magma.c revision 1.3 1 /* $NetBSD: magma.c,v 1.3 1998/06/03 22:38:31 pk Exp $ */
2 /*
3 * magma.c
4 *
5 * Copyright (c) 1998 Iain Hibbert
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Iain Hibbert
19 * 4. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 */
34 #if 0
35 #define MAGMA_DEBUG
36 #endif
37
38 /*
39 * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
40 * CD1400 & CD1190 chips
41 */
42
43 #include "magma.h"
44 #if NMAGMA > 0
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/ioctl.h>
52 #include <sys/malloc.h>
53 #include <sys/tty.h>
54 #include <sys/time.h>
55 #include <sys/kernel.h>
56 #include <sys/syslog.h>
57 #include <sys/conf.h>
58 #include <sys/errno.h>
59
60 #include <machine/bus.h>
61 #include <sparc/dev/sbusvar.h>
62 #include <sparc/autoconf.h>
63 #include <sparc/conf.h>
64 #include <sparc/cpu.h>
65 #include <sparc/ctlreg.h>
66
67 #include <sparc/sparc/asm.h>
68
69 #include <dev/ic/cd1400reg.h>
70 #include <dev/ic/cd1190reg.h>
71
72 #include <machine/mbppio.h>
73 #include "magmareg.h"
74
75 /*
76 * Select tty soft interrupt bit based on TTY ipl. (stole from zs.c)
77 */
78 #if PIL_TTY == 1
79 # define IE_MSOFT IE_L1
80 #elif PIL_TTY == 4
81 # define IE_MSOFT IE_L4
82 #elif PIL_TTY == 6
83 # define IE_MSOFT IE_L6
84 #else
85 # error "no suitable software interrupt bit"
86 #endif
87
88 /* supported cards
89 *
90 * The table below lists the cards that this driver is likely to
91 * be able to support.
92 *
93 * Cards with parallel ports: except for the LC2+1Sp, they all use
94 * the CD1190 chip which I know nothing about. I've tried to leave
95 * hooks for it so it shouldn't be too hard to add support later.
96 * (I think somebody is working on this separately)
97 *
98 * Thanks to Bruce at Magma for telling me the hardware offsets.
99 */
100 static struct magma_board_info supported_cards[] = {
101 {
102 "MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
103 1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
104 0, { 0, 0 }
105 },
106 {
107 "MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
108 2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
109 0, { 0, 0 }
110 },
111 {
112 "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
113 2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
114 0, { 0, 0 }
115 },
116 {
117 "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
118 2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
119 0, { 0, 0 }
120 },
121 {
122 "MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
123 3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
124 0, { 0, 0 }
125 },
126 {
127 "MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
128 4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
129 0, { 0, 0 }
130 },
131 {
132 "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
133 4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
134 0, { 0, 0 }
135 },
136 {
137 "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
138 4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
139 0, { 0, 0 }
140 },
141 {
142 "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
143 1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
144 0, { 0, 0 }
145 },
146 {
147 "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
148 1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
149 1, { 0x6000, 0 }
150 },
151 {
152 "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
153 1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
154 1, { 0x6000, 0 }
155 },
156 {
157 "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
158 2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
159 2, { 0xa000, 0xb000 }
160 },
161 {
162 "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
163 0, 0, 0, 0, { 0, 0, 0, 0 },
164 1, { 0x8000, 0 }
165 },
166 {
167 "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
168 0, 0, 0, 0, { 0, 0, 0, 0 },
169 2, { 0x4000, 0x8000 }
170 },
171 {
172 NULL, NULL, 0, 0,
173 0, 0, 0, 0, { 0, 0, 0, 0 },
174 0, { 0, 0 }
175 }
176 };
177
178 /************************************************************************
179 *
180 * Autoconfig Stuff
181 */
182
183 struct cfattach magma_ca = {
184 sizeof(struct magma_softc), magma_match, magma_attach
185 };
186
187 struct cfattach mtty_ca = {
188 sizeof(struct mtty_softc), mtty_match, mtty_attach
189 };
190
191 struct cfattach mbpp_ca = {
192 sizeof(struct mbpp_softc), mbpp_match, mbpp_attach
193 };
194
195 extern struct cfdriver mtty_cd;
196 extern struct cfdriver mbpp_cd;
197
198 /************************************************************************
199 *
200 * CD1400 Routines
201 *
202 * cd1400_compute_baud calculate COR/BPR register values
203 * cd1400_write_ccr write a value to CD1400 ccr
204 * cd1400_read_reg read from a CD1400 register
205 * cd1400_write_reg write to a CD1400 register
206 * cd1400_enable_transmitter enable transmitting on CD1400 channel
207 */
208
209 /*
210 * compute the bpr/cor pair for any baud rate
211 * returns 0 for success, 1 for failure
212 */
213 int
214 cd1400_compute_baud(speed, clock, cor, bpr)
215 speed_t speed;
216 int clock;
217 int *cor, *bpr;
218 {
219 int c, co, br;
220
221 if( speed < 50 || speed > 150000 )
222 return(1);
223
224 for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) {
225 br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
226 if( br < 0x100 ) {
227 *bpr = br;
228 *cor = c;
229 return(0);
230 }
231 }
232
233 return(1);
234 }
235
236 /*
237 * Write a CD1400 channel command, should have a timeout?
