
619 1.1 pk count += 2;
620 1.1 pk }
621 1.1 pk
622 1.1 pk /* I don't quite fill the fifo in case the last one is a
623 1.1 pk * NULL which I have to double up because its the escape
624 1.1 pk * code for embedded transmit characters.
625 1.1 pk */
626 1.1 pk while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) {
627 1.2 pk u_char ch;
628 1.1 pk
629 1.1 pk ch = *mtty->mp_txp;
630 1.1 pk
631 1.1 pk mtty->mp_txc--;
632 1.1 pk mtty->mp_txp++;
633 1.1 pk
634 1.1 pk if( ch == 0 ) {
635 1.1 pk cd1400_write_reg(cd, CD1400_TDR, ch);
636 1.1 pk count++;
637 1.1 pk }
638 1.1 pk
639 1.1 pk cd1400_write_reg(cd, CD1400_TDR, ch);
640 1.1 pk count++;
641 1.1 pk }
642 1.1 pk }
643 1.1 pk
644 1.1 pk /* if we ran out of work or are requested to STOP then
645 1.1 pk * shut off the txrdy interrupts and signal DONE to flush
646 1.1 pk * out the chars we have sent.
647 1.1 pk */
648 1.1 pk if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) {
649 1.2 pk register int srer;
650 1.1 pk
651 1.1 pk srer = cd1400_read_reg(cd, CD1400_SRER);
652 1.1 pk CLR(srer, CD1400_SRER_TXRDY);
653 1.1 pk cd1400_write_reg(cd, CD1400_SRER, srer);
654 1.1 pk CLR(mtty->mp_flags, MTTYF_STOP);
655 1.1 pk
656 1.1 pk SET(mtty->mp_flags, MTTYF_DONE);
657 1.1 pk needsoftint = 1;
658 1.1 pk }
659 1.1 pk }
660 1.1 pk
661 1.1 pk cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */
662 1.1 pk serviced = 1;
663 1.1 pk } /* if(tx_service...) */
664 1.1 pk
665 1.1 pk /* XXX service CD1190 interrupts too
666 1.1 pk for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) {
667 1.1 pk }
668 1.1 pk */
669 1.1 pk
670 1.1 pk if( needsoftint ) { /* trigger the soft interrupt */
671 1.1 pk #if defined(SUN4M)
672 1.1 pk if( CPU_ISSUN4M )
673 1.1 pk raise(0, PIL_TTY);
674 1.1 pk else
675 1.1 pk #endif
676 1.1 pk ienab_bis(IE_MSOFT);
677 1.1 pk }
678 1.1 pk
679 1.1 pk return(serviced);
680 1.1 pk }
681 1.1 pk
682 1.1 pk /*
683 1.1 pk * magma soft interrupt handler
684 1.1 pk *
685 1.1 pk * returns 1 if it handled it, 0 otherwise
686 1.1 pk *
687 1.1 pk * runs at spltty()
688 1.1 pk */
689 1.1 pk int
690 1.1 pk magma_soft(arg)
691 1.1 pk void *arg;
692 1.1 pk {
693 1.1 pk struct magma_softc *sc = arg;
694 1.1 pk struct mtty_softc *mtty = sc->ms_mtty;
695 1.1 pk struct mbpp_softc *mbpp = sc->ms_mbpp;
696 1.1 pk int port;
697 1.1 pk int serviced = 0;
698 1.1 pk int s, flags;
699 1.1 pk
700 1.2 pk if (mtty == NULL)
701 1.2 pk goto chkbpp;
702 1.2 pk
703 1.1 pk /*
704 1.1 pk * check the tty ports to see what needs doing
705 1.1 pk */
706 1.1 pk for( port = 0 ; port < mtty->ms_nports ; port++ ) {
707 1.2 pk struct mtty_port *mp = &mtty->ms_port[port];
708 1.2 pk struct tty *tp = mp->mp_tty;
709 1.1 pk
710 1.2 pk if( !ISSET(tp->t_state, TS_ISOPEN) )
711 1.2 pk continue;
712 1.1 pk
713 1.1 pk /*
714 1.1 pk * handle any received data
715 1.1 pk */
716 1.1 pk while( mp->mp_rget != mp->mp_rput ) {
717 1.2 pk u_char stat;
718 1.2 pk int data;
719 1.1 pk
720 1.1 pk stat = mp->mp_rget[0];
721 1.1 pk data = mp->mp_rget[1];
722 1.2 pk mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend)
723 1.2 pk ? mp->mp_rbuf : (mp->mp_rget + 2);
724 1.1 pk
725 1.1 pk if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) )
726 1.1 pk data |= TTY_FE;
727 1.1 pk if( stat & CD1400_RDSR_PE )
728 1.1 pk data |= TTY_PE;
729 1.1 pk
730 1.1 pk if( stat & CD1400_RDSR_OE )
731 1.2 pk log(LOG_WARNING, "%s%x: fifo overflow\n",
732 1.2 pk mtty->ms_dev.dv_xname, port);
733 1.1 pk
734 1.9 eeh (*tp->t_linesw->l_rint)(data, tp);
735 1.1 pk serviced = 1;
736 1.1 pk }
737 1.1 pk
738 1.1 pk s = splhigh(); /* block out hard interrupt routine */
739 1.1 pk flags = mp->mp_flags;
740 1.1 pk CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
741 1.1 pk splx(s); /* ok */
742 1.1 pk
743 1.1 pk if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) {
744 1.3 pk dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname,
745 1.3 pk port, mp->mp_carrier ? "on" : "off"));
746 1.9 eeh (*tp->t_linesw->l_modem)(tp, mp->mp_carrier);
747 1.1 pk serviced = 1;
748 1.1 pk }
749 1.1 pk
750 1.1 pk if( ISSET(flags, MTTYF_RING_OVERFLOW) ) {
751 1.3 pk log(LOG_WARNING, "%s%x: ring buffer overflow\n",
752 1.3 pk mtty->ms_dev.dv_xname, port);
753 1.1 pk serviced = 1;
754 1.1 pk }
755 1.1 pk
756 1.1 pk if( ISSET(flags, MTTYF_DONE) ) {
757 1.1 pk ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
758 1.1 pk CLR(tp->t_state, TS_BUSY);
759 1.9 eeh (*tp->t_linesw->l_start)(tp); /* might be some more */
760 1.1 pk serviced = 1;
761 1.1 pk }
762 1.1 pk } /* for(each mtty...) */
763 1.1 pk
764 1.2 pk
765 1.2 pk chkbpp:
766 1.1 pk /*
767 1.2 pk * Check the bpp ports (if any) to see what needs doing
768 1.1 pk */
769 1.2 pk if (mbpp == NULL)
770 1.2 pk return (serviced);
771 1.2 pk
772 1.1 pk for( port = 0 ; port < mbpp->ms_nports ; port++ ) {
773 1.2 pk struct mbpp_port *mp = &mbpp->ms_port[port];
774 1.1 pk
775 1.2 pk if( !ISSET(mp->mp_flags, MBPPF_OPEN) )
776 1.2 pk continue;
777 1.1 pk
778 1.1 pk s = splhigh();
779 1.1 pk flags = mp->mp_flags;
780 1.3 pk CLR(mp->mp_flags, MBPPF_WAKEUP);
781 1.1 pk splx(s);
782 1.1 pk
783 1.3 pk if( ISSET(flags, MBPPF_WAKEUP) ) {
784 1.1 pk wakeup(mp);
785 1.1 pk serviced = 1;
786 1.1 pk }
787 1.1 pk
788 1.1 pk } /* for(each mbpp...) */
789 1.1 pk
790 1.1 pk return(serviced);
791 1.1 pk }
792 1.1 pk
793 1.1 pk /************************************************************************
794 1.1 pk *
795 1.1 pk * MTTY Routines
796 1.1 pk *
797 1.1 pk * mtty_match match one mtty device
798 1.1 pk * mtty_attach attach mtty devices
