if_dse.c revision 1.5 1 /* $NetBSD: if_dse.c,v 1.5 2024/01/01 22:29:48 gutteridge Exp $ */
2
3 /*
4 * Driver for DaynaPORT SCSI/Link SCSI-Ethernet
5 *
6 * Written by Hiroshi Noguchi <ngc (at) ff.iij4u.or.jp>
7 *
8 * Modified by Matt Sandstrom <mattias (at) beauty.se> for NetBSD 1.5.3
9 *
10 * This driver is written based on "if_se.c".
11 */
12
13 /*
14 * Copyright (c) 1997 Ian W. Dall <ian.dall (at) dsto.defence.gov.au>
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by Ian W. Dall.
28 * 4. The name of the author may not be used to endorse or promote products
29 * derived from this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
32 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
34 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 #include "opt_inet.h"
44 #include "opt_atalk.h"
45
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/callout.h>
50 #include <sys/syslog.h>
51 #include <sys/kernel.h>
52 #include <sys/file.h>
53 #include <sys/stat.h>
54 #include <sys/ioctl.h>
55 #include <sys/buf.h>
56 #include <sys/uio.h>
57 #include <sys/malloc.h>
58 #include <sys/errno.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/disk.h>
62 #include <sys/proc.h>
63 #include <sys/conf.h>
64
65 #include <sys/workqueue.h>
66
67 #include <dev/scsipi/scsipi_all.h>
68 #include <dev/scsipi/scsiconf.h>
69
70 #include <sys/mbuf.h>
71
72 #include <sys/socket.h>
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_ether.h>
76 #include <net/if_media.h>
77
78 #ifdef INET
79 #include <netinet/in.h>
80 #include <netinet/if_inarp.h>
81 #endif
82
83 #ifdef NETATALK
84 #include <netatalk/at.h>
85 #endif
86
87 #include <net/bpf.h>
88
89
90 /*
91 * debug flag
92 */
93 #if 0
94 #define DSE_DEBUG
95 #endif
96
97
98 #define DSE_TIMEOUT 100000
99 #define DSE_OUTSTANDING 4
100 #define DSE_RETRIES 4
101 #define DSE_MINSIZE 60
102
103 #define DSE_HEADER_TX 4
104 #define DSE_TAIL_TX 4
105 #define DSE_EXTRAS_TX (DSE_HEADER_TX + DSE_TAIL_TX)
106
107 #define DSE_HEADER_RX 6
108 #define DSE_TAIL_RX 0
109 #define DSE_EXTRAS_RX (DSE_HEADER_RX + DSE_TAIL_RX)
110
111 #define MAX_BYTES_RX (ETHERMTU + sizeof(struct ether_header) + ETHER_CRC_LEN)
112
113 /* 10 full length packets appears to be the max ever returned. 16k is OK */
114 #define RBUF_LEN (16 * 1024)
115
116 /*
117 * Tuning parameters:
118 * We will attempt to adapt to polling fast enough to get RDATA_GOAL packets
119 * per read
120 */
121 #define RDATA_MAX 10 /* maximum of returned packets (guessed) */
122 #define RDATA_GOAL 8
123
124 /*
125 * maximum of available multicast address entries (guessed)
126 */
127 #define DSE_MCAST_MAX 10
128
129
130 /* dse_poll and dse_poll0 are the normal polling rate and the minimum
131 * polling rate respectively. dse_poll0 should be chosen so that at
132 * maximum ethernet speed, we will read nearly RDATA_MAX packets. dse_poll
133 * should be chosen for reasonable maximum latency.
134 * In practice, if we are being saturated with min length packets, we
135 * can't poll fast enough. Polling with zero delay actually
136 * worsens performance. dse_poll0 is enforced to be always at least 1
137 */
138 #if MAC68K_DEBUG
139 #define DSE_POLL 50 /* default in milliseconds */
140 #define DSE_POLL0 30 /* default in milliseconds */
141 #else
142 #define DSE_POLL 80 /* default in milliseconds */
143 #define DSE_POLL0 40 /* default in milliseconds */
144 #endif
145 int dse_poll = 0; /* Delay in ticks set at attach time */
146 int dse_poll0 = 0;
147 int dse_max_received = 0; /* Instrumentation */
148
149
150
151
152 /*==========================================
153 data type defs
154 ==========================================*/
155 typedef struct scsipi_inquiry_data dayna_ether_inquiry_data;
156
157 typedef struct {
158 uint8_t opcode[2];
159 uint8_t byte3;
160 uint8_t length[2];
161 uint8_t byte6;
162 } scsi_dayna_ether_generic;
163
164 #define DAYNA_CMD_SEND 0x0A /* same as generic "Write" */
165 #define DAYNA_CMD_RECV 0x08 /* same as generic "Read" */
166
167 #define DAYNA_CMD_GET_ADDR 0x09 /* ???: read MAC address ? */
168 #define REQ_LEN_GET_ADDR 0x12
169
170 #define DAYNA_CMD_SET_MULTI 0x0D /* set multicast address */
171
172 #define DAYNA_CMD_VENDOR1 0x0E /* ???: initialize signal ? */
173
174 #define IS_SEND(generic) ((generic)->opcode == DAYNA_CMD_SEND)
175 #define IS_RECV(generic) ((generic)->opcode == DAYNA_CMD_RECV)
176
177 struct dse_softc {
178 device_t sc_dev;