238 */
239 __inline void
240 cd1400_write_ccr(cd, cmd)
241 struct cd1400 *cd;
242 u_char cmd;
243 {
244 while( cd1400_read_reg(cd, CD1400_CCR) )
245 ;
246
247 cd1400_write_reg(cd, CD1400_CCR, cmd);
248 }
249
250 /*
251 * read a value from a cd1400 register
252 */
253 __inline u_char
254 cd1400_read_reg(cd, reg)
255 struct cd1400 *cd;
256 int reg;
257 {
258 return(cd->cd_reg[reg]);
259 }
260
261 /*
262 * write a value to a cd1400 register
263 */
264 __inline void
265 cd1400_write_reg(cd, reg, value)
266 struct cd1400 *cd;
267 int reg;
268 u_char value;
269 {
270 cd->cd_reg[reg] = value;
271 }
272
273 /*
274 * enable transmit service requests for cd1400 channel
275 */
276 void
277 cd1400_enable_transmitter(cd, channel)
278 struct cd1400 *cd;
279 int channel;
280 {
281 int s, srer;
282
283 s = spltty();
284 cd1400_write_reg(cd, CD1400_CAR, channel);
285 srer = cd1400_read_reg(cd, CD1400_SRER);
286 SET(srer, CD1400_SRER_TXRDY);
287 cd1400_write_reg(cd, CD1400_SRER, srer);
288 splx(s);
289 }
290
291 /************************************************************************
292 *
293 * CD1190 Routines
294 */
295
296 /* well, there are none yet */
297
298 /************************************************************************
299 *
300 * Magma Routines
301 *
302 * magma_match reports if we have a magma board available
303 * magma_attach attaches magma boards to the sbus
304 * magma_hard hardware level interrupt routine
305 * magma_soft software level interrupt routine
306 */
307
308 int
309 magma_match(parent, cf, aux)
310 struct device *parent;
311 struct cfdata *cf;
312 void *aux;
313 {
314 struct sbus_attach_args *sa = aux;
315
316 /* is it a magma Sp card? */
317 if( strcmp(sa->sa_name, "MAGMA_Sp") != 0 )
318 return(0);
319
320 dprintf(("magma: matched `%s'\n", sa->sa_name));
321 dprintf(("magma: magma_prom `%s'\n",
322 getpropstring(sa->sa_node, "magma_prom")));
323 dprintf(("magma: intlevels `%s'\n",
324 getpropstring(sa->sa_node, "intlevels")));
325 dprintf(("magma: chiprev `%s'\n",
326 getpropstring(sa->sa_node, "chiprev")));
327 dprintf(("magma: clock `%s'\n",
328 getpropstring(sa->sa_node, "clock")));
329
330 return (1);
331 }
332
333 void
334 magma_attach(parent, self, aux)
335 struct device *parent;
336 struct device *self;
337 void *aux;
338 {
339 struct sbus_attach_args *sa = aux;
340 struct magma_softc *sc = (struct magma_softc *)self;
341 struct magma_board_info *card = supported_cards;
342 bus_space_handle_t bh;
343 char *magma_prom;
344 int node, chip;
345
346 node = sa->sa_node;
347 magma_prom = getpropstring(node, "magma_prom");
348
349 /* find the card type */
350 while (card->mb_name && strcmp(magma_prom, card->mb_name) != 0)
351 card++;
352
353 dprintf((" addr %p", sc));
354 printf(" softpri %d:", PIL_TTY);
355
356 if( card->mb_name == NULL ) {
357 printf(" %s (unsupported)\n", magma_prom);
358 return;
359 }
360
361 printf(" %s\n", card->mb_realname);
362
363 sc->ms_board = card;
364 sc->ms_ncd1400 = card->mb_ncd1400;
365 sc->ms_ncd1190 = card->mb_ncd1190;
366
367 if (sbus_bus_map(sa->sa_bustag,
368 sa->sa_slot,
369 sa->sa_offset,
370 sa->sa_size,
371 BUS_SPACE_MAP_LINEAR,
372 0, &bh) != 0) {
373 printf("%s @ sbus: cannot map registers\n", self->dv_xname);
374 return;
375 }
376
377 /* the SVCACK* lines are daisychained */
378 sc->ms_svcackr = (caddr_t)bh + card->mb_svcackr;
379 sc->ms_svcackt = (caddr_t)bh + card->mb_svcackt;
380 sc->ms_svcackm = (caddr_t)bh + card->mb_svcackm;
381
382 /* init the cd1400 chips */
383 for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) {
384 struct cd1400 *cd = &sc->ms_cd1400[chip];
385
386 cd->cd_reg = (caddr_t)bh + card->mb_cd1400[chip];
387
388 /* XXX getpropstring(node, "clock") */
389 cd->cd_clock = 25;
390
391 /* getpropstring(node, "chiprev"); */
392 /* seemingly the Magma drivers just ignore the propstring */
393 cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR);
394
395 dprintf(("%s attach CD1400 %d addr %p rev %x clock %dMhz\n",
396 sc->ms_dev.dv_xname, chip,
397 cd->cd_reg, cd->cd_chiprev, cd->cd_clock));
398
399 /* clear GFRCR */
400 cd1400_write_reg(cd, CD1400_GFRCR, 0x00);
401
402 /* reset whole chip */
403 cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
404
405 /* wait for revision code to be restored */
406 while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev )
407 ;
408
409 /* set the Prescaler Period Register to tick at 1ms */
410 cd1400_write_reg(cd, CD1400_PPR,
411 ((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000));
412
413 /* The LC2+1Sp card is the only card that doesn't have
414 * a CD1190 for the parallel port, but uses channel 0 of
415 * the CD1400, so we make a note of it for later and set up
416 * the CD1400 for parallel mode operation.
417 */
418 if( card->mb_npar && card->mb_ncd1190 == 0 ) {
419 cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
420 cd->cd_parmode = 1;
421 }
422 }
423
424 /* init the cd1190 chips */
425 for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) {
426 struct cd1190 *cd = &sc->ms_cd1190[chip];
427
428 cd->cd_reg = (caddr_t)bh + card->mb_cd1190[chip];
429 dprintf(("%s attach CD1190 %d addr %p (failed)\n",
430 self->dv_xname, chip, cd->cd_reg));
431 /* XXX don't know anything about these chips yet */
432 }
433
434 sbus_establish(&sc->ms_sd, &sc->ms_dev);
435
436 /* configure the children */
437 (void)config_found(self, mtty_match, NULL);
438 (void)config_found(self, mbpp_match, NULL);
439
440 /*
441 * Establish the interrupt handlers.
