if_dse.c revision 1.9 1 /* $NetBSD: if_dse.c,v 1.9 2025/05/23 09:12:51 nat Exp $ */
2
3 /*
4 * Driver for DaynaPORT SCSI/Link SCSI-Ethernet
5 *
6 * Written by Hiroshi Noguchi <ngc (at) ff.iij4u.or.jp>
7 *
8 * Modified by Matt Sandstrom <mattias (at) beauty.se> for NetBSD 1.5.3
9 *
10 * This driver is written based on "if_se.c".
11 */
12
13 /*
14 * Copyright (c) 1997 Ian W. Dall <ian.dall (at) dsto.defence.gov.au>
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by Ian W. Dall.
28 * 4. The name of the author may not be used to endorse or promote products
29 * derived from this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
32 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
34 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 #include "opt_inet.h"
44 #include "opt_atalk.h"
45
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/callout.h>
50 #include <sys/syslog.h>
51 #include <sys/kernel.h>
52 #include <sys/file.h>
53 #include <sys/stat.h>
54 #include <sys/ioctl.h>
55 #include <sys/buf.h>
56 #include <sys/uio.h>
57 #include <sys/malloc.h>
58 #include <sys/errno.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/disk.h>
62 #include <sys/proc.h>
63 #include <sys/conf.h>
64
65 #include <sys/workqueue.h>
66
67 #include <dev/scsipi/scsipi_all.h>
68 #include <dev/scsipi/scsiconf.h>
69
70 #include <sys/mbuf.h>
71
72 #include <sys/socket.h>
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_ether.h>
76 #include <net/if_media.h>
77
78 #ifdef INET
79 #include <netinet/in.h>
80 #include <netinet/if_inarp.h>
81 #endif
82
83 #ifdef NETATALK
84 #include <netatalk/at.h>
85 #endif
86
87 #include <net/bpf.h>
88
89
90 /*
91 * debug flag
92 */
93 #if 0
94 #define DSE_DEBUG
95 #endif
96
97
98 #define DSE_TIMEOUT 100000
99 #define DSE_OUTSTANDING 4
100 #define DSE_RETRIES 4
101 #define DSE_MINSIZE 60
102
103 #define DSE_HEADER_TX 4
104 #define DSE_TAIL_TX 4
105 #define DSE_EXTRAS_TX (DSE_HEADER_TX + DSE_TAIL_TX)
106
107 #define DSE_HEADER_RX 6
108 #define DSE_TAIL_RX 0
109 #define DSE_EXTRAS_RX (DSE_HEADER_RX + DSE_TAIL_RX)
110
111 #define MAX_BYTES_RX (ETHERMTU + sizeof(struct ether_header) + ETHER_CRC_LEN)
112
113 /* 10 full length packets appears to be the max ever returned. 16k is OK */
114 #define RBUF_LEN (16 * 1024)
115
116 /*
117 * Tuning parameters:
118 * We will attempt to adapt to polling fast enough to get RDATA_GOAL packets
119 * per read
120 */
121 #define RDATA_MAX 10 /* maximum of returned packets (guessed) */
122 #define RDATA_GOAL 8
123
124 /*
125 * maximum of available multicast address entries (guessed)
126 */
127 #define DSE_MCAST_MAX 10
128
129
130 /* dse_poll and dse_poll0 are the normal polling rate and the minimum
131 * polling rate respectively. dse_poll0 should be chosen so that at
132 * maximum ethernet speed, we will read nearly RDATA_MAX packets. dse_poll
133 * should be chosen for reasonable maximum latency.
134 * In practice, if we are being saturated with min length packets, we
135 * can't poll fast enough. Polling with zero delay actually
136 * worsens performance. dse_poll0 is enforced to be always at least 1
137 */
138 #if MAC68K_DEBUG
139 #define DSE_POLL 50 /* default in milliseconds */
140 #define DSE_POLL0 30 /* default in milliseconds */
141 #else
142 #define DSE_POLL 80 /* default in milliseconds */
143 #define DSE_POLL0 40 /* default in milliseconds */
144 #endif
145 int dse_poll = 0; /* Delay in ticks set at attach time */
146 int dse_poll0 = 0;
147 int dse_max_received = 0; /* Instrumentation */
148
149
150
151
152 /*==========================================
153 data type defs
154 ==========================================*/
155 typedef struct scsipi_inquiry_data dayna_ether_inquiry_data;
156
157 typedef struct {
158 uint8_t opcode[2];
159 uint8_t byte3;
160 uint8_t length[2];
161 uint8_t byte6;
162 } scsi_dayna_ether_generic;
163
164 #define DAYNA_CMD_SEND 0x0A /* same as generic "Write" */
165 #define DAYNA_CMD_RECV 0x08 /* same as generic "Read" */
166
167 #define DAYNA_CMD_GET_ADDR 0x09 /* ???: read MAC address ? */
168 #define REQ_LEN_GET_ADDR 0x12
169
170 #define DAYNA_CMD_SET_MULTI 0x0D /* set multicast address */
171
172 #define DAYNA_CMD_VENDOR1 0x0E /* ???: initialize signal ? */
173
174 #define IS_SEND(generic) ((generic)->opcode == DAYNA_CMD_SEND)
175 #define IS_RECV(generic) ((generic)->opcode == DAYNA_CMD_RECV)
176
177 struct dse_softc {
178 device_t sc_dev;