179 struct ethercom sc_ethercom; /* Ethernet common part */
180 struct scsipi_periph *sc_periph;/* contains our targ, lun, etc. */
181
182 struct callout sc_recv_ch;
183 struct kmutex sc_iflock;
184 struct if_percpuq *sc_ipq;
185 struct workqueue *sc_recv_wq, *sc_send_wq;
186 struct work sc_recv_work, sc_send_work;
187 int sc_recv_work_pending, sc_send_work_pending;
188
189 char *sc_tbuf;
190 char *sc_rbuf;
191 int sc_debug;
192 int sc_flags;
193 int sc_last_timeout;
194 int sc_enabled;
195 int sc_attach_state;
196 };
197
198 /* bit defs of "sc_flags" */
199 #define DSE_NEED_RECV 0x1
200
201 static int dsematch(device_t, cfdata_t, void *);
202 static void dseattach(device_t, device_t, void *);
203 static int dsedetach(device_t, int);
204
205 static void dse_ifstart(struct ifnet *);
206 static void dse_send_worker(struct work *wk, void *cookie);
207
208 static void dsedone(struct scsipi_xfer *, int);
209 static int dse_ioctl(struct ifnet *, u_long, void *);
210 static void dsewatchdog(struct ifnet *);
211
212 static void dse_recv_callout(void *);
213 static void dse_recv_worker(struct work *wk, void *cookie);
214 static void dse_recv(struct dse_softc *);
215 static struct mbuf* dse_get(struct dse_softc *, uint8_t *, int);
216 static int dse_read(struct dse_softc *, uint8_t *, int);
217
218 static int dse_init_adaptor(struct dse_softc *);
219 static int dse_get_addr(struct dse_softc *, uint8_t *);
220 static int dse_set_multi(struct dse_softc *);
221
222 static int dse_reset(struct dse_softc *);
223
224 #if 0 /* 07/16/2000 comment-out */
225 static int dse_set_mode(struct dse_softc *, int, int);
226 #endif
227 static int dse_init(struct dse_softc *);
228 static void dse_stop(struct dse_softc *);
229
230 #if 0
231 static __inline uint16_t ether_cmp(void *, void *);
232 #endif
233
234 static inline int dse_scsipi_cmd(struct scsipi_periph *periph,
235 struct scsipi_generic *scsipi_cmd,
236 int cmdlen, u_char *data_addr, int datalen,
237 int retries, int timeout, struct buf *bp,
238 int flags);
239
240 int dse_enable(struct dse_softc *);
241 void dse_disable(struct dse_softc *);
242
243
244 CFATTACH_DECL_NEW(dse, sizeof(struct dse_softc),
245 dsematch, dseattach, dsedetach, NULL);
246
247 extern struct cfdriver dse_cd;
248
249 dev_type_open(dseopen);
250 dev_type_close(dseclose);
251 dev_type_ioctl(dseioctl);
252
253 const struct cdevsw dse_cdevsw = {
254 .d_open = dseopen,
255 .d_close = dseclose,
256 .d_read = noread,
257 .d_write = nowrite,
258 .d_ioctl = dseioctl,
259 .d_stop = nostop,
260 .d_tty = notty,
261 .d_poll = nopoll,
262 .d_mmap = nommap,
263 .d_kqfilter = nokqfilter,
264 .d_discard = nodiscard,
265 .d_flag = D_OTHER | D_MPSAFE
266 };
267
268 const struct scsipi_periphsw dse_switch = {
269
270 NULL, /* Use default error handler */
271 NULL, /* have no queue */
272 NULL, /* have no async handler */
273 dsedone, /* deal with stats at interrupt time */
274 };
275
276 struct scsipi_inquiry_pattern dse_patterns[] = {
277 { T_PROCESSOR, T_FIXED,
278 "Dayna", "SCSI/Link", "" },
279 };
280
281
282
283 /*====================================================
284 definitions for SCSI commands
285 ====================================================*/
286
287 /*
288 * command templates
289 */
290 /* unknown commands */
291 /* Vendor #1 */
292 static const scsi_dayna_ether_generic sonic_ether_vendor1 = {
293 { DAYNA_CMD_VENDOR1, 0x00 },
294 0x00,
295 { 0x00, 0x00 },
296 0x80
297 };
298
299
300
301 #if 0
302 /*
303 * Compare two Ether/802 addresses for equality, inlined and
304 * unrolled for speed.
305 * Note: use this like memcmp()
306 */
307 static __inline uint16_t
308 ether_cmp(void *one, void *two)
309 {
310 uint16_t* a;
311 uint16_t* b;
312 uint16_t diff;
313
314 a = (uint16_t *) one;
315 b = (uint16_t *) two;
316
317 diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]);
318
319 return (diff);
320 }
321
322 #define ETHER_CMP ether_cmp
323 #endif
324
325 /*
326 * check to match with SCSI inquiry information
327 */
328 static int
329 dsematch(device_t parent, cfdata_t match, void *aux)
330 {
331 struct scsipibus_attach_args *sa = aux;
332 int priority;
333
334 (void)scsipi_inqmatch(&sa->sa_inqbuf,
335 dse_patterns, sizeof(dse_patterns) / sizeof(dse_patterns[0]),
336 sizeof(dse_patterns[0]), &priority);
337 return priority;
338 }
339
340
341 /*
342 * The routine called by the low level scsi routine when it discovers
343 * a device suitable for this driver.