799 1.1 pk * mttyopen open mtty device
800 1.1 pk * mttyclose close mtty device
801 1.1 pk * mttyread read from mtty
802 1.1 pk * mttywrite write to mtty
803 1.1 pk * mttyioctl do ioctl on mtty
804 1.1 pk * mttytty return tty pointer for mtty
805 1.1 pk * mttystop stop mtty device
806 1.1 pk * mtty_start start mtty device
807 1.1 pk * mtty_param set mtty parameters
808 1.1 pk * mtty_modem_control set modem control lines
809 1.1 pk */
810 1.1 pk
811 1.1 pk int
812 1.1 pk mtty_match(parent, cf, args)
813 1.1 pk struct device *parent;
814 1.1 pk struct cfdata *cf;
815 1.1 pk void *args;
816 1.1 pk {
817 1.1 pk struct magma_softc *sc = (struct magma_softc *)parent;
818 1.1 pk
819 1.1 pk return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL );
820 1.1 pk }
821 1.1 pk
822 1.1 pk void
823 1.1 pk mtty_attach(parent, dev, args)
824 1.1 pk struct device *parent;
825 1.1 pk struct device *dev;
826 1.1 pk void *args;
827 1.1 pk {
828 1.1 pk struct magma_softc *sc = (struct magma_softc *)parent;
829 1.1 pk struct mtty_softc *ms = (struct mtty_softc *)dev;
830 1.1 pk int port, chip, chan;
831 1.1 pk
832 1.1 pk sc->ms_mtty = ms;
833 1.2 pk dprintf((" addr %p", ms));
834 1.1 pk
835 1.1 pk for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) {
836 1.2 pk struct mtty_port *mp = &ms->ms_port[port];
837 1.2 pk struct tty *tp;
838 1.1 pk
839 1.1 pk mp->mp_cd1400 = &sc->ms_cd1400[chip];
840 1.2 pk if( mp->mp_cd1400->cd_parmode && chan == 0 )
841 1.2 pk chan = 1; /* skip channel 0 if parmode */
842 1.1 pk mp->mp_channel = chan;
843 1.1 pk
844 1.1 pk tp = ttymalloc();
845 1.1 pk if( tp == NULL ) break;
846 1.1 pk tty_attach(tp);
847 1.1 pk tp->t_oproc = mtty_start;
848 1.1 pk tp->t_param = mtty_param;
849 1.1 pk
850 1.1 pk mp->mp_tty = tp;
851 1.1 pk
852 1.1 pk mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
853 1.1 pk if( mp->mp_rbuf == NULL ) break;
854 1.1 pk
855 1.1 pk mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
856 1.1 pk
857 1.1 pk chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
858 1.1 pk if( chan == 0 ) chip++;
859 1.1 pk }
860 1.1 pk
861 1.1 pk ms->ms_nports = port;
862 1.1 pk printf(": %d tty%s\n", port, port == 1 ? "" : "s");
863 1.1 pk }
864 1.1 pk
865 1.1 pk /*
866 1.1 pk * open routine. returns zero if successful, else error code
867 1.1 pk */
868 1.1 pk int
869 1.10.4.2 fvdl mttyopen(devvp, flags, mode, p)
870 1.10.4.2 fvdl struct vnode *devvp;
871 1.1 pk int flags;
872 1.1 pk int mode;
873 1.1 pk struct proc *p;
874 1.1 pk {
875 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
876 1.1 pk int card = MAGMA_CARD(dev);
877 1.1 pk int port = MAGMA_PORT(dev);
878 1.1 pk struct mtty_softc *ms;
879 1.1 pk struct mtty_port *mp;
880 1.1 pk struct tty *tp;
881 1.1 pk struct cd1400 *cd;
882 1.1 pk int error, s;
883 1.1 pk
884 1.1 pk if( card >= mtty_cd.cd_ndevs ||
885 1.1 pk (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
886 1.1 pk return(ENXIO); /* device not configured */
887 1.1 pk
888 1.1 pk mp = &ms->ms_port[port];
889 1.1 pk tp = mp->mp_tty;
890 1.10.4.2 fvdl tp->t_devvp = devvp;
891 1.1 pk
892 1.1 pk if (ISSET(tp->t_state, TS_ISOPEN) &&
893 1.1 pk ISSET(tp->t_state, TS_XCLUDE) &&
894 1.1 pk p->p_ucred->cr_uid != 0)
895 1.1 pk return (EBUSY);
896 1.1 pk
897 1.10.4.2 fvdl vdev_setprivdata(devvp, ms);
898 1.10.4.2 fvdl
899 1.1 pk s = spltty();
900 1.1 pk
901 1.1 pk if( !ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
902 1.1 pk
903 1.1 pk /* set defaults */
904 1.1 pk ttychars(tp);
905 1.1 pk tp->t_iflag = TTYDEF_IFLAG;
906 1.1 pk tp->t_oflag = TTYDEF_OFLAG;
907 1.1 pk tp->t_cflag = TTYDEF_CFLAG;
908 1.1 pk if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) )
909 1.1 pk SET(tp->t_cflag, CLOCAL);
910 1.1 pk if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) )
911 1.1 pk SET(tp->t_cflag, CRTSCTS);
912 1.1 pk if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) )
913 1.1 pk SET(tp->t_cflag, MDMBUF);
914 1.1 pk tp->t_lflag = TTYDEF_LFLAG;
915 1.1 pk tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
916 1.1 pk
917 1.1 pk /* init ring buffer */
918 1.1 pk mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
919 1.1 pk
920 1.1 pk /* reset CD1400 channel */
921 1.1 pk cd = mp->mp_cd1400;
922 1.1 pk cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
923 1.1 pk cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
924 1.1 pk
925 1.1 pk /* encode the port number in top half of LIVR */
926 1.1 pk cd1400_write_reg(cd, CD1400_LIVR, port << 4 );
927 1.1 pk
928 1.1 pk /* sets parameters and raises DTR */
929 1.1 pk (void)mtty_param(tp, &tp->t_termios);
930 1.1 pk
931 1.1 pk /* set tty watermarks */
932 1.1 pk ttsetwater(tp);
933 1.1 pk
934 1.1 pk /* enable service requests */
935 1.1 pk cd1400_write_reg(cd, CD1400_SRER,
936 1.1 pk CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
937 1.1 pk
938 1.1 pk /* tell the tty about the carrier status */
939 1.1 pk if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) ||
940 1.1 pk mp->mp_carrier )
941 1.1 pk SET(tp->t_state, TS_CARR_ON);
942 1.1 pk else
943 1.1 pk CLR(tp->t_state, TS_CARR_ON);
944 1.1 pk }
945 1.1 pk splx(s);
946 1.1 pk
947 1.1 pk error = ttyopen(tp, MTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
948 1.1 pk if (error != 0)
949 1.1 pk goto bad;
950 1.1 pk
951 1.10.4.2 fvdl error = (*tp->t_linesw->l_open)(devvp, tp);
952 1.1 pk if (error != 0)
953 1.1 pk goto bad;
954 1.1 pk
955 1.1 pk bad:
956 1.1 pk if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
957 1.1 pk /*
958 1.1 pk * We failed to open the device, and nobody else had it opened.