179 struct ethercom sc_ethercom; /* Ethernet common part */
180 struct scsipi_periph *sc_periph;/* contains our targ, lun, etc. */
181
182 struct callout sc_recv_ch;
183 struct kmutex sc_iflock;
184 struct if_percpuq *sc_ipq;
185 struct workqueue *sc_recv_wq, *sc_send_wq;
186 struct work sc_recv_work, sc_send_work;
187 int sc_recv_work_pending, sc_send_work_pending;
188
189 char *sc_tbuf;
190 char *sc_rbuf;
191 int sc_debug;
192 int sc_flags;
193 int sc_last_timeout;
194 int sc_enabled;
195 int sc_attach_state;
196 };
197
198 /* bit defs of "sc_flags" */
199 #define DSE_NEED_RECV 0x1
200
201 static int dsematch(device_t, cfdata_t, void *);
202 static void dseattach(device_t, device_t, void *);
203 static int dsedetach(device_t, int);
204
205 static void dse_ifstart(struct ifnet *);
206 static void dse_send_worker(struct work *wk, void *cookie);
207
208 static void dsedone(struct scsipi_xfer *, int);
209 static int dse_ioctl(struct ifnet *, u_long, void *);
210 static void dsewatchdog(struct ifnet *);
211
212 static void dse_recv_callout(void *);
213 static void dse_recv_worker(struct work *wk, void *cookie);
214 static void dse_recv(struct dse_softc *);
215 static struct mbuf* dse_get(struct dse_softc *, uint8_t *, int);
216 static int dse_read(struct dse_softc *, uint8_t *, int);
217
218 static int dse_init_adaptor(struct dse_softc *);
219 static int dse_get_addr(struct dse_softc *, uint8_t *);
220 static int dse_set_multi(struct dse_softc *);
221
222 static int dse_reset(struct dse_softc *);
223
224 #if 0 /* 07/16/2000 comment-out */
225 static int dse_set_mode(struct dse_softc *, int, int);
226 #endif
227 static int dse_init(struct dse_softc *);
228 static void dse_stop(struct dse_softc *);
229
230 #if 0
231 static __inline uint16_t ether_cmp(void *, void *);
232 #endif
233
234 static inline int dse_scsipi_cmd(struct scsipi_periph *periph,
235 struct scsipi_generic *scsipi_cmd,
236 int cmdlen, u_char *data_addr, int datalen,
237 int retries, int timeout, struct buf *bp,
238 int flags);
239
240 int dse_enable(struct dse_softc *);
241 void dse_disable(struct dse_softc *);
242
243
244 CFATTACH_DECL_NEW(dse, sizeof(struct dse_softc),
245 dsematch, dseattach, dsedetach, NULL);
246
247 extern struct cfdriver dse_cd;
248
249 dev_type_open(dseopen);
250 dev_type_close(dseclose);
251 dev_type_ioctl(dseioctl);
252
253 const struct cdevsw dse_cdevsw = {
254 .d_open = dseopen,
255 .d_close = dseclose,
256 .d_read = noread,
257 .d_write = nowrite,
258 .d_ioctl = dseioctl,
259 .d_stop = nostop,
260 .d_tty = notty,
261 .d_poll = nopoll,
262 .d_mmap = nommap,
263 .d_kqfilter = nokqfilter,
264 .d_discard = nodiscard,
265 .d_flag = D_OTHER | D_MPSAFE
266 };
267
268 const struct scsipi_periphsw dse_switch = {
269
270 NULL, /* Use default error handler */
271 NULL, /* have no queue */
272 NULL, /* have no async handler */
273 dsedone, /* deal with stats at interrupt time */
274 };
275
276 struct scsipi_inquiry_pattern dse_patterns[] = {
277 { T_PROCESSOR, T_FIXED,
278 "Dayna", "SCSI/Link", "" },
279 };
280
281
282
283 /*====================================================
284 definitions for SCSI commands
285 ====================================================*/
286
287 /*
288 * command templates
289 */
290 /* unknown commands */
291 /* Vendor #1 */
292 static const scsi_dayna_ether_generic sonic_ether_vendor1 = {
293 { DAYNA_CMD_VENDOR1, 0x00 },
294 0x00,
295 { 0x00, 0x00 },
296 0x80
297 };
298
299
300
301 #if 0
302 /*
303 * Compare two Ether/802 addresses for equality, inlined and
304 * unrolled for speed.
305 * Note: use this like memcmp()
306 */
307 static __inline uint16_t
308 ether_cmp(void *one, void *two)
309 {
310 uint16_t* a;
311 uint16_t* b;
312 uint16_t diff;
313
314 a = (uint16_t *) one;
315 b = (uint16_t *) two;
316
317 diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]);
318
319 return (diff);
320 }
321
322 #define ETHER_CMP ether_cmp
323 #endif
324
325 /*
326 * check to match with SCSI inquiry information
327 */
328 static int
329 dsematch(device_t parent, cfdata_t match, void *aux)
330 {
331 struct scsipibus_attach_args *sa = aux;
332 int priority;
333
334 (void)scsipi_inqmatch(&sa->sa_inqbuf,
335 dse_patterns, sizeof(dse_patterns) / sizeof(dse_patterns[0]),
336 sizeof(dse_patterns[0]), &priority);
337 return priority;
338 }
339
340
341 /*
342 * The routine called by the low level scsi routine when it discovers
343 * a device suitable for this driver.
