Home | History | Annotate | Line # | Download | only in sdmmc
      1  1.122  jmcneill /*	$NetBSD: sdhc.c,v 1.122 2025/09/02 22:22:14 jmcneill Exp $	*/
      2    1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3    1.1    nonaka 
      4    1.1    nonaka /*
      5    1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6    1.1    nonaka  *
      7    1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8    1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9    1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10    1.1    nonaka  *
     11    1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12    1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13    1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14    1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15    1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16    1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17    1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18    1.1    nonaka  */
     19    1.1    nonaka 
     20    1.1    nonaka /*
     21    1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22    1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23    1.1    nonaka  */
     24    1.1    nonaka 
     25    1.1    nonaka #include <sys/cdefs.h>
     26  1.122  jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.122 2025/09/02 22:22:14 jmcneill Exp $");
     27   1.10    nonaka 
     28   1.10    nonaka #ifdef _KERNEL_OPT
     29   1.10    nonaka #include "opt_sdmmc.h"
     30   1.10    nonaka #endif
     31    1.1    nonaka 
     32    1.1    nonaka #include <sys/param.h>
     33    1.1    nonaka #include <sys/device.h>
     34    1.1    nonaka #include <sys/kernel.h>
     35    1.1    nonaka #include <sys/malloc.h>
     36    1.1    nonaka #include <sys/systm.h>
     37    1.1    nonaka #include <sys/mutex.h>
     38    1.1    nonaka #include <sys/condvar.h>
     39   1.80  jmcneill #include <sys/atomic.h>
     40    1.1    nonaka 
     41    1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42    1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43    1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44    1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45    1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46    1.1    nonaka 
     47    1.1    nonaka #ifdef SDHC_DEBUG
     48    1.1    nonaka int sdhcdebug = 1;
     49    1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50    1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51    1.1    nonaka #else
     52    1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53    1.1    nonaka #endif
     54    1.1    nonaka 
     55    1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56    1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57    1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58   1.61  jmcneill #define SDHC_DMA_TIMEOUT	(hz*3)
     59   1.79  jmcneill #define SDHC_TUNING_TIMEOUT	hz
     60    1.1    nonaka 
     61    1.1    nonaka struct sdhc_host {
     62    1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     63    1.1    nonaka 
     64    1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     65    1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     66   1.36  jakllsch 	bus_size_t ios;			/* host register space size */
     67    1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     68    1.1    nonaka 
     69    1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     70    1.1    nonaka 
     71    1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72    1.1    nonaka 	int maxblklen;			/* maximum block length */
     73    1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74    1.1    nonaka 
     75    1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76    1.1    nonaka 
     77    1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78    1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79   1.65  jmcneill 	kmutex_t intr_lock;
     80  1.114       mrg 	kmutex_t bus_clock_lock;
     81   1.65  jmcneill 	kcondvar_t intr_cv;
     82    1.1    nonaka 
     83   1.80  jmcneill 	callout_t tuning_timer;
     84   1.80  jmcneill 	int tuning_timing;
     85   1.80  jmcneill 	u_int tuning_timer_count;
     86   1.80  jmcneill 	u_int tuning_timer_pending;
     87   1.80  jmcneill 
     88   1.12    nonaka 	int specver;			/* spec. version */
     89   1.12    nonaka 
     90    1.1    nonaka 	uint32_t flags;			/* flags for this host */
     91    1.1    nonaka #define SHF_USE_DMA		0x0001
     92    1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     93   1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     94   1.55    bouyer #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     95   1.63  jmcneill #define SHF_USE_ADMA2_32	0x0010
     96   1.63  jmcneill #define SHF_USE_ADMA2_64	0x0020
     97   1.63  jmcneill #define SHF_USE_ADMA2_MASK	0x0030
     98   1.63  jmcneill 
     99   1.63  jmcneill 	bus_dmamap_t		adma_map;
    100   1.63  jmcneill 	bus_dma_segment_t	adma_segs[1];
    101   1.63  jmcneill 	void			*adma2;
    102  1.105   mlelstv 
    103  1.105   mlelstv 	uint8_t			vdd;	/* last vdd setting */
    104    1.1    nonaka };
    105    1.1    nonaka 
    106    1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    107    1.1    nonaka 
    108   1.11      matt static uint8_t
    109   1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
    110   1.11      matt {
    111   1.12    nonaka 
    112   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    113   1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    114   1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    115   1.11      matt }
    116   1.11      matt 
    117   1.11      matt static uint16_t
    118   1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    119   1.11      matt {
    120   1.12    nonaka 
    121   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    122   1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    123   1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    124   1.11      matt }
    125   1.11      matt 
    126   1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    127   1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    128   1.11      matt #define HREAD4(hp, reg)		\
    129    1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    130   1.11      matt 
    131   1.11      matt 
    132   1.11      matt static void
    133   1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    134   1.11      matt {
    135   1.12    nonaka 
    136   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137   1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    138   1.11      matt 	} else {
    139   1.11      matt 		const size_t shift = 8 * (o & 3);
    140   1.11      matt 		o &= -4;
    141   1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142  1.110   msaitoh 		tmp = (val << shift) | (tmp & ~(0xffU << shift));
    143   1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144   1.11      matt 	}
    145   1.11      matt }
    146   1.11      matt 
    147   1.11      matt static void
    148   1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    149   1.11      matt {
    150   1.12    nonaka 
    151   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    152   1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    153   1.11      matt 	} else {
    154   1.11      matt 		const size_t shift = 8 * (o & 2);
    155   1.11      matt 		o &= -4;
    156   1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    157  1.110   msaitoh 		tmp = (val << shift) | (tmp & ~(0xffffU << shift));
    158   1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    159   1.11      matt 	}
    160   1.11      matt }
    161   1.11      matt 
    162  1.105   mlelstv static void
    163  1.105   mlelstv hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
    164  1.105   mlelstv {
    165  1.105   mlelstv 
    166  1.105   mlelstv 	bus_space_write_4(hp->iot, hp->ioh, o, val);
    167  1.105   mlelstv }
    168  1.105   mlelstv 
    169   1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    170   1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    171  1.105   mlelstv #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
    172   1.11      matt 
    173    1.1    nonaka #define HCLR1(hp, reg, bits)						\
    174  1.106     joerg 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    175    1.1    nonaka #define HCLR2(hp, reg, bits)						\
    176  1.106     joerg 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    177   1.11      matt #define HCLR4(hp, reg, bits)						\
    178  1.106     joerg 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    179    1.1    nonaka #define HSET1(hp, reg, bits)						\
    180  1.106     joerg 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    181    1.1    nonaka #define HSET2(hp, reg, bits)						\
    182  1.106     joerg 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    183   1.11      matt #define HSET4(hp, reg, bits)						\
    184  1.106     joerg 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    185    1.1    nonaka 
    186    1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    187    1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    188    1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    189    1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    190    1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    191    1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    192    1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    193   1.76  jmcneill static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    194    1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    195    1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    196    1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    197    1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    198    1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    199    1.1    nonaka 		    struct sdmmc_command *);
    200   1.71  jmcneill static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    201   1.83   mlelstv static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    202   1.79  jmcneill static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    203   1.80  jmcneill static void	sdhc_tuning_timer(void *);
    204   1.99    nonaka static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    205    1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    206    1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    207    1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    208   1.88   mlelstv static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    209    1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    210    1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    211    1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    212   1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    213   1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    214   1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    215   1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    216   1.11      matt 
    217    1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    218    1.1    nonaka 	/* host controller reset */
    219   1.60     skrll 	.host_reset = sdhc_host_reset,
    220    1.1    nonaka 
    221    1.1    nonaka 	/* host controller capabilities */
    222   1.60     skrll 	.host_ocr = sdhc_host_ocr,
    223   1.60     skrll 	.host_maxblklen = sdhc_host_maxblklen,
    224    1.1    nonaka 
    225    1.1    nonaka 	/* card detection */
    226   1.60     skrll 	.card_detect = sdhc_card_detect,
    227    1.1    nonaka 
    228    1.1    nonaka 	/* write protect */
    229   1.60     skrll 	.write_protect = sdhc_write_protect,
    230    1.1    nonaka 
    231   1.60     skrll 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    232   1.60     skrll 	.bus_power = sdhc_bus_power,
    233   1.76  jmcneill 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    234   1.60     skrll 	.bus_width = sdhc_bus_width,
    235   1.60     skrll 	.bus_rod = sdhc_bus_rod,
    236    1.1    nonaka 
    237    1.1    nonaka 	/* command execution */
    238   1.60     skrll 	.exec_command = sdhc_exec_command,
    239    1.1    nonaka 
    240    1.1    nonaka 	/* card interrupt */
    241   1.60     skrll 	.card_enable_intr = sdhc_card_enable_intr,
    242   1.71  jmcneill 	.card_intr_ack = sdhc_card_intr_ack,
    243   1.71  jmcneill 
    244   1.71  jmcneill 	/* UHS functions */
    245   1.71  jmcneill 	.signal_voltage = sdhc_signal_voltage,
    246   1.76  jmcneill 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    247   1.79  jmcneill 	.execute_tuning = sdhc_execute_tuning,
    248   1.99    nonaka 	.hw_reset = sdhc_hw_reset,
    249    1.1    nonaka };
    250    1.1    nonaka 
    251   1.17  jakllsch static int
    252   1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    253   1.17  jakllsch {
    254   1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    255   1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    256   1.47     skrll 
    257   1.17  jakllsch 	if (pnp) {
    258   1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    259   1.17  jakllsch 	}
    260   1.41  jakllsch 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    261   1.41  jakllsch 		if (hp->sc->sc_host[host] == hp) {
    262   1.41  jakllsch 			aprint_normal(" slot %zu", host);
    263   1.41  jakllsch 		}
    264   1.41  jakllsch 	}
    265   1.17  jakllsch 
    266   1.17  jakllsch 	return UNCONF;
    267   1.17  jakllsch }
    268   1.17  jakllsch 
    269    1.1    nonaka /*
    270    1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    271    1.1    nonaka  * host controller standard register set. (1.3)
    272    1.1    nonaka  */
    273    1.1    nonaka int
    274    1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    275    1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    276    1.1    nonaka {
    277    1.1    nonaka 	struct sdmmcbus_attach_args saa;
    278    1.1    nonaka 	struct sdhc_host *hp;
    279   1.71  jmcneill 	uint32_t caps, caps2;
    280    1.1    nonaka 	uint16_t sdhcver;
    281   1.63  jmcneill 	int error;
    282    1.1    nonaka 
    283   1.33  riastrad 	/* Allocate one more host structure. */
    284   1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    285   1.33  riastrad 	if (hp == NULL) {
    286   1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    287   1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    288   1.33  riastrad 		goto err1;
    289   1.33  riastrad 	}
    290   1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    291   1.33  riastrad 
    292   1.33  riastrad 	/* Fill in the new host structure. */
    293   1.33  riastrad 	hp->sc = sc;
    294   1.33  riastrad 	hp->iot = iot;
    295   1.33  riastrad 	hp->ioh = ioh;
    296   1.36  jakllsch 	hp->ios = iosize;
    297   1.33  riastrad 	hp->dmat = sc->sc_dmat;
    298   1.33  riastrad 
    299   1.65  jmcneill 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    300  1.114       mrg 	mutex_init(&hp->bus_clock_lock, MUTEX_DEFAULT, IPL_NONE);
    301   1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    302   1.80  jmcneill 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    303   1.80  jmcneill 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    304   1.33  riastrad 
    305  1.101       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    306  1.101       ryo 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    307  1.101       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    308  1.101       ryo 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    309  1.101       ryo 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    310  1.101       ryo 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    311  1.101       ryo 	} else {
