sdhc.c revision 1.12 1 1.12 nonaka /* $NetBSD: sdhc.c,v 1.12 2012/03/02 18:20:33 nonaka Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.12 nonaka __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.12 2012/03/02 18:20:33 nonaka Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/kthread.h>
36 1.1 nonaka #include <sys/malloc.h>
37 1.1 nonaka #include <sys/systm.h>
38 1.1 nonaka #include <sys/mutex.h>
39 1.1 nonaka #include <sys/condvar.h>
40 1.1 nonaka
41 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
42 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
45 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
46 1.1 nonaka
47 1.1 nonaka #ifdef SDHC_DEBUG
48 1.1 nonaka int sdhcdebug = 1;
49 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
51 1.1 nonaka #else
52 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
53 1.1 nonaka #endif
54 1.1 nonaka
55 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
56 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
57 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
58 1.1 nonaka #define SDHC_DMA_TIMEOUT hz
59 1.1 nonaka
60 1.1 nonaka struct sdhc_host {
61 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
62 1.1 nonaka
63 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
64 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
65 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
66 1.1 nonaka
67 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
68 1.1 nonaka
69 1.1 nonaka struct kmutex host_mtx;
70 1.1 nonaka
71 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
72 1.1 nonaka int maxblklen; /* maximum block length */
73 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
74 1.1 nonaka
75 1.1 nonaka uint8_t regs[14]; /* host controller state */
76 1.1 nonaka
77 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
78 1.1 nonaka uint16_t intr_error_status; /* soft error status */
79 1.1 nonaka struct kmutex intr_mtx;
80 1.1 nonaka struct kcondvar intr_cv;
81 1.1 nonaka
82 1.12 nonaka int specver; /* spec. version */
83 1.12 nonaka
84 1.1 nonaka uint32_t flags; /* flags for this host */
85 1.1 nonaka #define SHF_USE_DMA 0x0001
86 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
87 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
88 1.1 nonaka };
89 1.1 nonaka
90 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 1.1 nonaka
92 1.11 matt static uint8_t
93 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
94 1.11 matt {
95 1.12 nonaka
96 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
97 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
98 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
99 1.11 matt }
100 1.11 matt
101 1.11 matt static uint16_t
102 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
103 1.11 matt {
104 1.12 nonaka
105 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
106 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
107 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
108 1.11 matt }
109 1.11 matt
110 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
111 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
112 1.11 matt #define HREAD4(hp, reg) \
113 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
114 1.11 matt
115 1.11 matt
116 1.11 matt static void
117 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
118 1.11 matt {
119 1.12 nonaka
120 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
121 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
122 1.11 matt } else {
123 1.11 matt const size_t shift = 8 * (o & 3);
124 1.11 matt o &= -4;
125 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
126 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
127 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
128 1.11 matt }
129 1.11 matt }
130 1.11 matt
131 1.11 matt static void
132 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
133 1.11 matt {
134 1.12 nonaka
135 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
136 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
137 1.11 matt } else {
138 1.11 matt const size_t shift = 8 * (o & 2);
139 1.11 matt o &= -4;
140 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
141 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
142 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
143 1.11 matt }
144 1.11 matt }
145 1.11 matt
146 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
147 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
148 1.1 nonaka #define HWRITE4(hp, reg, val) \
149 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
150 1.11 matt
151 1.1 nonaka #define HCLR1(hp, reg, bits) \
152 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
153 1.1 nonaka #define HCLR2(hp, reg, bits) \
154 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
155 1.11 matt #define HCLR4(hp, reg, bits) \