344 */
345 static void
346 dseattach(device_t parent, device_t self, void *aux)
347 {
348 struct dse_softc *sc = device_private(self);
349 struct scsipibus_attach_args *sa = aux;
350 struct scsipi_periph *periph = sa->sa_periph;
351 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
352 uint8_t myaddr[ETHER_ADDR_LEN];
353 char wqname[MAXCOMLEN];
354 int rv;
355
356 sc->sc_dev = self;
357
358 aprint_normal("\n");
359 SC_DEBUG(periph, SCSIPI_DB2, ("dseattach: "));
360
361 sc->sc_attach_state = 0;
362 callout_init(&sc->sc_recv_ch, CALLOUT_MPSAFE);
363 callout_setfunc(&sc->sc_recv_ch, dse_recv_callout, (void *)sc);
364 mutex_init(&sc->sc_iflock, MUTEX_DEFAULT, IPL_SOFTNET);
365
366 /*
367 * Store information needed to contact our base driver
368 */
369 sc->sc_periph = periph;
370 periph->periph_dev = sc->sc_dev;
371 periph->periph_switch = &dse_switch;
372 #if 0
373 sc_periph->sc_link_dbflags = SCSIPI_DB1;
374 #endif
375
376 dse_poll = mstohz(DSE_POLL);
377 dse_poll = dse_poll? dse_poll: 1;
378 dse_poll0 = mstohz(DSE_POLL0);
379 dse_poll0 = dse_poll0? dse_poll0: 1;
380
381 /*
382 * Initialize and attach send and receive buffers
383 */
384 sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header) +
385 DSE_EXTRAS_TX + 16, M_DEVBUF, M_WAITOK);
386
387 sc->sc_rbuf = malloc(RBUF_LEN + 16, M_DEVBUF, M_WAITOK);
388
389 /* initialize adaptor and obtain MAC address */
390 dse_init_adaptor(sc);
391 sc->sc_attach_state = 1;
392
393 /* Initialize ifnet structure. */
394 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
395 ifp->if_softc = sc;
396 ifp->if_start = dse_ifstart;
397 ifp->if_ioctl = dse_ioctl;
398 ifp->if_watchdog = dsewatchdog;
399 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
400 ifp->if_extflags = IFEF_MPSAFE;
401
402 dse_get_addr(sc, myaddr);
403
404 /* Attach the interface. */
405 if_initialize(ifp);
406
407 snprintf(wqname, sizeof(wqname), "%sRx", device_xname(sc->sc_dev));
408 rv = workqueue_create(&sc->sc_recv_wq, wqname, dse_recv_worker, sc,
409 PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
410 if (rv != 0) {
411 aprint_error_dev(sc->sc_dev,
412 "unable to create recv Rx workqueue\n");
413 dsedetach(sc->sc_dev, 0);
414 return; /* Error */
415 }
416 sc->sc_recv_work_pending = false;
417 sc->sc_attach_state = 2;
418
419 snprintf(wqname, sizeof(wqname), "%sTx", device_xname(sc->sc_dev));
420 rv = workqueue_create(&sc->sc_send_wq, wqname, dse_send_worker, ifp,
421 PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
422 if (rv != 0) {
423 aprint_error_dev(sc->sc_dev,
424 "unable to create send Tx workqueue\n");
425 dsedetach(sc->sc_dev, 0);
426 return; /* Error */
427 }
428 sc->sc_send_work_pending = false;
429 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
430 ether_ifattach(ifp, myaddr);
431 if_register(ifp);
432 sc->sc_attach_state = 4;
433
434 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
435 }
436
437 static int
438 dsedetach(device_t self, int flags)
439 {
440 struct dse_softc *sc = device_private(self);
441 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
442
443 switch(sc->sc_attach_state) {
444 case 4:
445 dse_stop(sc);
446 mutex_enter(&sc->sc_iflock);
447 ifp->if_flags &= ~IFF_RUNNING;
448 dse_disable(sc);
449 ether_ifdetach(ifp);
450 if_detach(ifp);
451 mutex_exit(&sc->sc_iflock);
452 if_percpuq_destroy(sc->sc_ipq);
453 /*FALLTHROUGH*/
454 case 3:
455 workqueue_destroy(sc->sc_send_wq);
456 /*FALLTHROUGH*/
457 case 2:
458 workqueue_destroy(sc->sc_recv_wq);
459 /*FALLTHROUGH*/
460 case 1:
461 free(sc->sc_rbuf, M_DEVBUF);
462 free(sc->sc_tbuf, M_DEVBUF);
463 callout_destroy(&sc->sc_recv_ch);
464 mutex_destroy(&sc->sc_iflock);
465 break;
466 default:
467 aprint_error_dev(sc->sc_dev, "detach failed (state %d)\n",
468 sc->sc_attach_state);
469 return 1;
470 break;
471 }
472
473 return 0;
474 }
475
476
477 /*
478 * submit SCSI command
479 */
480 static __inline int
481 dse_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *cmd,
482 int cmdlen, u_char *data_addr, int datalen, int retries, int timeout,
483 struct buf *bp, int flags)
484 {
485 int error = 0;
486
487 error = scsipi_command(periph, cmd, cmdlen, data_addr,
488 datalen, retries, timeout, bp, flags);
489
490 return error;
491 }
492
493
494 /*
495 * Start routine for calling from network sub system
496 */
497 static void
498 dse_ifstart(struct ifnet *ifp)
499 {
500 struct dse_softc *sc = ifp->if_softc;
501
502 mutex_enter(&sc->sc_iflock);
503 if (!sc->sc_send_work_pending) {
504 sc->sc_send_work_pending = true;
505 workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work, NULL);
506 }
507 mutex_exit(&sc->sc_iflock);
508 if (sc->sc_flags & DSE_NEED_RECV) {
509 sc->sc_flags &= ~DSE_NEED_RECV;
510 }
511 }
512
513 /*
514 * Invoke the transmit workqueue and transmission on the interface.