    312  1.101       ryo 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    313  1.101       ryo 	}
    314  1.101       ryo 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    315  1.101       ryo 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    316  1.101       ryo 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    317  1.101       ryo 	case SDHC_SPEC_VERS_100:
    318  1.101       ryo 		aprint_normal("1.0");
    319  1.101       ryo 		break;
    320  1.101       ryo 	case SDHC_SPEC_VERS_200:
    321  1.101       ryo 		aprint_normal("2.0");
    322  1.101       ryo 		break;
    323  1.101       ryo 	case SDHC_SPEC_VERS_300:
    324  1.101       ryo 		aprint_normal("3.0");
    325  1.101       ryo 		break;
    326  1.101       ryo 	case SDHC_SPEC_VERS_400:
    327  1.101       ryo 		aprint_normal("4.0");
    328  1.101       ryo 		break;
    329  1.107   msaitoh 	case SDHC_SPEC_VERS_410:
    330  1.107   msaitoh 		aprint_normal("4.1");
    331  1.107   msaitoh 		break;
    332  1.107   msaitoh 	case SDHC_SPEC_VERS_420:
    333  1.107   msaitoh 		aprint_normal("4.2");
    334  1.107   msaitoh 		break;
    335  1.101       ryo 	case SDHC_SPEC_NOVERS:
    336   1.96  kiyohara 		hp->specver = -1;
    337  1.101       ryo 		aprint_normal("NO-VERS");
    338  1.101       ryo 		break;
    339  1.101       ryo 	default:
    340  1.101       ryo 		aprint_normal("unknown version(0x%x)",
    341  1.101       ryo 		    SDHC_SPEC_VERSION(sdhcver));
    342  1.101       ryo 		break;
    343  1.101       ryo 	}
    344  1.101       ryo 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    345   1.96  kiyohara 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    346    1.1    nonaka 
    347    1.1    nonaka 	/*
    348    1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    349    1.1    nonaka 	 */
    350    1.1    nonaka 	(void)sdhc_host_reset(hp);
    351    1.1    nonaka 
    352   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    353   1.93       ryo 		/* init uSDHC registers */
    354   1.93       ryo 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    355   1.93       ryo 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    356   1.93       ryo 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    357   1.93       ryo 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    358   1.93       ryo 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    359   1.93       ryo 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    360   1.93       ryo 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    361   1.93       ryo 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    362   1.93       ryo 		HSET4(hp, SDHC_VEND_SPEC,
    363   1.93       ryo 		    SDHC_VEND_SPEC_MBO |
    364   1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    365   1.93       ryo 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    366   1.93       ryo 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    367   1.93       ryo 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    368   1.93       ryo 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    369   1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    370   1.93       ryo 	}
    371   1.93       ryo 
    372    1.1    nonaka 	/* Determine host capabilities. */
    373   1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    374   1.24     skrll 		caps = sc->sc_caps;
    375   1.72  jmcneill 		caps2 = sc->sc_caps2;
    376   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    377   1.93       ryo 		/* uSDHC capability register is little bit different */
    378   1.93       ryo 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    379   1.93       ryo 		caps |= SDHC_8BIT_SUPP;
    380   1.93       ryo 		if (caps & SDHC_ADMA1_SUPP)
    381   1.93       ryo 			caps |= SDHC_ADMA2_SUPP;
    382   1.93       ryo 		sc->sc_caps = caps;
    383   1.93       ryo 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    384   1.93       ryo 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    385   1.24     skrll 	} else {
    386   1.79  jmcneill 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    387   1.72  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    388   1.79  jmcneill 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    389   1.72  jmcneill 		} else {
    390   1.79  jmcneill 			caps2 = sc->sc_caps2 = 0;
    391   1.72  jmcneill 		}
    392   1.71  jmcneill 	}
    393    1.1    nonaka 
    394  1.108   mlelstv 	aprint_verbose(", caps <%08x/%08x>", caps, caps2);
    395  1.108   mlelstv 
    396   1.80  jmcneill 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    397   1.80  jmcneill 	    SDHC_RETUNING_MODES_MASK;
    398   1.80  jmcneill 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    399   1.80  jmcneill 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    400   1.80  jmcneill 		    SDHC_TIMER_COUNT_MASK;
    401   1.80  jmcneill 		if (hp->tuning_timer_count == 0xf)
    402   1.80  jmcneill 			hp->tuning_timer_count = 0;
    403   1.80  jmcneill 		if (hp->tuning_timer_count)
    404   1.80  jmcneill 			hp->tuning_timer_count =
    405   1.80  jmcneill 			    1 << (hp->tuning_timer_count - 1);
    406   1.80  jmcneill 	}
    407   1.80  jmcneill 
    408   1.55    bouyer 	/*
    409   1.55    bouyer 	 * Use DMA if the host system and the controller support it.
    410  1.112   msaitoh 	 * Supports integrated or external DMA egine, with or without
    411   1.55    bouyer 	 * SDHC_DMA_ENABLE in the command.
    412   1.55    bouyer 	 */
    413   1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    414   1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    415   1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    416    1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    417   1.63  jmcneill 
    418  1.116  jmcneill 		if (ISSET(caps, SDHC_ADMA2_SUPP) &&
    419  1.116  jmcneill 		    !ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA)) {
    420   1.55    bouyer 			SET(hp->flags, SHF_MODE_DMAEN);
    421   1.63  jmcneill 			/*
    422   1.63  jmcneill 			 * 64-bit mode was present in the 2.00 spec, removed
    423   1.63  jmcneill 			 * from 3.00, and re-added in 4.00 with a different
    424   1.63  jmcneill 			 * descriptor layout. We only support 2.00 and 3.00
    425   1.63  jmcneill 			 * descriptors for now.
    426   1.63  jmcneill 			 */
    427   1.63  jmcneill 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    428   1.63  jmcneill 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    429   1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_64);
    430   1.63  jmcneill 				aprint_normal(", 64-bit ADMA2");
    431   1.63  jmcneill 			} else {
    432   1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_32);
    433   1.63  jmcneill 				aprint_normal(", 32-bit ADMA2");
    434   1.63  jmcneill 			}
    435   1.63  jmcneill 		} else {
    436   1.63  jmcneill 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    437   1.63  jmcneill 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    438   1.63  jmcneill 				SET(hp->flags, SHF_MODE_DMAEN);
    439   1.64  jmcneill 			if (sc->sc_vendor_transfer_data_dma) {
    440   1.64  jmcneill 				aprint_normal(", platform DMA");
    441   1.64  jmcneill 			} else {
    442   1.64  jmcneill 				aprint_normal(", SDMA");
    443   1.64  jmcneill 			}
    444   1.63  jmcneill 		}
    445   1.58  jmcneill 	} else {
    446   1.58  jmcneill 		aprint_normal(", PIO");
    447    1.1    nonaka 	}
    448    1.1    nonaka 
    449    1.1    nonaka 	/*
    450    1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    451    1.1    nonaka 	 */
    452   1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    453   1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    454   1.30      matt 	} else {
    455   1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    456   1.30      matt 	}
    457   1.56  jmcneill 	if (hp->clkbase == 0 ||
    458   1.56  jmcneill 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    459    1.9      matt 		if (sc->sc_clkbase == 0) {
    460    1.9      matt 			/* The attachment driver must tell us. */
    461   1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    462   1.12    nonaka 			    "unknown base clock frequency\n");
    463    1.9      matt 			goto err;
    464    1.9      matt 		}
    465    1.9      matt 		hp->clkbase = sc->sc_clkbase;
    466    1.9      matt 	}
    467    1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    468    1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    469    1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    470    1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    471    1.1    nonaka 		    hp->clkbase / 1000);
    472    1.1    nonaka 		goto err;
    473    1.1    nonaka 	}
    474   1.58  jmcneill 	aprint_normal(", %u kHz", hp->clkbase);
    475    1.1    nonaka 
    476    1.1    nonaka 	/*
    477    1.1    nonaka 	 * XXX Set the data timeout counter value according to
    478    1.1    nonaka 	 * capabilities. (2.2.15)
    479    1.1    nonaka 	 */
    480    1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    481   1.29      matt #if 1
    482   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    483   1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    484   1.11      matt #endif
    485    1.1    nonaka 
    486   1.58  jmcneill 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    487   1.58  jmcneill 		aprint_normal(", embedded slot");
    488   1.58  jmcneill 
    489    1.1    nonaka 	/*
    490    1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    491    1.1    nonaka 	 */
    492   1.58  jmcneill 	aprint_normal(",");
    493   1.66  jmcneill 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    494   1.66  jmcneill 		SET(hp->ocr, MMC_OCR_HCS);
    495   1.71  jmcneill 		aprint_normal(" HS");
    496   1.71  jmcneill 	}
    497  1.104   hkenken 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
    498  1.104   hkenken 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    499  1.104   hkenken 			SET(hp->ocr, MMC_OCR_S18A);
    500  1.104   hkenken 			aprint_normal(" SDR50");
    501  1.104   hkenken 		}
    502  1.104   hkenken 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    503  1.104   hkenken 			SET(hp->ocr, MMC_OCR_S18A);
    504  1.104   hkenken 			aprint_normal(" DDR50");
    505  1.104   hkenken 		}
    506  1.104   hkenken 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    507  1.104   hkenken 			SET(hp->ocr, MMC_OCR_S18A);
    508  1.104   hkenken 			aprint_normal(" SDR104 HS200");
    509  1.104   hkenken 		}
    510  1.104   hkenken 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    511  1.104   hkenken 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    512  1.104   hkenken 			aprint_normal(" 1.8V");
    513  1.104   hkenken 		}
    514   1.11      matt 	}
    515   1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    516    1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    517   1.58  jmcneill 		aprint_normal(" 3.0V");
    518   1.11      matt 	}
    519   1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    520    1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    521   1.58  jmcneill 		aprint_normal(" 3.3V");
    522   1.11      matt 	}
    523   1.80  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    524   1.80  jmcneill 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    525   1.80  jmcneill 		if (hp->tuning_timer_count)
    526   1.80  jmcneill 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    527   1.80  jmcneill 	}
    528    1.1    nonaka 
    529    1.1    nonaka 	/*
    530    1.1    nonaka 	 * Determine the maximum block length supported by the host
    531    1.1    nonaka 	 * controller. (2.2.24)
    532    1.1    nonaka 	 */
    533    1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    534    1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    535    1.1    nonaka 		hp->maxblklen = 512;
    536    1.1    nonaka 		break;
    537    1.1    nonaka 
    538    1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    539    1.1    nonaka 		hp->maxblklen = 1024;
    540    1.1    nonaka 		break;
    541    1.1    nonaka 
    542    1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    543    1.1    nonaka 		hp->maxblklen = 2048;
    544    1.1    nonaka 		break;
    545    1.1    nonaka 
    546    1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    547    1.9      matt 		hp->maxblklen = 4096;
    548    1.9      matt 		break;
    549    1.9      matt 
    550    1.1    nonaka 	default:
    551    1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    552    1.1    nonaka 		goto err;
    553    1.1    nonaka 	}
    554   1.58  jmcneill 	aprint_normal(", %u byte blocks", hp->maxblklen);
    555   1.58  jmcneill 	aprint_normal("\n");
    556    1.1    nonaka 
    557   1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    558   1.63  jmcneill 		int rseg;
    559   1.63  jmcneill 
    560   1.63  jmcneill 		/* Allocate ADMA2 descriptor memory */
    561   1.63  jmcneill 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    562   1.63  jmcneill 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    563   1.63  jmcneill 		if (error) {
    564   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    565   1.63  jmcneill 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    566   1.63  jmcneill 			goto adma_done;
    567   1.63  jmcneill 		}
    568   1.63  jmcneill 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    569   1.63  jmcneill 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    570   1.63  jmcneill 		if (error) {
    571   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    572   1.63  jmcneill 			    "ADMA2 dmamem_map failed (%d)\n", error);
    573   1.63  jmcneill 			goto adma_done;
    574   1.63  jmcneill 		}
    575   1.63  jmcneill 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    576   1.63  jmcneill 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    577   1.63  jmcneill 		if (error) {
    578   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    579   1.63  jmcneill 			    "ADMA2 dmamap_create failed (%d)\n", error);
    580   1.63  jmcneill 			goto adma_done;
    581   1.63  jmcneill 		}
    582   1.63  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    583   1.63  jmcneill 		    hp->adma2, PAGE_SIZE, NULL,
    584   1.63  jmcneill 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    585   1.63  jmcneill 		if (error) {
    586   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    587   1.63  jmcneill 			    "ADMA2 dmamap_load failed (%d)\n", error);
    588   1.63  jmcneill 			goto adma_done;
    589   1.63  jmcneill 		}
    590   1.63  jmcneill 
    591   1.63  jmcneill 		memset(hp->adma2, 0, PAGE_SIZE);
    592   1.63  jmcneill 
    593   1.63  jmcneill adma_done:
    594   1.63  jmcneill 		if (error)
    595   1.63  jmcneill 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    596   1.63  jmcneill 	}
    597   1.63  jmcneill 
    598    1.1    nonaka 	/*
    599    1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    600    1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    601    1.1    nonaka 	 */
    602    1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    603    1.1    nonaka 	saa.saa_busname = "sdmmc";
    604    1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    605    1.1    nonaka 	saa.saa_sch = hp;
    606    1.1    nonaka 	saa.saa_dmat = hp->dmat;