156 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
157 1.1 nonaka #define HSET1(hp, reg, bits) \
158 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
159 1.1 nonaka #define HSET2(hp, reg, bits) \
160 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
161 1.11 matt #define HSET4(hp, reg, bits) \
162 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
163 1.1 nonaka
164 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
165 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
166 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
167 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
168 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
169 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
170 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
171 1.1 nonaka static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
172 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
173 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
174 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
175 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
176 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
177 1.1 nonaka struct sdmmc_command *);
178 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
179 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
180 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
181 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
182 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
183 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
184 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
185 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
186 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 1.11 matt
190 1.1 nonaka
191 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
192 1.1 nonaka /* host controller reset */
193 1.1 nonaka sdhc_host_reset,
194 1.1 nonaka
195 1.1 nonaka /* host controller capabilities */
196 1.1 nonaka sdhc_host_ocr,
197 1.1 nonaka sdhc_host_maxblklen,
198 1.1 nonaka
199 1.1 nonaka /* card detection */
200 1.1 nonaka sdhc_card_detect,
201 1.1 nonaka
202 1.1 nonaka /* write protect */
203 1.1 nonaka sdhc_write_protect,
204 1.1 nonaka
205 1.1 nonaka /* bus power, clock frequency and width */
206 1.1 nonaka sdhc_bus_power,
207 1.1 nonaka sdhc_bus_clock,
208 1.1 nonaka sdhc_bus_width,
209 1.8 kiyohara sdhc_bus_rod,
210 1.1 nonaka
211 1.1 nonaka /* command execution */
212 1.1 nonaka sdhc_exec_command,
213 1.1 nonaka
214 1.1 nonaka /* card interrupt */
215 1.1 nonaka sdhc_card_enable_intr,
216 1.1 nonaka sdhc_card_intr_ack
217 1.1 nonaka };
218 1.1 nonaka
219 1.1 nonaka /*
220 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
221 1.1 nonaka * host controller standard register set. (1.3)
222 1.1 nonaka */
223 1.1 nonaka int
224 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
225 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
226 1.1 nonaka {
227 1.1 nonaka struct sdmmcbus_attach_args saa;
228 1.1 nonaka struct sdhc_host *hp;
229 1.1 nonaka uint32_t caps;
230 1.1 nonaka uint16_t sdhcver;
231 1.1 nonaka
232 1.1 nonaka sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
233 1.12 nonaka aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
234 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
235 1.12 nonaka case SDHC_SPEC_VERS_100:
236 1.12 nonaka aprint_normal("1.0");
237 1.12 nonaka break;
238 1.12 nonaka
239 1.12 nonaka case SDHC_SPEC_VERS_200:
240 1.12 nonaka aprint_normal("2.0");
241 1.1 nonaka break;
242 1.1 nonaka
243 1.12 nonaka case SDHC_SPEC_VERS_300:
244 1.12 nonaka aprint_normal("3.0");
245 1.9 matt break;
246 1.9 matt
247 1.1 nonaka default:
248 1.12 nonaka aprint_normal("unknown version(0x%x)",
249 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
250 1.1 nonaka break;
251 1.1 nonaka }
252 1.12 nonaka aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
253 1.1 nonaka
254 1.1 nonaka /* Allocate one more host structure. */
255 1.1 nonaka hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
256 1.1 nonaka if (hp == NULL) {
257 1.1 nonaka aprint_error_dev(sc->sc_dev,
258 1.1 nonaka "couldn't alloc memory (sdhc host)\n");
259 1.1 nonaka goto err1;
260 1.1 nonaka }
261 1.1 nonaka sc->sc_host[sc->sc_nhosts++] = hp;
262 1.1 nonaka
263 1.1 nonaka /* Fill in the new host structure. */
264 1.1 nonaka hp->sc = sc;
265 1.1 nonaka hp->iot = iot;
266 1.1 nonaka hp->ioh = ioh;
267 1.1 nonaka hp->dmat = sc->sc_dmat;
268 1.12 nonaka hp->specver = SDHC_SPEC_VERSION(sdhcver);
269 1.1 nonaka
270 1.1 nonaka mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
271 1.1 nonaka mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
272 1.1 nonaka cv_init(&hp->intr_cv, "sdhcintr");
273 1.1 nonaka
274 1.1 nonaka /*
275 1.3 uebayasi * Reset the host controller and enable interrupts.