959 1.1 pk * Clean up the state as appropriate.
960 1.1 pk */
961 1.1 pk /* XXX - do that here */
962 1.1 pk }
963 1.1 pk
964 1.1 pk return (error);
965 1.1 pk }
966 1.1 pk
967 1.1 pk /*
968 1.1 pk * close routine. returns zero if successful, else error code
969 1.1 pk */
970 1.1 pk int
971 1.10.4.2 fvdl mttyclose(devvp, flag, mode, p)
972 1.10.4.2 fvdl struct vnode *devvp;
973 1.1 pk int flag;
974 1.1 pk int mode;
975 1.1 pk struct proc *p;
976 1.1 pk {
977 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
978 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(devvp);
979 1.1 pk struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
980 1.1 pk struct tty *tp = mp->mp_tty;
981 1.1 pk int s;
982 1.1 pk
983 1.9 eeh (*tp->t_linesw->l_close)(tp, flag);
984 1.1 pk ttyclose(tp);
985 1.1 pk
986 1.1 pk s = spltty();
987 1.1 pk
988 1.1 pk /* if HUPCL is set, and the tty is no longer open
989 1.1 pk * shut down the port
990 1.1 pk */
991 1.1 pk if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) {
992 1.1 pk /* XXX wait until FIFO is empty before turning off the channel
993 1.1 pk struct cd1400 *cd = mp->mp_cd1400;
994 1.1 pk */
995 1.1 pk
996 1.1 pk /* drop DTR and RTS */
997 1.1 pk (void)mtty_modem_control(mp, 0, DMSET);
998 1.1 pk
999 1.1 pk /* turn off the channel
1000 1.1 pk cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1001 1.1 pk cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1002 1.1 pk */
1003 1.1 pk }
1004 1.1 pk
1005 1.1 pk splx(s);
1006 1.1 pk
1007 1.1 pk return(0);
1008 1.1 pk }
1009 1.1 pk
1010 1.1 pk /*
1011 1.1 pk * Read routine
1012 1.1 pk */
1013 1.1 pk int
1014 1.10.4.2 fvdl mttyread(devvp, uio, flags)
1015 1.10.4.2 fvdl struct vnode *devvp;
1016 1.1 pk struct uio *uio;
1017 1.1 pk int flags;
1018 1.1 pk {
1019 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1020 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(devvp);
1021 1.1 pk struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1022 1.1 pk struct tty *tp = mp->mp_tty;
1023 1.1 pk
1024 1.9 eeh return( (*tp->t_linesw->l_read)(tp, uio, flags) );
1025 1.1 pk }
1026 1.1 pk
1027 1.1 pk /*
1028 1.1 pk * Write routine
1029 1.1 pk */
1030 1.1 pk int
1031 1.10.4.2 fvdl mttywrite(devvp, uio, flags)
1032 1.10.4.2 fvdl struct vnode *devvp;
1033 1.1 pk struct uio *uio;
1034 1.1 pk int flags;
1035 1.1 pk {
1036 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1037 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(devvp);
1038 1.1 pk struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1039 1.1 pk struct tty *tp = mp->mp_tty;
1040 1.1 pk
1041 1.9 eeh return( (*tp->t_linesw->l_write)(tp, uio, flags) );
1042 1.10 scw }
1043 1.10 scw
1044 1.10 scw /*
1045 1.10 scw * Poll routine
1046 1.10 scw */
1047 1.10 scw int
1048 1.10.4.2 fvdl mttypoll(devvp, events, p)
1049 1.10.4.2 fvdl struct vnode *devvp;
1050 1.10 scw int events;
1051 1.10 scw struct proc *p;
1052 1.10 scw {
1053 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1054 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(devvp);
1055 1.10 scw struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1056 1.10 scw struct tty *tp = mp->mp_tty;
1057 1.10 scw
1058 1.10 scw return ((*tp->t_linesw->l_poll)(tp, events, p));
1059 1.1 pk }
1060 1.1 pk
1061 1.1 pk /*
1062 1.1 pk * return tty pointer
1063 1.1 pk */
1064 1.1 pk struct tty *
1065 1.10.4.2 fvdl mttytty(devvp)
1066 1.10.4.2 fvdl struct vnode *devvp;
1067 1.1 pk {
1068 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1069 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(devvp);
1070 1.1 pk struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1071 1.1 pk
1072 1.1 pk return(mp->mp_tty);
1073 1.1 pk }
1074 1.1 pk
1075 1.1 pk /*
1076 1.1 pk * ioctl routine
1077 1.1 pk */
1078 1.1 pk int
1079 1.10.4.2 fvdl mttyioctl(devvp, cmd, data, flags, p)
1080 1.10.4.2 fvdl struct vnode *devvp;
1081 1.1 pk u_long cmd;
1082 1.1 pk caddr_t data;
1083 1.1 pk int flags;
1084 1.1 pk struct proc *p;
1085 1.1 pk {
1086 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1087 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(devvp);
1088 1.1 pk struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1089 1.1 pk struct tty *tp = mp->mp_tty;
1090 1.1 pk int error;
1091 1.1 pk
1092 1.9 eeh error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flags, p);
1093 1.1 pk if( error >= 0 ) return(error);
1094 1.1 pk
1095 1.1 pk error = ttioctl(tp, cmd, data, flags, p);
1096 1.1 pk if( error >= 0 ) return(error);
1097 1.1 pk
1098 1.1 pk error = 0;
1099 1.1 pk
1100 1.1 pk switch(cmd) {
1101 1.1 pk case TIOCSBRK: /* set break */
1102 1.1 pk SET(mp->mp_flags, MTTYF_SET_BREAK);
1103 1.1 pk cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1104 1.1 pk break;
1105 1.1 pk
1106 1.1 pk case TIOCCBRK: /* clear break */
1107 1.1 pk SET(mp->mp_flags, MTTYF_CLR_BREAK);
1108 1.1 pk cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1109 1.1 pk break;
1110 1.1 pk
1111 1.1 pk case TIOCSDTR: /* set DTR */
1112 1.1 pk mtty_modem_control(mp, TIOCM_DTR, DMBIS);
1113 1.1 pk break;
1114 1.1 pk
1115 1.1 pk case TIOCCDTR: /* clear DTR */
1116 1.1 pk mtty_modem_control(mp, TIOCM_DTR, DMBIC);
1117 1.1 pk break;
1118 1.1 pk
1119 1.1 pk case TIOCMSET: /* set modem lines */
1120 1.1 pk mtty_modem_control(mp, *((int *)data), DMSET);
1121 1.1 pk break;
1122 1.1 pk
1123 1.1 pk case TIOCMBIS: /* bit set modem lines */
1124 1.1 pk mtty_modem_control(mp, *((int *)data), DMBIS);
1125 1.1 pk break;
1126 1.1 pk
1127 1.1 pk case TIOCMBIC: /* bit clear modem lines */
1128 1.1 pk mtty_modem_control(mp, *((int *)data), DMBIC);
1129 1.1 pk break;
1130 1.1 pk
1131 1.1 pk case TIOCMGET: /* get modem lines */
1132 1.1 pk *((int *)data) = mtty_modem_control(mp, 0, DMGET);
1133 1.1 pk break;
1134 1.1 pk
1135 1.1 pk case TIOCGFLAGS:
1136 1.1 pk *((int *)data) = mp->mp_openflags;
1137 1.1 pk break;
1138 1.1 pk
1139 1.1 pk case TIOCSFLAGS:
1140 1.1 pk if( suser(p->p_ucred, &p->p_acflag) )
1141 1.1 pk error = EPERM;
1142 1.1 pk else
1143 1.1 pk mp->mp_openflags = *((int *)data) &
1144 1.1 pk (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
1145 1.1 pk TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
1146 1.1 pk break;
1147 1.1 pk
1148 1.1 pk default:
1149 1.1 pk error = ENOTTY;
1150 1.1 pk }
1151 1.1 pk
1152 1.1 pk return(error);
1153 1.1 pk }
1154 1.1 pk
1155 1.1 pk /*
1156 1.1 pk * Stop output, e.g., for ^S or output flush.