344 */
345 static void
346 dseattach(device_t parent, device_t self, void *aux)
347 {
348 struct dse_softc *sc = device_private(self);
349 struct scsipibus_attach_args *sa = aux;
350 struct scsipi_periph *periph = sa->sa_periph;
351 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
352 uint8_t myaddr[ETHER_ADDR_LEN];
353 char wqname[MAXCOMLEN];
354 int rv;
355
356 sc->sc_dev = self;
357
358 aprint_normal("\n");
359 SC_DEBUG(periph, SCSIPI_DB2, ("dseattach: "));
360
361 sc->sc_attach_state = 0;
362 callout_init(&sc->sc_recv_ch, CALLOUT_MPSAFE);
363 callout_setfunc(&sc->sc_recv_ch, dse_recv_callout, (void *)sc);
364 mutex_init(&sc->sc_iflock, MUTEX_DEFAULT, IPL_SOFTNET);
365
366 /*
367 * Store information needed to contact our base driver
368 */
369 sc->sc_periph = periph;
370 periph->periph_dev = sc->sc_dev;
371 periph->periph_switch = &dse_switch;
372 #if 0
373 sc_periph->sc_link_dbflags = SCSIPI_DB1;
374 #endif
375
376 dse_poll = mstohz(DSE_POLL);
377 dse_poll = dse_poll? dse_poll: 1;
378 dse_poll0 = mstohz(DSE_POLL0);
379 dse_poll0 = dse_poll0? dse_poll0: 1;
380
381 /*
382 * Initialize and attach send and receive buffers
383 */
384 sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header) +
385 DSE_EXTRAS_TX + 16, M_DEVBUF, M_WAITOK);
386
387 sc->sc_rbuf = malloc(RBUF_LEN + 16, M_DEVBUF, M_WAITOK);
388
389 /* initialize adaptor and obtain MAC address */
390 dse_init_adaptor(sc);
391 sc->sc_attach_state = 1;
392
393 /* Initialize ifnet structure. */
394 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
395 ifp->if_softc = sc;
396 ifp->if_start = dse_ifstart;
397 ifp->if_ioctl = dse_ioctl;
398 ifp->if_watchdog = dsewatchdog;
399 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
400 ifp->if_extflags = IFEF_MPSAFE;
401
402 dse_get_addr(sc, myaddr);
403
404 /* Attach the interface. */
405 if_initialize(ifp);
406
407 snprintf(wqname, sizeof(wqname), "%sRx", device_xname(sc->sc_dev));
408 rv = workqueue_create(&sc->sc_recv_wq, wqname, dse_recv_worker, sc,
409 PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
410 if (rv != 0) {
411 aprint_error_dev(sc->sc_dev,
412 "unable to create recv Rx workqueue\n");
413 dsedetach(sc->sc_dev, 0);
414 return; /* Error */
415 }
416 sc->sc_recv_work_pending = false;
417 sc->sc_attach_state = 2;
418
419 snprintf(wqname, sizeof(wqname), "%sTx", device_xname(sc->sc_dev));
420 rv = workqueue_create(&sc->sc_send_wq, wqname, dse_send_worker, ifp,
421 PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
422 if (rv != 0) {
423 aprint_error_dev(sc->sc_dev,
424 "unable to create send Tx workqueue\n");
425 dsedetach(sc->sc_dev, 0);
426 return; /* Error */
427 }
428 sc->sc_send_work_pending = false;
429 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
430 ether_ifattach(ifp, myaddr);
431 if_register(ifp);
432 sc->sc_attach_state = 4;
433
434 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
435 }
436
437 static int
438 dsedetach(device_t self, int flags)
439 {
440 struct dse_softc *sc = device_private(self);
441 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
442
443 switch(sc->sc_attach_state) {
444 case 4:
445 dse_stop(sc);
446 mutex_enter(&sc->sc_iflock);
447 ifp->if_flags &= ~IFF_RUNNING;
448 dse_disable(sc);
449 ether_ifdetach(ifp);
450 if_detach(ifp);
451 mutex_exit(&sc->sc_iflock);
452 if_percpuq_destroy(sc->sc_ipq);
453 /*FALLTHROUGH*/
454 case 3:
455 workqueue_destroy(sc->sc_send_wq);
456 /*FALLTHROUGH*/
457 case 2:
458 workqueue_destroy(sc->sc_recv_wq);
459 /*FALLTHROUGH*/
460 case 1:
461 free(sc->sc_rbuf, M_DEVBUF);
462 free(sc->sc_tbuf, M_DEVBUF);
463 callout_destroy(&sc->sc_recv_ch);
464 mutex_destroy(&sc->sc_iflock);
465 break;
466 default:
467 aprint_error_dev(sc->sc_dev, "detach failed (state %d)\n",
468 sc->sc_attach_state);
469 return 1;
470 break;
471 }
472
473 return 0;
474 }
475
476
477 /*
478 * submit SCSI command
479 */
480 static __inline int
481 dse_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *cmd,
482 int cmdlen, u_char *data_addr, int datalen, int retries, int timeout,
483 struct buf *bp, int flags)
484 {
485 int error = 0;
486
487 error = scsipi_command(periph, cmd, cmdlen, data_addr,
488 datalen, retries, timeout, bp, flags);
489
490 return error;
491 }
492
493
494 /*
495 * Start routine for calling from network sub system
496 */
497 static void
498 dse_ifstart(struct ifnet *ifp)
499 {
500 struct dse_softc *sc = ifp->if_softc;
501
502 mutex_enter(&sc->sc_iflock);
503 if (!sc->sc_send_work_pending) {
504 sc->sc_send_work_pending = true;
505 workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work, NULL);
506 }
507 mutex_exit(&sc->sc_iflock);
508 if (sc->sc_flags & DSE_NEED_RECV) {
509 sc->sc_flags &= ~DSE_NEED_RECV;
510 }
511 }
512
513 /*
514 * Invoke the transmit workqueue and transmission on the interface.