442 */
443 (void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, 0, magma_hard, sc);
444 (void)bus_intr_establish(sa->sa_bustag, PIL_TTY,
445 BUS_INTR_ESTABLISH_SOFTINTR,
446 magma_soft, sc);
447 evcnt_attach(&sc->ms_dev, "intr", &sc->ms_intrcnt);
448 }
449
450 /*
451 * hard interrupt routine
452 *
453 * returns 1 if it handled it, otherwise 0
454 *
455 * runs at interrupt priority
456 */
457 int
458 magma_hard(arg)
459 void *arg;
460 {
461 struct magma_softc *sc = arg;
462 struct cd1400 *cd;
463 int chip, status = 0;
464 int serviced = 0;
465 int needsoftint = 0;
466
467 /*
468 * check status of all the CD1400 chips
469 */
470 for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ )
471 status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR);
472
473 if( ISSET(status, CD1400_SVRR_RXRDY) ) {
474 u_char rivr = *sc->ms_svcackr; /* enter rx service context */
475 int port = rivr >> 4;
476
477 if( rivr & (1<<3) ) { /* parallel port */
478 struct mbpp_port *mbpp;
479 int n_chars;
480
481 mbpp = &sc->ms_mbpp->ms_port[port];
482 cd = mbpp->mp_cd1400;
483
484 /* don't think we have to handle exceptions */
485 n_chars = cd1400_read_reg(cd, CD1400_RDCR);
486 while (n_chars--) {
487 if( mbpp->mp_cnt == 0 ) {
488 SET(mbpp->mp_flags, MBPPF_WAKEUP);
489 needsoftint = 1;
490 break;
491 }
492 *mbpp->mp_ptr = cd1400_read_reg(cd,CD1400_RDSR);
493 mbpp->mp_ptr++;
494 mbpp->mp_cnt--;
495 }
496 } else { /* serial port */
497 struct mtty_port *mtty;
498 u_char *ptr, n_chars, line_stat;
499
500 mtty = &sc->ms_mtty->ms_port[port];
501 cd = mtty->mp_cd1400;
502
503 if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) {
504 line_stat = cd1400_read_reg(cd, CD1400_RDSR);
505 n_chars = 1;
506 } else { /* no exception, received data OK */
507 line_stat = 0;
508 n_chars = cd1400_read_reg(cd, CD1400_RDCR);
509 }
510
511 ptr = mtty->mp_rput;
512 while( n_chars-- ) {
513 *ptr++ = line_stat;
514 *ptr++ = cd1400_read_reg(cd, CD1400_RDSR);
515 if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf;
516 if( ptr == mtty->mp_rget ) {
517 if( ptr == mtty->mp_rbuf )
518 ptr = mtty->mp_rend;
519 ptr -= 2;
520 SET(mtty->mp_flags, MTTYF_RING_OVERFLOW);
521 break;
522 }
523 }
524 mtty->mp_rput = ptr;
525
526 needsoftint = 1;
527 }
528
529 cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */
530 serviced = 1;
531 } /* if(rx_service...) */
532
533 if( ISSET(status, CD1400_SVRR_MDMCH) ) {
534 u_char mivr = *sc->ms_svcackm; /* enter mdm service context */
535 int port = mivr >> 4;
536 struct mtty_port *mtty;
537 int carrier;
538 u_char msvr;
539
540 /*
541 * Handle CD (LC2+1Sp = DSR) changes.
542 */
543 mtty = &sc->ms_mtty->ms_port[port];
544 cd = mtty->mp_cd1400;
545 msvr = cd1400_read_reg(cd, CD1400_MSVR2);
546 carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
547
548 if( mtty->mp_carrier != carrier ) {
549 SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
550 mtty->mp_carrier = carrier;
551 needsoftint = 1;
552 }
553
554 cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */
555 serviced = 1;
556 } /* if(mdm_service...) */
557
558 if( ISSET(status, CD1400_SVRR_TXRDY) ) {
559 u_char tivr = *sc->ms_svcackt; /* enter tx service context */
560 int port = tivr >> 4;
561
562 if( tivr & (1<<3) ) { /* parallel port */
563 struct mbpp_port *mbpp;
564
565 mbpp = &sc->ms_mbpp->ms_port[port];
566 cd = mbpp->mp_cd1400;
567
568 if( mbpp->mp_cnt ) {
569 int count = 0;
570
571 /* fill the fifo */
572 while (mbpp->mp_cnt &&
573 count++ < CD1400_PAR_FIFO_SIZE) {
574 cd1400_write_reg(cd, CD1400_TDR,
575 *mbpp->mp_ptr);
576 mbpp->mp_ptr++;
577 mbpp->mp_cnt--;
578 }
579 } else {
580 /*
581 * fifo is empty and we got no more data
582 * to send, so shut off interrupts and
583 * signal for a wakeup, which can't be
584 * done here in case we beat mbpp_send to
585 * the tsleep call (we are running at >spltty)
586 */
587 cd1400_write_reg(cd, CD1400_SRER, 0);
588 SET(mbpp->mp_flags, MBPPF_WAKEUP);
589 needsoftint = 1;
590 }
591 } else { /* serial port */
592 struct mtty_port *mtty;
593 struct tty *tp;
594
595 mtty = &sc->ms_mtty->ms_port[port];
596 cd = mtty->mp_cd1400;
597 tp = mtty->mp_tty;
598
599 if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) {
600 int count = 0;
601
602 /* check if we should start/stop a break */
603 if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) {
604 cd1400_write_reg(cd, CD1400_TDR, 0);
605 cd1400_write_reg(cd, CD1400_TDR, 0x81);
606 /* should we delay too? */
607 CLR(mtty->mp_flags, MTTYF_SET_BREAK);
608 count += 2;
609 }
610
611 if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) {
612 cd1400_write_reg(cd, CD1400_TDR, 0);
613 cd1400_write_reg(cd, CD1400_TDR, 0x83);
614 CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
615 count += 2;
616 }
617
618 /* I don't quite fill the fifo in case the last one is a
619 * NULL which I have to double up because its the escape
620 * code for embedded transmit characters.
621 */
622 while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) {
623 u_char ch;
624
625 ch = *mtty->mp_txp;
626
627 mtty->mp_txc--;
628 mtty->mp_txp++;
629
630 if( ch == 0 ) {
631 cd1400_write_reg(cd, CD1400_TDR, ch);
632 count++;
633 }
634
635 cd1400_write_reg(cd, CD1400_TDR, ch);
636 count++;
637 }
638 }
639
640 /* if we ran out of work or are requested to STOP then
641 * shut off the txrdy interrupts and signal DONE to flush
642 * out the chars we have sent.
