Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.111
      1  1.111   thorpej /*	$NetBSD: sdhc.c,v 1.111 2021/08/07 16:19:16 thorpej Exp $	*/
      2    1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3    1.1    nonaka 
      4    1.1    nonaka /*
      5    1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6    1.1    nonaka  *
      7    1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8    1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9    1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10    1.1    nonaka  *
     11    1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12    1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13    1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14    1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15    1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16    1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17    1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18    1.1    nonaka  */
     19    1.1    nonaka 
     20    1.1    nonaka /*
     21    1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22    1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23    1.1    nonaka  */
     24    1.1    nonaka 
     25    1.1    nonaka #include <sys/cdefs.h>
     26  1.111   thorpej __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.111 2021/08/07 16:19:16 thorpej Exp $");
     27   1.10    nonaka 
     28   1.10    nonaka #ifdef _KERNEL_OPT
     29   1.10    nonaka #include "opt_sdmmc.h"
     30   1.10    nonaka #endif
     31    1.1    nonaka 
     32    1.1    nonaka #include <sys/param.h>
     33    1.1    nonaka #include <sys/device.h>
     34    1.1    nonaka #include <sys/kernel.h>
     35    1.1    nonaka #include <sys/malloc.h>
     36    1.1    nonaka #include <sys/systm.h>
     37    1.1    nonaka #include <sys/mutex.h>
     38    1.1    nonaka #include <sys/condvar.h>
     39   1.80  jmcneill #include <sys/atomic.h>
     40    1.1    nonaka 
     41    1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42    1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43    1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44    1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45    1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46    1.1    nonaka 
     47    1.1    nonaka #ifdef SDHC_DEBUG
     48    1.1    nonaka int sdhcdebug = 1;
     49    1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50    1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51    1.1    nonaka #else
     52    1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53    1.1    nonaka #endif
     54    1.1    nonaka 
     55    1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56    1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57    1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58   1.61  jmcneill #define SDHC_DMA_TIMEOUT	(hz*3)
     59   1.79  jmcneill #define SDHC_TUNING_TIMEOUT	hz
     60    1.1    nonaka 
     61    1.1    nonaka struct sdhc_host {
     62    1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     63    1.1    nonaka 
     64    1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     65    1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     66   1.36  jakllsch 	bus_size_t ios;			/* host register space size */
     67    1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     68    1.1    nonaka 
     69    1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     70    1.1    nonaka 
     71    1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72    1.1    nonaka 	int maxblklen;			/* maximum block length */
     73    1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74    1.1    nonaka 
     75    1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76    1.1    nonaka 
     77    1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78    1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79   1.65  jmcneill 	kmutex_t intr_lock;
     80   1.65  jmcneill 	kcondvar_t intr_cv;
     81    1.1    nonaka 
     82   1.80  jmcneill 	callout_t tuning_timer;
     83   1.80  jmcneill 	int tuning_timing;
     84   1.80  jmcneill 	u_int tuning_timer_count;
     85   1.80  jmcneill 	u_int tuning_timer_pending;
     86   1.80  jmcneill 
     87   1.12    nonaka 	int specver;			/* spec. version */
     88   1.12    nonaka 
     89    1.1    nonaka 	uint32_t flags;			/* flags for this host */
     90    1.1    nonaka #define SHF_USE_DMA		0x0001
     91    1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     92   1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     93   1.55    bouyer #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94   1.63  jmcneill #define SHF_USE_ADMA2_32	0x0010
     95   1.63  jmcneill #define SHF_USE_ADMA2_64	0x0020
     96   1.63  jmcneill #define SHF_USE_ADMA2_MASK	0x0030
     97   1.63  jmcneill 
     98   1.63  jmcneill 	bus_dmamap_t		adma_map;
     99   1.63  jmcneill 	bus_dma_segment_t	adma_segs[1];
    100   1.63  jmcneill 	void			*adma2;
    101  1.105   mlelstv 
    102  1.105   mlelstv 	uint8_t			vdd;	/* last vdd setting */
    103    1.1    nonaka };
    104    1.1    nonaka 
    105    1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    106    1.1    nonaka 
    107   1.11      matt static uint8_t
    108   1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
    109   1.11      matt {
    110   1.12    nonaka 
    111   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    112   1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    113   1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    114   1.11      matt }
    115   1.11      matt 
    116   1.11      matt static uint16_t
    117   1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    118   1.11      matt {
    119   1.12    nonaka 
    120   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    121   1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    122   1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    123   1.11      matt }
    124   1.11      matt 
    125   1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    126   1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    127   1.11      matt #define HREAD4(hp, reg)		\
    128    1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    129   1.11      matt 
    130   1.11      matt 
    131   1.11      matt static void
    132   1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    133   1.11      matt {
    134   1.12    nonaka 
    135   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    136   1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    137   1.11      matt 	} else {
    138   1.11      matt 		const size_t shift = 8 * (o & 3);
    139   1.11      matt 		o &= -4;
    140   1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    141  1.110   msaitoh 		tmp = (val << shift) | (tmp & ~(0xffU << shift));
    142   1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    143   1.11      matt 	}
    144   1.11      matt }
    145   1.11      matt 
    146   1.11      matt static void
    147   1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    148   1.11      matt {
    149   1.12    nonaka 
    150   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    151   1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    152   1.11      matt 	} else {
    153   1.11      matt 		const size_t shift = 8 * (o & 2);
    154   1.11      matt 		o &= -4;
    155   1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    156  1.110   msaitoh 		tmp = (val << shift) | (tmp & ~(0xffffU << shift));
    157   1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    158   1.11      matt 	}
    159   1.11      matt }
    160   1.11      matt 
    161  1.105   mlelstv static void
    162  1.105   mlelstv hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
    163  1.105   mlelstv {
    164  1.105   mlelstv 
    165  1.105   mlelstv 	bus_space_write_4(hp->iot, hp->ioh, o, val);
    166  1.105   mlelstv }
    167  1.105   mlelstv 
    168   1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    169   1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    170  1.105   mlelstv #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
    171   1.11      matt 
    172    1.1    nonaka #define HCLR1(hp, reg, bits)						\
    173  1.106     joerg 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    174    1.1    nonaka #define HCLR2(hp, reg, bits)						\
    175  1.106     joerg 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    176   1.11      matt #define HCLR4(hp, reg, bits)						\
    177  1.106     joerg 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    178    1.1    nonaka #define HSET1(hp, reg, bits)						\
    179  1.106     joerg 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    180    1.1    nonaka #define HSET2(hp, reg, bits)						\
    181  1.106     joerg 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    182   1.11      matt #define HSET4(hp, reg, bits)						\
    183  1.106     joerg 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    184    1.1    nonaka 
    185    1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    186    1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    187    1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    188    1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    189    1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    190    1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    191    1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    192   1.76  jmcneill static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    193    1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    194    1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    195    1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    196    1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    197    1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    198    1.1    nonaka 		    struct sdmmc_command *);
    199   1.71  jmcneill static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    200   1.83   mlelstv static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    201   1.79  jmcneill static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    202   1.80  jmcneill static void	sdhc_tuning_timer(void *);
    203   1.99    nonaka static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    204    1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    205    1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    206    1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    207   1.88   mlelstv static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    208    1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    209    1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    210    1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    211   1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    212   1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    213   1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    214   1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    215   1.11      matt 
    216    1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    217    1.1    nonaka 	/* host controller reset */
    218   1.60     skrll 	.host_reset = sdhc_host_reset,
    219    1.1    nonaka 
    220    1.1    nonaka 	/* host controller capabilities */
    221   1.60     skrll 	.host_ocr = sdhc_host_ocr,
    222   1.60     skrll 	.host_maxblklen = sdhc_host_maxblklen,
    223    1.1    nonaka 
    224    1.1    nonaka 	/* card detection */
    225   1.60     skrll 	.card_detect = sdhc_card_detect,
    226    1.1    nonaka 
    227    1.1    nonaka 	/* write protect */
    228   1.60     skrll 	.write_protect = sdhc_write_protect,
    229    1.1    nonaka 
    230   1.60     skrll 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    231   1.60     skrll 	.bus_power = sdhc_bus_power,
    232   1.76  jmcneill 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    233   1.60     skrll 	.bus_width = sdhc_bus_width,
    234   1.60     skrll 	.bus_rod = sdhc_bus_rod,
    235    1.1    nonaka 
    236    1.1    nonaka 	/* command execution */
    237   1.60     skrll 	.exec_command = sdhc_exec_command,
    238    1.1    nonaka 
    239    1.1    nonaka 	/* card interrupt */
    240   1.60     skrll 	.card_enable_intr = sdhc_card_enable_intr,
    241   1.71  jmcneill 	.card_intr_ack = sdhc_card_intr_ack,
    242   1.71  jmcneill 
    243   1.71  jmcneill 	/* UHS functions */
    244   1.71  jmcneill 	.signal_voltage = sdhc_signal_voltage,
    245   1.76  jmcneill 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    246   1.79  jmcneill 	.execute_tuning = sdhc_execute_tuning,
    247   1.99    nonaka 	.hw_reset = sdhc_hw_reset,
    248    1.1    nonaka };
    249    1.1    nonaka 
    250   1.17  jakllsch static int
    251   1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    252   1.17  jakllsch {
    253   1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    254   1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    255   1.47     skrll 
    256   1.17  jakllsch 	if (pnp) {
    257   1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    258   1.17  jakllsch 	}
    259   1.41  jakllsch 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    260   1.41  jakllsch 		if (hp->sc->sc_host[host] == hp) {
    261   1.41  jakllsch 			aprint_normal(" slot %zu", host);
    262   1.41  jakllsch 		}
    263   1.41  jakllsch 	}
    264   1.17  jakllsch 
    265   1.17  jakllsch 	return UNCONF;
    266   1.17  jakllsch }
    267   1.17  jakllsch 
    268    1.1    nonaka /*
    269    1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    270    1.1    nonaka  * host controller standard register set. (1.3)
    271    1.1    nonaka  */
    272    1.1    nonaka int
    273    1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    274    1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    275    1.1    nonaka {
    276    1.1    nonaka 	struct sdmmcbus_attach_args saa;
    277    1.1    nonaka 	struct sdhc_host *hp;
    278   1.71  jmcneill 	uint32_t caps, caps2;
    279    1.1    nonaka 	uint16_t sdhcver;
    280   1.63  jmcneill 	int error;
    281    1.1    nonaka 
    282   1.33  riastrad 	/* Allocate one more host structure. */
    283   1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    284   1.33  riastrad 	if (hp == NULL) {
    285   1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    286   1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    287   1.33  riastrad 		goto err1;
    288   1.33  riastrad 	}
    289   1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    290   1.33  riastrad 
    291   1.33  riastrad 	/* Fill in the new host structure. */
    292   1.33  riastrad 	hp->sc = sc;
    293   1.33  riastrad 	hp->iot = iot;
    294   1.33  riastrad 	hp->ioh = ioh;
    295   1.36  jakllsch 	hp->ios = iosize;
    296   1.33  riastrad 	hp->dmat = sc->sc_dmat;
    297   1.33  riastrad 
    298   1.65  jmcneill 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    299   1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    300   1.80  jmcneill 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    301   1.80  jmcneill 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    302   1.33  riastrad 
    303  1.101       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    304  1.101       ryo 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    305  1.101       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    306  1.101       ryo 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    307  1.101       ryo 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    308  1.101       ryo 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    309  1.101       ryo 	} else {