515 */
516 static void
517 dse_send_worker(struct work *wk, void *cookie)
518 {
519 struct ifnet *ifp = cookie;
520 struct dse_softc *sc = ifp->if_softc;
521 scsi_dayna_ether_generic cmd_send;
522 struct mbuf *m, *m0;
523 int len, error;
524 u_char *cp;
525
526 mutex_enter(&sc->sc_iflock);
527 sc->sc_send_work_pending = false;
528 mutex_exit(&sc->sc_iflock);
529
530 KASSERT(if_is_mpsafe(ifp));
531
532 /* Don't transmit if interface is busy or not running */
533 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
534 return;
535
536 while (1) {
537 IFQ_DEQUEUE(&ifp->if_snd, m0);
538 if (m0 == NULL)
539 break;
540 /* If BPF is listening on this interface, let it see the
541 * packet before we commit it to the wire.
542 */
543 bpf_mtap(ifp, m0, BPF_D_OUT);
544
545 /* We need to use m->m_pkthdr.len, so require the header */
546 if ((m0->m_flags & M_PKTHDR) == 0)
547 panic("ctscstart: no header mbuf");
548 len = m0->m_pkthdr.len;
549
550 /* Mark the interface busy. */
551 ifp->if_flags |= IFF_OACTIVE;
552
553 /* Chain; copy into linear buffer allocated at attach time. */
554 cp = sc->sc_tbuf;
555 for (m = m0; m != NULL; ) {
556 memcpy(cp, mtod(m, u_char *), m->m_len);
557 cp += m->m_len;
558 m = m0 = m_free(m);
559 }
560 if (len < DSE_MINSIZE) {
561 #ifdef DSE_DEBUG
562 if (sc->sc_debug)
563 aprint_error_dev(sc->sc_dev,
564 "packet size %d (%zu) < %d\n", len,
565 cp - (u_char *)sc->sc_tbuf, DSE_MINSIZE);
566 #endif
567 memset(cp, 0, DSE_MINSIZE - len);
568 len = DSE_MINSIZE;
569 }
570
571 /* Fill out SCSI command. */
572 memset(&cmd_send, 0, sizeof(cmd_send));
573 cmd_send.opcode[0] = DAYNA_CMD_SEND;
574 _lto2b(len, &(cmd_send.length[0]));
575 cmd_send.byte6 = 0x00;
576
577 /* Send command to device. */
578 error = dse_scsipi_cmd(sc->sc_periph,
579 (void *)&cmd_send, sizeof(cmd_send),
580 sc->sc_tbuf, len, DSE_RETRIES,
581 DSE_TIMEOUT, NULL, XS_CTL_NOSLEEP | XS_CTL_DATA_OUT);
582 if (error) {
583 aprint_error_dev(sc->sc_dev,
584 "not queued, error %d\n", error);
585 if_statinc(ifp, if_oerrors);
586 ifp->if_flags &= ~IFF_OACTIVE;
587 } else
588 if_statinc(ifp, if_opackets);
589 }
590 }
591
592
593 /*
594 * Called from the scsibus layer via our scsi device switch.
595 */
596 static void
597 dsedone(struct scsipi_xfer *xs, int error)
598 {
599 struct dse_softc *sc = device_private(xs->xs_periph->periph_dev);
600 struct scsipi_generic *cmd = xs->cmd;
601 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
602
603 if (IS_SEND(cmd)) {
604 ifp->if_flags &= ~IFF_OACTIVE;
605 } else if (IS_RECV(cmd)) {
606 /* RECV complete */
607 /* pass data up. reschedule a recv */
608 /* scsipi_free_xs will call start. Harmless. */
609
610 if (error) {
611 /* Reschedule after a delay */
612 callout_schedule(&sc->sc_recv_ch, dse_poll);
613 } else {
614 int n, ntimeo;
615 n = dse_read(sc, xs->data, xs->datalen - xs->resid);
616 if (n > dse_max_received)
617 dse_max_received = n;
618 if (n == 0)
619 ntimeo = dse_poll;
620 else if (n >= RDATA_MAX)
621 ntimeo = dse_poll0;
622 else if (n >= dse_max_received)
623 ntimeo = 0;
624 else {
625 ntimeo = sc->sc_last_timeout;
626 ntimeo = (ntimeo * RDATA_GOAL)/n;
627 ntimeo = (ntimeo < dse_poll0?
628 dse_poll0: ntimeo);
629 ntimeo = (ntimeo > dse_poll?
630 dse_poll: ntimeo);
631 }
632 sc->sc_last_timeout = ntimeo;
633 callout_schedule(&sc->sc_recv_ch, ntimeo);
634 }
635 }
636 }
637
638
639 /*
640 * Setup a receive command by queuing the work.
641 * Usually called from a callout, but also from se_init().
642 */
643 static void
644 dse_recv_callout(void *v)
645 {
646 /* do a recv command */
647 struct dse_softc *sc = (struct dse_softc *) v;
648
649 if (sc->sc_enabled == 0)
650 return;
651
652 mutex_enter(&sc->sc_iflock);
653 if (sc->sc_recv_work_pending == true) {
654 callout_schedule(&sc->sc_recv_ch, dse_poll);
655 mutex_exit(&sc->sc_iflock);
656 return;
657 }
658
659 sc->sc_recv_work_pending = true;
660 workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work, NULL);
661 mutex_exit(&sc->sc_iflock);
662 }
663
664 /*
665 * Invoke the receive workqueue
666 */
667 static void
668 dse_recv_worker(struct work *wk, void *cookie)
669 {
670 struct dse_softc *sc = (struct dse_softc *) cookie;
671
672 dse_recv(sc);
673 mutex_enter(&sc->sc_iflock);
674 sc->sc_recv_work_pending = false;
675 mutex_exit(&sc->sc_iflock);
676
677 }
678
679 /*
680 * Do the actual work of receiving data.