1157 1.1 pk */
1158 1.1 pk void
1159 1.1 pk mttystop(tp, flags)
1160 1.1 pk struct tty *tp;
1161 1.1 pk int flags;
1162 1.1 pk {
1163 1.10.4.2 fvdl dev_t dev = vdev_rdev(tp->t_devvp);
1164 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(tp->t_devvp);
1165 1.10.4.2 fvdl struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1166 1.1 pk int s;
1167 1.1 pk
1168 1.1 pk s = spltty();
1169 1.1 pk
1170 1.1 pk if( ISSET(tp->t_state, TS_BUSY) ) {
1171 1.1 pk if( !ISSET(tp->t_state, TS_TTSTOP) )
1172 1.1 pk SET(tp->t_state, TS_FLUSH);
1173 1.1 pk
1174 1.1 pk /*
1175 1.1 pk * the transmit interrupt routine will disable transmit when it
1176 1.1 pk * notices that MTTYF_STOP has been set.
1177 1.1 pk */
1178 1.1 pk SET(mp->mp_flags, MTTYF_STOP);
1179 1.1 pk }
1180 1.1 pk
1181 1.1 pk splx(s);
1182 1.1 pk }
1183 1.1 pk
1184 1.1 pk /*
1185 1.1 pk * Start output, after a stop.
1186 1.1 pk */
1187 1.1 pk void
1188 1.1 pk mtty_start(tp)
1189 1.1 pk struct tty *tp;
1190 1.1 pk {
1191 1.10.4.2 fvdl dev_t dev = vdev_rdev(tp->t_devvp);
1192 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(tp->t_devvp);
1193 1.10.4.2 fvdl struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1194 1.1 pk int s;
1195 1.1 pk
1196 1.1 pk s = spltty();
1197 1.1 pk
1198 1.1 pk /* we only need to do something if we are not already busy
1199 1.1 pk * or delaying or stopped
1200 1.1 pk */
1201 1.1 pk if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1202 1.1 pk
1203 1.1 pk /* if we are sleeping and output has drained below
1204 1.1 pk * low water mark, awaken
1205 1.1 pk */
1206 1.1 pk if( tp->t_outq.c_cc <= tp->t_lowat ) {
1207 1.1 pk if( ISSET(tp->t_state, TS_ASLEEP) ) {
1208 1.1 pk CLR(tp->t_state, TS_ASLEEP);
1209 1.1 pk wakeup(&tp->t_outq);
1210 1.1 pk }
1211 1.1 pk
1212 1.1 pk selwakeup(&tp->t_wsel);
1213 1.1 pk }
1214 1.1 pk
1215 1.1 pk /* if something to send, start transmitting
1216 1.1 pk */
1217 1.1 pk if( tp->t_outq.c_cc ) {
1218 1.1 pk mp->mp_txc = ndqb(&tp->t_outq, 0);
1219 1.1 pk mp->mp_txp = tp->t_outq.c_cf;
1220 1.1 pk SET(tp->t_state, TS_BUSY);
1221 1.1 pk cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1222 1.1 pk }
1223 1.1 pk }
1224 1.1 pk
1225 1.1 pk splx(s);
1226 1.1 pk }
1227 1.1 pk
1228 1.1 pk /*
1229 1.1 pk * set/get modem line status
1230 1.1 pk *
1231 1.1 pk * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
1232 1.1 pk *
1233 1.1 pk * note that DTR and RTS lines are exchanged, and that DSR is
1234 1.1 pk * not available on the LC2+1Sp card (used as CD)
1235 1.1 pk *
1236 1.1 pk * only let them fiddle with RTS if CRTSCTS is not enabled
1237 1.1 pk */
1238 1.1 pk int
1239 1.1 pk mtty_modem_control(mp, bits, howto)
1240 1.1 pk struct mtty_port *mp;
1241 1.1 pk int bits;
1242 1.1 pk int howto;
1243 1.1 pk {
1244 1.1 pk struct cd1400 *cd = mp->mp_cd1400;
1245 1.1 pk struct tty *tp = mp->mp_tty;
1246 1.1 pk int s, msvr;
1247 1.1 pk
1248 1.1 pk s = spltty();
1249 1.1 pk
1250 1.1 pk cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1251 1.1 pk
1252 1.1 pk switch(howto) {
1253 1.1 pk case DMGET: /* get bits */
1254 1.1 pk bits = 0;
1255 1.1 pk
1256 1.1 pk bits |= TIOCM_LE;
1257 1.1 pk
1258 1.1 pk msvr = cd1400_read_reg(cd, CD1400_MSVR1);
1259 1.1 pk if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR;
1260 1.1 pk
1261 1.1 pk msvr = cd1400_read_reg(cd, CD1400_MSVR2);
1262 1.1 pk if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS;
1263 1.1 pk if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS;
1264 1.1 pk if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI;
1265 1.1 pk if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
1266 1.1 pk if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
1267 1.1 pk
1268 1.1 pk break;
1269 1.1 pk
1270 1.1 pk case DMSET: /* reset bits */
1271 1.1 pk if( !ISSET(tp->t_cflag, CRTSCTS) )
1272 1.1 pk cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
1273 1.1 pk
1274 1.1 pk cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
1275 1.1 pk
1276 1.1 pk break;
1277 1.1 pk
1278 1.1 pk case DMBIS: /* set bits */
1279 1.1 pk if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1280 1.1 pk cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
1281 1.1 pk
1282 1.1 pk if( bits & TIOCM_DTR )
1283 1.1 pk cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
1284 1.1 pk
1285 1.1 pk break;
1286 1.1 pk
1287 1.1 pk case DMBIC: /* clear bits */
1288 1.1 pk if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1289 1.1 pk cd1400_write_reg(cd, CD1400_MSVR2, 0);
1290 1.1 pk