    310  1.101       ryo 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    311  1.101       ryo 	}
    312  1.101       ryo 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    313  1.101       ryo 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    314  1.101       ryo 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    315  1.101       ryo 	case SDHC_SPEC_VERS_100:
    316  1.101       ryo 		aprint_normal("1.0");
    317  1.101       ryo 		break;
    318  1.101       ryo 	case SDHC_SPEC_VERS_200:
    319  1.101       ryo 		aprint_normal("2.0");
    320  1.101       ryo 		break;
    321  1.101       ryo 	case SDHC_SPEC_VERS_300:
    322  1.101       ryo 		aprint_normal("3.0");
    323  1.101       ryo 		break;
    324  1.101       ryo 	case SDHC_SPEC_VERS_400:
    325  1.101       ryo 		aprint_normal("4.0");
    326  1.101       ryo 		break;
    327  1.107   msaitoh 	case SDHC_SPEC_VERS_410:
    328  1.107   msaitoh 		aprint_normal("4.1");
    329  1.107   msaitoh 		break;
    330  1.107   msaitoh 	case SDHC_SPEC_VERS_420:
    331  1.107   msaitoh 		aprint_normal("4.2");
    332  1.107   msaitoh 		break;
    333  1.101       ryo 	case SDHC_SPEC_NOVERS:
    334   1.96  kiyohara 		hp->specver = -1;
    335  1.101       ryo 		aprint_normal("NO-VERS");
    336  1.101       ryo 		break;
    337  1.101       ryo 	default:
    338  1.101       ryo 		aprint_normal("unknown version(0x%x)",
    339  1.101       ryo 		    SDHC_SPEC_VERSION(sdhcver));
    340  1.101       ryo 		break;
    341  1.101       ryo 	}
    342  1.101       ryo 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    343   1.96  kiyohara 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    344    1.1    nonaka 
    345    1.1    nonaka 	/*
    346    1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    347    1.1    nonaka 	 */
    348    1.1    nonaka 	(void)sdhc_host_reset(hp);
    349    1.1    nonaka 
    350   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    351   1.93       ryo 		/* init uSDHC registers */
    352   1.93       ryo 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    353   1.93       ryo 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    354   1.93       ryo 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    355   1.93       ryo 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    356   1.93       ryo 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    357   1.93       ryo 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    358   1.93       ryo 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    359   1.93       ryo 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    360   1.93       ryo 		HSET4(hp, SDHC_VEND_SPEC,
    361   1.93       ryo 		    SDHC_VEND_SPEC_MBO |
    362   1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    363   1.93       ryo 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    364   1.93       ryo 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    365   1.93       ryo 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    366   1.93       ryo 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    367   1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    368   1.93       ryo 	}
    369   1.93       ryo 
    370    1.1    nonaka 	/* Determine host capabilities. */
    371   1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    372   1.24     skrll 		caps = sc->sc_caps;
    373   1.72  jmcneill 		caps2 = sc->sc_caps2;
    374   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    375   1.93       ryo 		/* uSDHC capability register is little bit different */
    376   1.93       ryo 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    377   1.93       ryo 		caps |= SDHC_8BIT_SUPP;
    378   1.93       ryo 		if (caps & SDHC_ADMA1_SUPP)
    379   1.93       ryo 			caps |= SDHC_ADMA2_SUPP;
    380   1.93       ryo 		sc->sc_caps = caps;
    381   1.93       ryo 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    382   1.93       ryo 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    383   1.24     skrll 	} else {
    384   1.79  jmcneill 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    385   1.72  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    386   1.79  jmcneill 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    387   1.72  jmcneill 		} else {
    388   1.79  jmcneill 			caps2 = sc->sc_caps2 = 0;
    389   1.72  jmcneill 		}
    390   1.71  jmcneill 	}
    391    1.1    nonaka 
    392  1.108   mlelstv 	aprint_verbose(", caps <%08x/%08x>", caps, caps2);
    393  1.108   mlelstv 
    394   1.80  jmcneill 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    395   1.80  jmcneill 	    SDHC_RETUNING_MODES_MASK;
    396   1.80  jmcneill 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    397   1.80  jmcneill 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    398   1.80  jmcneill 		    SDHC_TIMER_COUNT_MASK;
    399   1.80  jmcneill 		if (hp->tuning_timer_count == 0xf)
    400   1.80  jmcneill 			hp->tuning_timer_count = 0;
    401   1.80  jmcneill 		if (hp->tuning_timer_count)
    402   1.80  jmcneill 			hp->tuning_timer_count =
    403   1.80  jmcneill 			    1 << (hp->tuning_timer_count - 1);
    404   1.80  jmcneill 	}
    405   1.80  jmcneill 
    406   1.55    bouyer 	/*
    407   1.55    bouyer 	 * Use DMA if the host system and the controller support it.
    408   1.55    bouyer 	 * Suports integrated or external DMA egine, with or without
    409   1.55    bouyer 	 * SDHC_DMA_ENABLE in the command.
    410   1.55    bouyer 	 */
    411   1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    412   1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    413   1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    414    1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    415   1.63  jmcneill 
    416   1.63  jmcneill 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    417   1.63  jmcneill 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    418   1.55    bouyer 			SET(hp->flags, SHF_MODE_DMAEN);
    419   1.63  jmcneill 			/*
    420   1.63  jmcneill 			 * 64-bit mode was present in the 2.00 spec, removed
    421   1.63  jmcneill 			 * from 3.00, and re-added in 4.00 with a different
    422   1.63  jmcneill 			 * descriptor layout. We only support 2.00 and 3.00
    423   1.63  jmcneill 			 * descriptors for now.
    424   1.63  jmcneill 			 */
    425   1.63  jmcneill 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    426   1.63  jmcneill 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    427   1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_64);
    428   1.63  jmcneill 				aprint_normal(", 64-bit ADMA2");
    429   1.63  jmcneill 			} else {
    430   1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_32);
    431   1.63  jmcneill 				aprint_normal(", 32-bit ADMA2");
    432   1.63  jmcneill 			}
    433   1.63  jmcneill 		} else {
    434   1.63  jmcneill 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    435   1.63  jmcneill 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    436   1.63  jmcneill 				SET(hp->flags, SHF_MODE_DMAEN);
    437   1.64  jmcneill 			if (sc->sc_vendor_transfer_data_dma) {
    438   1.64  jmcneill 				aprint_normal(", platform DMA");
    439   1.64  jmcneill 			} else {
    440   1.64  jmcneill 				aprint_normal(", SDMA");
    441   1.64  jmcneill 			}
    442   1.63  jmcneill 		}
    443   1.58  jmcneill 	} else {
    444   1.58  jmcneill 		aprint_normal(", PIO");
    445    1.1    nonaka 	}
    446    1.1    nonaka 
    447    1.1    nonaka 	/*
    448    1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    449    1.1    nonaka 	 */
    450   1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    451   1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    452   1.30      matt 	} else {
    453   1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    454   1.30      matt 	}
    455   1.56  jmcneill 	if (hp->clkbase == 0 ||
    456   1.56  jmcneill 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    457    1.9      matt 		if (sc->sc_clkbase == 0) {
    458    1.9      matt 			/* The attachment driver must tell us. */
    459   1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    460   1.12    nonaka 			    "unknown base clock frequency\n");
    461    1.9      matt 			goto err;
    462    1.9      matt 		}
    463    1.9      matt 		hp->clkbase = sc->sc_clkbase;
    464    1.9      matt 	}
    465    1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    466    1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    467    1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    468    1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    469    1.1    nonaka 		    hp->clkbase / 1000);
    470    1.1    nonaka 		goto err;
    471    1.1    nonaka 	}
    472   1.58  jmcneill 	aprint_normal(", %u kHz", hp->clkbase);
    473    1.1    nonaka 
    474    1.1    nonaka 	/*
    475    1.1    nonaka 	 * XXX Set the data timeout counter value according to
    476    1.1    nonaka 	 * capabilities. (2.2.15)
    477    1.1    nonaka 	 */
    478    1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    479   1.29      matt #if 1
    480   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    481   1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    482   1.11      matt #endif
    483    1.1    nonaka 
    484   1.58  jmcneill 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    485   1.58  jmcneill 		aprint_normal(", embedded slot");
    486   1.58  jmcneill 
    487    1.1    nonaka 	/*
    488    1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    489    1.1    nonaka 	 */
    490   1.58  jmcneill 	aprint_normal(",");
    491   1.66  jmcneill 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    492   1.66  jmcneill 		SET(hp->ocr, MMC_OCR_HCS);
    493   1.71  jmcneill 		aprint_normal(" HS");
    494   1.71  jmcneill 	}
    495  1.104   hkenken 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
    496  1.104   hkenken 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    497  1.104   hkenken 			SET(hp->ocr, MMC_OCR_S18A);
    498  1.104   hkenken 			aprint_normal(" SDR50");
    499  1.104   hkenken 		}
    500  1.104   hkenken 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    501  1.104   hkenken 			SET(hp->ocr, MMC_OCR_S18A);
    502  1.104   hkenken 			aprint_normal(" DDR50");
    503  1.104   hkenken 		}
    504  1.104   hkenken 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    505  1.104   hkenken 			SET(hp->ocr, MMC_OCR_S18A);
    506  1.104   hkenken 			aprint_normal(" SDR104 HS200");
    507  1.104   hkenken 		}
    508  1.104   hkenken 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    509  1.104   hkenken 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    510  1.104   hkenken 			aprint_normal(" 1.8V");
    511  1.104   hkenken 		}
    512   1.11      matt 	}
    513   1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    514    1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    515   1.58  jmcneill 		aprint_normal(" 3.0V");
    516   1.11      matt 	}
    517   1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    518    1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    519   1.58  jmcneill 		aprint_normal(" 3.3V");
    520   1.11      matt 	}
    521   1.80  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    522   1.80  jmcneill 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    523   1.80  jmcneill 		if (hp->tuning_timer_count)
    524   1.80  jmcneill 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    525   1.80  jmcneill 	}
    526    1.1    nonaka 
    527    1.1    nonaka 	/*
    528    1.1    nonaka 	 * Determine the maximum block length supported by the host
    529    1.1    nonaka 	 * controller. (2.2.24)
    530    1.1    nonaka 	 */
    531    1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    532    1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    533    1.1    nonaka 		hp->maxblklen = 512;
    534    1.1    nonaka 		break;
    535    1.1    nonaka 
    536    1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    537    1.1    nonaka 		hp->maxblklen = 1024;
    538    1.1    nonaka 		break;
    539    1.1    nonaka 
    540    1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    541    1.1    nonaka 		hp->maxblklen = 2048;
    542    1.1    nonaka 		break;
    543    1.1    nonaka 
    544    1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    545    1.9      matt 		hp->maxblklen = 4096;
    546    1.9      matt 		break;
    547    1.9      matt 
    548    1.1    nonaka 	default:
    549    1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    550    1.1    nonaka 		goto err;
    551    1.1    nonaka 	}
    552   1.58  jmcneill 	aprint_normal(", %u byte blocks", hp->maxblklen);
    553   1.58  jmcneill 	aprint_normal("\n");
    554    1.1    nonaka 
    555   1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    556   1.63  jmcneill 		int rseg;
    557   1.63  jmcneill 
    558   1.63  jmcneill 		/* Allocate ADMA2 descriptor memory */
    559   1.63  jmcneill 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    560   1.63  jmcneill 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    561   1.63  jmcneill 		if (error) {
    562   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    563   1.63  jmcneill 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    564   1.63  jmcneill 			goto adma_done;
    565   1.63  jmcneill 		}
    566   1.63  jmcneill 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    567   1.63  jmcneill 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    568   1.63  jmcneill 		if (error) {
    569   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    570   1.63  jmcneill 			    "ADMA2 dmamem_map failed (%d)\n", error);
    571   1.63  jmcneill 			goto adma_done;
    572   1.63  jmcneill 		}
    573   1.63  jmcneill 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    574   1.63  jmcneill 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    575   1.63  jmcneill 		if (error) {
    576   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    577   1.63  jmcneill 			    "ADMA2 dmamap_create failed (%d)\n", error);
    578   1.63  jmcneill 			goto adma_done;
    579   1.63  jmcneill 		}
    580   1.63  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    581   1.63  jmcneill 		    hp->adma2, PAGE_SIZE, NULL,
    582   1.63  jmcneill 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    583   1.63  jmcneill 		if (error) {
    584   1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    585   1.63  jmcneill 			    "ADMA2 dmamap_load failed (%d)\n", error);
    586   1.63  jmcneill 			goto adma_done;
    587   1.63  jmcneill 		}
    588   1.63  jmcneill 
    589   1.63  jmcneill 		memset(hp->adma2, 0, PAGE_SIZE);
    590   1.63  jmcneill 
    591   1.63  jmcneill adma_done:
    592   1.63  jmcneill 		if (error)
    593   1.63  jmcneill 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    594   1.63  jmcneill 	}
    595   1.63  jmcneill 
    596    1.1    nonaka 	/*
    597    1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    598    1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    599    1.1    nonaka 	 */
    600    1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    601    1.1    nonaka 	saa.saa_busname = "sdmmc";
    602    1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    603    1.1    nonaka 	saa.saa_sch = hp;
    604    1.1    nonaka 	saa.saa_dmat = hp->dmat;