681 */
682 static void
683 dse_recv(struct dse_softc *sc)
684 {
685 scsi_dayna_ether_generic cmd_recv;
686 int error, len;
687
688 /* do a recv command */
689 /* fill out command buffer */
690 memset(&cmd_recv, 0, sizeof(cmd_recv));
691 cmd_recv.opcode[0] = DAYNA_CMD_RECV;
692 len = MAX_BYTES_RX + DSE_EXTRAS_RX;
693 _lto2b(len, &(cmd_recv.length[0]));
694 cmd_recv.byte6 = 0xC0;
695
696 error = dse_scsipi_cmd(sc->sc_periph,
697 (void *)&cmd_recv, sizeof(cmd_recv),
698 sc->sc_rbuf, RBUF_LEN, DSE_RETRIES, DSE_TIMEOUT, NULL,
699 XS_CTL_NOSLEEP | XS_CTL_POLL | XS_CTL_DATA_IN);
700 if (error)
701 callout_schedule(&sc->sc_recv_ch, dse_poll);
702 }
703
704
705 /*
706 * We copy the data into mbufs. When full cluster sized units are present
707 * we copy into clusters.
708 */
709 static struct mbuf *
710 dse_get(struct dse_softc *sc, uint8_t *data, int totlen)
711 {
712 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
713 struct mbuf *m, *m0, *newm;
714 int len;
715
716 MGETHDR(m0, M_DONTWAIT, MT_DATA);
717 if (m0 == NULL)
718 return NULL;
719
720 m_set_rcvif(m0, ifp);
721 m0->m_pkthdr.len = totlen;
722 len = MHLEN;
723 m = m0;
724
725 while (totlen > 0) {
726 if (totlen >= MINCLSIZE) {
727 MCLGET(m, M_DONTWAIT);
728 if((m->m_flags & M_EXT) == 0)
729 goto bad;
730
731 len = MCLBYTES;
732 }
733
734 if (m == m0) {
735 char *newdata = (char *)
736 ALIGN(m->m_data + sizeof(struct ether_header)) -
737 sizeof(struct ether_header);
738 len -= newdata - m->m_data;
739 m->m_data = newdata;
740 }
741
742 m->m_len = len = uimin(totlen, len);
743 memcpy(mtod(m, void *), data, len);
744 data += len;
745
746 totlen -= len;
747 if (totlen > 0) {
748 MGET(newm, M_DONTWAIT, MT_DATA);
749 if (newm == NULL)
750 goto bad;
751
752 len = MLEN;
753 m = m->m_next = newm;
754 }
755 }
756
757 return m0;
758
759 bad:
760 m_freem(m0);
761 return NULL ;
762 }
763
764
765 #ifdef MAC68K_DEBUG
766 static int
767 peek_packet(uint8_t* buf)
768 {
769 struct ether_header *eh;
770 uint16_t type;
771 int len;
772
773 eh = (struct ether_header*)buf;
774 type = _2btol((uint8_t*)&(eh->ether_type));
775
776 len = sizeof(struct ether_header);
777
778 if (type <= ETHERMTU) {
779 /* for 802.3 */
780 len += type;
781 } else{
782 /* for Ethernet II (DIX) */
783 switch (type) {
784 case ETHERTYPE_ARP:
785 len += 28;
786 break;
787 case ETHERTYPE_IP:
788 len += _2btol(buf + sizeof(struct ether_header) + 2);
789 break;
790 default:
791 len = 0;
792 goto l_end;
793 break;
794 }
795 }
796 if (len < DSE_MINSIZE) {
797 len = DSE_MINSIZE;
798 }
799 len += ETHER_CRC_LEN;
800
801 l_end:;
802 return len;
803 }
804 #endif
805
806
807 /*
808 * Pass packets to higher levels.
809 */
810 static int
811 dse_read(struct dse_softc *sc, uint8_t *data, int datalen)
812 {
813 struct mbuf *m;
814 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
815 int len;
816 int n;
817 #ifdef MAC68K_DEBUG
818 int peek_flag = 1;
819 #endif
820
821 mutex_enter(&sc->sc_iflock);
822 n = 0;
823 while (datalen >= DSE_HEADER_RX) {
824 /*
825 * fetch bytes of stream.
826 * here length = (ether frame length) + (FCS's 4 bytes)
827 */
828 /* fetch frame length */
829 len = _2btol(data);
830
831 /* skip header part */
832 data += DSE_HEADER_RX;
833 datalen -= DSE_HEADER_RX;
834
835 #if 0 /* 03/10/2001 only for debug */
836 {
837 printf("DATALEN %d len %d\n", datalen, len);
838 int j;
839 printf("\ndump[%d]: ",n);
840 for ( j = 0 ; j < datalen ; j++ ) {
841 printf("%02X ",data[j-DSE_HEADER_RX]);
842 }
843 }
844 #endif
845 #ifdef MAC68K_DEBUG
846 if (peek_flag) {
847 peek_flag = 0;
848 len = peek_packet(data);
849 }
850 #endif
851 if (len == 0)
852 break;
853
854 #ifdef DSE_DEBUG
855 aprint_error_dev(sc->sc_dev, "dse_read: datalen = %d, packetlen"
856 " = %d, proto = 0x%04x\n", datalen, len,
857 ntohs(((struct ether_header *)data)->ether_type));
858 #endif
859 if ((len < (DSE_MINSIZE + ETHER_CRC_LEN)) ||
860 (MAX_BYTES_RX < len)) {
861 #ifdef DSE_DEBUG
862 aprint_error_dev(sc->sc_dev, "invalid packet size "
863 "%d; dropping\n", len);
864 #endif
865 if_statinc(ifp, if_ierrors);
866 break;
867 }
868
869 /* Don't need crc. Must keep ether header for BPF */
870 m = dse_get(sc, data, len - ETHER_CRC_LEN);
871 if (m == NULL) {
872 #ifdef DSE_DEBUG
873 if (sc->sc_debug)
874 aprint_error_dev(sc->sc_dev, "dse_read: "
875 "dse_get returned null\n");
876 #endif
877 if_statinc(ifp, if_ierrors);
878 goto next_packet;
879 }
880 if_statinc(ifp, if_ipackets);
881
882 /*
883 * Check if there's a BPF listener on this interface.