    607    1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    608   1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    609   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    610   1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    611   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    612   1.38  jakllsch 	else if (hp->sc->sc_clkmsk != 0)
    613   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    614   1.38  jakllsch 		    (ffs(hp->sc->sc_clkmsk) - 1));
    615   1.56  jmcneill 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    616   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    617   1.38  jakllsch 	else
    618   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256;
    619   1.97  kiyohara 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    620   1.97  kiyohara 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    621   1.97  kiyohara 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    622   1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    623   1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    624   1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    625  1.113  jmcneill 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED |
    626  1.113  jmcneill 				SMC_CAPS_MMC_HIGHSPEED;
    627   1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    628   1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    629   1.76  jmcneill 				SMC_CAPS_UHS_SDR50 |
    630   1.76  jmcneill 				SMC_CAPS_MMC_HS200;
    631   1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    632   1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    633   1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    634   1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    635   1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    636   1.54    nonaka 		saa.saa_caps |= SMC_CAPS_DMA;
    637   1.54    nonaka 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    638   1.54    nonaka 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    639   1.26      matt 	}
    640   1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    641   1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    642   1.77  jmcneill 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    643   1.77  jmcneill 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    644  1.104   hkenken 
    645  1.104   hkenken 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
    646  1.104   hkenken 		saa.saa_max_seg = 65535;
    647  1.104   hkenken 
    648  1.111   thorpej 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
    649    1.1    nonaka 
    650    1.1    nonaka 	return 0;
    651    1.1    nonaka 
    652    1.1    nonaka err:
    653   1.80  jmcneill 	callout_destroy(&hp->tuning_timer);
    654    1.1    nonaka 	cv_destroy(&hp->intr_cv);
    655  1.114       mrg 	mutex_destroy(&hp->bus_clock_lock);
    656   1.65  jmcneill 	mutex_destroy(&hp->intr_lock);
    657    1.1    nonaka 	free(hp, M_DEVBUF);
    658    1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    659    1.1    nonaka err1:
    660    1.1    nonaka 	return 1;
    661    1.1    nonaka }
    662    1.1    nonaka 
    663    1.7    nonaka int
    664   1.36  jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
    665    1.7    nonaka {
    666   1.36  jakllsch 	struct sdhc_host *hp;
    667    1.7    nonaka 	int rv = 0;
    668    1.7    nonaka 
    669   1.36  jakllsch 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    670   1.36  jakllsch 		hp = sc->sc_host[n];
    671   1.36  jakllsch 		if (hp == NULL)
    672   1.36  jakllsch 			continue;
    673   1.36  jakllsch 		if (hp->sdmmc != NULL) {
    674   1.36  jakllsch 			rv = config_detach(hp->sdmmc, flags);
    675   1.36  jakllsch 			if (rv)
    676   1.36  jakllsch 				break;
    677   1.36  jakllsch 			hp->sdmmc = NULL;
    678   1.36  jakllsch 		}
    679   1.36  jakllsch 		/* disable interrupts */
    680   1.36  jakllsch 		if ((flags & DETACH_FORCE) == 0) {
    681   1.78   mlelstv 			mutex_enter(&hp->intr_lock);
    682   1.36  jakllsch 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    683   1.36  jakllsch 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    684   1.36  jakllsch 			} else {
    685   1.36  jakllsch 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    686   1.36  jakllsch 			}
    687   1.36  jakllsch 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    688   1.78   mlelstv 			mutex_exit(&hp->intr_lock);
    689   1.36  jakllsch 		}
    690   1.80  jmcneill 		callout_halt(&hp->tuning_timer, NULL);
    691   1.80  jmcneill 		callout_destroy(&hp->tuning_timer);
    692   1.36  jakllsch 		cv_destroy(&hp->intr_cv);
    693   1.65  jmcneill 		mutex_destroy(&hp->intr_lock);
    694   1.36  jakllsch 		if (hp->ios > 0) {
    695   1.36  jakllsch 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    696   1.36  jakllsch 			hp->ios = 0;
    697   1.36  jakllsch 		}
    698   1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    699   1.63  jmcneill 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    700   1.63  jmcneill 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    701   1.63  jmcneill 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    702   1.63  jmcneill 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    703   1.63  jmcneill 		}
    704   1.36  jakllsch 		free(hp, M_DEVBUF);
    705   1.36  jakllsch 		sc->sc_host[n] = NULL;
    706   1.36  jakllsch 	}
    707    1.7    nonaka 
    708    1.7    nonaka 	return rv;
    709    1.7    nonaka }
    710    1.7    nonaka 
    711    1.1    nonaka bool
    712    1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    713    1.1    nonaka {
    714    1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    715    1.1    nonaka 	struct sdhc_host *hp;
    716   1.12    nonaka 	size_t i;
    717    1.1    nonaka 
    718    1.1    nonaka 	/* XXX poll for command completion or suspend command
    719    1.1    nonaka 	 * in progress */
    720    1.1    nonaka 
    721    1.1    nonaka 	/* Save the host controller state. */
    722   1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    723    1.1    nonaka 		hp = sc->sc_host[n];
    724   1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    725   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    726   1.11      matt 				uint32_t v = HREAD4(hp, i);
    727   1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    728   1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    729   1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    730   1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    731   1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    732   1.13    bouyer 				}
    733   1.11      matt 			}
    734   1.11      matt 		} else {
    735   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    736   1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    737   1.11      matt 			}
    738   1.11      matt 		}
    739    1.1    nonaka 	}
    740    1.1    nonaka 	return true;
    741    1.1    nonaka }
    742    1.1    nonaka 
    743    1.1    nonaka bool
    744    1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    745    1.1    nonaka {
    746    1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    747    1.1    nonaka 	struct sdhc_host *hp;
    748   1.12    nonaka 	size_t i;
    749    1.1    nonaka 
    750    1.1    nonaka 	/* Restore the host controller state. */
    751   1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    752    1.1    nonaka 		hp = sc->sc_host[n];
    753    1.1    nonaka 		(void)sdhc_host_reset(hp);
    754   1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    755   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    756   1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    757   1.13    bouyer 					HWRITE4(hp, i,
    758   1.13    bouyer 					    (hp->regs[i + 0] << 0)
    759   1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    760   1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    761   1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    762   1.13    bouyer 				} else {
    763   1.13    bouyer 					HWRITE4(hp, i,
    764   1.13    bouyer 					    (hp->regs[i + 0] << 0)
    765   1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    766   1.13    bouyer 				}
    767   1.11      matt 			}
    768   1.11      matt 		} else {
    769   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    770   1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    771   1.11      matt 			}
    772   1.11      matt 		}
    773    1.1    nonaka 	}
    774    1.1    nonaka 	return true;
    775    1.1    nonaka }
    776    1.1    nonaka 
    777    1.1    nonaka bool
    778    1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    779    1.1    nonaka {
    780    1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    781    1.1    nonaka 	struct sdhc_host *hp;
    782    1.1    nonaka 
    783    1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    784   1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    785    1.1    nonaka 		hp = sc->sc_host[i];
    786    1.1    nonaka 		(void)sdhc_host_reset(hp);
    787    1.1    nonaka 	}
    788    1.1    nonaka 	return true;
    789    1.1    nonaka }
    790    1.1    nonaka 
    791    1.1    nonaka /*
    792    1.1    nonaka  * Reset the host controller.  Called during initialization, when
    793    1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    794    1.1    nonaka  */
    795    1.1    nonaka static int
    796    1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    797    1.1    nonaka {
    798    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    799   1.11      matt 	uint32_t sdhcimask;
    800    1.1    nonaka 	int error;
    801    1.1    nonaka 
    802   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
    803    1.1    nonaka 
    804    1.1    nonaka 	/* Disable all interrupts. */
    805   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    806   1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    807   1.11      matt 	} else {
    808   1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    809   1.11      matt 	}
    810    1.1    nonaka 
    811  1.105   mlelstv 	/* Let sdhc_bus_power restore power */
    812  1.105   mlelstv 	hp->vdd = 0;
    813  1.105   mlelstv 
    814    1.1    nonaka 	/*
    815    1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    816    1.1    nonaka 	 * the controller to clear the reset bit.
    817    1.1    nonaka 	 */
    818    1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    819    1.1    nonaka 	if (error)
    820    1.1    nonaka 		goto out;
    821    1.1    nonaka 
    822    1.1    nonaka 	/* Set data timeout counter value to max for now. */
    823    1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    824   1.29      matt #if 1
    825   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    826   1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    827   1.11      matt #endif
    828    1.1    nonaka 
    829    1.1    nonaka 	/* Enable interrupts. */
    830    1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    831    1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    832    1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    833    1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    834   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    835   1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    836   1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    837   1.11      matt 		sdhcimask ^=
    838   1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    839   1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    840   1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    841   1.11      matt 	} else {
    842   1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    843   1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    844   1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    845   1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    846   1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    847   1.11      matt 	}
    848    1.1    nonaka 
    849    1.1    nonaka out:
    850    1.1    nonaka 	return error;
    851    1.1    nonaka }
    852    1.1    nonaka 
    853    1.1    nonaka static int
    854    1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    855    1.1    nonaka {
    856    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    857    1.1    nonaka 	int error;
    858    1.1    nonaka 
    859   1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    860    1.1    nonaka 	error = sdhc_host_reset1(sch);
    861   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    862    1.1    nonaka 
    863    1.1    nonaka 	return error;
    864    1.1    nonaka }
    865    1.1    nonaka 
    866    1.1    nonaka static uint32_t
    867    1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    868    1.1    nonaka {
    869    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    870    1.1    nonaka 
    871    1.1    nonaka 	return hp->ocr;
    872    1.1    nonaka }
    873    1.1    nonaka 
    874    1.1    nonaka static int
    875    1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    876    1.1    nonaka {
    877    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    878    1.1    nonaka 
    879    1.1    nonaka 	return hp->maxblklen;
    880    1.1    nonaka }
    881    1.1    nonaka 
    882    1.1    nonaka /*
    883    1.1    nonaka  * Return non-zero if the card is currently inserted.
    884    1.1    nonaka  */
    885    1.1    nonaka static int
    886    1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    887    1.1    nonaka {
    888    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    889    1.1    nonaka 	int r;
    890    1.1    nonaka 
    891  1.119    dyoung 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NON_REMOVABLE))
    892  1.119    dyoung 		return 1;
    893  1.119    dyoung 
    894   1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    895   1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    896   1.32  kiyohara 
    897    1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    898    1.1    nonaka 
    899   1.11      matt 	return r ? 1 : 0;
    900    1.1    nonaka }
    901    1.1    nonaka 
    902    1.1    nonaka /*
    903    1.1    nonaka  * Return non-zero if the card is currently write-protected.
    904    1.1    nonaka  */
    905    1.1    nonaka static int
    906    1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    907    1.1    nonaka {
    908    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    909    1.1    nonaka 	int r;
    910    1.1    nonaka 
    911   1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    912   1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    913   1.32  kiyohara 
    914    1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    915    1.1    nonaka 
    916   1.12    nonaka 	return r ? 0 : 1;
    917    1.1    nonaka }
    918    1.1    nonaka 
    919    1.1    nonaka /*
    920    1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    921    1.1    nonaka  * Return zero on success.
    922    1.1    nonaka  */
    923    1.1    nonaka static int
    924    1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    925    1.1    nonaka {
    926    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    927    1.1    nonaka 	uint8_t vdd;
    928    1.1    nonaka 	int error = 0;
    929   1.32  kiyohara 	const uint32_t pcmask =
    930   1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    931  1.105   mlelstv 	uint32_t reg;
    932    1.1    nonaka 
    933   1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    934    1.1    nonaka 
    935    1.1    nonaka 	/*
    936    1.1    nonaka 	 * Disable bus power before voltage change.