515 */
516 static void
517 dse_send_worker(struct work *wk, void *cookie)
518 {
519 struct ifnet *ifp = cookie;
520 struct dse_softc *sc = ifp->if_softc;
521 scsi_dayna_ether_generic cmd_send;
522 struct mbuf *m, *m0;
523 int len, error;
524 u_char *cp;
525
526 mutex_enter(&sc->sc_iflock);
527 sc->sc_send_work_pending = false;
528 mutex_exit(&sc->sc_iflock);
529
530 KASSERT(if_is_mpsafe(ifp));
531
532 /* Don't transmit if interface is busy or not running */
533 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
534 return;
535
536 while (1) {
537 IFQ_DEQUEUE(&ifp->if_snd, m0);
538 if (m0 == NULL)
539 break;
540 /* If BPF is listening on this interface, let it see the
541 * packet before we commit it to the wire.
542 */
543 bpf_mtap(ifp, m0, BPF_D_OUT);
544
545 /* We need to use m->m_pkthdr.len, so require the header */
546 if ((m0->m_flags & M_PKTHDR) == 0)
547 panic("ctscstart: no header mbuf");
548 len = m0->m_pkthdr.len;
549
550 /* Mark the interface busy. */
551 ifp->if_flags |= IFF_OACTIVE;
552
553 /* Chain; copy into linear buffer allocated at attach time. */
554 cp = sc->sc_tbuf;
555 for (m = m0; m != NULL; ) {
556 memcpy(cp, mtod(m, u_char *), m->m_len);
557 cp += m->m_len;
558 m = m0 = m_free(m);
559 }
560 if (len < DSE_MINSIZE) {
561 #ifdef DSE_DEBUG
562 if (sc->sc_debug)
563 aprint_error_dev(sc->sc_dev,
564 "packet size %d (%zu) < %d\n", len,
565 cp - (u_char *)sc->sc_tbuf, DSE_MINSIZE);
566 #endif
567 memset(cp, 0, DSE_MINSIZE - len);
568 len = DSE_MINSIZE;
569 }
570
571 /* Fill out SCSI command. */
572 memset(&cmd_send, 0, sizeof(cmd_send));
573 cmd_send.opcode[0] = DAYNA_CMD_SEND;
574 _lto2b(len, &(cmd_send.length[0]));
575 cmd_send.byte6 = 0x00;
576
577 /* Send command to device. */
578 error = dse_scsipi_cmd(sc->sc_periph,
579 (void *)&cmd_send, sizeof(cmd_send),
580 sc->sc_tbuf, len, DSE_RETRIES,
581 DSE_TIMEOUT, NULL, XS_CTL_NOSLEEP | XS_CTL_POLL |
582 XS_CTL_DATA_OUT);
583 if (error) {
584 aprint_error_dev(sc->sc_dev,
585 "not queued, error %d\n", error);
586 if_statinc(ifp, if_oerrors);
587 ifp->if_flags &= ~IFF_OACTIVE;
588 } else
589 if_statinc(ifp, if_opackets);
590 }
591 }
592
593
594 /*
595 * Called from the scsibus layer via our scsi device switch.
596 */
597 static void
598 dsedone(struct scsipi_xfer *xs, int error)
599 {
600 struct dse_softc *sc = device_private(xs->xs_periph->periph_dev);
601 struct scsipi_generic *cmd = xs->cmd;
602 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
603
604 if (IS_SEND(cmd)) {
605 ifp->if_flags &= ~IFF_OACTIVE;
606 } else if (IS_RECV(cmd)) {
607 /* RECV complete */
608 /* pass data up. reschedule a recv */
609 /* scsipi_free_xs will call start. Harmless. */
610
611 if (error) {
612 /* Reschedule after a delay */
613 callout_schedule(&sc->sc_recv_ch, dse_poll);
614 } else {
615 int n, ntimeo;
616 n = dse_read(sc, xs->data, xs->datalen - xs->resid);
617 if (n > dse_max_received)
618 dse_max_received = n;
619 if (n == 0)
620 ntimeo = dse_poll;
621 else if (n >= RDATA_MAX)
622 ntimeo = dse_poll0;
623 else {
624 ntimeo = sc->sc_last_timeout;
625 ntimeo = (ntimeo * RDATA_GOAL)/n;
626 ntimeo = (ntimeo < dse_poll0?
627 dse_poll0: ntimeo);
628 ntimeo = (ntimeo > dse_poll?
629 dse_poll: ntimeo);
630 }
631 sc->sc_last_timeout = ntimeo;
632 callout_schedule(&sc->sc_recv_ch, ntimeo);
633 }
634 }
635 }
636
637
638 /*
639 * Setup a receive command by queuing the work.
640 * Usually called from a callout, but also from se_init().
641 */
642 static void
643 dse_recv_callout(void *v)
644 {
645 /* do a recv command */
646 struct dse_softc *sc = (struct dse_softc *) v;
647
648 if (sc->sc_enabled == 0)
649 return;
650
651 mutex_enter(&sc->sc_iflock);
652 if (sc->sc_recv_work_pending == true) {
653 callout_schedule(&sc->sc_recv_ch, dse_poll);
654 mutex_exit(&sc->sc_iflock);
655 return;
656 }
657
658 sc->sc_recv_work_pending = true;
659 workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work, NULL);
660 mutex_exit(&sc->sc_iflock);
661 }
662
663 /*
664 * Invoke the receive workqueue
665 */
666 static void
667 dse_recv_worker(struct work *wk, void *cookie)
668 {
669 struct dse_softc *sc = (struct dse_softc *) cookie;
670
671 dse_recv(sc);
672 mutex_enter(&sc->sc_iflock);
673 sc->sc_recv_work_pending = false;
674 mutex_exit(&sc->sc_iflock);
675
676 }
677
678 /*
679 * Do the actual work of receiving data.