643 */
644 if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) {
645 register int srer;
646
647 srer = cd1400_read_reg(cd, CD1400_SRER);
648 CLR(srer, CD1400_SRER_TXRDY);
649 cd1400_write_reg(cd, CD1400_SRER, srer);
650 CLR(mtty->mp_flags, MTTYF_STOP);
651
652 SET(mtty->mp_flags, MTTYF_DONE);
653 needsoftint = 1;
654 }
655 }
656
657 cd1400_write_reg(cd, CD1400_EOSRR, 0); /* end service context */
658 serviced = 1;
659 } /* if(tx_service...) */
660
661 /* XXX service CD1190 interrupts too
662 for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) {
663 }
664 */
665
666 if( needsoftint ) { /* trigger the soft interrupt */
667 #if defined(SUN4M)
668 if( CPU_ISSUN4M )
669 raise(0, PIL_TTY);
670 else
671 #endif
672 ienab_bis(IE_MSOFT);
673 }
674
675 return(serviced);
676 }
677
678 /*
679 * magma soft interrupt handler
680 *
681 * returns 1 if it handled it, 0 otherwise
682 *
683 * runs at spltty()
684 */
685 int
686 magma_soft(arg)
687 void *arg;
688 {
689 struct magma_softc *sc = arg;
690 struct mtty_softc *mtty = sc->ms_mtty;
691 struct mbpp_softc *mbpp = sc->ms_mbpp;
692 int port;
693 int serviced = 0;
694 int s, flags;
695
696 if (mtty == NULL)
697 goto chkbpp;
698
699 /*
700 * check the tty ports to see what needs doing
701 */
702 for( port = 0 ; port < mtty->ms_nports ; port++ ) {
703 struct mtty_port *mp = &mtty->ms_port[port];
704 struct tty *tp = mp->mp_tty;
705
706 if( !ISSET(tp->t_state, TS_ISOPEN) )
707 continue;
708
709 /*
710 * handle any received data
711 */
712 while( mp->mp_rget != mp->mp_rput ) {
713 u_char stat;
714 int data;
715
716 stat = mp->mp_rget[0];
717 data = mp->mp_rget[1];
718 mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend)
719 ? mp->mp_rbuf : (mp->mp_rget + 2);
720
721 if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) )
722 data |= TTY_FE;
723 if( stat & CD1400_RDSR_PE )
724 data |= TTY_PE;
725
726 if( stat & CD1400_RDSR_OE )
727 log(LOG_WARNING, "%s%x: fifo overflow\n",
728 mtty->ms_dev.dv_xname, port);
729
730 (*linesw[tp->t_line].l_rint)(data, tp);
731 serviced = 1;
732 }
733
734 s = splhigh(); /* block out hard interrupt routine */
735 flags = mp->mp_flags;
736 CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
737 splx(s); /* ok */
738
739 if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) {
740 dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname,
741 port, mp->mp_carrier ? "on" : "off"));
742 (*linesw[tp->t_line].l_modem)(tp, mp->mp_carrier);
743 serviced = 1;
744 }
745
746 if( ISSET(flags, MTTYF_RING_OVERFLOW) ) {
747 log(LOG_WARNING, "%s%x: ring buffer overflow\n",
748 mtty->ms_dev.dv_xname, port);
749 serviced = 1;
750 }
751
752 if( ISSET(flags, MTTYF_DONE) ) {
753 ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
754 CLR(tp->t_state, TS_BUSY);
755 (*linesw[tp->t_line].l_start)(tp); /* might be some more */
756 serviced = 1;
757 }
758 } /* for(each mtty...) */
759
760
761 chkbpp:
762 /*
763 * Check the bpp ports (if any) to see what needs doing
764 */
765 if (mbpp == NULL)
766 return (serviced);
767
768 for( port = 0 ; port < mbpp->ms_nports ; port++ ) {
769 struct mbpp_port *mp = &mbpp->ms_port[port];
770
771 if( !ISSET(mp->mp_flags, MBPPF_OPEN) )
772 continue;
773
774 s = splhigh();
775 flags = mp->mp_flags;
776 CLR(mp->mp_flags, MBPPF_WAKEUP);
777 splx(s);
778
779 if( ISSET(flags, MBPPF_WAKEUP) ) {
780 wakeup(mp);
781 serviced = 1;
782 }
783
784 } /* for(each mbpp...) */
785
786 return(serviced);
787 }
788
789 /************************************************************************
790 *
791 * MTTY Routines
792 *
793 * mtty_match match one mtty device
794 * mtty_attach attach mtty devices
795 * mttyopen open mtty device
796 * mttyclose close mtty device
797 * mttyread read from mtty
798 * mttywrite write to mtty
799 * mttyioctl do ioctl on mtty
800 * mttytty return tty pointer for mtty
801 * mttystop stop mtty device
802 * mtty_start start mtty device
803 * mtty_param set mtty parameters
804 * mtty_modem_control set modem control lines
805 */
806
807 int
808 mtty_match(parent, cf, args)
809 struct device *parent;
810 struct cfdata *cf;
811 void *args;
812 {
813 struct magma_softc *sc = (struct magma_softc *)parent;
814
815 return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL );
816 }
817
818 void
819 mtty_attach(parent, dev, args)
820 struct device *parent;
821 struct device *dev;
822 void *args;
823 {
824 struct magma_softc *sc = (struct magma_softc *)parent;
825 struct mtty_softc *ms = (struct mtty_softc *)dev;
826 int port, chip, chan;
827
828 sc->ms_mtty = ms;
829 dprintf((" addr %p", ms));
830
831 for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) {
832 struct mtty_port *mp = &ms->ms_port[port];
833 struct tty *tp;
834
835 mp->mp_cd1400 = &sc->ms_cd1400[chip];
836 if( mp->mp_cd1400->cd_parmode && chan == 0 )
837 chan = 1; /* skip channel 0 if parmode */
838 mp->mp_channel = chan;
839
840 tp = ttymalloc();
841 if( tp == NULL ) break;
842 tty_attach(tp);
843 tp->t_oproc = mtty_start;
844 tp->t_param = mtty_param;
845
846 mp->mp_tty = tp;
847
848 mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
849 if( mp->mp_rbuf == NULL ) break;
850
851 mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
852
853 chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
854 if( chan == 0 ) chip++;
855 }
856
857 ms->ms_nports = port;
858 printf(": %d tty%s\n", port, port == 1 ? "" : "s");
859 }
860
861 /*
862 * open routine. returns zero if successful, else error code
863 */
864 int
865 mttyopen(dev, flags, mode, p)
866 dev_t dev;
867 int flags;
868 int mode;
869 struct proc *p;
870 {
871 int card = MAGMA_CARD(dev);
872 int port = MAGMA_PORT(dev);
873 struct mtty_softc *ms;
874 struct mtty_port *mp;
875 struct tty *tp;
876 struct cd1400 *cd;
877 int error, s;
878
879 if( card >= mtty_cd.cd_ndevs ||
880 (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
881 return(ENXIO); /* device not configured */
882
883 mp = &ms->ms_port[port];
884 tp = mp->mp_tty;
885 tp->t_dev = dev;
886
887 if (ISSET(tp->t_state, TS_ISOPEN) &&
888 ISSET(tp->t_state, TS_XCLUDE) &&
889 p->p_ucred->cr_uid != 0)
890 return (EBUSY);
891
892 s = spltty();
893
894 if( !ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
895
896 /* set defaults */
897 ttychars(tp);
898 tp->t_iflag = TTYDEF_IFLAG;
899 tp->t_oflag = TTYDEF_OFLAG;
900 tp->t_cflag = TTYDEF_CFLAG;
901 if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) )
902 SET(tp->t_cflag, CLOCAL);
903 if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) )
904 SET(tp->t_cflag, CRTSCTS);
905 if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) )
906 SET(tp->t_cflag, MDMBUF);
907 tp->t_lflag = TTYDEF_LFLAG;
908 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
909
910 /* init ring buffer */
911 mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
912
913 /* reset CD1400 channel */
914 cd = mp->mp_cd1400;
915 cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
916 cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
917
918 /* encode the port number in top half of LIVR */
919 cd1400_write_reg(cd, CD1400_LIVR, port << 4 );
920
921 /* sets parameters and raises DTR */
922 (void)mtty_param(tp, &tp->t_termios);
923
924 /* set tty watermarks */
925 ttsetwater(tp);
926
927 /* enable service requests */
928 cd1400_write_reg(cd, CD1400_SRER,
929 CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
930
931 /* tell the tty about the carrier status */
932 if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) ||
933 mp->mp_carrier )
934 SET(tp->t_state, TS_CARR_ON);
935 else
936 CLR(tp->t_state, TS_CARR_ON);
937 }
938 splx(s);
939
940 error = ttyopen(tp, MTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
941 if (error != 0)
942 goto bad;
943
944 error = (*linesw[tp->t_line].l_open)(dev, tp);
945 if (error != 0)
946 goto bad;
947
948 bad:
949 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
950 /*
951 * We failed to open the device, and nobody else had it opened.