    937    1.1    nonaka 	 */
    938  1.122  jmcneill 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
    939  1.105   mlelstv 		hp->vdd = 0;
    940    1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    941  1.105   mlelstv 	}
    942    1.1    nonaka 
    943    1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    944    1.1    nonaka 	if (ocr == 0) {
    945    1.1    nonaka 		(void)sdhc_host_reset1(hp);
    946   1.80  jmcneill 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    947    1.1    nonaka 		goto out;
    948    1.1    nonaka 	}
    949    1.1    nonaka 
    950    1.1    nonaka 	/*
    951    1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    952    1.1    nonaka 	 */
    953    1.1    nonaka 	ocr &= hp->ocr;
    954   1.95    nonaka 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    955    1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    956   1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    957    1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    958   1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    959    1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    960   1.11      matt 	} else {
    961    1.1    nonaka 		/* Unsupported voltage level requested. */
    962    1.1    nonaka 		error = EINVAL;
    963    1.1    nonaka 		goto out;
    964    1.1    nonaka 	}
    965    1.1    nonaka 
    966  1.105   mlelstv 	/*
    967  1.105   mlelstv 	 * Did voltage change ?
    968  1.105   mlelstv 	 */
    969  1.105   mlelstv 	if (vdd == hp->vdd)
    970  1.105   mlelstv 		goto out;
    971  1.105   mlelstv 
    972   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    973   1.11      matt 		/*
    974   1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    975   1.11      matt 		 * voltage ramp until power rises.
    976   1.11      matt 		 */
    977   1.57  jmcneill 
    978   1.57  jmcneill 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    979   1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    980   1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    981   1.57  jmcneill 		} else {
    982  1.105   mlelstv 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
    983  1.105   mlelstv 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    984   1.57  jmcneill 			sdmmc_delay(1);
    985  1.105   mlelstv 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
    986  1.105   mlelstv 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    987   1.57  jmcneill 			sdmmc_delay(1);
    988  1.105   mlelstv 			reg |= SDHC_BUS_POWER;
    989  1.105   mlelstv 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    990   1.57  jmcneill 			sdmmc_delay(10000);
    991   1.57  jmcneill 		}
    992    1.1    nonaka 
    993   1.11      matt 		/*
    994   1.11      matt 		 * The host system may not power the bus due to battery low,
    995   1.11      matt 		 * etc.  In that case, the host controller should clear the
    996   1.11      matt 		 * bus power bit.
    997   1.11      matt 		 */
    998   1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    999   1.11      matt 			error = ENXIO;
   1000   1.11      matt 			goto out;
   1001   1.11      matt 		}
   1002    1.1    nonaka 	}
   1003    1.1    nonaka 
   1004  1.105   mlelstv 	/* power successfully changed */
   1005  1.105   mlelstv 	hp->vdd = vdd;
   1006  1.105   mlelstv 
   1007    1.1    nonaka out:
   1008   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1009    1.1    nonaka 
   1010    1.1    nonaka 	return error;
   1011    1.1    nonaka }
   1012    1.1    nonaka 
   1013    1.1    nonaka /*
   1014    1.1    nonaka  * Return the smallest possible base clock frequency divisor value
   1015    1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
   1016    1.1    nonaka  */
   1017   1.11      matt static bool
   1018   1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
   1019    1.1    nonaka {
   1020   1.11      matt 	u_int div;
   1021    1.1    nonaka 
   1022   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
   1023   1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
   1024   1.11      matt 			if ((hp->clkbase / div) <= freq) {
   1025   1.11      matt 				*divp = SDHC_SDCLK_CGM
   1026   1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
   1027   1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
   1028   1.18  jakllsch 				//freq = hp->clkbase / div;
   1029   1.11      matt 				return true;
   1030   1.11      matt 			}
   1031   1.11      matt 		}
   1032   1.11      matt 		/* No divisor found. */
   1033   1.11      matt 		return false;
   1034   1.11      matt 	}
   1035   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
   1036   1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
   1037   1.11      matt 		u_int roundup = dvs & 1;
   1038   1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
   1039   1.11      matt 			if (dvs + roundup <= 16) {
   1040   1.11      matt 				dvs += roundup - 1;
   1041   1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
   1042   1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1043   1.11      matt 				DPRINTF(2,
   1044   1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
   1045   1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1046   1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1047   1.11      matt 				return true;
   1048    1.9      matt 			}
   1049   1.11      matt 			/*
   1050   1.11      matt 			 * If we drop bits, we need to round up the divisor.
   1051   1.11      matt 			 */
   1052   1.11      matt 			roundup |= dvs & 1;
   1053    1.9      matt 		}
   1054   1.18  jakllsch 		/* No divisor found. */
   1055   1.18  jakllsch 		return false;
   1056   1.38  jakllsch 	}
   1057   1.38  jakllsch 	if (hp->sc->sc_clkmsk != 0) {
   1058   1.38  jakllsch 		div = howmany(hp->clkbase, freq);
   1059   1.38  jakllsch 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1060   1.38  jakllsch 			return false;
   1061   1.38  jakllsch 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1062   1.38  jakllsch 		//freq = hp->clkbase / div;
   1063   1.38  jakllsch 		return true;
   1064   1.38  jakllsch 	}
   1065   1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1066   1.38  jakllsch 		div = howmany(hp->clkbase, freq);
   1067   1.50   mlelstv 		div = div > 1 ? howmany(div, 2) : 0;
   1068   1.38  jakllsch 		if (div > 0x3ff)
   1069   1.38  jakllsch 			return false;
   1070   1.38  jakllsch 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1071   1.38  jakllsch 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1072   1.38  jakllsch 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1073   1.38  jakllsch 			 << SDHC_SDCLK_DIV_SHIFT);
   1074   1.67   mlelstv 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1075   1.38  jakllsch 		return true;
   1076    1.9      matt 	} else {
   1077   1.38  jakllsch 		for (div = 1; div <= 256; div *= 2) {
   1078   1.38  jakllsch 			if ((hp->clkbase / div) <= freq) {
   1079   1.38  jakllsch 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1080   1.38  jakllsch 				//freq = hp->clkbase / div;
   1081   1.38  jakllsch 				return true;
   1082   1.38  jakllsch 			}
   1083   1.38  jakllsch 		}
   1084   1.38  jakllsch 		/* No divisor found. */
   1085   1.38  jakllsch 		return false;
   1086    1.9      matt 	}
   1087    1.1    nonaka 	/* No divisor found. */
   1088   1.11      matt 	return false;
   1089    1.1    nonaka }
   1090    1.1    nonaka 
   1091    1.1    nonaka /*
   1092    1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
   1093    1.1    nonaka  * Return zero on success.
   1094    1.1    nonaka  */
   1095    1.1    nonaka static int
   1096   1.76  jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1097    1.1    nonaka {
   1098    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1099   1.11      matt 	u_int div;
   1100   1.11      matt 	u_int timo;
   1101   1.32  kiyohara 	int16_t reg;
   1102    1.1    nonaka 	int error = 0;
   1103   1.65  jmcneill 	bool present __diagused;
   1104   1.65  jmcneill 
   1105    1.2    cegger #ifdef DIAGNOSTIC
   1106   1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1107    1.1    nonaka 
   1108    1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
   1109   1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
   1110   1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
   1111   1.26      matt 		    "%s: command in progress\n", __func__);
   1112   1.12    nonaka 	}
   1113    1.1    nonaka #endif
   1114    1.1    nonaka 
   1115   1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
   1116  1.114       mrg 		mutex_enter(&hp->bus_clock_lock);
   1117   1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1118  1.114       mrg 		mutex_exit(&hp->bus_clock_lock);
   1119   1.34      matt 		if (error != 0)
   1120  1.114       mrg 			return error;
   1121   1.34      matt 	}
   1122   1.34      matt 
   1123  1.114       mrg 	mutex_enter(&hp->intr_lock);
   1124  1.114       mrg 
   1125    1.1    nonaka 	/*
   1126    1.1    nonaka 	 * Stop SD clock before changing the frequency.
   1127    1.1    nonaka 	 */
   1128   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1129   1.93       ryo 		HCLR4(hp, SDHC_VEND_SPEC,
   1130   1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1131   1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1132   1.93       ryo 		if (freq == SDMMC_SDCLK_OFF) {
   1133   1.93       ryo 			goto out;
   1134   1.93       ryo 		}
   1135   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1136   1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1137   1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
   1138   1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1139   1.11      matt 			goto out;
   1140   1.11      matt 		}
   1141   1.11      matt 	} else {
   1142   1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1143   1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
   1144   1.11      matt 			goto out;
   1145   1.11      matt 	}
   1146    1.1    nonaka 
   1147   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1148   1.93       ryo 		if (ddr)
   1149   1.93       ryo 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1150   1.93       ryo 		else
   1151   1.93       ryo 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1152   1.93       ryo 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1153   1.71  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1154   1.71  jmcneill 		if (freq > 100000) {
   1155   1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1156   1.71  jmcneill 		} else if (freq > 50000) {
   1157   1.98    nonaka 			if (ddr) {
   1158   1.98    nonaka 				HSET2(hp, SDHC_HOST_CTL2,
   1159   1.98    nonaka 				    SDHC_UHS_MODE_SELECT_DDR50);
   1160   1.98    nonaka 			} else {
   1161   1.98    nonaka 				HSET2(hp, SDHC_HOST_CTL2,
   1162   1.98    nonaka 				    SDHC_UHS_MODE_SELECT_SDR50);
   1163   1.98    nonaka 			}
   1164   1.71  jmcneill 		} else if (freq > 25000) {
   1165   1.76  jmcneill 			if (ddr) {
   1166   1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1167   1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_DDR50);
   1168   1.76  jmcneill 			} else {
   1169   1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1170   1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_SDR25);
   1171   1.76  jmcneill 			}
   1172   1.74  jmcneill 		} else if (freq > 400) {
   1173   1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1174   1.71  jmcneill 		}
   1175   1.71  jmcneill 	}
   1176   1.71  jmcneill 
   1177    1.1    nonaka 	/*
   1178   1.82   mlelstv 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1179   1.82   mlelstv 	 * at 100MHz bus clock.
   1180   1.82   mlelstv 	 */
   1181   1.82   mlelstv 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1182   1.82   mlelstv 		if (freq == 100000)
   1183   1.82   mlelstv 			--freq;
   1184   1.82   mlelstv 	}
   1185   1.82   mlelstv 
   1186   1.82   mlelstv 	/*
   1187    1.1    nonaka 	 * Set the minimum base clock frequency divisor.
   1188    1.1    nonaka 	 */
   1189   1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1190    1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
   1191   1.68   mlelstv 		aprint_error_dev(hp->sc->sc_dev,
   1192   1.68   mlelstv 			"Invalid bus clock %d kHz\n", freq);
   1193    1.1    nonaka 		error = EINVAL;
   1194    1.1    nonaka 		goto out;
   1195    1.1    nonaka 	}
   1196   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1197   1.93       ryo 		if (ddr) {
   1198   1.93       ryo 			/* in ddr mode, divisor >>= 1 */
   1199   1.93       ryo 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1200   1.93       ryo 			    SDHC_SDCLK_DIV_SHIFT)) |
   1201   1.93       ryo 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1202   1.93       ryo 			    SDHC_SDCLK_DVS_SHIFT));
   1203   1.93       ryo 		}
   1204   1.93       ryo 		for (timo = 1000; timo > 0; timo--) {
   1205   1.93       ryo 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1206   1.93       ryo 				break;
   1207   1.93       ryo 			sdmmc_delay(10);
   1208   1.93       ryo 		}
   1209   1.93       ryo 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1210   1.93       ryo 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1211   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1212   1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1213   1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
   1214   1.11      matt 	} else {
   1215   1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1216   1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1217   1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1218   1.11      matt 	}
   1219    1.1    nonaka 
   1220    1.1    nonaka 	/*
   1221    1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
   1222    1.1    nonaka 	 */
   1223   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1224   1.93       ryo 		HSET4(hp, SDHC_VEND_SPEC,
   1225   1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1226   1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1227   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1228   1.11      matt 		sdmmc_delay(10000);
   1229   1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
   1230   1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1231   1.11      matt 	} else {
   1232   1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1233   1.11      matt 		for (timo = 1000; timo > 0; timo--) {
   1234   1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1235   1.12    nonaka 			    SDHC_INTCLK_STABLE))
   1236   1.11      matt 				break;
   1237   1.11      matt 			sdmmc_delay(10);
   1238   1.11      matt 		}
   1239   1.11      matt 		if (timo == 0) {
   1240   1.11      matt 			error = ETIMEDOUT;
   1241   1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1242   1.11      matt 			goto out;
   1243   1.11      matt 		}
   1244    1.1    nonaka 	}
   1245    1.1    nonaka 
   1246   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1247   1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1248   1.11      matt 		/*
   1249   1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
   1250   1.11      matt 		 * So delay for that time + slop and then
   1251   1.11      matt 		 * check a few times for completion.