680 */
681 static void
682 dse_recv(struct dse_softc *sc)
683 {
684 scsi_dayna_ether_generic cmd_recv;
685 int error, len;
686
687 /* do a recv command */
688 /* fill out command buffer */
689 memset(&cmd_recv, 0, sizeof(cmd_recv));
690 cmd_recv.opcode[0] = DAYNA_CMD_RECV;
691 len = MAX_BYTES_RX + DSE_EXTRAS_RX;
692 _lto2b(len, &(cmd_recv.length[0]));
693 cmd_recv.byte6 = 0xC0;
694
695 error = dse_scsipi_cmd(sc->sc_periph,
696 (void *)&cmd_recv, sizeof(cmd_recv),
697 sc->sc_rbuf, RBUF_LEN, DSE_RETRIES, DSE_TIMEOUT, NULL,
698 XS_CTL_NOSLEEP | XS_CTL_POLL | XS_CTL_DATA_IN);
699 if (error)
700 callout_schedule(&sc->sc_recv_ch, dse_poll);
701 }
702
703
704 /*
705 * We copy the data into mbufs. When full cluster sized units are present
706 * we copy into clusters.
707 */
708 static struct mbuf *
709 dse_get(struct dse_softc *sc, uint8_t *data, int totlen)
710 {
711 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 struct mbuf *m, *m0, *newm;
713 int len;
714
715 MGETHDR(m0, M_DONTWAIT, MT_DATA);
716 if (m0 == NULL)
717 return NULL;
718
719 m_set_rcvif(m0, ifp);
720 m0->m_pkthdr.len = totlen;
721 len = MHLEN;
722 m = m0;
723
724 while (totlen > 0) {
725 if (totlen >= MINCLSIZE) {
726 MCLGET(m, M_DONTWAIT);
727 if((m->m_flags & M_EXT) == 0)
728 goto bad;
729
730 len = MCLBYTES;
731 }
732
733 if (m == m0) {
734 char *newdata = (char *)
735 ALIGN(m->m_data + sizeof(struct ether_header)) -
736 sizeof(struct ether_header);
737 len -= newdata - m->m_data;
738 m->m_data = newdata;
739 }
740
741 m->m_len = len = uimin(totlen, len);
742 memcpy(mtod(m, void *), data, len);
743 data += len;
744
745 totlen -= len;
746 if (totlen > 0) {
747 MGET(newm, M_DONTWAIT, MT_DATA);
748 if (newm == NULL)
749 goto bad;
750
751 len = MLEN;
752 m = m->m_next = newm;
753 }
754 }
755
756 return m0;
757
758 bad:
759 m_freem(m0);
760 return NULL ;
761 }
762
763
764 #ifdef MAC68K_DEBUG
765 static int
766 peek_packet(uint8_t* buf)
767 {
768 struct ether_header *eh;
769 uint16_t type;
770 int len;
771
772 eh = (struct ether_header*)buf;
773 type = _2btol((uint8_t*)&(eh->ether_type));
774
775 len = sizeof(struct ether_header);
776
777 if (type <= ETHERMTU) {
778 /* for 802.3 */
779 len += type;
780 } else{
781 /* for Ethernet II (DIX) */
782 switch (type) {
783 case ETHERTYPE_ARP:
784 len += 28;
785 break;
786 case ETHERTYPE_IP:
787 len += _2btol(buf + sizeof(struct ether_header) + 2);
788 break;
789 default:
790 len = 0;
791 goto l_end;
792 break;
793 }
794 }
795 if (len < DSE_MINSIZE) {
796 len = DSE_MINSIZE;
797 }
798 len += ETHER_CRC_LEN;
799
800 l_end:;
801 return len;
802 }
803 #endif
804
805
806 /*
807 * Pass packets to higher levels.
808 */
809 static int
810 dse_read(struct dse_softc *sc, uint8_t *data, int datalen)
811 {
812 struct mbuf *m;
813 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
814 int len;
815 int n;
816 #ifdef MAC68K_DEBUG
817 int peek_flag = 1;
818 #endif
819
820 mutex_enter(&sc->sc_iflock);
821 n = 0;
822 while (datalen >= DSE_HEADER_RX) {
823 /*
824 * fetch bytes of stream.
825 * here length = (ether frame length) + (FCS's 4 bytes)
826 */
827 /* fetch frame length */
828 len = _2btol(data);
829
830 /* skip header part */
831 data += DSE_HEADER_RX;
832 datalen -= DSE_HEADER_RX;
833
834 #if 0 /* 03/10/2001 only for debug */
835 {
836 printf("DATALEN %d len %d\n", datalen, len);
837 int j;
838 printf("\ndump[%d]: ",n);
839 for ( j = 0 ; j < datalen ; j++ ) {
840 printf("%02X ",data[j-DSE_HEADER_RX]);
841 }
842 }
843 #endif
844 #ifdef MAC68K_DEBUG
845 if (peek_flag) {
846 peek_flag = 0;
847 len = peek_packet(data);
848 }
849 #endif
850 if (len == 0)
851 break;
852
853 #ifdef DSE_DEBUG
854 aprint_error_dev(sc->sc_dev, "dse_read: datalen = %d, packetlen"
855 " = %d, proto = 0x%04x\n", datalen, len,
856 ntohs(((struct ether_header *)data)->ether_type));
857 #endif
858 if ((len < (DSE_MINSIZE + ETHER_CRC_LEN)) ||
859 (MAX_BYTES_RX < len)) {
860 #ifdef DSE_DEBUG
861 aprint_error_dev(sc->sc_dev, "invalid packet size "
862 "%d; dropping\n", len);
863 #endif
864 if_statinc(ifp, if_ierrors);
865 break;
866 }
867
868 /* Don't need crc. Must keep ether header for BPF */
869 m = dse_get(sc, data, len - ETHER_CRC_LEN);
870 if (m == NULL) {
871 #ifdef DSE_DEBUG
872 if (sc->sc_debug)
873 aprint_error_dev(sc->sc_dev, "dse_read: "
874 "dse_get returned null\n");
875 #endif
876 if_statinc(ifp, if_ierrors);
877 goto next_packet;
878 }
879 if_statinc(ifp, if_ipackets);
880
881 /*
882 * Check if there's a BPF listener on this interface.