952 * Clean up the state as appropriate.
953 */
954 /* XXX - do that here */
955 }
956
957 return (error);
958 }
959
960 /*
961 * close routine. returns zero if successful, else error code
962 */
963 int
964 mttyclose(dev, flag, mode, p)
965 dev_t dev;
966 int flag;
967 int mode;
968 struct proc *p;
969 {
970 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
971 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
972 struct tty *tp = mp->mp_tty;
973 int s;
974
975 (*linesw[tp->t_line].l_close)(tp, flag);
976 ttyclose(tp);
977
978 s = spltty();
979
980 /* if HUPCL is set, and the tty is no longer open
981 * shut down the port
982 */
983 if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) {
984 /* XXX wait until FIFO is empty before turning off the channel
985 struct cd1400 *cd = mp->mp_cd1400;
986 */
987
988 /* drop DTR and RTS */
989 (void)mtty_modem_control(mp, 0, DMSET);
990
991 /* turn off the channel
992 cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
993 cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
994 */
995 }
996
997 splx(s);
998
999 return(0);
1000 }
1001
1002 /*
1003 * Read routine
1004 */
1005 int
1006 mttyread(dev, uio, flags)
1007 dev_t dev;
1008 struct uio *uio;
1009 int flags;
1010 {
1011 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1012 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1013 struct tty *tp = mp->mp_tty;
1014
1015 return( (*linesw[tp->t_line].l_read)(tp, uio, flags) );
1016 }
1017
1018 /*
1019 * Write routine
1020 */
1021 int
1022 mttywrite(dev, uio, flags)
1023 dev_t dev;
1024 struct uio *uio;
1025 int flags;
1026 {
1027 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1028 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1029 struct tty *tp = mp->mp_tty;
1030
1031 return( (*linesw[tp->t_line].l_write)(tp, uio, flags) );
1032 }
1033
1034 /*
1035 * return tty pointer
1036 */
1037 struct tty *
1038 mttytty(dev)
1039 dev_t dev;
1040 {
1041 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1042 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1043
1044 return(mp->mp_tty);
1045 }
1046
1047 /*
1048 * ioctl routine
1049 */
1050 int
1051 mttyioctl(dev, cmd, data, flags, p)
1052 dev_t dev;
1053 u_long cmd;
1054 caddr_t data;
1055 int flags;
1056 struct proc *p;
1057 {
1058 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1059 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1060 struct tty *tp = mp->mp_tty;
1061 int error;
1062
1063 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, p);
1064 if( error >= 0 ) return(error);
1065
1066 error = ttioctl(tp, cmd, data, flags, p);
1067 if( error >= 0 ) return(error);
1068
1069 error = 0;
1070
1071 switch(cmd) {
1072 case TIOCSBRK: /* set break */
1073 SET(mp->mp_flags, MTTYF_SET_BREAK);
1074 cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1075 break;
1076
1077 case TIOCCBRK: /* clear break */
1078 SET(mp->mp_flags, MTTYF_CLR_BREAK);
1079 cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1080 break;
1081
1082 case TIOCSDTR: /* set DTR */
1083 mtty_modem_control(mp, TIOCM_DTR, DMBIS);
1084 break;
1085
1086 case TIOCCDTR: /* clear DTR */
1087 mtty_modem_control(mp, TIOCM_DTR, DMBIC);
1088 break;
1089
1090 case TIOCMSET: /* set modem lines */
1091 mtty_modem_control(mp, *((int *)data), DMSET);
1092 break;
1093
1094 case TIOCMBIS: /* bit set modem lines */
1095 mtty_modem_control(mp, *((int *)data), DMBIS);
1096 break;
1097
1098 case TIOCMBIC: /* bit clear modem lines */
1099 mtty_modem_control(mp, *((int *)data), DMBIC);
1100 break;
1101
1102 case TIOCMGET: /* get modem lines */
1103 *((int *)data) = mtty_modem_control(mp, 0, DMGET);
1104 break;
1105
1106 case TIOCGFLAGS:
1107 *((int *)data) = mp->mp_openflags;
1108 break;
1109
1110 case TIOCSFLAGS:
1111 if( suser(p->p_ucred, &p->p_acflag) )
1112 error = EPERM;
1113 else
1114 mp->mp_openflags = *((int *)data) &
1115 (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
1116 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
1117 break;
1118
1119 default:
1120 error = ENOTTY;
1121 }
1122
1123 return(error);
1124 }
1125
1126 /*
1127 * Stop output, e.g., for ^S or output flush.
1128 */
1129 void
1130 mttystop(tp, flags)
1131 struct tty *tp;
1132 int flags;
1133 {
1134 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1135 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1136 int s;
1137
1138 s = spltty();
1139
1140 if( ISSET(tp->t_state, TS_BUSY) ) {
1141 if( !ISSET(tp->t_state, TS_TTSTOP) )
1142 SET(tp->t_state, TS_FLUSH);
1143
1144 /*
1145 * the transmit interrupt routine will disable transmit when it
1146 * notices that MTTYF_STOP has been set.
1147 */
1148 SET(mp->mp_flags, MTTYF_STOP);
1149 }
1150
1151 splx(s);
1152 }
1153
1154 /*
1155 * Start output, after a stop.