    605    1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    606   1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    607   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    608   1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    609   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    610   1.38  jakllsch 	else if (hp->sc->sc_clkmsk != 0)
    611   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    612   1.38  jakllsch 		    (ffs(hp->sc->sc_clkmsk) - 1));
    613   1.56  jmcneill 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    614   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    615   1.38  jakllsch 	else
    616   1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256;
    617   1.97  kiyohara 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    618   1.97  kiyohara 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    619   1.97  kiyohara 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    620   1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    621   1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    622   1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    623   1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    624   1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    625   1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    626   1.76  jmcneill 				SMC_CAPS_UHS_SDR50 |
    627   1.76  jmcneill 				SMC_CAPS_MMC_HS200;
    628   1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    629   1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    630   1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    631   1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    632   1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    633   1.54    nonaka 		saa.saa_caps |= SMC_CAPS_DMA;
    634   1.54    nonaka 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    635   1.54    nonaka 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    636   1.26      matt 	}
    637   1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    638   1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    639   1.77  jmcneill 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    640   1.77  jmcneill 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    641  1.104   hkenken 
    642  1.104   hkenken 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
    643  1.104   hkenken 		saa.saa_max_seg = 65535;
    644  1.104   hkenken 
    645  1.111   thorpej 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
    646    1.1    nonaka 
    647    1.1    nonaka 	return 0;
    648    1.1    nonaka 
    649    1.1    nonaka err:
    650   1.80  jmcneill 	callout_destroy(&hp->tuning_timer);
    651    1.1    nonaka 	cv_destroy(&hp->intr_cv);
    652   1.65  jmcneill 	mutex_destroy(&hp->intr_lock);
    653    1.1    nonaka 	free(hp, M_DEVBUF);
    654    1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    655    1.1    nonaka err1:
    656    1.1    nonaka 	return 1;
    657    1.1    nonaka }
    658    1.1    nonaka 
    659    1.7    nonaka int
    660   1.36  jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
    661    1.7    nonaka {
    662   1.36  jakllsch 	struct sdhc_host *hp;
    663    1.7    nonaka 	int rv = 0;
    664    1.7    nonaka 
    665   1.36  jakllsch 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    666   1.36  jakllsch 		hp = sc->sc_host[n];
    667   1.36  jakllsch 		if (hp == NULL)
    668   1.36  jakllsch 			continue;
    669   1.36  jakllsch 		if (hp->sdmmc != NULL) {
    670   1.36  jakllsch 			rv = config_detach(hp->sdmmc, flags);
    671   1.36  jakllsch 			if (rv)
    672   1.36  jakllsch 				break;
    673   1.36  jakllsch 			hp->sdmmc = NULL;
    674   1.36  jakllsch 		}
    675   1.36  jakllsch 		/* disable interrupts */
    676   1.36  jakllsch 		if ((flags & DETACH_FORCE) == 0) {
    677   1.78   mlelstv 			mutex_enter(&hp->intr_lock);
    678   1.36  jakllsch 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    679   1.36  jakllsch 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    680   1.36  jakllsch 			} else {
    681   1.36  jakllsch 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    682   1.36  jakllsch 			}
    683   1.36  jakllsch 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    684   1.78   mlelstv 			mutex_exit(&hp->intr_lock);
    685   1.36  jakllsch 		}
    686   1.80  jmcneill 		callout_halt(&hp->tuning_timer, NULL);
    687   1.80  jmcneill 		callout_destroy(&hp->tuning_timer);
    688   1.36  jakllsch 		cv_destroy(&hp->intr_cv);
    689   1.65  jmcneill 		mutex_destroy(&hp->intr_lock);
    690   1.36  jakllsch 		if (hp->ios > 0) {
    691   1.36  jakllsch 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    692   1.36  jakllsch 			hp->ios = 0;
    693   1.36  jakllsch 		}
    694   1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    695   1.63  jmcneill 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    696   1.63  jmcneill 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    697   1.63  jmcneill 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    698   1.63  jmcneill 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    699   1.63  jmcneill 		}
    700   1.36  jakllsch 		free(hp, M_DEVBUF);
    701   1.36  jakllsch 		sc->sc_host[n] = NULL;
    702   1.36  jakllsch 	}
    703    1.7    nonaka 
    704    1.7    nonaka 	return rv;
    705    1.7    nonaka }
    706    1.7    nonaka 
    707    1.1    nonaka bool
    708    1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    709    1.1    nonaka {
    710    1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    711    1.1    nonaka 	struct sdhc_host *hp;
    712   1.12    nonaka 	size_t i;
    713    1.1    nonaka 
    714    1.1    nonaka 	/* XXX poll for command completion or suspend command
    715    1.1    nonaka 	 * in progress */
    716    1.1    nonaka 
    717    1.1    nonaka 	/* Save the host controller state. */
    718   1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    719    1.1    nonaka 		hp = sc->sc_host[n];
    720   1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    721   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    722   1.11      matt 				uint32_t v = HREAD4(hp, i);
    723   1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    724   1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    725   1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    726   1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    727   1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    728   1.13    bouyer 				}
    729   1.11      matt 			}
    730   1.11      matt 		} else {
    731   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    732   1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    733   1.11      matt 			}
    734   1.11      matt 		}
    735    1.1    nonaka 	}
    736    1.1    nonaka 	return true;
    737    1.1    nonaka }
    738    1.1    nonaka 
    739    1.1    nonaka bool
    740    1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    741    1.1    nonaka {
    742    1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    743    1.1    nonaka 	struct sdhc_host *hp;
    744   1.12    nonaka 	size_t i;
    745    1.1    nonaka 
    746    1.1    nonaka 	/* Restore the host controller state. */
    747   1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    748    1.1    nonaka 		hp = sc->sc_host[n];
    749    1.1    nonaka 		(void)sdhc_host_reset(hp);
    750   1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    751   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    752   1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    753   1.13    bouyer 					HWRITE4(hp, i,
    754   1.13    bouyer 					    (hp->regs[i + 0] << 0)
    755   1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    756   1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    757   1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    758   1.13    bouyer 				} else {
    759   1.13    bouyer 					HWRITE4(hp, i,
    760   1.13    bouyer 					    (hp->regs[i + 0] << 0)
    761   1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    762   1.13    bouyer 				}
    763   1.11      matt 			}
    764   1.11      matt 		} else {
    765   1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    766   1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    767   1.11      matt 			}
    768   1.11      matt 		}
    769    1.1    nonaka 	}
    770    1.1    nonaka 	return true;
    771    1.1    nonaka }
    772    1.1    nonaka 
    773    1.1    nonaka bool
    774    1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    775    1.1    nonaka {
    776    1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    777    1.1    nonaka 	struct sdhc_host *hp;
    778    1.1    nonaka 
    779    1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    780   1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    781    1.1    nonaka 		hp = sc->sc_host[i];
    782    1.1    nonaka 		(void)sdhc_host_reset(hp);
    783    1.1    nonaka 	}
    784    1.1    nonaka 	return true;
    785    1.1    nonaka }
    786    1.1    nonaka 
    787    1.1    nonaka /*
    788    1.1    nonaka  * Reset the host controller.  Called during initialization, when
    789    1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    790    1.1    nonaka  */
    791    1.1    nonaka static int
    792    1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    793    1.1    nonaka {
    794    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    795   1.11      matt 	uint32_t sdhcimask;
    796    1.1    nonaka 	int error;
    797    1.1    nonaka 
    798   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
    799    1.1    nonaka 
    800    1.1    nonaka 	/* Disable all interrupts. */
    801   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    802   1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    803   1.11      matt 	} else {
    804   1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    805   1.11      matt 	}
    806    1.1    nonaka 
    807  1.105   mlelstv 	/* Let sdhc_bus_power restore power */
    808  1.105   mlelstv 	hp->vdd = 0;
    809  1.105   mlelstv 
    810    1.1    nonaka 	/*
    811    1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    812    1.1    nonaka 	 * the controller to clear the reset bit.
    813    1.1    nonaka 	 */
    814    1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    815    1.1    nonaka 	if (error)
    816    1.1    nonaka 		goto out;
    817    1.1    nonaka 
    818    1.1    nonaka 	/* Set data timeout counter value to max for now. */
    819    1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    820   1.29      matt #if 1
    821   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    822   1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    823   1.11      matt #endif
    824    1.1    nonaka 
    825    1.1    nonaka 	/* Enable interrupts. */
    826    1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    827    1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    828    1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    829    1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    830   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    831   1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    832   1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    833   1.11      matt 		sdhcimask ^=
    834   1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    835   1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    836   1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    837   1.11      matt 	} else {
    838   1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    839   1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    840   1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    841   1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    842   1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    843   1.11      matt 	}
    844    1.1    nonaka 
    845    1.1    nonaka out:
    846    1.1    nonaka 	return error;
    847    1.1    nonaka }
    848    1.1    nonaka 
    849    1.1    nonaka static int
    850    1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    851    1.1    nonaka {
    852    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    853    1.1    nonaka 	int error;
    854    1.1    nonaka 
    855   1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    856    1.1    nonaka 	error = sdhc_host_reset1(sch);
    857   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    858    1.1    nonaka 
    859    1.1    nonaka 	return error;
    860    1.1    nonaka }
    861    1.1    nonaka 
    862    1.1    nonaka static uint32_t
    863    1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    864    1.1    nonaka {
    865    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    866    1.1    nonaka 
    867    1.1    nonaka 	return hp->ocr;
    868    1.1    nonaka }
    869    1.1    nonaka 
    870    1.1    nonaka static int
    871    1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    872    1.1    nonaka {
    873    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    874    1.1    nonaka 
    875    1.1    nonaka 	return hp->maxblklen;
    876    1.1    nonaka }
    877    1.1    nonaka 
    878    1.1    nonaka /*
    879    1.1    nonaka  * Return non-zero if the card is currently inserted.
    880    1.1    nonaka  */
    881    1.1    nonaka static int
    882    1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    883    1.1    nonaka {
    884    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    885    1.1    nonaka 	int r;
    886    1.1    nonaka 
    887   1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    888   1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    889   1.32  kiyohara 
    890    1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    891    1.1    nonaka 
    892   1.11      matt 	return r ? 1 : 0;
    893    1.1    nonaka }
    894    1.1    nonaka 
    895    1.1    nonaka /*
    896    1.1    nonaka  * Return non-zero if the card is currently write-protected.
    897    1.1    nonaka  */
    898    1.1    nonaka static int
    899    1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    900    1.1    nonaka {
    901    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    902    1.1    nonaka 	int r;
    903    1.1    nonaka 
    904   1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    905   1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    906   1.32  kiyohara 
    907    1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    908    1.1    nonaka 
    909   1.12    nonaka 	return r ? 0 : 1;
    910    1.1    nonaka }
    911    1.1    nonaka 
    912    1.1    nonaka /*
    913    1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    914    1.1    nonaka  * Return zero on success.
    915    1.1    nonaka  */
    916    1.1    nonaka static int
    917    1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    918    1.1    nonaka {
    919    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    920    1.1    nonaka 	uint8_t vdd;
    921    1.1    nonaka 	int error = 0;
    922   1.32  kiyohara 	const uint32_t pcmask =
    923   1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    924  1.105   mlelstv 	uint32_t reg;
    925    1.1    nonaka 
    926   1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    927    1.1    nonaka 
    928    1.1    nonaka 	/*
    929    1.1    nonaka 	 * Disable bus power before voltage change.