1291 1.1 pk if( bits & TIOCM_DTR )
1292 1.1 pk cd1400_write_reg(cd, CD1400_MSVR1, 0);
1293 1.1 pk
1294 1.1 pk break;
1295 1.1 pk }
1296 1.1 pk
1297 1.1 pk splx(s);
1298 1.1 pk return(bits);
1299 1.1 pk }
1300 1.1 pk
1301 1.1 pk /*
1302 1.1 pk * Set tty parameters, returns error or 0 on success
1303 1.1 pk */
1304 1.1 pk int
1305 1.1 pk mtty_param(tp, t)
1306 1.1 pk struct tty *tp;
1307 1.1 pk struct termios *t;
1308 1.1 pk {
1309 1.10.4.2 fvdl dev_t dev = vdev_rdev(tp->t_devvp);
1310 1.10.4.2 fvdl struct mtty_softc *ms = vdev_privdata(tp->t_devvp);
1311 1.10.4.2 fvdl struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1312 1.1 pk struct cd1400 *cd = mp->mp_cd1400;
1313 1.1 pk int rbpr, tbpr, rcor, tcor;
1314 1.1 pk u_char mcor1 = 0, mcor2 = 0;
1315 1.1 pk int s, opt;
1316 1.1 pk
1317 1.1 pk if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) )
1318 1.1 pk return(EINVAL);
1319 1.1 pk
1320 1.1 pk if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) )
1321 1.1 pk return(EINVAL);
1322 1.1 pk
1323 1.1 pk s = spltty();
1324 1.1 pk
1325 1.1 pk /* hang up the line if ospeed is zero, else raise DTR */
1326 1.1 pk (void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS));
1327 1.1 pk
1328 1.1 pk /* select channel, done in mtty_modem_control() */
1329 1.1 pk /* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */
1330 1.1 pk
1331 1.1 pk /* set transmit speed */
1332 1.1 pk if( t->c_ospeed ) {
1333 1.1 pk cd1400_write_reg(cd, CD1400_TCOR, tcor);
1334 1.1 pk cd1400_write_reg(cd, CD1400_TBPR, tbpr);
1335 1.1 pk }
1336 1.1 pk
1337 1.1 pk /* set receive speed */
1338 1.1 pk if( t->c_ispeed ) {
1339 1.1 pk cd1400_write_reg(cd, CD1400_RCOR, rcor);
1340 1.1 pk cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1341 1.1 pk }
1342 1.1 pk
1343 1.1 pk /* enable transmitting and receiving on this channel */
1344 1.1 pk opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
1345 1.1 pk cd1400_write_ccr(cd, opt);
1346 1.1 pk
1347 1.1 pk /* set parity, data and stop bits */
1348 1.1 pk opt = 0;
1349 1.1 pk if( ISSET(t->c_cflag, PARENB) )
1350 1.1 pk opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
1351 1.1 pk
1352 1.1 pk if( !ISSET(t->c_iflag, INPCK) )
1353 1.1 pk opt |= CD1400_COR1_NOINPCK; /* no parity checking */
1354 1.1 pk
1355 1.1 pk if( ISSET(t->c_cflag, CSTOPB) )
1356 1.1 pk opt |= CD1400_COR1_STOP2;
1357 1.1 pk
1358 1.1 pk switch( t->c_cflag & CSIZE ) {
1359 1.1 pk case CS5:
1360 1.1 pk opt |= CD1400_COR1_CS5;
1361 1.1 pk break;
1362 1.1 pk
1363 1.1 pk case CS6:
1364 1.1 pk opt |= CD1400_COR1_CS6;
1365 1.1 pk break;
1366 1.1 pk
1367 1.1 pk case CS7:
1368 1.1 pk opt |= CD1400_COR1_CS7;
1369 1.1 pk break;
1370 1.1 pk
1371 1.1 pk default:
1372 1.1 pk opt |= CD1400_COR1_CS8;
1373 1.1 pk break;
1374 1.1 pk }
1375 1.1 pk
1376 1.1 pk cd1400_write_reg(cd, CD1400_COR1, opt);
1377 1.1 pk
1378 1.1 pk /*
1379 1.1 pk * enable Embedded Transmit Commands (for breaks)
1380 1.1 pk * use the CD1400 automatic CTS flow control if CRTSCTS is set
1381 1.1 pk */
1382 1.1 pk opt = CD1400_COR2_ETC;
1383 1.1 pk if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW;
1384 1.1 pk cd1400_write_reg(cd, CD1400_COR2, opt);
1385 1.1 pk
1386 1.1 pk cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
1387 1.1 pk
1388 1.1 pk cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
1389 1.1 pk
1390 1.1 pk cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
1391 1.1 pk cd1400_write_reg(cd, CD1400_COR5, 0);
1392 1.1 pk
1393 1.1 pk /*
1394 1.1 pk * if automatic RTS handshaking enabled, set DTR threshold
1395 1.1 pk * (RTS and DTR lines are switched, CD1400 thinks its DTR)
1396 1.1 pk */
1397 1.1 pk if( ISSET(t->c_cflag, CRTSCTS) )
1398 1.1 pk mcor1 = MTTY_RX_DTR_THRESHOLD;
1399 1.1 pk
1400 1.1 pk /* set up `carrier detect' interrupts */
1401 1.1 pk if( cd->cd_parmode ) {
1402 1.1 pk SET(mcor1, CD1400_MCOR1_DSRzd);
1403 1.1 pk SET(mcor2, CD1400_MCOR2_DSRod);
1404 1.1 pk } else {
1405 1.1 pk SET(mcor1, CD1400_MCOR1_CDzd);
1406 1.1 pk SET(mcor2, CD1400_MCOR2_CDod);
1407 1.1 pk }
1408 1.1 pk
1409 1.1 pk cd1400_write_reg(cd, CD1400_MCOR1, mcor1);
1410 1.1 pk cd1400_write_reg(cd, CD1400_MCOR2, mcor2);
1411 1.1 pk
1412 1.1 pk /* receive timeout 2ms */
1413 1.1 pk cd1400_write_reg(cd, CD1400_RTPR, 2);
1414 1.1 pk
1415 1.1 pk splx(s);
1416 1.1 pk return(0);
1417 1.1 pk }
1418 1.1 pk
1419 1.1 pk /************************************************************************
1420 1.1 pk *
1421 1.1 pk * MBPP Routines
1422 1.1 pk *
1423 1.1 pk * mbpp_match match one mbpp device