   1252   1.11      matt 		 */
   1253   1.11      matt 		sdmmc_delay(210);
   1254   1.11      matt 		for (timo = 10; timo > 0; timo--) {
   1255   1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1256   1.11      matt 			    SDHC_INIT_ACTIVE))
   1257   1.11      matt 				break;
   1258   1.11      matt 			sdmmc_delay(10);
   1259   1.11      matt 		}
   1260   1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1261   1.12    nonaka 
   1262   1.11      matt 		/*
   1263   1.11      matt 		 * Enable SD clock.
   1264   1.11      matt 		 */
   1265   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1266   1.93       ryo 			HSET4(hp, SDHC_VEND_SPEC,
   1267   1.93       ryo 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1268   1.93       ryo 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1269   1.93       ryo 		} else {
   1270   1.93       ryo 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1271   1.93       ryo 		}
   1272   1.11      matt 	} else {
   1273   1.11      matt 		/*
   1274   1.11      matt 		 * Enable SD clock.
   1275   1.11      matt 		 */
   1276   1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1277    1.1    nonaka 
   1278   1.43  jmcneill 		if (freq > 25000 &&
   1279   1.43  jmcneill 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1280   1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1281   1.11      matt 		else
   1282   1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1283   1.11      matt 	}
   1284    1.8  kiyohara 
   1285  1.114       mrg 	mutex_exit(&hp->intr_lock);
   1286  1.114       mrg 
   1287  1.102  jmcneill 	if (hp->sc->sc_vendor_bus_clock_post) {
   1288  1.114       mrg 		mutex_enter(&hp->bus_clock_lock);
   1289  1.102  jmcneill 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
   1290  1.114       mrg 		mutex_exit(&hp->bus_clock_lock);
   1291  1.102  jmcneill 	}
   1292  1.114       mrg 	return error;
   1293  1.102  jmcneill 
   1294    1.1    nonaka out:
   1295   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1296    1.1    nonaka 
   1297    1.1    nonaka 	return error;
   1298    1.1    nonaka }
   1299    1.1    nonaka 
   1300    1.1    nonaka static int
   1301    1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1302    1.1    nonaka {
   1303    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1304    1.1    nonaka 	int reg;
   1305    1.1    nonaka 
   1306    1.1    nonaka 	switch (width) {
   1307    1.1    nonaka 	case 1:
   1308    1.1    nonaka 	case 4:
   1309    1.1    nonaka 		break;
   1310    1.1    nonaka 
   1311   1.11      matt 	case 8:
   1312   1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1313   1.11      matt 			break;
   1314   1.11      matt 		/* FALLTHROUGH */
   1315    1.1    nonaka 	default:
   1316    1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1317    1.1    nonaka 		    HDEVNAME(hp), width));
   1318    1.1    nonaka 		return 1;
   1319    1.1    nonaka 	}
   1320    1.1    nonaka 
   1321   1.89  jmcneill 	if (hp->sc->sc_vendor_bus_width) {
   1322   1.89  jmcneill 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1323   1.89  jmcneill 		if (error != 0)
   1324   1.89  jmcneill 			return error;
   1325   1.89  jmcneill 	}
   1326   1.89  jmcneill 
   1327   1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1328   1.65  jmcneill 
   1329    1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1330   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1331   1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1332   1.11      matt 		if (width == 4)
   1333   1.11      matt 			reg |= SDHC_4BIT_MODE;
   1334   1.11      matt 		else if (width == 8)
   1335   1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
   1336   1.11      matt 	} else {
   1337   1.11      matt 		reg &= ~SDHC_4BIT_MODE;
   1338   1.59  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1339   1.59  jmcneill 			reg &= ~SDHC_8BIT_MODE;
   1340   1.59  jmcneill 		}
   1341   1.59  jmcneill 		if (width == 4) {
   1342   1.11      matt 			reg |= SDHC_4BIT_MODE;
   1343   1.59  jmcneill 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1344   1.59  jmcneill 			reg |= SDHC_8BIT_MODE;
   1345   1.59  jmcneill 		}
   1346   1.11      matt 	}
   1347    1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1348   1.65  jmcneill 
   1349   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1350    1.1    nonaka 
   1351    1.1    nonaka 	return 0;
   1352    1.1    nonaka }
   1353    1.1    nonaka 
   1354    1.8  kiyohara static int
   1355    1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1356    1.8  kiyohara {
   1357   1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1358   1.32  kiyohara 
   1359   1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
   1360   1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1361    1.8  kiyohara 
   1362    1.8  kiyohara 	return 0;
   1363    1.8  kiyohara }
   1364    1.8  kiyohara 
   1365    1.1    nonaka static void
   1366    1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1367    1.1    nonaka {
   1368    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1369    1.1    nonaka 
   1370   1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1371   1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1372   1.11      matt 		if (enable) {
   1373   1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1374   1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1375   1.11      matt 		} else {
   1376   1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1377   1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1378   1.11      matt 		}
   1379   1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1380    1.1    nonaka 	}
   1381    1.1    nonaka }
   1382    1.1    nonaka 
   1383   1.47     skrll static void
   1384    1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1385    1.1    nonaka {
   1386    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1387    1.1    nonaka 
   1388   1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1389   1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1390   1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1391   1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1392   1.11      matt 	}
   1393    1.1    nonaka }
   1394    1.1    nonaka 
   1395    1.1    nonaka static int
   1396   1.71  jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1397   1.71  jmcneill {
   1398   1.71  jmcneill 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1399  1.100  jmcneill 	int error = 0;
   1400   1.71  jmcneill 
   1401   1.98    nonaka 	if (hp->specver < SDHC_SPEC_VERS_300)
   1402   1.98    nonaka 		return EINVAL;
   1403   1.98    nonaka 
   1404   1.78   mlelstv 	mutex_enter(&hp->intr_lock);
   1405   1.71  jmcneill 	switch (signal_voltage) {
   1406   1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_180:
   1407  1.100  jmcneill 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1408  1.100  jmcneill 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1409  1.100  jmcneill 			    signal_voltage);
   1410  1.100  jmcneill 			if (error != 0)
   1411  1.100  jmcneill 				break;
   1412  1.100  jmcneill 		}
   1413   1.93       ryo 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1414   1.93       ryo 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1415   1.71  jmcneill 		break;
   1416   1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_330:
   1417   1.93       ryo 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1418   1.93       ryo 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1419  1.100  jmcneill 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1420  1.100  jmcneill 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1421  1.100  jmcneill 			    signal_voltage);
   1422  1.100  jmcneill 			if (error != 0)
   1423  1.100  jmcneill 				break;
   1424  1.100  jmcneill 		}
   1425   1.71  jmcneill 		break;
   1426   1.71  jmcneill 	default:
   1427  1.100  jmcneill 		error = EINVAL;
   1428  1.100  jmcneill 		break;
   1429   1.71  jmcneill 	}
   1430   1.78   mlelstv 	mutex_exit(&hp->intr_lock);
   1431   1.71  jmcneill 
   1432  1.100  jmcneill 	return error;
   1433   1.71  jmcneill }
   1434   1.71  jmcneill 
   1435   1.79  jmcneill /*
   1436   1.79  jmcneill  * Sampling clock tuning procedure (UHS)
   1437   1.79  jmcneill  */
   1438   1.79  jmcneill static int
   1439   1.83   mlelstv sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1440   1.79  jmcneill {
   1441   1.79  jmcneill 	struct sdmmc_command cmd;
   1442   1.79  jmcneill 	uint8_t hostctl;
   1443   1.79  jmcneill 	int opcode, error, retry = 40;
   1444   1.79  jmcneill 
   1445   1.83   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1446   1.83   mlelstv 
   1447   1.80  jmcneill 	hp->tuning_timing = timing;
   1448   1.80  jmcneill 
   1449   1.79  jmcneill 	switch (timing) {
   1450   1.79  jmcneill 	case SDMMC_TIMING_MMC_HS200:
   1451   1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1452   1.79  jmcneill 		break;
   1453   1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR50:
   1454   1.79  jmcneill 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1455   1.79  jmcneill 			return 0;
   1456   1.79  jmcneill 		/* FALLTHROUGH */
   1457   1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR104:
   1458   1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK;
   1459   1.79  jmcneill 		break;
   1460   1.79  jmcneill 	default:
   1461   1.79  jmcneill 		return EINVAL;
   1462   1.79  jmcneill 	}
   1463   1.79  jmcneill 
   1464   1.79  jmcneill 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1465   1.79  jmcneill 
   1466   1.79  jmcneill 	/* enable buffer read ready interrupt */
   1467   1.79  jmcneill 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1468   1.79  jmcneill 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1469   1.79  jmcneill 
   1470   1.79  jmcneill 	/* disable DMA */
   1471   1.79  jmcneill 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1472   1.79  jmcneill 
   1473   1.79  jmcneill 	/* reset tuning circuit */
   1474   1.79  jmcneill 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1475   1.79  jmcneill 
   1476   1.79  jmcneill 	/* start of tuning */
   1477   1.79  jmcneill 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1478   1.79  jmcneill 
   1479   1.79  jmcneill 	do {
   1480   1.79  jmcneill 		memset(&cmd, 0, sizeof(cmd));
   1481   1.79  jmcneill 		cmd.c_opcode = opcode;
   1482   1.79  jmcneill 		cmd.c_arg = 0;
   1483   1.79  jmcneill 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1484   1.79  jmcneill 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1485   1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 128;
   1486   1.79  jmcneill 		} else {
   1487   1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 64;
   1488   1.79  jmcneill 		}
   1489   1.79  jmcneill 
   1490   1.79  jmcneill 		error = sdhc_start_command(hp, &cmd);
   1491   1.79  jmcneill 		if (error)
   1492   1.79  jmcneill 			break;
   1493   1.79  jmcneill 
   1494   1.79  jmcneill 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1495   1.88   mlelstv 		    SDHC_TUNING_TIMEOUT, false)) {
   1496   1.79  jmcneill 			break;
   1497   1.79  jmcneill 		}
   1498   1.79  jmcneill 
   1499   1.79  jmcneill 		delay(1000);
   1500   1.79  jmcneill 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1501   1.79  jmcneill 
   1502   1.79  jmcneill 	/* disable buffer read ready interrupt */
   1503   1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1504   1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1505   1.79  jmcneill 
   1506   1.79  jmcneill 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1507   1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1508   1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1509   1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1510   1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1511   1.79  jmcneill 		    "tuning did not complete, using fixed sampling clock\n");
   1512  1.103  jmcneill 		return 0;		/* tuning did not complete */
   1513   1.79  jmcneill 	}
   1514   1.79  jmcneill 
   1515   1.79  jmcneill 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1516   1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1517   1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1518   1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1519   1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1520   1.79  jmcneill 		    "tuning failed, using fixed sampling clock\n");
   1521  1.103  jmcneill 		return 0;		/* tuning failed */
   1522   1.79  jmcneill 	}
   1523   1.79  jmcneill 
   1524   1.80  jmcneill 	if (hp->tuning_timer_count) {
   1525   1.80  jmcneill 		callout_schedule(&hp->tuning_timer,
   1526   1.80  jmcneill 		    hz * hp->tuning_timer_count);
   1527   1.80  jmcneill 	}
   1528   1.80  jmcneill 
   1529   1.79  jmcneill 	return 0;		/* tuning completed */
   1530   1.79  jmcneill }
   1531   1.79  jmcneill 
   1532   1.83   mlelstv static int
   1533   1.83   mlelstv sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1534   1.83   mlelstv {
   1535   1.83   mlelstv 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1536   1.83   mlelstv 	int error;
   1537   1.83   mlelstv 
   1538   1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1539   1.83   mlelstv 	error = sdhc_execute_tuning1(hp, timing);
   1540   1.83   mlelstv 	mutex_exit(&hp->intr_lock);
   1541   1.83   mlelstv 	return error;
   1542   1.83   mlelstv }
   1543   1.83   mlelstv 
   1544   1.80  jmcneill static void
   1545   1.80  jmcneill sdhc_tuning_timer(void *arg)
   1546   1.80  jmcneill {
   1547   1.80  jmcneill 	struct sdhc_host *hp = arg;
   1548   1.80  jmcneill 
   1549   1.80  jmcneill 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1550   1.80  jmcneill }
   1551   1.80  jmcneill 
   1552   1.99    nonaka static void
   1553   1.99    nonaka sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1554   1.99    nonaka {
   1555   1.99    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1556   1.99    nonaka 	struct sdhc_softc *sc = hp->sc;
   1557   1.99    nonaka 
   1558   1.99    nonaka 	if (sc->sc_vendor_hw_reset != NULL)
   1559   1.99    nonaka 		sc->sc_vendor_hw_reset(sc, hp);
   1560   1.99    nonaka }
   1561   1.99    nonaka 
   1562   1.71  jmcneill static int
   1563    1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1564    1.1    nonaka {
   1565  1.121  jmcneill 	struct timeval start, diff;
   1566    1.1    nonaka 	uint32_t state;
   1567    1.1    nonaka 
   1568  1.121  jmcneill 	microuptime(&start);
   1569  1.121  jmcneill 	for (;;) {
   1570  1.121  jmcneill 		state = HREAD4(hp, SDHC_PRESENT_STATE);
   1571  1.121  jmcneill 		if ((state & mask) == value) {
   1572    1.1    nonaka 			return 0;
   1573  1.121  jmcneill 		}
   1574  1.121  jmcneill 		microuptime(&diff);
   1575  1.121  jmcneill 		timersub(&diff, &start, &diff);
   1576  1.121  jmcneill 		if (diff.tv_sec != 0) {
   1577  1.121  jmcneill 			aprint_error_dev(hp->sc->sc_dev,
   1578  1.121  jmcneill 			    "timeout waiting for mask %#x value %#x "
   1579  1.121  jmcneill 			    "(state=%#x)\n",
   1580  1.121  jmcneill 			    mask, value, state);
   1581  1.121  jmcneill 			return ETIMEDOUT;
   1582  1.121  jmcneill 		}
   1583    1.1    nonaka 	}
   1584    1.1    nonaka }
   1585    1.1    nonaka 
   1586    1.1    nonaka static void
   1587    1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1588    1.1    nonaka {
   1589    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1590    1.1    nonaka 	int error;
   1591   1.88   mlelstv 	bool probing;
   1592    1.1    nonaka 
   1593   1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1594   1.83   mlelstv 
   1595   1.80  jmcneill 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1596   1.83   mlelstv 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1597   1.80  jmcneill 	}
   1598   1.80  jmcneill 
   1599   1.93       ryo 	if (cmd->c_data &&
   1600   1.93       ryo 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1601   1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1602   1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1603   1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1604   1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1605   1.11      matt 		} else {
   1606   1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1607   1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1608   1.47     skrll 		}
   1609   1.11      matt 	}
   1610   1.11      matt 
   1611   1.61  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1612   1.61  jmcneill 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1613   1.61  jmcneill 		if (cmd->c_data != NULL) {
   1614   1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1615   1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1616   1.61  jmcneill 		} else {
   1617   1.61  jmcneill 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1618   1.61  jmcneill 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1619   1.61  jmcneill 		}
   1620   1.61  jmcneill 	}
   1621   1.61  jmcneill 
   1622  1.102  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
   1623  1.102  jmcneill 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1624  1.102  jmcneill 			SET(cmd->c_flags, SCF_RSP_BSY);
   1625  1.102  jmcneill 	}
   1626  1.102  jmcneill 
   1627    1.1    nonaka 	/*
   1628    1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1629    1.1    nonaka 	 */
   1630    1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1631    1.1    nonaka 	if (error) {
   1632    1.1    nonaka 		cmd->c_error = error;
   1633    1.1    nonaka 		goto out;
   1634    1.1    nonaka 	}
   1635    1.1    nonaka 
   1636    1.1    nonaka 	/*
   1637    1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1638    1.1    nonaka 	 * is marked done for any other reason.