    930    1.1    nonaka 	 */
    931   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    932  1.105   mlelstv 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
    933  1.105   mlelstv 		hp->vdd = 0;
    934    1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    935  1.105   mlelstv 	}
    936    1.1    nonaka 
    937    1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    938    1.1    nonaka 	if (ocr == 0) {
    939    1.1    nonaka 		(void)sdhc_host_reset1(hp);
    940   1.80  jmcneill 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    941    1.1    nonaka 		goto out;
    942    1.1    nonaka 	}
    943    1.1    nonaka 
    944    1.1    nonaka 	/*
    945    1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    946    1.1    nonaka 	 */
    947    1.1    nonaka 	ocr &= hp->ocr;
    948   1.95    nonaka 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    949    1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    950   1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    951    1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    952   1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    953    1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    954   1.11      matt 	} else {
    955    1.1    nonaka 		/* Unsupported voltage level requested. */
    956    1.1    nonaka 		error = EINVAL;
    957    1.1    nonaka 		goto out;
    958    1.1    nonaka 	}
    959    1.1    nonaka 
    960  1.105   mlelstv 	/*
    961  1.105   mlelstv 	 * Did voltage change ?
    962  1.105   mlelstv 	 */
    963  1.105   mlelstv 	if (vdd == hp->vdd)
    964  1.105   mlelstv 		goto out;
    965  1.105   mlelstv 
    966   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    967   1.11      matt 		/*
    968   1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    969   1.11      matt 		 * voltage ramp until power rises.
    970   1.11      matt 		 */
    971   1.57  jmcneill 
    972   1.57  jmcneill 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    973   1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    974   1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    975   1.57  jmcneill 		} else {
    976  1.105   mlelstv 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
    977  1.105   mlelstv 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    978   1.57  jmcneill 			sdmmc_delay(1);
    979  1.105   mlelstv 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
    980  1.105   mlelstv 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    981   1.57  jmcneill 			sdmmc_delay(1);
    982  1.105   mlelstv 			reg |= SDHC_BUS_POWER;
    983  1.105   mlelstv 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    984   1.57  jmcneill 			sdmmc_delay(10000);
    985   1.57  jmcneill 		}
    986    1.1    nonaka 
    987   1.11      matt 		/*
    988   1.11      matt 		 * The host system may not power the bus due to battery low,
    989   1.11      matt 		 * etc.  In that case, the host controller should clear the
    990   1.11      matt 		 * bus power bit.
    991   1.11      matt 		 */
    992   1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    993   1.11      matt 			error = ENXIO;
    994   1.11      matt 			goto out;
    995   1.11      matt 		}
    996    1.1    nonaka 	}
    997    1.1    nonaka 
    998  1.105   mlelstv 	/* power successfully changed */
    999  1.105   mlelstv 	hp->vdd = vdd;
   1000  1.105   mlelstv 
   1001    1.1    nonaka out:
   1002   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1003    1.1    nonaka 
   1004    1.1    nonaka 	return error;
   1005    1.1    nonaka }
   1006    1.1    nonaka 
   1007    1.1    nonaka /*
   1008    1.1    nonaka  * Return the smallest possible base clock frequency divisor value
   1009    1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
   1010    1.1    nonaka  */
   1011   1.11      matt static bool
   1012   1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
   1013    1.1    nonaka {
   1014   1.11      matt 	u_int div;
   1015    1.1    nonaka 
   1016   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
   1017   1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
   1018   1.11      matt 			if ((hp->clkbase / div) <= freq) {
   1019   1.11      matt 				*divp = SDHC_SDCLK_CGM
   1020   1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
   1021   1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
   1022   1.18  jakllsch 				//freq = hp->clkbase / div;
   1023   1.11      matt 				return true;
   1024   1.11      matt 			}
   1025   1.11      matt 		}
   1026   1.11      matt 		/* No divisor found. */
   1027   1.11      matt 		return false;
   1028   1.11      matt 	}
   1029   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
   1030   1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
   1031   1.11      matt 		u_int roundup = dvs & 1;
   1032   1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
   1033   1.11      matt 			if (dvs + roundup <= 16) {
   1034   1.11      matt 				dvs += roundup - 1;
   1035   1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
   1036   1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1037   1.11      matt 				DPRINTF(2,
   1038   1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
   1039   1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1040   1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1041   1.11      matt 				return true;
   1042    1.9      matt 			}
   1043   1.11      matt 			/*
   1044   1.11      matt 			 * If we drop bits, we need to round up the divisor.
   1045   1.11      matt 			 */
   1046   1.11      matt 			roundup |= dvs & 1;
   1047    1.9      matt 		}
   1048   1.18  jakllsch 		/* No divisor found. */
   1049   1.18  jakllsch 		return false;
   1050   1.38  jakllsch 	}
   1051   1.38  jakllsch 	if (hp->sc->sc_clkmsk != 0) {
   1052   1.38  jakllsch 		div = howmany(hp->clkbase, freq);
   1053   1.38  jakllsch 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1054   1.38  jakllsch 			return false;
   1055   1.38  jakllsch 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1056   1.38  jakllsch 		//freq = hp->clkbase / div;
   1057   1.38  jakllsch 		return true;
   1058   1.38  jakllsch 	}
   1059   1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1060   1.38  jakllsch 		div = howmany(hp->clkbase, freq);
   1061   1.50   mlelstv 		div = div > 1 ? howmany(div, 2) : 0;
   1062   1.38  jakllsch 		if (div > 0x3ff)
   1063   1.38  jakllsch 			return false;
   1064   1.38  jakllsch 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1065   1.38  jakllsch 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1066   1.38  jakllsch 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1067   1.38  jakllsch 			 << SDHC_SDCLK_DIV_SHIFT);
   1068   1.67   mlelstv 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1069   1.38  jakllsch 		return true;
   1070    1.9      matt 	} else {
   1071   1.38  jakllsch 		for (div = 1; div <= 256; div *= 2) {
   1072   1.38  jakllsch 			if ((hp->clkbase / div) <= freq) {
   1073   1.38  jakllsch 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1074   1.38  jakllsch 				//freq = hp->clkbase / div;
   1075   1.38  jakllsch 				return true;
   1076   1.38  jakllsch 			}
   1077   1.38  jakllsch 		}
   1078   1.38  jakllsch 		/* No divisor found. */
   1079   1.38  jakllsch 		return false;
   1080    1.9      matt 	}
   1081    1.1    nonaka 	/* No divisor found. */
   1082   1.11      matt 	return false;
   1083    1.1    nonaka }
   1084    1.1    nonaka 
   1085    1.1    nonaka /*
   1086    1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
   1087    1.1    nonaka  * Return zero on success.
   1088    1.1    nonaka  */
   1089    1.1    nonaka static int
   1090   1.76  jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1091    1.1    nonaka {
   1092    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1093   1.11      matt 	u_int div;
   1094   1.11      matt 	u_int timo;
   1095   1.32  kiyohara 	int16_t reg;
   1096    1.1    nonaka 	int error = 0;
   1097   1.65  jmcneill 	bool present __diagused;
   1098   1.65  jmcneill 
   1099   1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1100   1.65  jmcneill 
   1101    1.2    cegger #ifdef DIAGNOSTIC
   1102   1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1103    1.1    nonaka 
   1104    1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
   1105   1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
   1106   1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
   1107   1.26      matt 		    "%s: command in progress\n", __func__);
   1108   1.12    nonaka 	}
   1109    1.1    nonaka #endif
   1110    1.1    nonaka 
   1111   1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
   1112   1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1113   1.34      matt 		if (error != 0)
   1114   1.34      matt 			goto out;
   1115   1.34      matt 	}
   1116   1.34      matt 
   1117    1.1    nonaka 	/*
   1118    1.1    nonaka 	 * Stop SD clock before changing the frequency.
   1119    1.1    nonaka 	 */
   1120   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1121   1.93       ryo 		HCLR4(hp, SDHC_VEND_SPEC,
   1122   1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1123   1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1124   1.93       ryo 		if (freq == SDMMC_SDCLK_OFF) {
   1125   1.93       ryo 			goto out;
   1126   1.93       ryo 		}
   1127   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1128   1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1129   1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
   1130   1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1131   1.11      matt 			goto out;
   1132   1.11      matt 		}
   1133   1.11      matt 	} else {
   1134   1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1135   1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
   1136   1.11      matt 			goto out;
   1137   1.11      matt 	}
   1138    1.1    nonaka 
   1139   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1140   1.93       ryo 		if (ddr)
   1141   1.93       ryo 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1142   1.93       ryo 		else
   1143   1.93       ryo 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1144   1.93       ryo 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1145   1.71  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1146   1.71  jmcneill 		if (freq > 100000) {
   1147   1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1148   1.71  jmcneill 		} else if (freq > 50000) {
   1149   1.98    nonaka 			if (ddr) {
   1150   1.98    nonaka 				HSET2(hp, SDHC_HOST_CTL2,
   1151   1.98    nonaka 				    SDHC_UHS_MODE_SELECT_DDR50);
   1152   1.98    nonaka 			} else {
   1153   1.98    nonaka 				HSET2(hp, SDHC_HOST_CTL2,
   1154   1.98    nonaka 				    SDHC_UHS_MODE_SELECT_SDR50);
   1155   1.98    nonaka 			}
   1156   1.71  jmcneill 		} else if (freq > 25000) {
   1157   1.76  jmcneill 			if (ddr) {
   1158   1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1159   1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_DDR50);
   1160   1.76  jmcneill 			} else {
   1161   1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1162   1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_SDR25);
   1163   1.76  jmcneill 			}
   1164   1.74  jmcneill 		} else if (freq > 400) {
   1165   1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1166   1.71  jmcneill 		}
   1167   1.71  jmcneill 	}
   1168   1.71  jmcneill 
   1169    1.1    nonaka 	/*
   1170   1.82   mlelstv 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1171   1.82   mlelstv 	 * at 100MHz bus clock.
   1172   1.82   mlelstv 	 */
   1173   1.82   mlelstv 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1174   1.82   mlelstv 		if (freq == 100000)
   1175   1.82   mlelstv 			--freq;
   1176   1.82   mlelstv 	}
   1177   1.82   mlelstv 
   1178   1.82   mlelstv 	/*
   1179    1.1    nonaka 	 * Set the minimum base clock frequency divisor.
   1180    1.1    nonaka 	 */
   1181   1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1182    1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
   1183   1.68   mlelstv 		aprint_error_dev(hp->sc->sc_dev,
   1184   1.68   mlelstv 			"Invalid bus clock %d kHz\n", freq);
   1185    1.1    nonaka 		error = EINVAL;
   1186    1.1    nonaka 		goto out;
   1187    1.1    nonaka 	}
   1188   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1189   1.93       ryo 		if (ddr) {
   1190   1.93       ryo 			/* in ddr mode, divisor >>= 1 */
   1191   1.93       ryo 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1192   1.93       ryo 			    SDHC_SDCLK_DIV_SHIFT)) |
   1193   1.93       ryo 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1194   1.93       ryo 			    SDHC_SDCLK_DVS_SHIFT));
   1195   1.93       ryo 		}
   1196   1.93       ryo 		for (timo = 1000; timo > 0; timo--) {
   1197   1.93       ryo 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1198   1.93       ryo 				break;
   1199   1.93       ryo 			sdmmc_delay(10);
   1200   1.93       ryo 		}
   1201   1.93       ryo 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1202   1.93       ryo 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1203   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1204   1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1205   1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
   1206   1.11      matt 	} else {
   1207   1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1208   1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1209   1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1210   1.11      matt 	}
   1211    1.1    nonaka 
   1212    1.1    nonaka 	/*
   1213    1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
   1214    1.1    nonaka 	 */
   1215   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1216   1.93       ryo 		HSET4(hp, SDHC_VEND_SPEC,
   1217   1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1218   1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1219   1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1220   1.11      matt 		sdmmc_delay(10000);
   1221   1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
   1222   1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1223   1.11      matt 	} else {
   1224   1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1225   1.11      matt 		for (timo = 1000; timo > 0; timo--) {
   1226   1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1227   1.12    nonaka 			    SDHC_INTCLK_STABLE))
   1228   1.11      matt 				break;
   1229   1.11      matt 			sdmmc_delay(10);
   1230   1.11      matt 		}
   1231   1.11      matt 		if (timo == 0) {
   1232   1.11      matt 			error = ETIMEDOUT;
   1233   1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1234   1.11      matt 			goto out;
   1235   1.11      matt 		}
   1236    1.1    nonaka 	}
   1237    1.1    nonaka 
   1238   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1239   1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1240   1.11      matt 		/*
   1241   1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
   1242   1.11      matt 		 * So delay for that time + slop and then
   1243   1.11      matt 		 * check a few times for completion.