884 * If so, hand off the raw packet to BPF.
885 */
886 if (ifp->if_bpf)
887 bpf_mtap(ifp, m, BPF_D_OUT);
888
889 /* Pass the packet up. */
890 if_percpuq_enqueue(sc->sc_ipq, m);
891
892 next_packet:
893 data += len;
894 datalen -= len;
895 n++;
896 }
897 mutex_exit(&sc->sc_iflock);
898
899 return n;
900 }
901
902
903 static void
904 dsewatchdog(struct ifnet *ifp)
905 {
906 struct dse_softc *sc = ifp->if_softc;
907
908 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
909 if_statinc(ifp, if_oerrors);
910
911 dse_reset(sc);
912 }
913
914
915 static int
916 dse_reset(struct dse_softc *sc)
917 {
918 int error;
919 #if 0
920 /* Maybe we don't *really* want to reset the entire bus
921 * because the ctron isn't working. We would like to send a
922 * "BUS DEVICE RESET" message, but don't think the ctron
923 * understands it.
924 */
925 error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES, 2000,
926 NULL, XS_CTL_RESET);
927 #endif
928 error = dse_init(sc);
929 return error;
930 }
931
932
933 static int
934 dse_init_adaptor(struct dse_softc *sc)
935 {
936 scsi_dayna_ether_generic cmd_vend1;
937 u_char tmpbuf[sizeof(cmd_vend1)];
938 int error;
939
940 #if 0 /* 07/21/2001 for test */
941 /* Maybe we don't *really* want to reset the entire bus
942 * because the ctron isn't working. We would like to send a
943 * "BUS DEVICE RESET" message, but don't think the ctron
944 * understands it.
945 */
946 error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES,
947 2000, NULL, XS_CTL_RESET);
948 #endif
949
950 cmd_vend1 = sonic_ether_vendor1;
951
952 error = dse_scsipi_cmd(sc->sc_periph,
953 (struct scsipi_generic *)&cmd_vend1, sizeof(cmd_vend1),
954 &(tmpbuf[0]), sizeof(tmpbuf),
955 DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN);
956
957 if (error)
958 goto l_end;
959
960 /* wait 500 msec */
961 kpause("dsesleep", false, hz / 2, NULL);
962
963 l_end:
964 return error;
965 }
966
967
968 static int
969 dse_get_addr(struct dse_softc *sc, uint8_t *myaddr)
970 {
971 scsi_dayna_ether_generic cmd_get_addr;
972 u_char tmpbuf[REQ_LEN_GET_ADDR];
973 int error;
974
975 memset(&cmd_get_addr, 0, sizeof(cmd_get_addr));
976 cmd_get_addr.opcode[0] = DAYNA_CMD_GET_ADDR;
977 _lto2b(REQ_LEN_GET_ADDR, cmd_get_addr.length);
978
979 error = dse_scsipi_cmd(sc->sc_periph,
980 (struct scsipi_generic *)&cmd_get_addr, sizeof(cmd_get_addr),
981 tmpbuf, sizeof(tmpbuf),
982 DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN);
983
984 if (error == 0) {
985 memcpy(myaddr, &(tmpbuf[0]), ETHER_ADDR_LEN);
986
987 aprint_normal_dev(sc->sc_dev, "ethernet address %s\n",
988 ether_sprintf(myaddr));
989 }
990
991 return error;
992 }
993
994
995 #if 0 /* 07/16/2000 comment-out */
996 static int
997 dse_set_mode(struct dse_softc *sc, int len, int mode)
998
999 return 0;
1000 }
1001 #endif
1002
1003
1004 static int
1005 dse_init(struct dse_softc *sc)
1006 {
1007 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1008 int error = 0;
1009
1010 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == IFF_UP) {
1011 ifp->if_flags |= IFF_RUNNING;
1012 mutex_enter(&sc->sc_iflock);
1013 if (!sc->sc_recv_work_pending) {
1014 sc->sc_recv_work_pending = true;
1015 workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work,
1016 NULL);
1017 }
1018 mutex_exit(&sc->sc_iflock);
1019 ifp->if_flags &= ~IFF_OACTIVE;
1020 mutex_enter(&sc->sc_iflock);
1021 if (!sc->sc_send_work_pending) {
1022 sc->sc_send_work_pending = true;
1023 workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work,
1024 NULL);
1025 }
1026 mutex_exit(&sc->sc_iflock);
1027 }
1028 return error;
1029 }
1030
1031
1032 static uint8_t BROADCAST_ADDR[ETHER_ADDR_LEN] =
1033 { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
1034
1035
1036 static int
1037 dse_set_multi(struct dse_softc *sc)
1038 {
1039 scsi_dayna_ether_generic cmd_set_multi;
1040 struct ether_multistep step;
1041 struct ether_multi *enm;
1042 u_char *cp, *mybuf;
1043 int error, len;
1044