1156 */
1157 void
1158 mtty_start(tp)
1159 struct tty *tp;
1160 {
1161 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1162 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1163 int s;
1164
1165 s = spltty();
1166
1167 /* we only need to do something if we are not already busy
1168 * or delaying or stopped
1169 */
1170 if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1171
1172 /* if we are sleeping and output has drained below
1173 * low water mark, awaken
1174 */
1175 if( tp->t_outq.c_cc <= tp->t_lowat ) {
1176 if( ISSET(tp->t_state, TS_ASLEEP) ) {
1177 CLR(tp->t_state, TS_ASLEEP);
1178 wakeup(&tp->t_outq);
1179 }
1180
1181 selwakeup(&tp->t_wsel);
1182 }
1183
1184 /* if something to send, start transmitting
1185 */
1186 if( tp->t_outq.c_cc ) {
1187 mp->mp_txc = ndqb(&tp->t_outq, 0);
1188 mp->mp_txp = tp->t_outq.c_cf;
1189 SET(tp->t_state, TS_BUSY);
1190 cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1191 }
1192 }
1193
1194 splx(s);
1195 }
1196
1197 /*
1198 * set/get modem line status
1199 *
1200 * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
1201 *
1202 * note that DTR and RTS lines are exchanged, and that DSR is
1203 * not available on the LC2+1Sp card (used as CD)
1204 *
1205 * only let them fiddle with RTS if CRTSCTS is not enabled
1206 */
1207 int
1208 mtty_modem_control(mp, bits, howto)
1209 struct mtty_port *mp;
1210 int bits;
1211 int howto;
1212 {
1213 struct cd1400 *cd = mp->mp_cd1400;
1214 struct tty *tp = mp->mp_tty;
1215 int s, msvr;
1216
1217 s = spltty();
1218
1219 cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1220
1221 switch(howto) {
1222 case DMGET: /* get bits */
1223 bits = 0;
1224
1225 bits |= TIOCM_LE;
1226
1227 msvr = cd1400_read_reg(cd, CD1400_MSVR1);
1228 if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR;
1229
1230 msvr = cd1400_read_reg(cd, CD1400_MSVR2);
1231 if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS;
1232 if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS;
1233 if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI;
1234 if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
1235 if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
1236
1237 break;
1238
1239 case DMSET: /* reset bits */
1240 if( !ISSET(tp->t_cflag, CRTSCTS) )
1241 cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
1242
1243 cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
1244
1245 break;
1246
1247 case DMBIS: /* set bits */
1248 if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1249 cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
1250
1251 if( bits & TIOCM_DTR )
1252 cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
1253
1254 break;
1255
1256 case DMBIC: /* clear bits */
1257 if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1258 cd1400_write_reg(cd, CD1400_MSVR2, 0);
1259
1260 if( bits & TIOCM_DTR )
1261 cd1400_write_reg(cd, CD1400_MSVR1, 0);
1262
1263 break;
1264 }
1265
1266 splx(s);
1267 return(bits);
1268 }
1269
1270 /*
1271 * Set tty parameters, returns error or 0 on success
1272 */
1273 int
1274 mtty_param(tp, t)
1275 struct tty *tp;
1276 struct termios *t;
1277 {
1278 struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1279 struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1280 struct cd1400 *cd = mp->mp_cd1400;
1281 int rbpr, tbpr, rcor, tcor;
1282 u_char mcor1 = 0, mcor2 = 0;
1283 int s, opt;
1284
1285 if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) )
1286 return(EINVAL);
1287
1288 if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) )
1289 return(EINVAL);
1290
1291 s = spltty();
1292
1293 /* hang up the line if ospeed is zero, else raise DTR */
1294 (void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS));
1295
1296 /* select channel, done in mtty_modem_control() */
1297 /* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */
1298
1299 /* set transmit speed */
1300 if( t->c_ospeed ) {
1301 cd1400_write_reg(cd, CD1400_TCOR, tcor);
1302 cd1400_write_reg(cd, CD1400_TBPR, tbpr);
1303 }
1304
1305 /* set receive speed */
1306 if( t->c_ispeed ) {
1307 cd1400_write_reg(cd, CD1400_RCOR, rcor);
1308 cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1309 }
1310
1311 /* enable transmitting and receiving on this channel */
1312 opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
1313 cd1400_write_ccr(cd, opt);
1314
1315 /* set parity, data and stop bits */
1316 opt = 0;
1317 if( ISSET(t->c_cflag, PARENB) )
1318 opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
1319
1320 if( !ISSET(t->c_iflag, INPCK) )
1321 opt |= CD1400_COR1_NOINPCK; /* no parity checking */
1322
1323 if( ISSET(t->c_cflag, CSTOPB) )
1324 opt |= CD1400_COR1_STOP2;
1325
1326 switch( t->c_cflag & CSIZE ) {
1327 case CS5:
1328 opt |= CD1400_COR1_CS5;
1329 break;
1330
1331 case CS6:
1332 opt |= CD1400_COR1_CS6;
1333 break;
1334
1335 case CS7:
1336 opt |= CD1400_COR1_CS7;
1337 break;
1338
1339 default:
1340 opt |= CD1400_COR1_CS8;
1341 break;
1342 }
1343
1344 cd1400_write_reg(cd, CD1400_COR1, opt);
1345
1346 /*
1347 * enable Embedded Transmit Commands (for breaks)
1348 * use the CD1400 automatic CTS flow control if CRTSCTS is set
1349 */
1350 opt = CD1400_COR2_ETC;
1351 if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW;
1352 cd1400_write_reg(cd, CD1400_COR2, opt);
1353
1354 cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
1355
1356 cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
1357
1358 cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
1359 cd1400_write_reg(cd, CD1400_COR5, 0);
1360
1361 /*
1362 * if automatic RTS handshaking enabled, set DTR threshold
1363 * (RTS and DTR lines are switched, CD1400 thinks its DTR)
1364 */
1365 if( ISSET(t->c_cflag, CRTSCTS) )
1366 mcor1 = MTTY_RX_DTR_THRESHOLD;
1367
1368 /* set up `carrier detect' interrupts */
1369 if( cd->cd_parmode ) {
1370 SET(mcor1, CD1400_MCOR1_DSRzd);
1371 SET(mcor2, CD1400_MCOR2_DSRod);
1372 } else {
1373 SET(mcor1, CD1400_MCOR1_CDzd);
1374 SET(mcor2, CD1400_MCOR2_CDod);
1375 }
1376
1377 cd1400_write_reg(cd, CD1400_MCOR1, mcor1);
1378 cd1400_write_reg(cd, CD1400_MCOR2, mcor2);
1379
1380 /* receive timeout 2ms */
1381 cd1400_write_reg(cd, CD1400_RTPR, 2);
1382
1383 splx(s);
1384 return(0);
1385 }
1386
1387 /************************************************************************
1388 *
1389 * MBPP Routines
1390 *
1391 * mbpp_match match one mbpp device
1392 * mbpp_attach attach mbpp devices