883 * If so, hand off the raw packet to BPF.
884 */
885 if (ifp->if_bpf)
886 bpf_mtap(ifp, m, BPF_D_OUT);
887
888 /* Pass the packet up. */
889 if_percpuq_enqueue(sc->sc_ipq, m);
890
891 next_packet:
892 data += len;
893 datalen -= len;
894 n++;
895 }
896 mutex_exit(&sc->sc_iflock);
897
898 return n;
899 }
900
901
902 static void
903 dsewatchdog(struct ifnet *ifp)
904 {
905 struct dse_softc *sc = ifp->if_softc;
906
907 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
908 if_statinc(ifp, if_oerrors);
909
910 dse_reset(sc);
911 }
912
913
914 static int
915 dse_reset(struct dse_softc *sc)
916 {
917 int error;
918 #if 0
919 /* Maybe we don't *really* want to reset the entire bus
920 * because the ctron isn't working. We would like to send a
921 * "BUS DEVICE RESET" message, but don't think the ctron
922 * understands it.
923 */
924 error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES, 2000,
925 NULL, XS_CTL_RESET);
926 #endif
927 error = dse_init(sc);
928 return error;
929 }
930
931
932 static int
933 dse_init_adaptor(struct dse_softc *sc)
934 {
935 scsi_dayna_ether_generic cmd_vend1;
936 u_char tmpbuf[sizeof(cmd_vend1)];
937 int error;
938
939 #if 0 /* 07/21/2001 for test */
940 /* Maybe we don't *really* want to reset the entire bus
941 * because the ctron isn't working. We would like to send a
942 * "BUS DEVICE RESET" message, but don't think the ctron
943 * understands it.
944 */
945 error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES,
946 2000, NULL, XS_CTL_RESET);
947 #endif
948
949 cmd_vend1 = sonic_ether_vendor1;
950
951 error = dse_scsipi_cmd(sc->sc_periph,
952 (struct scsipi_generic *)&cmd_vend1, sizeof(cmd_vend1),
953 &(tmpbuf[0]), sizeof(tmpbuf),
954 DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN);
955
956 if (error)
957 goto l_end;
958
959 /* wait 500 msec */
960 kpause("dsesleep", false, hz / 2, NULL);
961
962 l_end:
963 return error;
964 }
965
966
967 static int
968 dse_get_addr(struct dse_softc *sc, uint8_t *myaddr)
969 {
970 scsi_dayna_ether_generic cmd_get_addr;
971 u_char tmpbuf[REQ_LEN_GET_ADDR];
972 int error;
973
974 memset(&cmd_get_addr, 0, sizeof(cmd_get_addr));
975 cmd_get_addr.opcode[0] = DAYNA_CMD_GET_ADDR;
976 _lto2b(REQ_LEN_GET_ADDR, cmd_get_addr.length);
977
978 error = dse_scsipi_cmd(sc->sc_periph,
979 (struct scsipi_generic *)&cmd_get_addr, sizeof(cmd_get_addr),
980 tmpbuf, sizeof(tmpbuf),
981 DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN);
982
983 if (error == 0) {
984 memcpy(myaddr, &(tmpbuf[0]), ETHER_ADDR_LEN);
985
986 aprint_error_dev(sc->sc_dev, "ethernet address %s\n",
987 ether_sprintf(myaddr));
988 }
989
990 return error;
991 }
992
993
994 #if 0 /* 07/16/2000 comment-out */
995 static int
996 dse_set_mode(struct dse_softc *sc, int len, int mode)
997
998 return 0;
999 }
1000 #endif
1001
1002
1003 static int
1004 dse_init(struct dse_softc *sc)
1005 {
1006 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1007 int error = 0;
1008
1009 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == IFF_UP) {
1010 ifp->if_flags |= IFF_RUNNING;
1011 mutex_enter(&sc->sc_iflock);
1012 if (!sc->sc_recv_work_pending) {
1013 sc->sc_recv_work_pending = true;
1014 workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work,
1015 NULL);
1016 }
1017 mutex_exit(&sc->sc_iflock);
1018 ifp->if_flags &= ~IFF_OACTIVE;
1019 mutex_enter(&sc->sc_iflock);
1020 if (!sc->sc_send_work_pending) {
1021 sc->sc_send_work_pending = true;
1022 workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work,
1023 NULL);
1024 }
1025 mutex_exit(&sc->sc_iflock);
1026 }
1027 return error;
1028 }
1029
1030
1031 static uint8_t BROADCAST_ADDR[ETHER_ADDR_LEN] =
1032 { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
1033
1034
1035 static int
1036 dse_set_multi(struct dse_softc *sc)
1037 {
1038 scsi_dayna_ether_generic cmd_set_multi;
1039 struct ether_multistep step;
1040 struct ether_multi *enm;
1041 u_char *cp, *mybuf;
1042 int error, len;
1043