1045 error = 0;
1046
1047 #ifdef DSE_DEBUG
1048 aprint_error_dev(sc->sc_dev, "dse_set_multi\n");
1049 #endif
1050
1051 mybuf = malloc(ETHER_ADDR_LEN * DSE_MCAST_MAX, M_DEVBUF, M_NOWAIT);
1052 if (mybuf == NULL) {
1053 error = EIO;
1054 goto l_end;
1055 }
1056
1057 /*
1058 * copy all entries to transfer buffer
1059 */
1060 cp = mybuf;
1061 len = 0;
1062 ETHER_FIRST_MULTI(step, &(sc->sc_ethercom), enm);
1063 while ((len < (DSE_MCAST_MAX - 1)) && (enm != NULL)) {
1064 /* ### refer low side entry */
1065 memcpy(cp, enm->enm_addrlo, ETHER_ADDR_LEN);
1066
1067 cp += ETHER_ADDR_LEN;
1068 len++;
1069 ETHER_NEXT_MULTI(step, enm);
1070 }
1071
1072 /* add broadcast address as default */
1073 memcpy(cp, BROADCAST_ADDR, ETHER_ADDR_LEN);
1074 len++;
1075
1076 len *= ETHER_ADDR_LEN;
1077
1078 memset(&cmd_set_multi, 0, sizeof(cmd_set_multi));
1079 cmd_set_multi.opcode[0] = DAYNA_CMD_SET_MULTI;
1080 _lto2b(len, cmd_set_multi.length);
1081
1082 error = dse_scsipi_cmd(sc->sc_periph,
1083 (struct scsipi_generic*)&cmd_set_multi, sizeof(cmd_set_multi),
1084 mybuf, len, DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_DATA_OUT);
1085
1086 free(mybuf, M_DEVBUF);
1087
1088 l_end:
1089 return error;
1090 }
1091
1092
1093 static void
1094 dse_stop(struct dse_softc *sc)
1095 {
1096 /* Don't schedule any reads */
1097 callout_stop(&sc->sc_recv_ch);
1098
1099 /* Wait for the workqueues to finish */
1100 mutex_enter(&sc->sc_iflock);
1101 workqueue_wait(sc->sc_recv_wq, &sc->sc_recv_work);
1102 workqueue_wait(sc->sc_send_wq, &sc->sc_send_work);
1103 mutex_exit(&sc->sc_iflock);
1104
1105 /* Abort any scsi cmds in progress */
1106 mutex_enter(chan_mtx(sc->sc_periph->periph_channel));
1107 scsipi_kill_pending(sc->sc_periph);
1108 mutex_exit(chan_mtx(sc->sc_periph->periph_channel));
1109 }
1110
1111
1112 /*
1113 * Process an ioctl request.
1114 */
1115 static int
1116 dse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1117 {
1118 struct dse_softc *sc;
1119 struct ifaddr *ifa;
1120 struct ifreq *ifr;
1121 struct sockaddr *sa;
1122 int error;
1123
1124 error = 0;
1125 sc = ifp->if_softc;
1126 ifa = (struct ifaddr *)data;
1127 ifr = (struct ifreq *)data;
1128
1129 switch (cmd) {
1130 case SIOCINITIFADDR:
1131 mutex_enter(&sc->sc_iflock);
1132 if ((error = dse_enable(sc)) != 0)
1133 break;
1134 ifp->if_flags |= IFF_UP;
1135 mutex_exit(&sc->sc_iflock);
1136
1137 #if 0
1138 if ((error = dse_set_media(sc, CMEDIA_AUTOSENSE)) != 0)
1139 break;
1140 #endif
1141
1142 switch (ifa->ifa_addr->sa_family) {
1143 #ifdef INET
1144 case AF_INET:
1145 if ((error = dse_init(sc)) != 0)
1146 break;
1147 arp_ifinit(ifp, ifa);
1148 break;
1149 #endif
1150 #ifdef NETATALK
1151 case AF_APPLETALK:
1152 if ((error = dse_init(sc)) != 0)
1153 break;
1154 break;
1155 #endif
1156 default:
1157 error = dse_init(sc);
1158 break;
1159 }
1160 break;
1161
1162
1163 case SIOCSIFADDR:
1164 mutex_enter(&sc->sc_iflock);
1165 error = dse_enable(sc);
1166 mutex_exit(&sc->sc_iflock);
1167 if (error != 0)
1168 break;
1169 ifp->if_flags |= IFF_UP;
1170
1171 switch (ifa->ifa_addr->sa_family) {
1172 #ifdef INET
1173 case AF_INET:
1174 if ((error = dse_init(sc)) != 0)
1175 break;
1176 arp_ifinit(ifp, ifa);
1177 break;
1178 #endif
1179 #ifdef NETATALK
1180 case AF_APPLETALK:
1181 if ((error = dse_init(sc)) != 0)
1182 break;
1183 break;
1184 #endif
1185 default:
1186 error = dse_init(sc);
1187 break;
1188 }
1189 break;
1190
1191 case SIOCSIFFLAGS:
1192 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1193 break;
1194 /* XXX re-use ether_ioctl() */
1195 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1196 case IFF_RUNNING:
1197 /*
1198 * If interface is marked down and it is running, then
1199 * stop it.
1200 */
1201 dse_stop(sc);
1202 mutex_enter(&sc->sc_iflock);
1203 ifp->if_flags &= ~IFF_RUNNING;
1204 dse_disable(sc);
1205 mutex_exit(&sc->sc_iflock);
1206 break;
1207 case IFF_UP:
1208 /*
1209 * If interface is marked up and it is stopped, then
1210 * start it.