1424 1.1 pk * mbpp_attach attach mbpp devices
1425 1.1 pk * mbppopen open mbpp device
1426 1.1 pk * mbppclose close mbpp device
1427 1.1 pk * mbppread read from mbpp
1428 1.1 pk * mbppwrite write to mbpp
1429 1.1 pk * mbppioctl do ioctl on mbpp
1430 1.3 pk * mbppselect do select on mbpp
1431 1.3 pk * mbpp_rw general rw routine
1432 1.3 pk * mbpp_timeout rw timeout
1433 1.3 pk * mbpp_start rw start after delay
1434 1.3 pk * mbpp_send send data
1435 1.3 pk * mbpp_recv recv data
1436 1.1 pk */
1437 1.1 pk
1438 1.1 pk int
1439 1.1 pk mbpp_match(parent, cf, args)
1440 1.1 pk struct device *parent;
1441 1.1 pk struct cfdata *cf;
1442 1.1 pk void *args;
1443 1.1 pk {
1444 1.1 pk struct magma_softc *sc = (struct magma_softc *)parent;
1445 1.1 pk
1446 1.1 pk return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL );
1447 1.1 pk }
1448 1.1 pk
1449 1.1 pk void
1450 1.1 pk mbpp_attach(parent, dev, args)
1451 1.1 pk struct device *parent;
1452 1.1 pk struct device *dev;
1453 1.1 pk void *args;
1454 1.1 pk {
1455 1.1 pk struct magma_softc *sc = (struct magma_softc *)parent;
1456 1.1 pk struct mbpp_softc *ms = (struct mbpp_softc *)dev;
1457 1.1 pk struct mbpp_port *mp;
1458 1.3 pk int port;
1459 1.1 pk
1460 1.1 pk sc->ms_mbpp = ms;
1461 1.2 pk dprintf((" addr %p", ms));
1462 1.1 pk
1463 1.1 pk for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) {
1464 1.1 pk mp = &ms->ms_port[port];
1465 1.1 pk
1466 1.6 thorpej callout_init(&mp->mp_timeout_ch);
1467 1.6 thorpej callout_init(&mp->mp_start_ch);
1468 1.6 thorpej
1469 1.1 pk if( sc->ms_ncd1190 )
1470 1.1 pk mp->mp_cd1190 = &sc->ms_cd1190[port];
1471 1.1 pk else
1472 1.1 pk mp->mp_cd1400 = &sc->ms_cd1400[0];
1473 1.1 pk }
1474 1.1 pk
1475 1.1 pk ms->ms_nports = port;
1476 1.1 pk printf(": %d port%s\n", port, port == 1 ? "" : "s");
1477 1.1 pk }
1478 1.1 pk
1479 1.1 pk /*
1480 1.1 pk * open routine. returns zero if successful, else error code
1481 1.1 pk */
1482 1.1 pk int
1483 1.10.4.2 fvdl mbppopen(devvp, flags, mode, p)
1484 1.10.4.2 fvdl struct vnode *devvp;
1485 1.1 pk int flags;
1486 1.1 pk int mode;
1487 1.1 pk struct proc *p;
1488 1.1 pk {
1489 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1490 1.1 pk int card = MAGMA_CARD(dev);
1491 1.1 pk int port = MAGMA_PORT(dev);
1492 1.1 pk struct mbpp_softc *ms;
1493 1.1 pk struct mbpp_port *mp;
1494 1.3 pk int s;
1495 1.1 pk
1496 1.1 pk if( card >= mbpp_cd.cd_ndevs ||
1497 1.1 pk (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
1498 1.1 pk return(ENXIO);
1499 1.1 pk
1500 1.1 pk mp = &ms->ms_port[port];
1501 1.1 pk
1502 1.1 pk s = spltty();
1503 1.1 pk if( ISSET(mp->mp_flags, MBPPF_OPEN) ) {
1504 1.1 pk splx(s);
1505 1.1 pk return(EBUSY);
1506 1.1 pk }
1507 1.1 pk SET(mp->mp_flags, MBPPF_OPEN);
1508 1.1 pk splx(s);
1509 1.1 pk
1510 1.10.4.2 fvdl vdev_setprivdata(devvp, ms);
1511 1.10.4.2 fvdl
1512 1.3 pk /* set defaults */
1513 1.3 pk mp->mp_burst = MBPP_BURST;
1514 1.3 pk mp->mp_timeout = mbpp_mstohz(MBPP_TIMEOUT);
1515 1.3 pk mp->mp_delay = mbpp_mstohz(MBPP_DELAY);
1516 1.3 pk
1517 1.3 pk /* init chips */
1518 1.3 pk if( mp->mp_cd1400 ) { /* CD1400 */
1519 1.2 pk struct cd1400 *cd = mp->mp_cd1400;
1520 1.1 pk
1521 1.1 pk /* set up CD1400 channel */
1522 1.1 pk s = spltty();
1523 1.1 pk cd1400_write_reg(cd, CD1400_CAR, 0);
1524 1.1 pk cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1525 1.1 pk cd1400_write_reg(cd, CD1400_LIVR, (1<<3));
1526 1.1 pk splx(s);
1527 1.3 pk } else { /* CD1190 */
1528 1.3 pk mp->mp_flags = 0;
1529 1.3 pk return (ENXIO);
1530 1.1 pk }
1531 1.1 pk
1532 1.3 pk return (0);
1533 1.1 pk }
1534 1.1 pk
1535 1.1 pk /*
1536 1.1 pk * close routine. returns zero if successful, else error code
1537 1.1 pk */
1538 1.1 pk int
1539 1.10.4.2 fvdl mbppclose(devvp, flag, mode, p)
1540 1.10.4.2 fvdl struct vnode *devvp;
1541 1.1 pk int flag;
1542 1.1 pk int mode;
1543 1.1 pk struct proc *p;
1544 1.1 pk {
1545 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1546 1.10.4.2 fvdl struct mbpp_softc *ms = vdev_privdata(devvp);
1547 1.1 pk struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1548 1.1 pk
1549 1.1 pk mp->mp_flags = 0;
1550 1.1 pk return(0);
1551 1.1 pk }
1552 1.1 pk
1553 1.1 pk /*
1554 1.1 pk * Read routine
1555 1.1 pk */
1556 1.1 pk int
1557 1.10.4.2 fvdl mbppread(devvp, uio, flags)
1558 1.10.4.2 fvdl struct vnode *devvp;
1559 1.1 pk struct uio *uio;
1560 1.1 pk int flags;
1561 1.1 pk {
1562 1.3 pk
1563 1.10.4.2 fvdl return mbpp_rw(devvp, uio);
1564 1.1 pk }
1565 1.1 pk
1566 1.1 pk /*
1567 1.1 pk * Write routine