   1639    1.1    nonaka 	 */
   1640   1.88   mlelstv 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1641  1.105   mlelstv 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
   1642   1.84   mlelstv 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1643   1.94  kiyohara 		sdmmc_delay(50);
   1644    1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1645    1.1    nonaka 		goto out;
   1646    1.1    nonaka 	}
   1647    1.1    nonaka 
   1648    1.1    nonaka 	/*
   1649    1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1650    1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1651    1.1    nonaka 	 * driver (without padding).
   1652    1.1    nonaka 	 */
   1653    1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1654   1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1655   1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1656   1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1657   1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1658   1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1659   1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1660   1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1661   1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1662   1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1663   1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1664   1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1665   1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1666   1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1667   1.32  kiyohara 			}
   1668    1.1    nonaka 		}
   1669    1.1    nonaka 	}
   1670   1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1671    1.1    nonaka 
   1672    1.1    nonaka 	/*
   1673    1.1    nonaka 	 * If the command has data to transfer in any direction,
   1674    1.1    nonaka 	 * execute the transfer now.
   1675    1.1    nonaka 	 */
   1676    1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1677    1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1678   1.42  jakllsch 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1679   1.97  kiyohara 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1680   1.97  kiyohara 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1681   1.85   mlelstv 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1682   1.85   mlelstv 			    HDEVNAME(hp)));
   1683   1.42  jakllsch 			cmd->c_error = ETIMEDOUT;
   1684   1.42  jakllsch 			goto out;
   1685   1.42  jakllsch 		}
   1686   1.42  jakllsch 	}
   1687    1.1    nonaka 
   1688    1.1    nonaka out:
   1689   1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1690   1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1691   1.11      matt 		/* Turn off the LED. */
   1692   1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1693   1.11      matt 	}
   1694    1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1695    1.1    nonaka 
   1696   1.97  kiyohara 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1697   1.97  kiyohara 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1698   1.97  kiyohara 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1699   1.97  kiyohara 
   1700   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1701   1.65  jmcneill 
   1702    1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1703    1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1704    1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1705    1.1    nonaka }
   1706    1.1    nonaka 
   1707    1.1    nonaka static int
   1708    1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1709    1.1    nonaka {
   1710   1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1711    1.1    nonaka 	uint16_t blksize = 0;
   1712    1.1    nonaka 	uint16_t blkcount = 0;
   1713    1.1    nonaka 	uint16_t mode;
   1714    1.1    nonaka 	uint16_t command;
   1715   1.84   mlelstv 	uint32_t pmask;
   1716    1.1    nonaka 	int error;
   1717    1.1    nonaka 
   1718   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1719   1.65  jmcneill 
   1720   1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1721    1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1722   1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1723    1.1    nonaka 
   1724    1.1    nonaka 	/*
   1725    1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1726    1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1727    1.1    nonaka 	 */
   1728    1.1    nonaka 
   1729    1.1    nonaka 	/* Fragment the data into proper blocks. */
   1730    1.1    nonaka 	if (cmd->c_datalen > 0) {
   1731    1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1732    1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1733    1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1734    1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1735   1.11      matt 			aprint_error_dev(sc->sc_dev,
   1736    1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1737    1.1    nonaka 			return EINVAL;
   1738    1.1    nonaka 		}
   1739    1.1    nonaka 	}
   1740    1.1    nonaka 
   1741    1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1742    1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1743   1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1744    1.1    nonaka 		return EINVAL;
   1745    1.1    nonaka 	}
   1746    1.1    nonaka 
   1747    1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1748  1.108   mlelstv 	mode = 0;
   1749    1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1750    1.1    nonaka 		mode |= SDHC_READ_MODE;
   1751  1.108   mlelstv 	if (blkcount > 0) {
   1752  1.108   mlelstv 		mode |= SDHC_BLOCK_COUNT_ENABLE;
   1753  1.108   mlelstv 		if (blkcount > 1) {
   1754  1.108   mlelstv 			mode |= SDHC_MULTI_BLOCK_MODE;
   1755  1.108   mlelstv 			if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
   1756  1.108   mlelstv 			    && !ISSET(cmd->c_flags, SCF_NO_STOP))
   1757  1.108   mlelstv 				mode |= SDHC_AUTO_CMD12_ENABLE;
   1758  1.108   mlelstv 		}
   1759    1.1    nonaka 	}
   1760   1.45  jakllsch 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1761   1.55    bouyer 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1762   1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1763    1.7    nonaka 	}
   1764    1.1    nonaka 
   1765    1.1    nonaka 	/*
   1766    1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1767    1.1    nonaka 	 */
   1768   1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1769    1.1    nonaka 
   1770    1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1771    1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1772    1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1773    1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1774   1.79  jmcneill 	if (cmd->c_datalen > 0)
   1775    1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1776    1.1    nonaka 
   1777    1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1778    1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1779    1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1780    1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1781    1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1782    1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1783    1.1    nonaka 	else
   1784    1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1785    1.1    nonaka 
   1786   1.84   mlelstv 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1787   1.84   mlelstv 	pmask = SDHC_CMD_INHIBIT_CMD;
   1788   1.91   mlelstv 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1789   1.84   mlelstv 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1790   1.84   mlelstv 	error = sdhc_wait_state(hp, pmask, 0);
   1791   1.68   mlelstv 	if (error) {
   1792   1.84   mlelstv 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1793   1.84   mlelstv 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1794    1.1    nonaka 		return error;
   1795   1.68   mlelstv 	}
   1796    1.1    nonaka 
   1797    1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1798    1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1799    1.1    nonaka 
   1800   1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1801   1.44   hkenken 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1802   1.44   hkenken 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1803   1.44   hkenken 	}
   1804   1.19  jakllsch 
   1805   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1806   1.11      matt 		/* Alert the user not to remove the card. */
   1807   1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1808   1.11      matt 	}
   1809    1.1    nonaka 
   1810    1.7    nonaka 	/* Set DMA start address. */
   1811   1.79  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1812   1.63  jmcneill 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1813   1.69  jmcneill 			bus_addr_t paddr =
   1814   1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1815   1.63  jmcneill 			uint16_t len =
   1816   1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1817   1.63  jmcneill 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1818   1.63  jmcneill 			uint16_t attr =
   1819   1.63  jmcneill 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1820   1.63  jmcneill 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1821   1.63  jmcneill 				attr |= SDHC_ADMA2_END;
   1822   1.63  jmcneill 			}
   1823   1.63  jmcneill 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1824   1.63  jmcneill 				struct sdhc_adma2_descriptor32 *desc =
   1825   1.63  jmcneill 				    hp->adma2;
   1826   1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1827   1.63  jmcneill 				desc[seg].length = htole16(len);
   1828   1.63  jmcneill 				desc[seg].address = htole32(paddr);
   1829   1.63  jmcneill 			} else {
   1830   1.63  jmcneill 				struct sdhc_adma2_descriptor64 *desc =
   1831   1.63  jmcneill 				    hp->adma2;
   1832   1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1833   1.63  jmcneill 				desc[seg].length = htole16(len);
   1834   1.63  jmcneill 				desc[seg].address = htole32(paddr & 0xffffffff);
   1835   1.63  jmcneill 				desc[seg].address_hi = htole32(
   1836   1.63  jmcneill 				    (uint64_t)paddr >> 32);
   1837   1.63  jmcneill 			}
   1838   1.63  jmcneill 		}
   1839   1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1840   1.63  jmcneill 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1841   1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1842   1.63  jmcneill 		} else {
   1843   1.63  jmcneill 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1844   1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1845   1.63  jmcneill 		}
   1846   1.63  jmcneill 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1847   1.63  jmcneill 		    BUS_DMASYNC_PREWRITE);
   1848  1.117  jmcneill 
   1849  1.117  jmcneill 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1850  1.117  jmcneill 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1851  1.117  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1852  1.117  jmcneill 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1853  1.117  jmcneill 			    (uint64_t)desc_addr >> 32);
   1854  1.117  jmcneill 		}
   1855  1.117  jmcneill 
   1856   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1857   1.93       ryo 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1858   1.93       ryo 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1859   1.93       ryo 		} else {
   1860   1.93       ryo 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1861   1.93       ryo 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1862   1.93       ryo 		}
   1863   1.63  jmcneill 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1864   1.63  jmcneill 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1865   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1866   1.93       ryo 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1867   1.93       ryo 		}
   1868    1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1869   1.63  jmcneill 	}
   1870    1.7    nonaka 
   1871    1.1    nonaka 	/*
   1872    1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1873    1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1874    1.1    nonaka 	 */
   1875   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1876   1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1877   1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1878   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1879   1.93       ryo 			/* mode bits is in MIX_CTRL register on uSDHC */
   1880   1.93       ryo 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1881  1.104   hkenken 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
   1882  1.104   hkenken 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1883  1.104   hkenken 				command |= SDHC_COMMAND_TYPE_ABORT;
   1884   1.93       ryo 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1885   1.93       ryo 		} else {
   1886   1.93       ryo 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1887   1.93       ryo 		}
   1888   1.11      matt 	} else {
   1889   1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1890   1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1891   1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1892   1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1893   1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1894   1.11      matt 	}
   1895    1.1    nonaka 
   1896    1.1    nonaka 	return 0;
   1897    1.1    nonaka }
   1898    1.1    nonaka 
   1899    1.1    nonaka static void
   1900    1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1901    1.1    nonaka {
   1902   1.51  jmcneill 	struct sdhc_softc *sc = hp->sc;
   1903    1.1    nonaka 	int error;
   1904    1.1    nonaka 
   1905   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1906   1.65  jmcneill 
   1907    1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1908    1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1909    1.1    nonaka 
   1910    1.1    nonaka #ifdef SDHC_DEBUG
   1911    1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1912    1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1913    1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1914    1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1915    1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1916    1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1917    1.1    nonaka 	}
   1918    1.1    nonaka #endif
   1919    1.1    nonaka 