1044 error = 0;
1045
1046 #ifdef DSE_DEBUG
1047 aprint_error_dev(sc->sc_dev, "dse_set_multi\n");
1048 #endif
1049
1050 mybuf = malloc(ETHER_ADDR_LEN * DSE_MCAST_MAX, M_DEVBUF, M_NOWAIT);
1051 if (mybuf == NULL) {
1052 error = EIO;
1053 goto l_end;
1054 }
1055
1056 /*
1057 * copy all entries to transfer buffer
1058 */
1059 cp = mybuf;
1060 len = 0;
1061 ETHER_FIRST_MULTI(step, &(sc->sc_ethercom), enm);
1062 while ((len < (DSE_MCAST_MAX - 1)) && (enm != NULL)) {
1063 /* ### refer low side entry */
1064 memcpy(cp, enm->enm_addrlo, ETHER_ADDR_LEN);
1065
1066 cp += ETHER_ADDR_LEN;
1067 len++;
1068 ETHER_NEXT_MULTI(step, enm);
1069 }
1070
1071 /* add broadcast address as default */
1072 memcpy(cp, BROADCAST_ADDR, ETHER_ADDR_LEN);
1073 len++;
1074
1075 len *= ETHER_ADDR_LEN;
1076
1077 memset(&cmd_set_multi, 0, sizeof(cmd_set_multi));
1078 cmd_set_multi.opcode[0] = DAYNA_CMD_SET_MULTI;
1079 _lto2b(len, cmd_set_multi.length);
1080
1081 error = dse_scsipi_cmd(sc->sc_periph,
1082 (struct scsipi_generic*)&cmd_set_multi, sizeof(cmd_set_multi),
1083 mybuf, len, DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_OUT);
1084
1085 free(mybuf, M_DEVBUF);
1086
1087 l_end:
1088 return error;
1089 }
1090
1091
1092 static void
1093 dse_stop(struct dse_softc *sc)
1094 {
1095 /* Don't schedule any reads */
1096 callout_stop(&sc->sc_recv_ch);
1097
1098 /* Wait for the workqueues to finish */
1099 mutex_enter(&sc->sc_iflock);
1100 workqueue_wait(sc->sc_recv_wq, &sc->sc_recv_work);
1101 workqueue_wait(sc->sc_send_wq, &sc->sc_send_work);
1102 mutex_exit(&sc->sc_iflock);
1103
1104 /* Abort any scsi cmds in progress */
1105 mutex_enter(chan_mtx(sc->sc_periph->periph_channel));
1106 scsipi_kill_pending(sc->sc_periph);
1107 mutex_exit(chan_mtx(sc->sc_periph->periph_channel));
1108 }
1109
1110
1111 /*
1112 * Process an ioctl request.
1113 */
1114 static int
1115 dse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1116 {
1117 struct dse_softc *sc;
1118 struct ifaddr *ifa;
1119 struct ifreq *ifr;
1120 struct sockaddr *sa;
1121 int error;
1122
1123 error = 0;
1124 sc = ifp->if_softc;
1125 ifa = (struct ifaddr *)data;
1126 ifr = (struct ifreq *)data;
1127
1128 switch (cmd) {
1129 case SIOCINITIFADDR:
1130 mutex_enter(&sc->sc_iflock);
1131 if ((error = dse_enable(sc)) != 0)
1132 break;
1133 ifp->if_flags |= IFF_UP;
1134 mutex_exit(&sc->sc_iflock);
1135
1136 #if 0
1137 if ((error = dse_set_media(sc, CMEDIA_AUTOSENSE)) != 0)
1138 break;
1139 #endif
1140
1141 switch (ifa->ifa_addr->sa_family) {
1142 #ifdef INET
1143 case AF_INET:
1144 if ((error = dse_init(sc)) != 0)
1145 break;
1146 arp_ifinit(ifp, ifa);
1147 break;
1148 #endif
1149 #ifdef NETATALK
1150 case AF_APPLETALK:
1151 if ((error = dse_init(sc)) != 0)
1152 break;
1153 break;
1154 #endif
1155 default:
1156 error = dse_init(sc);
1157 break;
1158 }
1159 break;
1160
1161
1162 case SIOCSIFADDR:
1163 mutex_enter(&sc->sc_iflock);
1164 error = dse_enable(sc);
1165 mutex_exit(&sc->sc_iflock);
1166 if (error != 0)
1167 break;
1168 ifp->if_flags |= IFF_UP;
1169
1170 switch (ifa->ifa_addr->sa_family) {
1171 #ifdef INET
1172 case AF_INET:
1173 if ((error = dse_init(sc)) != 0)
1174 break;
1175 arp_ifinit(ifp, ifa);
1176 break;
1177 #endif
1178 #ifdef NETATALK
1179 case AF_APPLETALK:
1180 if ((error = dse_init(sc)) != 0)
1181 break;
1182 break;
1183 #endif
1184 default:
1185 error = dse_init(sc);
1186 break;
1187 }
1188 break;
1189
1190 case SIOCSIFFLAGS:
1191 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1192 break;
1193 /* XXX re-use ether_ioctl() */
1194 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1195 case IFF_RUNNING:
1196 /*
1197 * If interface is marked down and it is running, then
1198 * stop it.
1199 */
1200 dse_stop(sc);
1201 mutex_enter(&sc->sc_iflock);
1202 ifp->if_flags &= ~IFF_RUNNING;
1203 dse_disable(sc);
1204 mutex_exit(&sc->sc_iflock);
1205 break;
1206 case IFF_UP:
1207 /*
1208 * If interface is marked up and it is stopped, then
1209 * start it.