1568 1.1 pk */
1569 1.1 pk int
1570 1.10.4.2 fvdl mbppwrite(devvp, uio, flags)
1571 1.10.4.2 fvdl struct vnode *devvp;
1572 1.1 pk struct uio *uio;
1573 1.1 pk int flags;
1574 1.1 pk {
1575 1.1 pk
1576 1.10.4.2 fvdl return mbpp_rw(devvp, uio);
1577 1.1 pk }
1578 1.1 pk
1579 1.1 pk /*
1580 1.1 pk * ioctl routine
1581 1.1 pk */
1582 1.1 pk int
1583 1.10.4.2 fvdl mbppioctl(devvp, cmd, data, flags, p)
1584 1.10.4.2 fvdl struct vnode *devvp;
1585 1.1 pk u_long cmd;
1586 1.1 pk caddr_t data;
1587 1.1 pk int flags;
1588 1.1 pk struct proc *p;
1589 1.1 pk {
1590 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1591 1.10.4.2 fvdl struct mbpp_softc *ms = vdev_privdata(devvp);
1592 1.3 pk struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1593 1.3 pk struct mbpp_param *bp;
1594 1.3 pk int error = 0;
1595 1.3 pk int s;
1596 1.3 pk
1597 1.3 pk switch(cmd) {
1598 1.3 pk case MBPPIOCSPARAM:
1599 1.3 pk bp = (struct mbpp_param *)data;
1600 1.3 pk if( bp->bp_burst < MBPP_BURST_MIN || bp->bp_burst > MBPP_BURST_MAX ||
1601 1.3 pk bp->bp_delay < MBPP_DELAY_MIN || bp->bp_delay > MBPP_DELAY_MIN ) {
1602 1.3 pk error = EINVAL;
1603 1.3 pk } else {
1604 1.3 pk mp->mp_burst = bp->bp_burst;
1605 1.3 pk mp->mp_timeout = mbpp_mstohz(bp->bp_timeout);
1606 1.3 pk mp->mp_delay = mbpp_mstohz(bp->bp_delay);
1607 1.3 pk }
1608 1.3 pk break;
1609 1.3 pk case MBPPIOCGPARAM:
1610 1.3 pk bp = (struct mbpp_param *)data;
1611 1.3 pk bp->bp_burst = mp->mp_burst;
1612 1.3 pk bp->bp_timeout = mbpp_hztoms(mp->mp_timeout);
1613 1.3 pk bp->bp_delay = mbpp_hztoms(mp->mp_delay);
1614 1.3 pk break;
1615 1.3 pk case MBPPIOCGSTAT:
1616 1.3 pk /* XXX make this more generic */
1617 1.3 pk s = spltty();
1618 1.3 pk cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0);
1619 1.3 pk *(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR);
1620 1.3 pk splx(s);
1621 1.3 pk break;
1622 1.3 pk default:
1623 1.3 pk error = ENOTTY;
1624 1.3 pk }
1625 1.3 pk
1626 1.3 pk return(error);
1627 1.1 pk }
1628 1.1 pk
1629 1.1 pk /*
1630 1.1 pk * poll routine
1631 1.1 pk */
1632 1.1 pk int
1633 1.10.4.2 fvdl mbpppoll(devvp, rw, p)
1634 1.10.4.2 fvdl struct vnode *devvp;
1635 1.1 pk int rw;
1636 1.1 pk struct proc *p;
1637 1.1 pk {
1638 1.3 pk
1639 1.1 pk return(ENODEV);
1640 1.3 pk }
1641 1.3 pk
1642 1.3 pk int
1643 1.10.4.2 fvdl mbpp_rw(devvp, uio)
1644 1.10.4.2 fvdl struct vnode *devvp;
1645 1.3 pk struct uio *uio;
1646 1.3 pk {
1647 1.10.4.2 fvdl dev_t dev = vdev_rdev(devvp);
1648 1.3 pk int port = MAGMA_PORT(dev);
1649 1.10.4.2 fvdl struct mbpp_softc *ms = vdev_privdata(devvp);
1650 1.3 pk struct mbpp_port *mp = &ms->ms_port[port];
1651 1.3 pk caddr_t buffer, ptr;
1652 1.3 pk int buflen, cnt, len;
1653 1.3 pk int s, error = 0;
1654 1.3 pk int gotdata = 0;
1655 1.3 pk
1656 1.3 pk if( uio->uio_resid == 0 )
1657 1.3 pk return(0);
1658 1.3 pk
1659 1.3 pk buflen = min(uio->uio_resid, mp->mp_burst);
1660 1.3 pk buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
1661 1.3 pk if( buffer == NULL )
1662 1.3 pk return(ENOMEM);
1663 1.3 pk
1664 1.3 pk SET(mp->mp_flags, MBPPF_UIO);
1665 1.3 pk
1666 1.3 pk /*
1667 1.3 pk * start timeout, if needed
1668 1.3 pk */
1669 1.3 pk if( mp->mp_timeout > 0 ) {
1670 1.3 pk SET(mp->mp_flags, MBPPF_TIMEOUT);
1671 1.6 thorpej callout_reset(&mp->mp_timeout_ch, mp->mp_timeout,
1672 1.6 thorpej mbpp_timeout, mp);
1673 1.3 pk }
1674 1.3 pk
1675 1.3 pk len = cnt = 0;
1676 1.3 pk while( uio->uio_resid > 0 ) {
1677 1.3 pk len = min(buflen, uio->uio_resid);
1678 1.3 pk ptr = buffer;
1679 1.3 pk
1680 1.3 pk if( uio->uio_rw == UIO_WRITE ) {
1681 1.3 pk error = uiomove(ptr, len, uio);
1682 1.3 pk if( error ) break;
1683 1.3 pk }
1684 1.3 pk again: /* goto bad */
1685 1.3 pk /* timed out? */
1686 1.3 pk if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1687 1.3 pk break;
1688 1.3 pk
1689 1.3 pk /*
1690 1.3 pk * perform the operation
1691 1.3 pk */
1692 1.3 pk if( uio->uio_rw == UIO_WRITE ) {
1693 1.3 pk cnt = mbpp_send(mp, ptr, len);
1694 1.3 pk } else {
1695 1.3 pk cnt = mbpp_recv(mp, ptr, len);
1696 1.3 pk }
1697 1.3 pk
1698 1.3 pk if( uio->uio_rw == UIO_READ ) {
1699 1.3 pk if( cnt ) {
1700 1.3 pk error = uiomove(ptr, cnt, uio);
1701 1.3 pk if( error ) break;
1702 1.3 pk gotdata++;
1703 1.3 pk }
1704 1.3 pk else if( gotdata ) /* consider us done */
1705 1.3 pk break;
1706 1.3 pk }
1707 1.3 pk
1708 1.3 pk /* timed out? */
1709 1.3 pk if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1710 1.3 pk break;
1711 1.3 pk
1712 1.3 pk /*
1713 1.3 pk * poll delay?