   1244   1.11      matt 		 */
   1245   1.11      matt 		sdmmc_delay(210);
   1246   1.11      matt 		for (timo = 10; timo > 0; timo--) {
   1247   1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1248   1.11      matt 			    SDHC_INIT_ACTIVE))
   1249   1.11      matt 				break;
   1250   1.11      matt 			sdmmc_delay(10);
   1251   1.11      matt 		}
   1252   1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1253   1.12    nonaka 
   1254   1.11      matt 		/*
   1255   1.11      matt 		 * Enable SD clock.
   1256   1.11      matt 		 */
   1257   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1258   1.93       ryo 			HSET4(hp, SDHC_VEND_SPEC,
   1259   1.93       ryo 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1260   1.93       ryo 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1261   1.93       ryo 		} else {
   1262   1.93       ryo 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1263   1.93       ryo 		}
   1264   1.11      matt 	} else {
   1265   1.11      matt 		/*
   1266   1.11      matt 		 * Enable SD clock.
   1267   1.11      matt 		 */
   1268   1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1269    1.1    nonaka 
   1270   1.43  jmcneill 		if (freq > 25000 &&
   1271   1.43  jmcneill 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1272   1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1273   1.11      matt 		else
   1274   1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1275   1.11      matt 	}
   1276    1.8  kiyohara 
   1277  1.102  jmcneill 	if (hp->sc->sc_vendor_bus_clock_post) {
   1278  1.102  jmcneill 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
   1279  1.102  jmcneill 		if (error != 0)
   1280  1.102  jmcneill 			goto out;
   1281  1.102  jmcneill 	}
   1282  1.102  jmcneill 
   1283    1.1    nonaka out:
   1284   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1285    1.1    nonaka 
   1286    1.1    nonaka 	return error;
   1287    1.1    nonaka }
   1288    1.1    nonaka 
   1289    1.1    nonaka static int
   1290    1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1291    1.1    nonaka {
   1292    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1293    1.1    nonaka 	int reg;
   1294    1.1    nonaka 
   1295    1.1    nonaka 	switch (width) {
   1296    1.1    nonaka 	case 1:
   1297    1.1    nonaka 	case 4:
   1298    1.1    nonaka 		break;
   1299    1.1    nonaka 
   1300   1.11      matt 	case 8:
   1301   1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1302   1.11      matt 			break;
   1303   1.11      matt 		/* FALLTHROUGH */
   1304    1.1    nonaka 	default:
   1305    1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1306    1.1    nonaka 		    HDEVNAME(hp), width));
   1307    1.1    nonaka 		return 1;
   1308    1.1    nonaka 	}
   1309    1.1    nonaka 
   1310   1.89  jmcneill 	if (hp->sc->sc_vendor_bus_width) {
   1311   1.89  jmcneill 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1312   1.89  jmcneill 		if (error != 0)
   1313   1.89  jmcneill 			return error;
   1314   1.89  jmcneill 	}
   1315   1.89  jmcneill 
   1316   1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1317   1.65  jmcneill 
   1318    1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1319   1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1320   1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1321   1.11      matt 		if (width == 4)
   1322   1.11      matt 			reg |= SDHC_4BIT_MODE;
   1323   1.11      matt 		else if (width == 8)
   1324   1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
   1325   1.11      matt 	} else {
   1326   1.11      matt 		reg &= ~SDHC_4BIT_MODE;
   1327   1.59  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1328   1.59  jmcneill 			reg &= ~SDHC_8BIT_MODE;
   1329   1.59  jmcneill 		}
   1330   1.59  jmcneill 		if (width == 4) {
   1331   1.11      matt 			reg |= SDHC_4BIT_MODE;
   1332   1.59  jmcneill 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1333   1.59  jmcneill 			reg |= SDHC_8BIT_MODE;
   1334   1.59  jmcneill 		}
   1335   1.11      matt 	}
   1336    1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1337   1.65  jmcneill 
   1338   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1339    1.1    nonaka 
   1340    1.1    nonaka 	return 0;
   1341    1.1    nonaka }
   1342    1.1    nonaka 
   1343    1.8  kiyohara static int
   1344    1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1345    1.8  kiyohara {
   1346   1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1347   1.32  kiyohara 
   1348   1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
   1349   1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1350    1.8  kiyohara 
   1351    1.8  kiyohara 	return 0;
   1352    1.8  kiyohara }
   1353    1.8  kiyohara 
   1354    1.1    nonaka static void
   1355    1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1356    1.1    nonaka {
   1357    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1358    1.1    nonaka 
   1359   1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1360   1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1361   1.11      matt 		if (enable) {
   1362   1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1363   1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1364   1.11      matt 		} else {
   1365   1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1366   1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1367   1.11      matt 		}
   1368   1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1369    1.1    nonaka 	}
   1370    1.1    nonaka }
   1371    1.1    nonaka 
   1372   1.47     skrll static void
   1373    1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1374    1.1    nonaka {
   1375    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1376    1.1    nonaka 
   1377   1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1378   1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1379   1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1380   1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1381   1.11      matt 	}
   1382    1.1    nonaka }
   1383    1.1    nonaka 
   1384    1.1    nonaka static int
   1385   1.71  jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1386   1.71  jmcneill {
   1387   1.71  jmcneill 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1388  1.100  jmcneill 	int error = 0;
   1389   1.71  jmcneill 
   1390   1.98    nonaka 	if (hp->specver < SDHC_SPEC_VERS_300)
   1391   1.98    nonaka 		return EINVAL;
   1392   1.98    nonaka 
   1393   1.78   mlelstv 	mutex_enter(&hp->intr_lock);
   1394   1.71  jmcneill 	switch (signal_voltage) {
   1395   1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_180:
   1396  1.100  jmcneill 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1397  1.100  jmcneill 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1398  1.100  jmcneill 			    signal_voltage);
   1399  1.100  jmcneill 			if (error != 0)
   1400  1.100  jmcneill 				break;
   1401  1.100  jmcneill 		}
   1402   1.93       ryo 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1403   1.93       ryo 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1404   1.71  jmcneill 		break;
   1405   1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_330:
   1406   1.93       ryo 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1407   1.93       ryo 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1408  1.100  jmcneill 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1409  1.100  jmcneill 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1410  1.100  jmcneill 			    signal_voltage);
   1411  1.100  jmcneill 			if (error != 0)
   1412  1.100  jmcneill 				break;
   1413  1.100  jmcneill 		}
   1414   1.71  jmcneill 		break;
   1415   1.71  jmcneill 	default:
   1416  1.100  jmcneill 		error = EINVAL;
   1417  1.100  jmcneill 		break;
   1418   1.71  jmcneill 	}
   1419   1.78   mlelstv 	mutex_exit(&hp->intr_lock);
   1420   1.71  jmcneill 
   1421  1.100  jmcneill 	return error;
   1422   1.71  jmcneill }
   1423   1.71  jmcneill 
   1424   1.79  jmcneill /*
   1425   1.79  jmcneill  * Sampling clock tuning procedure (UHS)
   1426   1.79  jmcneill  */
   1427   1.79  jmcneill static int
   1428   1.83   mlelstv sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1429   1.79  jmcneill {
   1430   1.79  jmcneill 	struct sdmmc_command cmd;
   1431   1.79  jmcneill 	uint8_t hostctl;
   1432   1.79  jmcneill 	int opcode, error, retry = 40;
   1433   1.79  jmcneill 
   1434   1.83   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1435   1.83   mlelstv 
   1436   1.80  jmcneill 	hp->tuning_timing = timing;
   1437   1.80  jmcneill 
   1438   1.79  jmcneill 	switch (timing) {
   1439   1.79  jmcneill 	case SDMMC_TIMING_MMC_HS200:
   1440   1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1441   1.79  jmcneill 		break;
   1442   1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR50:
   1443   1.79  jmcneill 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1444   1.79  jmcneill 			return 0;
   1445   1.79  jmcneill 		/* FALLTHROUGH */
   1446   1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR104:
   1447   1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK;
   1448   1.79  jmcneill 		break;
   1449   1.79  jmcneill 	default:
   1450   1.79  jmcneill 		return EINVAL;
   1451   1.79  jmcneill 	}
   1452   1.79  jmcneill 
   1453   1.79  jmcneill 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1454   1.79  jmcneill 
   1455   1.79  jmcneill 	/* enable buffer read ready interrupt */
   1456   1.79  jmcneill 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1457   1.79  jmcneill 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1458   1.79  jmcneill 
   1459   1.79  jmcneill 	/* disable DMA */
   1460   1.79  jmcneill 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1461   1.79  jmcneill 
   1462   1.79  jmcneill 	/* reset tuning circuit */
   1463   1.79  jmcneill 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1464   1.79  jmcneill 
   1465   1.79  jmcneill 	/* start of tuning */
   1466   1.79  jmcneill 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1467   1.79  jmcneill 
   1468   1.79  jmcneill 	do {
   1469   1.79  jmcneill 		memset(&cmd, 0, sizeof(cmd));
   1470   1.79  jmcneill 		cmd.c_opcode = opcode;
   1471   1.79  jmcneill 		cmd.c_arg = 0;
   1472   1.79  jmcneill 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1473   1.79  jmcneill 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1474   1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 128;
   1475   1.79  jmcneill 		} else {
   1476   1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 64;
   1477   1.79  jmcneill 		}
   1478   1.79  jmcneill 
   1479   1.79  jmcneill 		error = sdhc_start_command(hp, &cmd);
   1480   1.79  jmcneill 		if (error)
   1481   1.79  jmcneill 			break;
   1482   1.79  jmcneill 
   1483   1.79  jmcneill 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1484   1.88   mlelstv 		    SDHC_TUNING_TIMEOUT, false)) {
   1485   1.79  jmcneill 			break;
   1486   1.79  jmcneill 		}
   1487   1.79  jmcneill 
   1488   1.79  jmcneill 		delay(1000);
   1489   1.79  jmcneill 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1490   1.79  jmcneill 
   1491   1.79  jmcneill 	/* disable buffer read ready interrupt */
   1492   1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1493   1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1494   1.79  jmcneill 
   1495   1.79  jmcneill 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1496   1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1497   1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1498   1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1499   1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1500   1.79  jmcneill 		    "tuning did not complete, using fixed sampling clock\n");
   1501  1.103  jmcneill 		return 0;		/* tuning did not complete */
   1502   1.79  jmcneill 	}
   1503   1.79  jmcneill 
   1504   1.79  jmcneill 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1505   1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1506   1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1507   1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1508   1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1509   1.79  jmcneill 		    "tuning failed, using fixed sampling clock\n");
   1510  1.103  jmcneill 		return 0;		/* tuning failed */
   1511   1.79  jmcneill 	}
   1512   1.79  jmcneill 
   1513   1.80  jmcneill 	if (hp->tuning_timer_count) {
   1514   1.80  jmcneill 		callout_schedule(&hp->tuning_timer,
   1515   1.80  jmcneill 		    hz * hp->tuning_timer_count);
   1516   1.80  jmcneill 	}
   1517   1.80  jmcneill 
   1518   1.79  jmcneill 	return 0;		/* tuning completed */
   1519   1.79  jmcneill }
   1520   1.79  jmcneill 
   1521   1.83   mlelstv static int
   1522   1.83   mlelstv sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1523   1.83   mlelstv {
   1524   1.83   mlelstv 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1525   1.83   mlelstv 	int error;
   1526   1.83   mlelstv 
   1527   1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1528   1.83   mlelstv 	error = sdhc_execute_tuning1(hp, timing);
   1529   1.83   mlelstv 	mutex_exit(&hp->intr_lock);
   1530   1.83   mlelstv 	return error;
   1531   1.83   mlelstv }
   1532   1.83   mlelstv 
   1533   1.80  jmcneill static void
   1534   1.80  jmcneill sdhc_tuning_timer(void *arg)
   1535   1.80  jmcneill {
   1536   1.80  jmcneill 	struct sdhc_host *hp = arg;
   1537   1.80  jmcneill 
   1538   1.80  jmcneill 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1539   1.80  jmcneill }
   1540   1.80  jmcneill 
   1541   1.99    nonaka static void
   1542   1.99    nonaka sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1543   1.99    nonaka {
   1544   1.99    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1545   1.99    nonaka 	struct sdhc_softc *sc = hp->sc;
   1546   1.99    nonaka 
   1547   1.99    nonaka 	if (sc->sc_vendor_hw_reset != NULL)
   1548   1.99    nonaka 		sc->sc_vendor_hw_reset(sc, hp);
   1549   1.99    nonaka }
   1550   1.99    nonaka 
   1551   1.71  jmcneill static int
   1552    1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1553    1.1    nonaka {
   1554    1.1    nonaka 	uint32_t state;
   1555    1.1    nonaka 	int timeout;
   1556    1.1    nonaka 
   1557  1.105   mlelstv 	for (timeout = 100000; timeout > 0; timeout--) {
   1558    1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1559    1.1    nonaka 			return 0;
   1560   1.65  jmcneill 		sdmmc_delay(10);
   1561    1.1    nonaka 	}
   1562   1.75   mlelstv 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1563   1.75   mlelstv 	    mask, value, state);
   1564    1.1    nonaka 	return ETIMEDOUT;
   1565    1.1    nonaka }
   1566    1.1    nonaka 
   1567    1.1    nonaka static void
   1568    1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1569    1.1    nonaka {
   1570    1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1571    1.1    nonaka 	int error;
   1572   1.88   mlelstv 	bool probing;
   1573    1.1    nonaka 
   1574   1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1575   1.83   mlelstv 
   1576   1.80  jmcneill 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1577   1.83   mlelstv 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1578   1.80  jmcneill 	}
   1579   1.80  jmcneill 
   1580   1.93       ryo 	if (cmd->c_data &&
   1581   1.93       ryo 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1582   1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1583   1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1584   1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1585   1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1586   1.11      matt 		} else {
   1587   1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1588   1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1589   1.47     skrll 		}
   1590   1.11      matt 	}
   1591   1.11      matt 
   1592   1.61  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1593   1.61  jmcneill 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1594   1.61  jmcneill 		if (cmd->c_data != NULL) {
   1595   1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1596   1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1597   1.61  jmcneill 		} else {
   1598   1.61  jmcneill 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1599   1.61  jmcneill 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1600   1.61  jmcneill 		}
   1601   1.61  jmcneill 	}
   1602   1.61  jmcneill 
   1603  1.102  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
   1604  1.102  jmcneill 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1605  1.102  jmcneill 			SET(cmd->c_flags, SCF_RSP_BSY);
   1606  1.102  jmcneill 	}
   1607  1.102  jmcneill 
   1608    1.1    nonaka 	/*
   1609    1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1610    1.1    nonaka 	 */
   1611    1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1612    1.1    nonaka 	if (error) {
   1613    1.1    nonaka 		cmd->c_error = error;
   1614    1.1    nonaka 		goto out;
   1615    1.1    nonaka 	}
   1616    1.1    nonaka 
   1617    1.1    nonaka 	/*
   1618    1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1619    1.1    nonaka 	 * is marked done for any other reason.