1211 */
1212 mutex_enter(&sc->sc_iflock);
1213 error = dse_enable(sc);
1214 mutex_exit(&sc->sc_iflock);
1215 if (error)
1216 break;
1217 error = dse_init(sc);
1218 break;
1219 default:
1220 /*
1221 * Reset the interface to pick up changes in any other
1222 * flags that affect hardware registers.
1223 */
1224 mutex_enter(&sc->sc_iflock);
1225 if (sc->sc_enabled)
1226 error = dse_init(sc);
1227 mutex_exit(&sc->sc_iflock);
1228 break;
1229 }
1230 #ifdef DSE_DEBUG
1231 if (ifp->if_flags & IFF_DEBUG)
1232 sc->sc_debug = 1;
1233 else
1234 sc->sc_debug = 0;
1235 #endif
1236 break;
1237
1238 case SIOCADDMULTI:
1239 if (sc->sc_enabled == 0) {
1240 error = EIO;
1241 break;
1242 }
1243 mutex_enter(&sc->sc_iflock);
1244 sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK);
1245 mutex_exit(&sc->sc_iflock);
1246 if (ether_addmulti(sa, &sc->sc_ethercom) == ENETRESET) {
1247 error = dse_set_multi(sc);
1248 #ifdef DSE_DEBUG
1249 aprint_error_dev(sc->sc_dev, "add multi: %s\n",
1250 ether_sprintf(ifr->ifr_addr.sa_data));
1251 #endif
1252 } else
1253 error = 0;
1254
1255 mutex_enter(&sc->sc_iflock);
1256 sockaddr_free(sa);
1257 mutex_exit(&sc->sc_iflock);
1258
1259 break;
1260
1261 case SIOCDELMULTI:
1262 if (sc->sc_enabled == 0) {
1263 error = EIO;
1264 break;
1265 }
1266 mutex_enter(&sc->sc_iflock);
1267 sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK);
1268 mutex_exit(&sc->sc_iflock);
1269 if (ether_delmulti(sa, &sc->sc_ethercom) == ENETRESET) {
1270 error = dse_set_multi(sc);
1271 #ifdef DSE_DEBUG
1272 aprint_error_dev(sc->sc_dev, "delete multi: %s\n",
1273 ether_sprintf(ifr->ifr_addr.sa_data));
1274 #endif
1275 } else
1276 error = 0;
1277
1278 mutex_enter(&sc->sc_iflock);
1279 sockaddr_free(sa);
1280 mutex_exit(&sc->sc_iflock);
1281
1282 break;
1283
1284 default:
1285 error = ether_ioctl(ifp, cmd, data);
1286 break;
1287 }
1288
1289
1290 return error;
1291 }
1292
1293
1294 /*
1295 * Enable the network interface.
1296 */
1297 int
1298 dse_enable(struct dse_softc *sc)
1299 {
1300 struct scsipi_periph *periph = sc->sc_periph;
1301 struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
1302 int error = 0;
1303
1304 if (sc->sc_enabled == 0) {
1305 if ((error = scsipi_adapter_addref(adapt)) == 0)
1306 sc->sc_enabled = 1;
1307 else
1308 aprint_error_dev(sc->sc_dev, "device enable failed\n");
1309 }
1310
1311 return error;
1312 }
1313
1314
1315 /*
1316 * Disable the network interface.
1317 */
1318 void
1319 dse_disable(struct dse_softc *sc)
1320 {
1321 struct scsipi_periph *periph = sc->sc_periph;
1322 struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
1323 if (sc->sc_enabled != 0) {
1324 scsipi_adapter_delref(adapt);
1325 sc->sc_enabled = 0;
1326 }
1327 }
1328
1329
1330 #define DSEUNIT(z) (minor(z))
1331
1332 /*
1333 * open the device.
1334 */
1335 int
1336 dseopen(dev_t dev, int flag, int fmt, struct lwp *l)
1337 {
1338 int unit, error;
1339 struct dse_softc *sc;
1340 struct scsipi_periph *periph;
1341 struct scsipi_adapter *adapt;
1342
1343 unit = DSEUNIT(dev);
1344 sc = device_lookup_private(&dse_cd, unit);
1345 if (sc == NULL)
1346 return ENXIO;
1347
1348 periph = sc->sc_periph;
1349 adapt = periph->periph_channel->chan_adapter;
1350
1351 if ((error = scsipi_adapter_addref(adapt)) != 0)
1352 return error;
1353
1354 SC_DEBUG(periph, SCSIPI_DB1,
1355 ("scopen: dev=0x%"PRIx64" (unit %d (of %d))\n", dev, unit,
1356 dse_cd.cd_ndevs));
1357
1358 periph->periph_flags |= PERIPH_OPEN;
1359
1360 SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n"));
1361
1362 return 0;
1363 }
1364
1365
1366 /*
1367 * close the device.. only called if we are the LAST
1368 * occurrence of an open device
1369 */
1370 int
1371 dseclose(dev_t dev, int flag, int fmt, struct lwp *l)
1372 {
1373 struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev));
1374 struct scsipi_periph *periph = sc->sc_periph;
1375 struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
1376
1377 SC_DEBUG(sc->sc_periph, SCSIPI_DB1, ("closing\n"));
1378
1379 scsipi_wait_drain(periph);
1380
1381 scsipi_adapter_delref(adapt);
1382 periph->periph_flags &= ~PERIPH_OPEN;
1383
1384 return 0;
1385 }
1386
1387
1388 /*
1389 * Perform special action on behalf of the user
1390 * Only does generic scsi ioctls.
1391 */
1392 int
1393 dseioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
1394 {
1395 struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev));
1396
1397 return (scsipi_do_ioctl(sc->sc_periph, dev, cmd, addr, flag, l));
1398 }
1399
1400