1714 1.3 pk */
1715 1.3 pk if( mp->mp_delay > 0 ) {
1716 1.3 pk s = splsoftclock();
1717 1.3 pk SET(mp->mp_flags, MBPPF_DELAY);
1718 1.6 thorpej callout_reset(&mp->mp_start_ch, mp->mp_delay,
1719 1.6 thorpej mbpp_start, mp);
1720 1.3 pk error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0);
1721 1.3 pk splx(s);
1722 1.3 pk if( error ) break;
1723 1.3 pk }
1724 1.3 pk
1725 1.3 pk /*
1726 1.3 pk * don't call uiomove again until we used all the data we grabbed
1727 1.3 pk */
1728 1.3 pk if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1729 1.3 pk ptr += cnt;
1730 1.3 pk len -= cnt;
1731 1.3 pk cnt = 0;
1732 1.3 pk goto again;
1733 1.3 pk }
1734 1.3 pk }
1735 1.3 pk
1736 1.3 pk /*
1737 1.3 pk * clear timeouts
1738 1.3 pk */
1739 1.3 pk s = splsoftclock();
1740 1.3 pk if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) {
1741 1.6 thorpej callout_stop(&mp->mp_timeout_ch);
1742 1.3 pk CLR(mp->mp_flags, MBPPF_TIMEOUT);
1743 1.3 pk }
1744 1.3 pk if( ISSET(mp->mp_flags, MBPPF_DELAY) ) {
1745 1.6 thorpej callout_stop(&mp->mp_start_ch);
1746 1.3 pk CLR(mp->mp_flags, MBPPF_DELAY);
1747 1.3 pk }
1748 1.3 pk splx(s);
1749 1.3 pk
1750 1.3 pk /*
1751 1.3 pk * adjust for those chars that we uiomoved but never actually wrote
1752 1.3 pk */
1753 1.3 pk if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1754 1.3 pk uio->uio_resid += (len - cnt);
1755 1.3 pk }
1756 1.3 pk
1757 1.3 pk free(buffer, M_DEVBUF);
1758 1.3 pk return(error);
1759 1.3 pk }
1760 1.3 pk
1761 1.3 pk void
1762 1.3 pk mbpp_timeout(arg)
1763 1.3 pk void *arg;
1764 1.3 pk {
1765 1.3 pk struct mbpp_port *mp = arg;
1766 1.3 pk
1767 1.3 pk CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
1768 1.3 pk wakeup(mp);
1769 1.3 pk }
1770 1.3 pk
1771 1.3 pk void
1772 1.3 pk mbpp_start(arg)
1773 1.3 pk void *arg;
1774 1.3 pk {
1775 1.3 pk struct mbpp_port *mp = arg;
1776 1.3 pk
1777 1.3 pk CLR(mp->mp_flags, MBPPF_DELAY);
1778 1.3 pk wakeup(mp);
1779 1.3 pk }
1780 1.3 pk
1781 1.3 pk int
1782 1.3 pk mbpp_send(mp, ptr, len)
1783 1.3 pk struct mbpp_port *mp;
1784 1.3 pk caddr_t ptr;
1785 1.3 pk int len;
1786 1.3 pk {
1787 1.3 pk int s;
1788 1.3 pk struct cd1400 *cd = mp->mp_cd1400;
1789 1.3 pk
1790 1.3 pk /* set up io information */
1791 1.3 pk mp->mp_ptr = ptr;
1792 1.3 pk mp->mp_cnt = len;
1793 1.3 pk
1794 1.3 pk /* start transmitting */
1795 1.3 pk s = spltty();
1796 1.3 pk if( cd ) {
1797 1.3 pk cd1400_write_reg(cd, CD1400_CAR, 0);
1798 1.3 pk
1799 1.3 pk /* output strobe width ~1microsecond */
1800 1.3 pk cd1400_write_reg(cd, CD1400_TBPR, 10);
1801 1.3 pk
1802 1.3 pk /* enable channel */
1803 1.3 pk cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
1804 1.3 pk cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY);
1805 1.3 pk }
1806 1.3 pk
1807 1.3 pk /* ZZzzz... */
1808 1.3 pk tsleep(mp, PCATCH | PZERO, "mbpp_send", 0);
1809 1.3 pk
1810 1.3 pk /* stop transmitting */
1811 1.3 pk if( cd ) {
1812 1.3 pk cd1400_write_reg(cd, CD1400_CAR, 0);
1813 1.3 pk
1814 1.3 pk /* disable transmitter */
1815 1.3 pk cd1400_write_reg(cd, CD1400_SRER, 0);
1816 1.3 pk cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
1817 1.3 pk
1818 1.3 pk /* flush fifo */
1819 1.3 pk cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
1820 1.3 pk }
1821 1.3 pk splx(s);
1822 1.3 pk
1823 1.3 pk /* return number of chars sent */
1824 1.3 pk return(len - mp->mp_cnt);
1825 1.3 pk }
1826 1.3 pk
1827 1.3 pk int
1828 1.3 pk mbpp_recv(mp, ptr, len)
1829 1.3 pk struct mbpp_port *mp;
1830 1.3 pk caddr_t ptr;
1831 1.3 pk int len;
1832 1.3 pk {
1833 1.3 pk int s;
1834 1.3 pk struct cd1400 *cd = mp->mp_cd1400;
1835 1.3 pk
1836 1.3 pk /* set up io information */
1837 1.3 pk mp->mp_ptr = ptr;
1838 1.3 pk mp->mp_cnt = len;
1839 1.3 pk
1840 1.3 pk /* start receiving */
1841 1.3 pk s = spltty();
1842 1.3 pk if( cd ) {
1843 1.3 pk int rcor, rbpr;
1844 1.3 pk
1845 1.3 pk cd1400_write_reg(cd, CD1400_CAR, 0);
1846 1.3 pk
1847 1.3 pk /* input strobe at 100kbaud (10microseconds) */
1848 1.3 pk cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
1849 1.3 pk cd1400_write_reg(cd, CD1400_RCOR, rcor);
1850 1.3 pk cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1851 1.3 pk
1852 1.3 pk /* rx threshold */
1853 1.3 pk cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
1854 1.3 pk cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
1855 1.3 pk
1856 1.3 pk /* enable channel */
1857 1.3 pk cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
1858 1.3 pk cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA);
1859 1.3 pk }
1860 1.3 pk
1861 1.3 pk /* ZZzzz... */
1862 1.3 pk tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0);
1863 1.3 pk
1864 1.3 pk /* stop receiving */
1865 1.3 pk if( cd ) {
1866 1.3 pk cd1400_write_reg(cd, CD1400_CAR, 0);
1867 1.3 pk
1868 1.3 pk /* disable receiving */
1869 1.3 pk cd1400_write_reg(cd, CD1400_SRER, 0);
1870 1.3 pk cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
1871 1.3 pk }
1872 1.3 pk splx(s);
1873 1.3 pk
1874 1.3 pk /* return number of chars received */
1875 1.3 pk return(len - mp->mp_cnt);
1876 1.3 pk }
1877 1.3 pk
1878 1.3 pk int
1879 1.3 pk mbpp_hztoms(h)
1880 1.3 pk int h;
1881 1.3 pk {
1882 1.3 pk int m = h;
1883 1.3 pk
1884 1.3 pk if( m > 0 )
1885 1.3 pk m = m * 1000 / hz;
1886 1.3 pk return(m);
1887 1.3 pk }
1888 1.3 pk
1889 1.3 pk int
1890 1.3 pk mbpp_mstohz(m)
1891 1.3 pk int m;
1892 1.3 pk {
1893 1.3 pk int h = m;
1894 1.3 pk
1895 1.3 pk if( h > 0 ) {
1896 1.3 pk h = h * hz / 1000;
1897 1.3 pk if( h == 0 )
1898 1.3 pk h = 1000 / hz;
1899 1.3 pk }
1900 1.3 pk return(h);
1901 1.1 pk }
1902 1.1 pk
1903 1.1 pk #endif /* NMAGMA */
1904