1393 * mbppopen open mbpp device
1394 * mbppclose close mbpp device
1395 * mbppread read from mbpp
1396 * mbppwrite write to mbpp
1397 * mbppioctl do ioctl on mbpp
1398 * mbppselect do select on mbpp
1399 * mbpp_rw general rw routine
1400 * mbpp_timeout rw timeout
1401 * mbpp_start rw start after delay
1402 * mbpp_send send data
1403 * mbpp_recv recv data
1404 */
1405
1406 int
1407 mbpp_match(parent, cf, args)
1408 struct device *parent;
1409 struct cfdata *cf;
1410 void *args;
1411 {
1412 struct magma_softc *sc = (struct magma_softc *)parent;
1413
1414 return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL );
1415 }
1416
1417 void
1418 mbpp_attach(parent, dev, args)
1419 struct device *parent;
1420 struct device *dev;
1421 void *args;
1422 {
1423 struct magma_softc *sc = (struct magma_softc *)parent;
1424 struct mbpp_softc *ms = (struct mbpp_softc *)dev;
1425 struct mbpp_port *mp;
1426 int port;
1427
1428 sc->ms_mbpp = ms;
1429 dprintf((" addr %p", ms));
1430
1431 for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) {
1432 mp = &ms->ms_port[port];
1433
1434 if( sc->ms_ncd1190 )
1435 mp->mp_cd1190 = &sc->ms_cd1190[port];
1436 else
1437 mp->mp_cd1400 = &sc->ms_cd1400[0];
1438 }
1439
1440 ms->ms_nports = port;
1441 printf(": %d port%s\n", port, port == 1 ? "" : "s");
1442 }
1443
1444 /*
1445 * open routine. returns zero if successful, else error code
1446 */
1447 int
1448 mbppopen(dev, flags, mode, p)
1449 dev_t dev;
1450 int flags;
1451 int mode;
1452 struct proc *p;
1453 {
1454 int card = MAGMA_CARD(dev);
1455 int port = MAGMA_PORT(dev);
1456 struct mbpp_softc *ms;
1457 struct mbpp_port *mp;
1458 int s;
1459
1460 if( card >= mbpp_cd.cd_ndevs ||
1461 (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
1462 return(ENXIO);
1463
1464 mp = &ms->ms_port[port];
1465
1466 s = spltty();
1467 if( ISSET(mp->mp_flags, MBPPF_OPEN) ) {
1468 splx(s);
1469 return(EBUSY);
1470 }
1471 SET(mp->mp_flags, MBPPF_OPEN);
1472 splx(s);
1473
1474 /* set defaults */
1475 mp->mp_burst = MBPP_BURST;
1476 mp->mp_timeout = mbpp_mstohz(MBPP_TIMEOUT);
1477 mp->mp_delay = mbpp_mstohz(MBPP_DELAY);
1478
1479 /* init chips */
1480 if( mp->mp_cd1400 ) { /* CD1400 */
1481 struct cd1400 *cd = mp->mp_cd1400;
1482
1483 /* set up CD1400 channel */
1484 s = spltty();
1485 cd1400_write_reg(cd, CD1400_CAR, 0);
1486 cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1487 cd1400_write_reg(cd, CD1400_LIVR, (1<<3));
1488 splx(s);
1489 } else { /* CD1190 */
1490 mp->mp_flags = 0;
1491 return (ENXIO);
1492 }
1493
1494 return (0);
1495 }
1496
1497 /*
1498 * close routine. returns zero if successful, else error code
1499 */
1500 int
1501 mbppclose(dev, flag, mode, p)
1502 dev_t dev;
1503 int flag;
1504 int mode;
1505 struct proc *p;
1506 {
1507 struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1508 struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1509
1510 mp->mp_flags = 0;
1511 return(0);
1512 }
1513
1514 /*
1515 * Read routine
1516 */
1517 int
1518 mbppread(dev, uio, flags)
1519 dev_t dev;
1520 struct uio *uio;
1521 int flags;
1522 {
1523
1524 return( mbpp_rw(dev, uio) );
1525 }
1526
1527 /*
1528 * Write routine
1529 */
1530 int
1531 mbppwrite(dev, uio, flags)
1532 dev_t dev;
1533 struct uio *uio;
1534 int flags;
1535 {
1536
1537 return( mbpp_rw(dev, uio) );
1538 }
1539
1540 /*
1541 * ioctl routine
1542 */
1543 int
1544 mbppioctl(dev, cmd, data, flags, p)
1545 dev_t dev;
1546 u_long cmd;
1547 caddr_t data;
1548 int flags;
1549 struct proc *p;
1550 {
1551 struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1552 struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1553 struct mbpp_param *bp;
1554 int error = 0;
1555 int s;
1556
1557 switch(cmd) {
1558 case MBPPIOCSPARAM:
1559 bp = (struct mbpp_param *)data;
1560 if( bp->bp_burst < MBPP_BURST_MIN || bp->bp_burst > MBPP_BURST_MAX ||
1561 bp->bp_delay < MBPP_DELAY_MIN || bp->bp_delay > MBPP_DELAY_MIN ) {
1562 error = EINVAL;
1563 } else {
1564 mp->mp_burst = bp->bp_burst;
1565 mp->mp_timeout = mbpp_mstohz(bp->bp_timeout);
1566 mp->mp_delay = mbpp_mstohz(bp->bp_delay);
1567 }
1568 break;
1569 case MBPPIOCGPARAM:
1570 bp = (struct mbpp_param *)data;
1571 bp->bp_burst = mp->mp_burst;
1572 bp->bp_timeout = mbpp_hztoms(mp->mp_timeout);
1573 bp->bp_delay = mbpp_hztoms(mp->mp_delay);
1574 break;
1575 case MBPPIOCGSTAT:
1576 /* XXX make this more generic */
1577 s = spltty();
1578 cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0);
1579 *(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR);
1580 splx(s);
1581 break;
1582 default:
1583 error = ENOTTY;
1584 }
1585
1586 return(error);
1587 }
1588
1589 /*
1590 * poll routine
1591 */
1592 int
1593 mbpppoll(dev, rw, p)
1594 dev_t dev;
1595 int rw;
1596 struct proc *p;
1597 {
1598
1599 return(ENODEV);
1600 }
1601
1602 int
1603 mbpp_rw(dev, uio)
1604 dev_t dev;
1605 struct uio *uio;
1606 {
1607 int card = MAGMA_CARD(dev);
1608 int port = MAGMA_PORT(dev);
1609 struct mbpp_softc *ms = mbpp_cd.cd_devs[card];
1610 struct mbpp_port *mp = &ms->ms_port[port];
1611 caddr_t buffer, ptr;
1612 int buflen, cnt, len;
1613 int s, error = 0;
1614 int gotdata = 0;
1615
1616 if( uio->uio_resid == 0 )
1617 return(0);
1618
1619 buflen = min(uio->uio_resid, mp->mp_burst);
1620 buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
1621 if( buffer == NULL )
1622 return(ENOMEM);
1623
1624 SET(mp->mp_flags, MBPPF_UIO);
1625
1626 /*
1627 * start timeout, if needed
1628 */
1629 if( mp->mp_timeout > 0 ) {
1630 SET(mp->mp_flags, MBPPF_TIMEOUT);
1631 timeout(mbpp_timeout, mp, mp->mp_timeout);
1632 }
1633
1634 len = cnt = 0;
1635 while( uio->uio_resid > 0 ) {
1636 len = min(buflen, uio->uio_resid);
1637 ptr = buffer;
1638
1639 if( uio->uio_rw == UIO_WRITE ) {
1640 error = uiomove(ptr, len, uio);
1641 if( error ) break;
1642 }
1643 again: /* goto bad */
1644 /* timed out? */
1645 if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1646 break;
1647
1648 /*
1649 * perform the operation
1650 */
1651 if( uio->uio_rw == UIO_WRITE ) {
1652 cnt = mbpp_send(mp, ptr, len);
1653 } else {
1654 cnt = mbpp_recv(mp, ptr, len);
1655 }
1656
1657 if( uio->uio_rw == UIO_READ ) {
1658 if( cnt ) {
1659 error = uiomove(ptr, cnt, uio);
1660 if( error ) break;
1661 gotdata++;
1662 }
1663 else if( gotdata ) /* consider us done */
1664 break;
1665 }
1666
1667 /* timed out? */
1668 if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1669 break;
1670
1671 /*
1672 * poll delay?