   1920   1.47     skrll 	if (cmd->c_dmamap != NULL) {
   1921   1.47     skrll 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1922   1.51  jmcneill 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1923   1.47     skrll 			if (error == 0 && !sdhc_wait_intr(hp,
   1924   1.88   mlelstv 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1925   1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   1926   1.47     skrll 				error = ETIMEDOUT;
   1927   1.47     skrll 			}
   1928   1.47     skrll 		} else {
   1929   1.47     skrll 			error = sdhc_transfer_data_dma(hp, cmd);
   1930   1.47     skrll 		}
   1931   1.47     skrll 	} else
   1932    1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1933    1.1    nonaka 	if (error)
   1934    1.1    nonaka 		cmd->c_error = error;
   1935    1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1936    1.1    nonaka 
   1937    1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1938    1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1939    1.1    nonaka }
   1940    1.1    nonaka 
   1941    1.1    nonaka static int
   1942    1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1943    1.7    nonaka {
   1944   1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1945   1.19  jakllsch 	bus_addr_t posaddr;
   1946   1.19  jakllsch 	bus_addr_t segaddr;
   1947   1.19  jakllsch 	bus_size_t seglen;
   1948   1.19  jakllsch 	u_int seg = 0;
   1949    1.7    nonaka 	int error = 0;
   1950   1.19  jakllsch 	int status;
   1951    1.7    nonaka 
   1952   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1953   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1954   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1955   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1956   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1957   1.11      matt 
   1958    1.7    nonaka 	for (;;) {
   1959   1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1960    1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1961   1.88   mlelstv 		    SDHC_DMA_TIMEOUT, false);
   1962   1.19  jakllsch 
   1963   1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1964   1.19  jakllsch 			break;
   1965   1.19  jakllsch 		}
   1966   1.19  jakllsch 		if (!status) {
   1967   1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1968    1.7    nonaka 			error = ETIMEDOUT;
   1969    1.7    nonaka 			break;
   1970    1.7    nonaka 		}
   1971   1.63  jmcneill 
   1972   1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1973   1.63  jmcneill 			continue;
   1974   1.63  jmcneill 		}
   1975   1.63  jmcneill 
   1976   1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1977   1.19  jakllsch 			continue;
   1978   1.19  jakllsch 		}
   1979   1.19  jakllsch 
   1980   1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1981    1.7    nonaka 
   1982   1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1983   1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1984   1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1985    1.7    nonaka 
   1986   1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1987   1.37  jakllsch 			continue;
   1988   1.19  jakllsch 		}
   1989   1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1990   1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1991   1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1992   1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1993   1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1994    1.7    nonaka 	}
   1995    1.7    nonaka 
   1996   1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1997   1.63  jmcneill 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1998   1.63  jmcneill 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1999   1.63  jmcneill 	}
   2000   1.63  jmcneill 
   2001    1.7    nonaka 	return error;
   2002    1.7    nonaka }
   2003    1.7    nonaka 
   2004    1.7    nonaka static int
   2005    1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   2006    1.1    nonaka {
   2007    1.1    nonaka 	uint8_t *data = cmd->c_data;
   2008   1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   2009   1.11      matt 	u_int len, datalen;
   2010   1.11      matt 	u_int imask;
   2011   1.11      matt 	u_int pmask;
   2012    1.1    nonaka 	int error = 0;
   2013    1.1    nonaka 
   2014   1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   2015   1.78   mlelstv 
   2016   1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   2017   1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   2018   1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   2019   1.93       ryo 		if (ISSET(hp->sc->sc_flags,
   2020   1.93       ryo 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2021   1.11      matt 			pio_func = esdhc_read_data_pio;
   2022   1.11      matt 		} else {
   2023   1.11      matt 			pio_func = sdhc_read_data_pio;
   2024   1.11      matt 		}
   2025   1.11      matt 	} else {
   2026   1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   2027   1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   2028   1.93       ryo 		if (ISSET(hp->sc->sc_flags,
   2029   1.93       ryo 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2030   1.11      matt 			pio_func = esdhc_write_data_pio;
   2031   1.11      matt 		} else {
   2032   1.11      matt 			pio_func = sdhc_write_data_pio;
   2033   1.11      matt 		}
   2034   1.11      matt 	}
   2035    1.1    nonaka 	datalen = cmd->c_datalen;
   2036    1.1    nonaka 
   2037   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   2038   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   2039   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   2040   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   2041   1.11      matt 
   2042    1.1    nonaka 	while (datalen > 0) {
   2043   1.92       ryo 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   2044   1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2045   1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2046   1.11      matt 			} else {
   2047   1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2048   1.11      matt 			}
   2049   1.88   mlelstv 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   2050   1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   2051   1.11      matt 				error = ETIMEDOUT;
   2052   1.11      matt 				break;
   2053   1.11      matt 			}
   2054   1.11      matt 
   2055   1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   2056   1.11      matt 			if (error)
   2057   1.11      matt 				break;
   2058    1.1    nonaka 		}
   2059    1.1    nonaka 
   2060    1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   2061   1.11      matt 		(*pio_func)(hp, data, len);
   2062   1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2063   1.11      matt 		    HDEVNAME(hp), len, data));
   2064    1.1    nonaka 
   2065    1.1    nonaka 		data += len;
   2066    1.1    nonaka 		datalen -= len;
   2067    1.1    nonaka 	}
   2068    1.1    nonaka 
   2069    1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2070   1.88   mlelstv 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2071   1.84   mlelstv 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2072    1.1    nonaka 		error = ETIMEDOUT;
   2073   1.84   mlelstv 	}
   2074    1.1    nonaka 
   2075    1.1    nonaka 	return error;
   2076    1.1    nonaka }
   2077    1.1    nonaka 
   2078    1.1    nonaka static void
   2079   1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2080    1.1    nonaka {
   2081    1.1    nonaka 
   2082    1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   2083    1.1    nonaka 		while (datalen > 3) {
   2084   1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2085    1.1    nonaka 			data += 4;
   2086    1.1    nonaka 			datalen -= 4;
   2087    1.1    nonaka 		}
   2088    1.1    nonaka 		if (datalen > 1) {
   2089   1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2090    1.1    nonaka 			data += 2;
   2091    1.1    nonaka 			datalen -= 2;
   2092    1.1    nonaka 		}
   2093    1.1    nonaka 		if (datalen > 0) {
   2094    1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   2095    1.1    nonaka 			data += 1;
   2096    1.1    nonaka 			datalen -= 1;
   2097    1.1    nonaka 		}
   2098    1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   2099    1.1    nonaka 		while (datalen > 1) {
   2100   1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2101    1.1    nonaka 			data += 2;
   2102    1.1    nonaka 			datalen -= 2;
   2103    1.1    nonaka 		}
   2104    1.1    nonaka 		if (datalen > 0) {
   2105    1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   2106    1.1    nonaka 			data += 1;
   2107    1.1    nonaka 			datalen -= 1;
   2108    1.1    nonaka 		}
   2109    1.1    nonaka 	} else {
   2110    1.1    nonaka 		while (datalen > 0) {
   2111    1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   2112    1.1    nonaka 			data += 1;
   2113    1.1    nonaka 			datalen -= 1;
   2114    1.1    nonaka 		}
   2115    1.1    nonaka 	}
   2116    1.1    nonaka }
   2117    1.1    nonaka 
   2118    1.1    nonaka static void
   2119   1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2120    1.1    nonaka {
   2121    1.1    nonaka 
   2122    1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   2123    1.1    nonaka 		while (datalen > 3) {
   2124   1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2125    1.1    nonaka 			data += 4;
   2126    1.1    nonaka 			datalen -= 4;
   2127    1.1    nonaka 		}
   2128    1.1    nonaka 		if (datalen > 1) {
   2129   1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2130    1.1    nonaka 			data += 2;
   2131    1.1    nonaka 			datalen -= 2;
   2132    1.1    nonaka 		}
   2133    1.1    nonaka 		if (datalen > 0) {
   2134    1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2135    1.1    nonaka 			data += 1;
   2136    1.1    nonaka 			datalen -= 1;
   2137    1.1    nonaka 		}
   2138    1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   2139    1.1    nonaka 		while (datalen > 1) {
   2140   1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2141    1.1    nonaka 			data += 2;
   2142    1.1    nonaka 			datalen -= 2;
   2143    1.1    nonaka 		}
   2144    1.1    nonaka 		if (datalen > 0) {
   2145    1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2146    1.1    nonaka 			data += 1;
   2147    1.1    nonaka 			datalen -= 1;
   2148    1.1    nonaka 		}
   2149    1.1    nonaka 	} else {
   2150    1.1    nonaka 		while (datalen > 0) {
   2151    1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2152    1.1    nonaka 			data += 1;
   2153    1.1    nonaka 			datalen -= 1;
   2154    1.1    nonaka 		}
   2155    1.1    nonaka 	}
   2156    1.1    nonaka }
   2157    1.1    nonaka 
   2158   1.11      matt static void
   2159   1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2160   1.11      matt {
   2161   1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2162   1.12    nonaka 	uint32_t v;
   2163   1.12    nonaka 
   2164   1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2165   1.23      matt 	size_t count = 0;
   2166   1.23      matt 
   2167   1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2168   1.23      matt 		if (count == 0) {
   2169   1.23      matt 			/*
   2170   1.23      matt 			 * If we've drained "watermark" words, we need to wait
   2171   1.23      matt 			 * a little bit so the read FIFO can refill.
   2172   1.23      matt 			 */
   2173   1.23      matt 			sdmmc_delay(10);
   2174   1.23      matt 			count = watermark;
   2175   1.23      matt 		}
   2176   1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   2177   1.11      matt 		v = le32toh(v);
   2178   1.11      matt 		*(uint32_t *)data = v;
   2179   1.11      matt 		data += 4;
   2180   1.11      matt 		datalen -= 4;
   2181   1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2182   1.23      matt 		count--;
   2183   1.11      matt 	}
   2184   1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2185   1.23      matt 		if (count == 0) {
   2186   1.23      matt 			sdmmc_delay(10);
   2187   1.23      matt 		}
   2188   1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   2189   1.11      matt 		v = le32toh(v);
   2190   1.11      matt 		do {
   2191   1.11      matt 			*data++ = v;
   2192   1.11      matt 			v >>= 8;
   2193   1.11      matt 		} while (--datalen > 0);
   2194   1.11      matt 	}
   2195   1.11      matt }
   2196   1.11      matt 
   2197   1.11      matt static void
   2198   1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2199   1.11      matt {
   2200   1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2201   1.12    nonaka 	uint32_t v;
   2202   1.12    nonaka 
   2203   1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2204   1.23      matt 	size_t count = watermark;
   2205   1.23      matt 
   2206   1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2207   1.23      matt 		if (count == 0) {
   2208   1.23      matt 			sdmmc_delay(10);
   2209   1.23      matt 			count = watermark;
   2210   1.23      matt 		}
   2211   1.12    nonaka 		v = *(uint32_t *)data;
   2212   1.11      matt 		v = htole32(v);
   2213   1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   2214   1.11      matt 		data += 4;
   2215   1.11      matt 		datalen -= 4;
   2216   1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2217   1.23      matt 		count--;
   2218   1.11      matt 	}
   2219   1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2220   1.23      matt 		if (count == 0) {
   2221   1.23      matt 			sdmmc_delay(10);
   2222   1.23      matt 		}
   2223   1.12    nonaka 		v = *(uint32_t *)data;
   2224   1.11      matt 		v = htole32(v);
   2225   1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   2226   1.11      matt 	}
   2227   1.11      matt }
   2228   1.11      matt 
   2229    1.1    nonaka /* Prepare for another command. */
   2230    1.1    nonaka static int
   2231    1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2232    1.1    nonaka {
   2233    1.1    nonaka 	int timo;
   2234    1.1    nonaka 
   2235   1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   2236   1.78   mlelstv 
   2237    1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2238    1.1    nonaka 
   2239   1.35  riastrad 	/* Request the reset.  */
   2240    1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2241   1.35  riastrad 
   2242   1.35  riastrad 	/*
   2243   1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   2244   1.35  riastrad 	 * acknowledge the reset.