   1620    1.1    nonaka 	 */
   1621   1.88   mlelstv 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1622  1.105   mlelstv 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
   1623   1.84   mlelstv 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1624   1.94  kiyohara 		sdmmc_delay(50);
   1625    1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1626    1.1    nonaka 		goto out;
   1627    1.1    nonaka 	}
   1628    1.1    nonaka 
   1629    1.1    nonaka 	/*
   1630    1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1631    1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1632    1.1    nonaka 	 * driver (without padding).
   1633    1.1    nonaka 	 */
   1634    1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1635   1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1636   1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1637   1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1638   1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1639   1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1640   1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1641   1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1642   1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1643   1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1644   1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1645   1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1646   1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1647   1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1648   1.32  kiyohara 			}
   1649    1.1    nonaka 		}
   1650    1.1    nonaka 	}
   1651   1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1652    1.1    nonaka 
   1653    1.1    nonaka 	/*
   1654    1.1    nonaka 	 * If the command has data to transfer in any direction,
   1655    1.1    nonaka 	 * execute the transfer now.
   1656    1.1    nonaka 	 */
   1657    1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1658    1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1659   1.42  jakllsch 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1660   1.97  kiyohara 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1661   1.97  kiyohara 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1662   1.85   mlelstv 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1663   1.85   mlelstv 			    HDEVNAME(hp)));
   1664   1.42  jakllsch 			cmd->c_error = ETIMEDOUT;
   1665   1.42  jakllsch 			goto out;
   1666   1.42  jakllsch 		}
   1667   1.42  jakllsch 	}
   1668    1.1    nonaka 
   1669    1.1    nonaka out:
   1670   1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1671   1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1672   1.11      matt 		/* Turn off the LED. */
   1673   1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1674   1.11      matt 	}
   1675    1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1676    1.1    nonaka 
   1677   1.97  kiyohara 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1678   1.97  kiyohara 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1679   1.97  kiyohara 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1680   1.97  kiyohara 
   1681   1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1682   1.65  jmcneill 
   1683    1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1684    1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1685    1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1686    1.1    nonaka }
   1687    1.1    nonaka 
   1688    1.1    nonaka static int
   1689    1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1690    1.1    nonaka {
   1691   1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1692    1.1    nonaka 	uint16_t blksize = 0;
   1693    1.1    nonaka 	uint16_t blkcount = 0;
   1694    1.1    nonaka 	uint16_t mode;
   1695    1.1    nonaka 	uint16_t command;
   1696   1.84   mlelstv 	uint32_t pmask;
   1697    1.1    nonaka 	int error;
   1698    1.1    nonaka 
   1699   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1700   1.65  jmcneill 
   1701   1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1702    1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1703   1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1704    1.1    nonaka 
   1705    1.1    nonaka 	/*
   1706    1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1707    1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1708    1.1    nonaka 	 */
   1709    1.1    nonaka 
   1710    1.1    nonaka 	/* Fragment the data into proper blocks. */
   1711    1.1    nonaka 	if (cmd->c_datalen > 0) {
   1712    1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1713    1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1714    1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1715    1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1716   1.11      matt 			aprint_error_dev(sc->sc_dev,
   1717    1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1718    1.1    nonaka 			return EINVAL;
   1719    1.1    nonaka 		}
   1720    1.1    nonaka 	}
   1721    1.1    nonaka 
   1722    1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1723    1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1724   1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1725    1.1    nonaka 		return EINVAL;
   1726    1.1    nonaka 	}
   1727    1.1    nonaka 
   1728    1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1729  1.108   mlelstv 	mode = 0;
   1730    1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1731    1.1    nonaka 		mode |= SDHC_READ_MODE;
   1732  1.108   mlelstv 	if (blkcount > 0) {
   1733  1.108   mlelstv 		mode |= SDHC_BLOCK_COUNT_ENABLE;
   1734  1.108   mlelstv 		if (blkcount > 1) {
   1735  1.108   mlelstv 			mode |= SDHC_MULTI_BLOCK_MODE;
   1736  1.108   mlelstv 			if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
   1737  1.108   mlelstv 			    && !ISSET(cmd->c_flags, SCF_NO_STOP))
   1738  1.108   mlelstv 				mode |= SDHC_AUTO_CMD12_ENABLE;
   1739  1.108   mlelstv 		}
   1740    1.1    nonaka 	}
   1741   1.45  jakllsch 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1742   1.55    bouyer 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1743   1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1744    1.7    nonaka 	}
   1745    1.1    nonaka 
   1746    1.1    nonaka 	/*
   1747    1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1748    1.1    nonaka 	 */
   1749   1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1750    1.1    nonaka 
   1751    1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1752    1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1753    1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1754    1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1755   1.79  jmcneill 	if (cmd->c_datalen > 0)
   1756    1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1757    1.1    nonaka 
   1758    1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1759    1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1760    1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1761    1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1762    1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1763    1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1764    1.1    nonaka 	else
   1765    1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1766    1.1    nonaka 
   1767   1.84   mlelstv 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1768   1.84   mlelstv 	pmask = SDHC_CMD_INHIBIT_CMD;
   1769   1.91   mlelstv 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1770   1.84   mlelstv 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1771   1.84   mlelstv 	error = sdhc_wait_state(hp, pmask, 0);
   1772   1.68   mlelstv 	if (error) {
   1773   1.84   mlelstv 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1774   1.84   mlelstv 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1775    1.1    nonaka 		return error;
   1776   1.68   mlelstv 	}
   1777    1.1    nonaka 
   1778    1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1779    1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1780    1.1    nonaka 
   1781   1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1782   1.44   hkenken 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1783   1.44   hkenken 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1784   1.44   hkenken 	}
   1785   1.19  jakllsch 
   1786   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1787   1.11      matt 		/* Alert the user not to remove the card. */
   1788   1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1789   1.11      matt 	}
   1790    1.1    nonaka 
   1791    1.7    nonaka 	/* Set DMA start address. */
   1792   1.79  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1793   1.63  jmcneill 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1794   1.69  jmcneill 			bus_addr_t paddr =
   1795   1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1796   1.63  jmcneill 			uint16_t len =
   1797   1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1798   1.63  jmcneill 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1799   1.63  jmcneill 			uint16_t attr =
   1800   1.63  jmcneill 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1801   1.63  jmcneill 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1802   1.63  jmcneill 				attr |= SDHC_ADMA2_END;
   1803   1.63  jmcneill 			}
   1804   1.63  jmcneill 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1805   1.63  jmcneill 				struct sdhc_adma2_descriptor32 *desc =
   1806   1.63  jmcneill 				    hp->adma2;
   1807   1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1808   1.63  jmcneill 				desc[seg].length = htole16(len);
   1809   1.63  jmcneill 				desc[seg].address = htole32(paddr);
   1810   1.63  jmcneill 			} else {
   1811   1.63  jmcneill 				struct sdhc_adma2_descriptor64 *desc =
   1812   1.63  jmcneill 				    hp->adma2;
   1813   1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1814   1.63  jmcneill 				desc[seg].length = htole16(len);
   1815   1.63  jmcneill 				desc[seg].address = htole32(paddr & 0xffffffff);
   1816   1.63  jmcneill 				desc[seg].address_hi = htole32(
   1817   1.63  jmcneill 				    (uint64_t)paddr >> 32);
   1818   1.63  jmcneill 			}
   1819   1.63  jmcneill 		}
   1820   1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1821   1.63  jmcneill 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1822   1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1823   1.63  jmcneill 		} else {
   1824   1.63  jmcneill 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1825   1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1826   1.63  jmcneill 		}
   1827   1.63  jmcneill 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1828   1.63  jmcneill 		    BUS_DMASYNC_PREWRITE);
   1829   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1830   1.93       ryo 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1831   1.93       ryo 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1832   1.93       ryo 		} else {
   1833   1.93       ryo 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1834   1.93       ryo 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1835   1.93       ryo 		}
   1836   1.63  jmcneill 
   1837   1.70  jmcneill 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1838   1.63  jmcneill 
   1839   1.63  jmcneill 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1840   1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1841   1.63  jmcneill 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1842   1.63  jmcneill 			    (uint64_t)desc_addr >> 32);
   1843   1.63  jmcneill 		}
   1844   1.63  jmcneill 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1845   1.63  jmcneill 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1846   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1847   1.93       ryo 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1848   1.93       ryo 		}
   1849    1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1850   1.63  jmcneill 	}
   1851    1.7    nonaka 
   1852    1.1    nonaka 	/*
   1853    1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1854    1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1855    1.1    nonaka 	 */
   1856   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1857   1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1858   1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1859   1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1860   1.93       ryo 			/* mode bits is in MIX_CTRL register on uSDHC */
   1861   1.93       ryo 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1862  1.104   hkenken 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
   1863  1.104   hkenken 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1864  1.104   hkenken 				command |= SDHC_COMMAND_TYPE_ABORT;
   1865   1.93       ryo 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1866   1.93       ryo 		} else {
   1867   1.93       ryo 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1868   1.93       ryo 		}
   1869   1.11      matt 	} else {
   1870   1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1871   1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1872   1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1873   1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1874   1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1875   1.11      matt 	}
   1876    1.1    nonaka 
   1877    1.1    nonaka 	return 0;
   1878    1.1    nonaka }
   1879    1.1    nonaka 
   1880    1.1    nonaka static void
   1881    1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1882    1.1    nonaka {
   1883   1.51  jmcneill 	struct sdhc_softc *sc = hp->sc;
   1884    1.1    nonaka 	int error;
   1885    1.1    nonaka 
   1886   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1887   1.65  jmcneill 
   1888    1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1889    1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1890    1.1    nonaka 
   1891    1.1    nonaka #ifdef SDHC_DEBUG
   1892    1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1893    1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1894    1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1895    1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1896    1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1897    1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1898    1.1    nonaka 	}
   1899    1.1    nonaka #endif
   1900    1.1    nonaka 