1210 */
1211 mutex_enter(&sc->sc_iflock);
1212 error = dse_enable(sc);
1213 mutex_exit(&sc->sc_iflock);
1214 if (error)
1215 break;
1216 error = dse_init(sc);
1217 break;
1218 default:
1219 /*
1220 * Reset the interface to pick up changes in any other
1221 * flags that affect hardware registers.
1222 */
1223 mutex_enter(&sc->sc_iflock);
1224 if (sc->sc_enabled)
1225 error = dse_init(sc);
1226 mutex_exit(&sc->sc_iflock);
1227 break;
1228 }
1229 #ifdef DSE_DEBUG
1230 if (ifp->if_flags & IFF_DEBUG)
1231 sc->sc_debug = 1;
1232 else
1233 sc->sc_debug = 0;
1234 #endif
1235 break;
1236
1237 case SIOCADDMULTI:
1238 if (sc->sc_enabled == 0) {
1239 error = EIO;
1240 break;
1241 }
1242 mutex_enter(&sc->sc_iflock);
1243 sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK);
1244 mutex_exit(&sc->sc_iflock);
1245 if (ether_addmulti(sa, &sc->sc_ethercom) == ENETRESET) {
1246 error = dse_set_multi(sc);
1247 #ifdef DSE_DEBUG
1248 aprint_error_dev(sc->sc_dev, "add multi: %s\n",
1249 ether_sprintf(ifr->ifr_addr.sa_data));
1250 #endif
1251 } else
1252 error = 0;
1253
1254 mutex_enter(&sc->sc_iflock);
1255 sockaddr_free(sa);
1256 mutex_exit(&sc->sc_iflock);
1257
1258 break;
1259
1260 case SIOCDELMULTI:
1261 if (sc->sc_enabled == 0) {
1262 error = EIO;
1263 break;
1264 }
1265 mutex_enter(&sc->sc_iflock);
1266 sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK);
1267 mutex_exit(&sc->sc_iflock);
1268 if (ether_delmulti(sa, &sc->sc_ethercom) == ENETRESET) {
1269 error = dse_set_multi(sc);
1270 #ifdef DSE_DEBUG
1271 aprint_error_dev(sc->sc_dev, "delete multi: %s\n",
1272 ether_sprintf(ifr->ifr_addr.sa_data));
1273 #endif
1274 } else
1275 error = 0;
1276
1277 mutex_enter(&sc->sc_iflock);
1278 sockaddr_free(sa);
1279 mutex_exit(&sc->sc_iflock);
1280
1281 break;
1282
1283 default:
1284 error = ether_ioctl(ifp, cmd, data);
1285 break;
1286 }
1287
1288
1289 return error;
1290 }
1291
1292
1293 /*
1294 * Enable the network interface.
1295 */
1296 int
1297 dse_enable(struct dse_softc *sc)
1298 {
1299 struct scsipi_periph *periph = sc->sc_periph;
1300 struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
1301 int error = 0;
1302
1303 if (sc->sc_enabled == 0) {
1304 if ((error = scsipi_adapter_addref(adapt)) == 0)
1305 sc->sc_enabled = 1;
1306 else
1307 aprint_error_dev(sc->sc_dev, "device enable failed\n");
1308 }
1309
1310 return error;
1311 }
1312
1313
1314 /*
1315 * Disable the network interface.
1316 */
1317 void
1318 dse_disable(struct dse_softc *sc)
1319 {
1320 struct scsipi_periph *periph = sc->sc_periph;
1321 struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
1322 if (sc->sc_enabled != 0) {
1323 scsipi_adapter_delref(adapt);
1324 sc->sc_enabled = 0;
1325 }
1326 }
1327
1328
1329 #define DSEUNIT(z) (minor(z))
1330
1331 /*
1332 * open the device.
1333 */
1334 int
1335 dseopen(dev_t dev, int flag, int fmt, struct lwp *l)
1336 {
1337 int unit, error;
1338 struct dse_softc *sc;
1339 struct scsipi_periph *periph;
1340 struct scsipi_adapter *adapt;
1341
1342 unit = DSEUNIT(dev);
1343 sc = device_lookup_private(&dse_cd, unit);
1344 if (sc == NULL)
1345 return ENXIO;
1346
1347 periph = sc->sc_periph;
1348 adapt = periph->periph_channel->chan_adapter;
1349
1350 if ((error = scsipi_adapter_addref(adapt)) != 0)
1351 return error;
1352
1353 SC_DEBUG(periph, SCSIPI_DB1,
1354 ("scopen: dev=0x%"PRIx64" (unit %d (of %d))\n", dev, unit,
1355 dse_cd.cd_ndevs));
1356
1357 periph->periph_flags |= PERIPH_OPEN;
1358
1359 SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n"));
1360
1361 return 0;
1362 }
1363
1364
1365 /*
1366 * close the device.. only called if we are the LAST
1367 * occurence of an open device
1368 */
1369 int
1370 dseclose(dev_t dev, int flag, int fmt, struct lwp *l)
1371 {
1372 struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev));
1373 struct scsipi_periph *periph = sc->sc_periph;
1374 struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
1375
1376 SC_DEBUG(sc->sc_periph, SCSIPI_DB1, ("closing\n"));
1377
1378 scsipi_wait_drain(periph);
1379
1380 scsipi_adapter_delref(adapt);
1381 periph->periph_flags &= ~PERIPH_OPEN;
1382
1383 return 0;
1384 }
1385
1386
1387 /*
1388 * Perform special action on behalf of the user
1389 * Only does generic scsi ioctls.
1390 */
1391 int
1392 dseioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
1393 {
1394 struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev));
1395
1396 return (scsipi_do_ioctl(sc->sc_periph, dev, cmd, addr, flag, l));
1397 }
1398
1399