   2245   1.35  riastrad 	 */
   2246   1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2247   1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2248   1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   2249   1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2250   1.35  riastrad 				break;
   2251   1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   2252   1.35  riastrad 			sdmmc_delay(1);
   2253   1.35  riastrad 		}
   2254   1.90   mlelstv 		if (timo == 0) {
   2255   1.84   mlelstv 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2256   1.35  riastrad 			return ETIMEDOUT;
   2257   1.90   mlelstv 		}
   2258   1.35  riastrad 	}
   2259   1.35  riastrad 
   2260   1.35  riastrad 	/*
   2261   1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   2262   1.35  riastrad 	 * the reset has completed.
   2263   1.35  riastrad 	 */
   2264    1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   2265    1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2266    1.1    nonaka 			break;
   2267    1.1    nonaka 		sdmmc_delay(10000);
   2268    1.1    nonaka 	}
   2269    1.1    nonaka 	if (timo == 0) {
   2270    1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2271    1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2272    1.1    nonaka 		return ETIMEDOUT;
   2273    1.1    nonaka 	}
   2274    1.1    nonaka 
   2275   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2276   1.53    nonaka 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2277   1.11      matt 	}
   2278   1.11      matt 
   2279    1.1    nonaka 	return 0;
   2280    1.1    nonaka }
   2281    1.1    nonaka 
   2282    1.1    nonaka static int
   2283   1.88   mlelstv sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2284    1.1    nonaka {
   2285   1.84   mlelstv 	int status, error, nointr;
   2286    1.1    nonaka 
   2287   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   2288   1.65  jmcneill 
   2289    1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   2290    1.1    nonaka 
   2291   1.84   mlelstv 	nointr = 0;
   2292    1.1    nonaka 	status = hp->intr_status & mask;
   2293    1.1    nonaka 	while (status == 0) {
   2294   1.65  jmcneill 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2295    1.1    nonaka 		    == EWOULDBLOCK) {
   2296   1.84   mlelstv 			nointr = 1;
   2297    1.1    nonaka 			break;
   2298    1.1    nonaka 		}
   2299    1.1    nonaka 		status = hp->intr_status & mask;
   2300    1.1    nonaka 	}
   2301   1.84   mlelstv 	error = hp->intr_error_status;
   2302   1.84   mlelstv 
   2303   1.84   mlelstv 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2304   1.84   mlelstv 	    error));
   2305   1.84   mlelstv 
   2306    1.1    nonaka 	hp->intr_status &= ~status;
   2307   1.84   mlelstv 	hp->intr_error_status &= ~error;
   2308    1.1    nonaka 
   2309   1.84   mlelstv 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2310   1.84   mlelstv 		if (ISSET(error, SDHC_DMA_ERROR))
   2311   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"dma error\n");
   2312   1.84   mlelstv 		if (ISSET(error, SDHC_ADMA_ERROR))
   2313   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"adma error\n");
   2314   1.84   mlelstv 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2315   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2316   1.84   mlelstv 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2317   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2318   1.84   mlelstv 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2319   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2320   1.84   mlelstv 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2321   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2322   1.84   mlelstv 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2323   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2324   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2325   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2326   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2327   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2328   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2329   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2330   1.88   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2331   1.88   mlelstv 			if (!probing)
   2332   1.88   mlelstv 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2333   1.88   mlelstv #ifdef SDHC_DEBUG
   2334   1.88   mlelstv 			else if (sdhcdebug > 0)
   2335   1.88   mlelstv 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2336   1.88   mlelstv #endif
   2337   1.88   mlelstv 		}
   2338   1.84   mlelstv 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2339   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2340   1.84   mlelstv 				(error & ~SDHC_EINTR_STATUS_MASK));
   2341   1.84   mlelstv 		if (error == 0)
   2342   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"no error\n");
   2343   1.84   mlelstv 
   2344   1.84   mlelstv 		/* Command timeout has higher priority than command complete. */
   2345   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2346   1.84   mlelstv 			CLR(status, SDHC_COMMAND_COMPLETE);
   2347   1.84   mlelstv 
   2348   1.84   mlelstv 		/* Transfer complete has higher priority than data timeout. */
   2349   1.84   mlelstv 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2350   1.84   mlelstv 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2351   1.84   mlelstv 	}
   2352   1.47     skrll 
   2353   1.84   mlelstv 	if (nointr ||
   2354   1.84   mlelstv 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2355   1.84   mlelstv 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2356   1.84   mlelstv 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2357    1.1    nonaka 		hp->intr_error_status = 0;
   2358    1.1    nonaka 		status = 0;
   2359    1.1    nonaka 	}
   2360    1.1    nonaka 
   2361    1.1    nonaka 	return status;
   2362    1.1    nonaka }
   2363    1.1    nonaka 
   2364    1.1    nonaka /*
   2365    1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2366    1.1    nonaka  */
   2367    1.1    nonaka int
   2368    1.1    nonaka sdhc_intr(void *arg)
   2369    1.1    nonaka {
   2370    1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2371    1.1    nonaka 	struct sdhc_host *hp;
   2372    1.1    nonaka 	int done = 0;
   2373    1.1    nonaka 	uint16_t status;
   2374    1.1    nonaka 	uint16_t error;
   2375    1.1    nonaka 
   2376    1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   2377   1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2378    1.1    nonaka 		hp = sc->sc_host[host];
   2379    1.1    nonaka 		if (hp == NULL)
   2380    1.1    nonaka 			continue;
   2381    1.1    nonaka 
   2382   1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   2383   1.65  jmcneill 
   2384   1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2385   1.11      matt 			/* Find out which interrupts are pending. */
   2386   1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2387   1.11      matt 			status = xstatus;
   2388   1.11      matt 			error = xstatus >> 16;
   2389   1.93       ryo 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2390   1.93       ryo 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2391   1.93       ryo 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2392   1.93       ryo 				/* read again due to uSDHC errata */
   2393   1.93       ryo 				status = xstatus = HREAD4(hp,
   2394   1.93       ryo 				    SDHC_NINTR_STATUS);
   2395   1.93       ryo 				error = xstatus >> 16;
   2396   1.93       ryo 			}
   2397   1.93       ryo 			if (ISSET(sc->sc_flags,
   2398   1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2399   1.87   mlelstv 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2400   1.87   mlelstv 					SET(status, SDHC_ERROR_INTERRUPT);
   2401   1.87   mlelstv 			}
   2402   1.22      matt 			if (error)
   2403   1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   2404   1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2405   1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2406   1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2407   1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2408   1.11      matt 		} else {
   2409   1.11      matt 			/* Find out which interrupts are pending. */
   2410   1.11      matt 			error = 0;
   2411   1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2412   1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2413   1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2414   1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2415   1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2416   1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2417   1.11      matt 				/* Acknowledge error interrupts. */
   2418   1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2419   1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2420   1.11      matt 			}
   2421   1.11      matt 		}
   2422   1.47     skrll 
   2423   1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2424   1.11      matt 		    status, error));
   2425    1.1    nonaka 
   2426    1.1    nonaka 		/* Claim this interrupt. */
   2427    1.1    nonaka 		done = 1;
   2428    1.1    nonaka 
   2429   1.84   mlelstv 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2430   1.84   mlelstv 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2431   1.63  jmcneill 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2432   1.63  jmcneill 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2433   1.63  jmcneill 			    adma_err);
   2434   1.63  jmcneill 		}
   2435   1.63  jmcneill 
   2436    1.1    nonaka 		/*
   2437    1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   2438    1.1    nonaka 		 */
   2439    1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2440   1.46  jakllsch 			if (hp->sdmmc != NULL) {
   2441   1.46  jakllsch 				sdmmc_needs_discover(hp->sdmmc);
   2442   1.46  jakllsch 			}
   2443   1.93       ryo 			if (ISSET(sc->sc_flags,
   2444   1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2445   1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2446   1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2447   1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2448   1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2449   1.11      matt 			}
   2450    1.9      matt 		}
   2451    1.1    nonaka 
   2452    1.1    nonaka 		/*
   2453   1.80  jmcneill 		 * Schedule re-tuning process (UHS).
   2454   1.80  jmcneill 		 */
   2455   1.80  jmcneill 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2456   1.80  jmcneill 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2457   1.80  jmcneill 		}
   2458   1.80  jmcneill 
   2459   1.80  jmcneill 		/*
   2460    1.1    nonaka 		 * Wake up the blocking process to service command
   2461    1.1    nonaka 		 * related interrupt(s).
   2462    1.1    nonaka 		 */
   2463   1.86   mlelstv 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2464   1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2465    1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2466   1.84   mlelstv 			hp->intr_error_status |= error;
   2467    1.1    nonaka 			hp->intr_status |= status;
   2468   1.93       ryo 			if (ISSET(sc->sc_flags,
   2469   1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2470   1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2471   1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2472   1.11      matt 			}
   2473    1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   2474    1.1    nonaka 		}
   2475    1.1    nonaka 
   2476    1.1    nonaka 		/*
   2477    1.1    nonaka 		 * Service SD card interrupts.
   2478    1.1    nonaka 		 */
   2479   1.93       ryo 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2480   1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2481    1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2482    1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2483    1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   2484    1.1    nonaka 		}
   2485   1.65  jmcneill next_port:
   2486   1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   2487    1.1    nonaka 	}
   2488    1.1    nonaka 
   2489    1.1    nonaka 	return done;
   2490    1.1    nonaka }
   2491    1.1    nonaka 
   2492   1.65  jmcneill kmutex_t *
   2493   1.65  jmcneill sdhc_host_lock(struct sdhc_host *hp)
   2494   1.65  jmcneill {
   2495   1.65  jmcneill 	return &hp->intr_lock;
   2496   1.65  jmcneill }
   2497   1.65  jmcneill 
   2498   1.99    nonaka uint8_t
   2499   1.99    nonaka sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2500   1.99    nonaka {
   2501   1.99    nonaka 	return HREAD1(hp, reg);
   2502   1.99    nonaka }
   2503   1.99    nonaka 
   2504   1.99    nonaka uint16_t
   2505   1.99    nonaka sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2506   1.99    nonaka {
   2507   1.99    nonaka 	return HREAD2(hp, reg);
   2508   1.99    nonaka }
   2509   1.99    nonaka 
   2510   1.99    nonaka uint32_t
   2511   1.99    nonaka sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2512   1.99    nonaka {
   2513   1.99    nonaka 	return HREAD4(hp, reg);
   2514   1.99    nonaka }
   2515   1.99    nonaka 
   2516   1.99    nonaka void
   2517   1.99    nonaka sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2518   1.99    nonaka {
   2519   1.99    nonaka 	HWRITE1(hp, reg, val);
   2520   1.99    nonaka }
   2521   1.99    nonaka 
   2522   1.99    nonaka void
   2523   1.99    nonaka sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2524   1.99    nonaka {
   2525   1.99    nonaka 	HWRITE2(hp, reg, val);
   2526   1.99    nonaka }
   2527   1.99    nonaka 
   2528   1.99    nonaka void
   2529   1.99    nonaka sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2530   1.99    nonaka {
   2531   1.99    nonaka 	HWRITE4(hp, reg, val);
   2532   1.99    nonaka }
   2533   1.99    nonaka 
   2534    1.1    nonaka #ifdef SDHC_DEBUG
   2535    1.1    nonaka void
   2536    1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   2537    1.1    nonaka {
   2538    1.1    nonaka 
   2539    1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2540    1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2541   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2542   1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2543   1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   2544    1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2545    1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2546    1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2547    1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2548    1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2549    1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2550    1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2551    1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2552    1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2553    1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2554    1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2555    1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2556    1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2557    1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   2558    1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2559    1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2560    1.1    nonaka }
   2561    1.1    nonaka #endif
   2562