   1901   1.47     skrll 	if (cmd->c_dmamap != NULL) {
   1902   1.47     skrll 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1903   1.51  jmcneill 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1904   1.47     skrll 			if (error == 0 && !sdhc_wait_intr(hp,
   1905   1.88   mlelstv 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1906   1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   1907   1.47     skrll 				error = ETIMEDOUT;
   1908   1.47     skrll 			}
   1909   1.47     skrll 		} else {
   1910   1.47     skrll 			error = sdhc_transfer_data_dma(hp, cmd);
   1911   1.47     skrll 		}
   1912   1.47     skrll 	} else
   1913    1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1914    1.1    nonaka 	if (error)
   1915    1.1    nonaka 		cmd->c_error = error;
   1916    1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1917    1.1    nonaka 
   1918    1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1919    1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1920    1.1    nonaka }
   1921    1.1    nonaka 
   1922    1.1    nonaka static int
   1923    1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1924    1.7    nonaka {
   1925   1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1926   1.19  jakllsch 	bus_addr_t posaddr;
   1927   1.19  jakllsch 	bus_addr_t segaddr;
   1928   1.19  jakllsch 	bus_size_t seglen;
   1929   1.19  jakllsch 	u_int seg = 0;
   1930    1.7    nonaka 	int error = 0;
   1931   1.19  jakllsch 	int status;
   1932    1.7    nonaka 
   1933   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1934   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1935   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1936   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1937   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1938   1.11      matt 
   1939    1.7    nonaka 	for (;;) {
   1940   1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1941    1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1942   1.88   mlelstv 		    SDHC_DMA_TIMEOUT, false);
   1943   1.19  jakllsch 
   1944   1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1945   1.19  jakllsch 			break;
   1946   1.19  jakllsch 		}
   1947   1.19  jakllsch 		if (!status) {
   1948   1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1949    1.7    nonaka 			error = ETIMEDOUT;
   1950    1.7    nonaka 			break;
   1951    1.7    nonaka 		}
   1952   1.63  jmcneill 
   1953   1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1954   1.63  jmcneill 			continue;
   1955   1.63  jmcneill 		}
   1956   1.63  jmcneill 
   1957   1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1958   1.19  jakllsch 			continue;
   1959   1.19  jakllsch 		}
   1960   1.19  jakllsch 
   1961   1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1962    1.7    nonaka 
   1963   1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1964   1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1965   1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1966    1.7    nonaka 
   1967   1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1968   1.37  jakllsch 			continue;
   1969   1.19  jakllsch 		}
   1970   1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1971   1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1972   1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1973   1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1974   1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1975    1.7    nonaka 	}
   1976    1.7    nonaka 
   1977   1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1978   1.63  jmcneill 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1979   1.63  jmcneill 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1980   1.63  jmcneill 	}
   1981   1.63  jmcneill 
   1982    1.7    nonaka 	return error;
   1983    1.7    nonaka }
   1984    1.7    nonaka 
   1985    1.7    nonaka static int
   1986    1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1987    1.1    nonaka {
   1988    1.1    nonaka 	uint8_t *data = cmd->c_data;
   1989   1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1990   1.11      matt 	u_int len, datalen;
   1991   1.11      matt 	u_int imask;
   1992   1.11      matt 	u_int pmask;
   1993    1.1    nonaka 	int error = 0;
   1994    1.1    nonaka 
   1995   1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1996   1.78   mlelstv 
   1997   1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1998   1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1999   1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   2000   1.93       ryo 		if (ISSET(hp->sc->sc_flags,
   2001   1.93       ryo 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2002   1.11      matt 			pio_func = esdhc_read_data_pio;
   2003   1.11      matt 		} else {
   2004   1.11      matt 			pio_func = sdhc_read_data_pio;
   2005   1.11      matt 		}
   2006   1.11      matt 	} else {
   2007   1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   2008   1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   2009   1.93       ryo 		if (ISSET(hp->sc->sc_flags,
   2010   1.93       ryo 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2011   1.11      matt 			pio_func = esdhc_write_data_pio;
   2012   1.11      matt 		} else {
   2013   1.11      matt 			pio_func = sdhc_write_data_pio;
   2014   1.11      matt 		}
   2015   1.11      matt 	}
   2016    1.1    nonaka 	datalen = cmd->c_datalen;
   2017    1.1    nonaka 
   2018   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   2019   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   2020   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   2021   1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   2022   1.11      matt 
   2023    1.1    nonaka 	while (datalen > 0) {
   2024   1.92       ryo 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   2025   1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2026   1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2027   1.11      matt 			} else {
   2028   1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2029   1.11      matt 			}
   2030   1.88   mlelstv 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   2031   1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   2032   1.11      matt 				error = ETIMEDOUT;
   2033   1.11      matt 				break;
   2034   1.11      matt 			}
   2035   1.11      matt 
   2036   1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   2037   1.11      matt 			if (error)
   2038   1.11      matt 				break;
   2039    1.1    nonaka 		}
   2040    1.1    nonaka 
   2041    1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   2042   1.11      matt 		(*pio_func)(hp, data, len);
   2043   1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2044   1.11      matt 		    HDEVNAME(hp), len, data));
   2045    1.1    nonaka 
   2046    1.1    nonaka 		data += len;
   2047    1.1    nonaka 		datalen -= len;
   2048    1.1    nonaka 	}
   2049    1.1    nonaka 
   2050    1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2051   1.88   mlelstv 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2052   1.84   mlelstv 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2053    1.1    nonaka 		error = ETIMEDOUT;
   2054   1.84   mlelstv 	}
   2055    1.1    nonaka 
   2056    1.1    nonaka 	return error;
   2057    1.1    nonaka }
   2058    1.1    nonaka 
   2059    1.1    nonaka static void
   2060   1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2061    1.1    nonaka {
   2062    1.1    nonaka 
   2063    1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   2064    1.1    nonaka 		while (datalen > 3) {
   2065   1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2066    1.1    nonaka 			data += 4;
   2067    1.1    nonaka 			datalen -= 4;
   2068    1.1    nonaka 		}
   2069    1.1    nonaka 		if (datalen > 1) {
   2070   1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2071    1.1    nonaka 			data += 2;
   2072    1.1    nonaka 			datalen -= 2;
   2073    1.1    nonaka 		}
   2074    1.1    nonaka 		if (datalen > 0) {
   2075    1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   2076    1.1    nonaka 			data += 1;
   2077    1.1    nonaka 			datalen -= 1;
   2078    1.1    nonaka 		}
   2079    1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   2080    1.1    nonaka 		while (datalen > 1) {
   2081   1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2082    1.1    nonaka 			data += 2;
   2083    1.1    nonaka 			datalen -= 2;
   2084    1.1    nonaka 		}
   2085    1.1    nonaka 		if (datalen > 0) {
   2086    1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   2087    1.1    nonaka 			data += 1;
   2088    1.1    nonaka 			datalen -= 1;
   2089    1.1    nonaka 		}
   2090    1.1    nonaka 	} else {
   2091    1.1    nonaka 		while (datalen > 0) {
   2092    1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   2093    1.1    nonaka 			data += 1;
   2094    1.1    nonaka 			datalen -= 1;
   2095    1.1    nonaka 		}
   2096    1.1    nonaka 	}
   2097    1.1    nonaka }
   2098    1.1    nonaka 
   2099    1.1    nonaka static void
   2100   1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2101    1.1    nonaka {
   2102    1.1    nonaka 
   2103    1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   2104    1.1    nonaka 		while (datalen > 3) {
   2105   1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2106    1.1    nonaka 			data += 4;
   2107    1.1    nonaka 			datalen -= 4;
   2108    1.1    nonaka 		}
   2109    1.1    nonaka 		if (datalen > 1) {
   2110   1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2111    1.1    nonaka 			data += 2;
   2112    1.1    nonaka 			datalen -= 2;
   2113    1.1    nonaka 		}
   2114    1.1    nonaka 		if (datalen > 0) {
   2115    1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2116    1.1    nonaka 			data += 1;
   2117    1.1    nonaka 			datalen -= 1;
   2118    1.1    nonaka 		}
   2119    1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   2120    1.1    nonaka 		while (datalen > 1) {
   2121   1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2122    1.1    nonaka 			data += 2;
   2123    1.1    nonaka 			datalen -= 2;
   2124    1.1    nonaka 		}
   2125    1.1    nonaka 		if (datalen > 0) {
   2126    1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2127    1.1    nonaka 			data += 1;
   2128    1.1    nonaka 			datalen -= 1;
   2129    1.1    nonaka 		}
   2130    1.1    nonaka 	} else {
   2131    1.1    nonaka 		while (datalen > 0) {
   2132    1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2133    1.1    nonaka 			data += 1;
   2134    1.1    nonaka 			datalen -= 1;
   2135    1.1    nonaka 		}
   2136    1.1    nonaka 	}
   2137    1.1    nonaka }
   2138    1.1    nonaka 
   2139   1.11      matt static void
   2140   1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2141   1.11      matt {
   2142   1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2143   1.12    nonaka 	uint32_t v;
   2144   1.12    nonaka 
   2145   1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2146   1.23      matt 	size_t count = 0;
   2147   1.23      matt 
   2148   1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2149   1.23      matt 		if (count == 0) {
   2150   1.23      matt 			/*
   2151   1.23      matt 			 * If we've drained "watermark" words, we need to wait
   2152   1.23      matt 			 * a little bit so the read FIFO can refill.
   2153   1.23      matt 			 */
   2154   1.23      matt 			sdmmc_delay(10);
   2155   1.23      matt 			count = watermark;
   2156   1.23      matt 		}
   2157   1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   2158   1.11      matt 		v = le32toh(v);
   2159   1.11      matt 		*(uint32_t *)data = v;
   2160   1.11      matt 		data += 4;
   2161   1.11      matt 		datalen -= 4;
   2162   1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2163   1.23      matt 		count--;
   2164   1.11      matt 	}
   2165   1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2166   1.23      matt 		if (count == 0) {
   2167   1.23      matt 			sdmmc_delay(10);
   2168   1.23      matt 		}
   2169   1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   2170   1.11      matt 		v = le32toh(v);
   2171   1.11      matt 		do {
   2172   1.11      matt 			*data++ = v;
   2173   1.11      matt 			v >>= 8;
   2174   1.11      matt 		} while (--datalen > 0);
   2175   1.11      matt 	}
   2176   1.11      matt }
   2177   1.11      matt 
   2178   1.11      matt static void
   2179   1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2180   1.11      matt {
   2181   1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2182   1.12    nonaka 	uint32_t v;
   2183   1.12    nonaka 
   2184   1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2185   1.23      matt 	size_t count = watermark;
   2186   1.23      matt 
   2187   1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2188   1.23      matt 		if (count == 0) {
   2189   1.23      matt 			sdmmc_delay(10);
   2190   1.23      matt 			count = watermark;
   2191   1.23      matt 		}
   2192   1.12    nonaka 		v = *(uint32_t *)data;
   2193   1.11      matt 		v = htole32(v);
   2194   1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   2195   1.11      matt 		data += 4;
   2196   1.11      matt 		datalen -= 4;
   2197   1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2198   1.23      matt 		count--;
   2199   1.11      matt 	}
   2200   1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2201   1.23      matt 		if (count == 0) {
   2202   1.23      matt 			sdmmc_delay(10);
   2203   1.23      matt 		}
   2204   1.12    nonaka 		v = *(uint32_t *)data;
   2205   1.11      matt 		v = htole32(v);
   2206   1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   2207   1.11      matt 	}
   2208   1.11      matt }
   2209   1.11      matt 
   2210    1.1    nonaka /* Prepare for another command. */
   2211    1.1    nonaka static int
   2212    1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2213    1.1    nonaka {
   2214    1.1    nonaka 	int timo;
   2215    1.1    nonaka 
   2216   1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   2217   1.78   mlelstv 
   2218    1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2219    1.1    nonaka 
   2220   1.35  riastrad 	/* Request the reset.  */
   2221    1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2222   1.35  riastrad 
   2223   1.35  riastrad 	/*
   2224   1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   2225   1.35  riastrad 	 * acknowledge the reset.