1673 */
1674 if( mp->mp_delay > 0 ) {
1675 s = splsoftclock();
1676 SET(mp->mp_flags, MBPPF_DELAY);
1677 timeout(mbpp_start, mp, mp->mp_delay);
1678 error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0);
1679 splx(s);
1680 if( error ) break;
1681 }
1682
1683 /*
1684 * don't call uiomove again until we used all the data we grabbed
1685 */
1686 if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1687 ptr += cnt;
1688 len -= cnt;
1689 cnt = 0;
1690 goto again;
1691 }
1692 }
1693
1694 /*
1695 * clear timeouts
1696 */
1697 s = splsoftclock();
1698 if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) {
1699 untimeout(mbpp_timeout, mp);
1700 CLR(mp->mp_flags, MBPPF_TIMEOUT);
1701 }
1702 if( ISSET(mp->mp_flags, MBPPF_DELAY) ) {
1703 untimeout(mbpp_start, mp);
1704 CLR(mp->mp_flags, MBPPF_DELAY);
1705 }
1706 splx(s);
1707
1708 /*
1709 * adjust for those chars that we uiomoved but never actually wrote
1710 */
1711 if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1712 uio->uio_resid += (len - cnt);
1713 }
1714
1715 free(buffer, M_DEVBUF);
1716 return(error);
1717 }
1718
1719 void
1720 mbpp_timeout(arg)
1721 void *arg;
1722 {
1723 struct mbpp_port *mp = arg;
1724
1725 CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
1726 wakeup(mp);
1727 }
1728
1729 void
1730 mbpp_start(arg)
1731 void *arg;
1732 {
1733 struct mbpp_port *mp = arg;
1734
1735 CLR(mp->mp_flags, MBPPF_DELAY);
1736 wakeup(mp);
1737 }
1738
1739 int
1740 mbpp_send(mp, ptr, len)
1741 struct mbpp_port *mp;
1742 caddr_t ptr;
1743 int len;
1744 {
1745 int s;
1746 struct cd1400 *cd = mp->mp_cd1400;
1747
1748 /* set up io information */
1749 mp->mp_ptr = ptr;
1750 mp->mp_cnt = len;
1751
1752 /* start transmitting */
1753 s = spltty();
1754 if( cd ) {
1755 cd1400_write_reg(cd, CD1400_CAR, 0);
1756
1757 /* output strobe width ~1microsecond */
1758 cd1400_write_reg(cd, CD1400_TBPR, 10);
1759
1760 /* enable channel */
1761 cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
1762 cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY);
1763 }
1764
1765 /* ZZzzz... */
1766 tsleep(mp, PCATCH | PZERO, "mbpp_send", 0);
1767
1768 /* stop transmitting */
1769 if( cd ) {
1770 cd1400_write_reg(cd, CD1400_CAR, 0);
1771
1772 /* disable transmitter */
1773 cd1400_write_reg(cd, CD1400_SRER, 0);
1774 cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
1775
1776 /* flush fifo */
1777 cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
1778 }
1779 splx(s);
1780
1781 /* return number of chars sent */
1782 return(len - mp->mp_cnt);
1783 }
1784
1785 int
1786 mbpp_recv(mp, ptr, len)
1787 struct mbpp_port *mp;
1788 caddr_t ptr;
1789 int len;
1790 {
1791 int s;
1792 struct cd1400 *cd = mp->mp_cd1400;
1793
1794 /* set up io information */
1795 mp->mp_ptr = ptr;
1796 mp->mp_cnt = len;
1797
1798 /* start receiving */
1799 s = spltty();
1800 if( cd ) {
1801 int rcor, rbpr;
1802
1803 cd1400_write_reg(cd, CD1400_CAR, 0);
1804
1805 /* input strobe at 100kbaud (10microseconds) */
1806 cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
1807 cd1400_write_reg(cd, CD1400_RCOR, rcor);
1808 cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1809
1810 /* rx threshold */
1811 cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
1812 cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
1813
1814 /* enable channel */
1815 cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
1816 cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA);
1817 }
1818
1819 /* ZZzzz... */
1820 tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0);
1821
1822 /* stop receiving */
1823 if( cd ) {
1824 cd1400_write_reg(cd, CD1400_CAR, 0);
1825
1826 /* disable receiving */
1827 cd1400_write_reg(cd, CD1400_SRER, 0);
1828 cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
1829 }
1830 splx(s);
1831
1832 /* return number of chars received */
1833 return(len - mp->mp_cnt);
1834 }
1835
1836 int
1837 mbpp_hztoms(h)
1838 int h;
1839 {
1840 int m = h;
1841
1842 if( m > 0 )
1843 m = m * 1000 / hz;
1844 return(m);
1845 }
1846
1847 int
1848 mbpp_mstohz(m)
1849 int m;
1850 {
1851 int h = m;
1852
1853 if( h > 0 ) {
1854 h = h * hz / 1000;
1855 if( h == 0 )
1856 h = 1000 / hz;
1857 }
1858 return(h);
1859 }
1860
1861 #endif /* NMAGMA */
1862