   2226   1.35  riastrad 	 */
   2227   1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2228   1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2229   1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   2230   1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2231   1.35  riastrad 				break;
   2232   1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   2233   1.35  riastrad 			sdmmc_delay(1);
   2234   1.35  riastrad 		}
   2235   1.90   mlelstv 		if (timo == 0) {
   2236   1.84   mlelstv 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2237   1.35  riastrad 			return ETIMEDOUT;
   2238   1.90   mlelstv 		}
   2239   1.35  riastrad 	}
   2240   1.35  riastrad 
   2241   1.35  riastrad 	/*
   2242   1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   2243   1.35  riastrad 	 * the reset has completed.
   2244   1.35  riastrad 	 */
   2245    1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   2246    1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2247    1.1    nonaka 			break;
   2248    1.1    nonaka 		sdmmc_delay(10000);
   2249    1.1    nonaka 	}
   2250    1.1    nonaka 	if (timo == 0) {
   2251    1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2252    1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2253    1.1    nonaka 		return ETIMEDOUT;
   2254    1.1    nonaka 	}
   2255    1.1    nonaka 
   2256   1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2257   1.53    nonaka 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2258   1.11      matt 	}
   2259   1.11      matt 
   2260    1.1    nonaka 	return 0;
   2261    1.1    nonaka }
   2262    1.1    nonaka 
   2263    1.1    nonaka static int
   2264   1.88   mlelstv sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2265    1.1    nonaka {
   2266   1.84   mlelstv 	int status, error, nointr;
   2267    1.1    nonaka 
   2268   1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   2269   1.65  jmcneill 
   2270    1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   2271    1.1    nonaka 
   2272   1.84   mlelstv 	nointr = 0;
   2273    1.1    nonaka 	status = hp->intr_status & mask;
   2274    1.1    nonaka 	while (status == 0) {
   2275   1.65  jmcneill 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2276    1.1    nonaka 		    == EWOULDBLOCK) {
   2277   1.84   mlelstv 			nointr = 1;
   2278    1.1    nonaka 			break;
   2279    1.1    nonaka 		}
   2280    1.1    nonaka 		status = hp->intr_status & mask;
   2281    1.1    nonaka 	}
   2282   1.84   mlelstv 	error = hp->intr_error_status;
   2283   1.84   mlelstv 
   2284   1.84   mlelstv 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2285   1.84   mlelstv 	    error));
   2286   1.84   mlelstv 
   2287    1.1    nonaka 	hp->intr_status &= ~status;
   2288   1.84   mlelstv 	hp->intr_error_status &= ~error;
   2289    1.1    nonaka 
   2290   1.84   mlelstv 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2291   1.84   mlelstv 		if (ISSET(error, SDHC_DMA_ERROR))
   2292   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"dma error\n");
   2293   1.84   mlelstv 		if (ISSET(error, SDHC_ADMA_ERROR))
   2294   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"adma error\n");
   2295   1.84   mlelstv 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2296   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2297   1.84   mlelstv 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2298   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2299   1.84   mlelstv 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2300   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2301   1.84   mlelstv 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2302   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2303   1.84   mlelstv 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2304   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2305   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2306   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2307   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2308   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2309   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2310   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2311   1.88   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2312   1.88   mlelstv 			if (!probing)
   2313   1.88   mlelstv 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2314   1.88   mlelstv #ifdef SDHC_DEBUG
   2315   1.88   mlelstv 			else if (sdhcdebug > 0)
   2316   1.88   mlelstv 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2317   1.88   mlelstv #endif
   2318   1.88   mlelstv 		}
   2319   1.84   mlelstv 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2320   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2321   1.84   mlelstv 				(error & ~SDHC_EINTR_STATUS_MASK));
   2322   1.84   mlelstv 		if (error == 0)
   2323   1.84   mlelstv 			device_printf(hp->sc->sc_dev,"no error\n");
   2324   1.84   mlelstv 
   2325   1.84   mlelstv 		/* Command timeout has higher priority than command complete. */
   2326   1.84   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2327   1.84   mlelstv 			CLR(status, SDHC_COMMAND_COMPLETE);
   2328   1.84   mlelstv 
   2329   1.84   mlelstv 		/* Transfer complete has higher priority than data timeout. */
   2330   1.84   mlelstv 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2331   1.84   mlelstv 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2332   1.84   mlelstv 	}
   2333   1.47     skrll 
   2334   1.84   mlelstv 	if (nointr ||
   2335   1.84   mlelstv 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2336   1.84   mlelstv 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2337   1.84   mlelstv 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2338    1.1    nonaka 		hp->intr_error_status = 0;
   2339    1.1    nonaka 		status = 0;
   2340    1.1    nonaka 	}
   2341    1.1    nonaka 
   2342    1.1    nonaka 	return status;
   2343    1.1    nonaka }
   2344    1.1    nonaka 
   2345    1.1    nonaka /*
   2346    1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2347    1.1    nonaka  */
   2348    1.1    nonaka int
   2349    1.1    nonaka sdhc_intr(void *arg)
   2350    1.1    nonaka {
   2351    1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2352    1.1    nonaka 	struct sdhc_host *hp;
   2353    1.1    nonaka 	int done = 0;
   2354    1.1    nonaka 	uint16_t status;
   2355    1.1    nonaka 	uint16_t error;
   2356    1.1    nonaka 
   2357    1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   2358   1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2359    1.1    nonaka 		hp = sc->sc_host[host];
   2360    1.1    nonaka 		if (hp == NULL)
   2361    1.1    nonaka 			continue;
   2362    1.1    nonaka 
   2363   1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   2364   1.65  jmcneill 
   2365   1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2366   1.11      matt 			/* Find out which interrupts are pending. */
   2367   1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2368   1.11      matt 			status = xstatus;
   2369   1.11      matt 			error = xstatus >> 16;
   2370   1.93       ryo 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2371   1.93       ryo 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2372   1.93       ryo 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2373   1.93       ryo 				/* read again due to uSDHC errata */
   2374   1.93       ryo 				status = xstatus = HREAD4(hp,
   2375   1.93       ryo 				    SDHC_NINTR_STATUS);
   2376   1.93       ryo 				error = xstatus >> 16;
   2377   1.93       ryo 			}
   2378   1.93       ryo 			if (ISSET(sc->sc_flags,
   2379   1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2380   1.87   mlelstv 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2381   1.87   mlelstv 					SET(status, SDHC_ERROR_INTERRUPT);
   2382   1.87   mlelstv 			}
   2383   1.22      matt 			if (error)
   2384   1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   2385   1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2386   1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2387   1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2388   1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2389   1.11      matt 		} else {
   2390   1.11      matt 			/* Find out which interrupts are pending. */
   2391   1.11      matt 			error = 0;
   2392   1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2393   1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2394   1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2395   1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2396   1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2397   1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2398   1.11      matt 				/* Acknowledge error interrupts. */
   2399   1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2400   1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2401   1.11      matt 			}
   2402   1.11      matt 		}
   2403   1.47     skrll 
   2404   1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2405   1.11      matt 		    status, error));
   2406    1.1    nonaka 
   2407    1.1    nonaka 		/* Claim this interrupt. */
   2408    1.1    nonaka 		done = 1;
   2409    1.1    nonaka 
   2410   1.84   mlelstv 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2411   1.84   mlelstv 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2412   1.63  jmcneill 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2413   1.63  jmcneill 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2414   1.63  jmcneill 			    adma_err);
   2415   1.63  jmcneill 		}
   2416   1.63  jmcneill 
   2417    1.1    nonaka 		/*
   2418    1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   2419    1.1    nonaka 		 */
   2420    1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2421   1.46  jakllsch 			if (hp->sdmmc != NULL) {
   2422   1.46  jakllsch 				sdmmc_needs_discover(hp->sdmmc);
   2423   1.46  jakllsch 			}
   2424   1.93       ryo 			if (ISSET(sc->sc_flags,
   2425   1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2426   1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2427   1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2428   1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2429   1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2430   1.11      matt 			}
   2431    1.9      matt 		}
   2432    1.1    nonaka 
   2433    1.1    nonaka 		/*
   2434   1.80  jmcneill 		 * Schedule re-tuning process (UHS).
   2435   1.80  jmcneill 		 */
   2436   1.80  jmcneill 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2437   1.80  jmcneill 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2438   1.80  jmcneill 		}
   2439   1.80  jmcneill 
   2440   1.80  jmcneill 		/*
   2441    1.1    nonaka 		 * Wake up the blocking process to service command
   2442    1.1    nonaka 		 * related interrupt(s).
   2443    1.1    nonaka 		 */
   2444   1.86   mlelstv 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2445   1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2446    1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2447   1.84   mlelstv 			hp->intr_error_status |= error;
   2448    1.1    nonaka 			hp->intr_status |= status;
   2449   1.93       ryo 			if (ISSET(sc->sc_flags,
   2450   1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2451   1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2452   1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2453   1.11      matt 			}
   2454    1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   2455    1.1    nonaka 		}
   2456    1.1    nonaka 
   2457    1.1    nonaka 		/*
   2458    1.1    nonaka 		 * Service SD card interrupts.
   2459    1.1    nonaka 		 */
   2460   1.93       ryo 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2461   1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2462    1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2463    1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2464    1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   2465    1.1    nonaka 		}
   2466   1.65  jmcneill next_port:
   2467   1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   2468    1.1    nonaka 	}
   2469    1.1    nonaka 
   2470    1.1    nonaka 	return done;
   2471    1.1    nonaka }
   2472    1.1    nonaka 
   2473   1.65  jmcneill kmutex_t *
   2474   1.65  jmcneill sdhc_host_lock(struct sdhc_host *hp)
   2475   1.65  jmcneill {
   2476   1.65  jmcneill 	return &hp->intr_lock;
   2477   1.65  jmcneill }
   2478   1.65  jmcneill 
   2479   1.99    nonaka uint8_t
   2480   1.99    nonaka sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2481   1.99    nonaka {
   2482   1.99    nonaka 	return HREAD1(hp, reg);
   2483   1.99    nonaka }
   2484   1.99    nonaka 
   2485   1.99    nonaka uint16_t
   2486   1.99    nonaka sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2487   1.99    nonaka {
   2488   1.99    nonaka 	return HREAD2(hp, reg);
   2489   1.99    nonaka }
   2490   1.99    nonaka 
   2491   1.99    nonaka uint32_t
   2492   1.99    nonaka sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2493   1.99    nonaka {
   2494   1.99    nonaka 	return HREAD4(hp, reg);
   2495   1.99    nonaka }
   2496   1.99    nonaka 
   2497   1.99    nonaka void
   2498   1.99    nonaka sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2499   1.99    nonaka {
   2500   1.99    nonaka 	HWRITE1(hp, reg, val);
   2501   1.99    nonaka }
   2502   1.99    nonaka 
   2503   1.99    nonaka void
   2504   1.99    nonaka sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2505   1.99    nonaka {
   2506   1.99    nonaka 	HWRITE2(hp, reg, val);
   2507   1.99    nonaka }
   2508   1.99    nonaka 
   2509   1.99    nonaka void
   2510   1.99    nonaka sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2511   1.99    nonaka {
   2512   1.99    nonaka 	HWRITE4(hp, reg, val);
   2513   1.99    nonaka }
   2514   1.99    nonaka 
   2515    1.1    nonaka #ifdef SDHC_DEBUG
   2516    1.1    nonaka void
   2517    1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   2518    1.1    nonaka {
   2519    1.1    nonaka 
   2520    1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2521    1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2522   1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2523   1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2524   1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   2525    1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2526    1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2527    1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2528    1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2529    1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2530    1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2531    1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2532    1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2533    1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2534    1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2535    1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2536    1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2537    1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2538    1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   2539    1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2540    1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2541    1.1    nonaka }
   2542    1.1    nonaka #endif
   2543