276 1.1 nonaka */
277 1.1 nonaka (void)sdhc_host_reset(hp);
278 1.1 nonaka
279 1.1 nonaka /* Determine host capabilities. */
280 1.1 nonaka mutex_enter(&hp->host_mtx);
281 1.1 nonaka caps = HREAD4(hp, SDHC_CAPABILITIES);
282 1.1 nonaka mutex_exit(&hp->host_mtx);
283 1.1 nonaka
284 1.1 nonaka #if notyet
285 1.1 nonaka /* Use DMA if the host system and the controller support it. */
286 1.1 nonaka if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
287 1.1 nonaka || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
288 1.1 nonaka && ISSET(caps, SDHC_DMA_SUPPORT)))) {
289 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
290 1.1 nonaka aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
291 1.1 nonaka }
292 1.1 nonaka #endif
293 1.1 nonaka
294 1.1 nonaka /*
295 1.1 nonaka * Determine the base clock frequency. (2.2.24)
296 1.1 nonaka */
297 1.12 nonaka hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
298 1.1 nonaka if (hp->clkbase == 0) {
299 1.9 matt if (sc->sc_clkbase == 0) {
300 1.9 matt /* The attachment driver must tell us. */
301 1.12 nonaka aprint_error_dev(sc->sc_dev,
302 1.12 nonaka "unknown base clock frequency\n");
303 1.9 matt goto err;
304 1.9 matt }
305 1.9 matt hp->clkbase = sc->sc_clkbase;
306 1.9 matt }
307 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
308 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
309 1.1 nonaka aprint_error_dev(sc->sc_dev,
310 1.1 nonaka "base clock frequency out of range: %u MHz\n",
311 1.1 nonaka hp->clkbase / 1000);
312 1.1 nonaka goto err;
313 1.1 nonaka }
314 1.1 nonaka DPRINTF(1,("%s: base clock frequency %u MHz\n",
315 1.1 nonaka device_xname(sc->sc_dev), hp->clkbase / 1000));
316 1.1 nonaka
317 1.1 nonaka /*
318 1.1 nonaka * XXX Set the data timeout counter value according to
319 1.1 nonaka * capabilities. (2.2.15)
320 1.1 nonaka */
321 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
322 1.11 matt #if 0
323 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
324 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
325 1.11 matt #endif
326 1.1 nonaka
327 1.1 nonaka /*
328 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
329 1.1 nonaka */
330 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
331 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
332 1.11 matt }
333 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
334 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
335 1.11 matt }
336 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
337 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
338 1.11 matt }
339 1.1 nonaka
340 1.1 nonaka /*
341 1.1 nonaka * Determine the maximum block length supported by the host
342 1.1 nonaka * controller. (2.2.24)
343 1.1 nonaka */
344 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
345 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
346 1.1 nonaka hp->maxblklen = 512;
347 1.1 nonaka break;
348 1.1 nonaka
349 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
350 1.1 nonaka hp->maxblklen = 1024;
351 1.1 nonaka break;
352 1.1 nonaka
353 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
354 1.1 nonaka hp->maxblklen = 2048;
355 1.1 nonaka break;
356 1.1 nonaka
357 1.9 matt case SDHC_MAX_BLK_LEN_4096:
358 1.9 matt hp->maxblklen = 4096;
359 1.9 matt break;
360 1.9 matt
361 1.1 nonaka default:
362 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
363 1.1 nonaka goto err;
364 1.1 nonaka }
365 1.1 nonaka DPRINTF(1, ("%s: max block length %u byte%s\n",
366 1.1 nonaka device_xname(sc->sc_dev), hp->maxblklen,
367 1.1 nonaka hp->maxblklen > 1 ? "s" : ""));
368 1.1 nonaka
369 1.1 nonaka /*
370 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
371 1.1 nonaka * not invoke any chipset functions before it is attached.)
372 1.1 nonaka */
373 1.1 nonaka memset(&saa, 0, sizeof(saa));
374 1.1 nonaka saa.saa_busname = "sdmmc";
375 1.1 nonaka saa.saa_sct = &sdhc_functions;
376 1.1 nonaka saa.saa_sch = hp;
377 1.1 nonaka saa.saa_dmat = hp->dmat;
378 1.1 nonaka saa.saa_clkmin = hp->clkbase / 256;
379 1.1 nonaka saa.saa_clkmax = hp->clkbase;
380 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
381 1.11 matt saa.saa_clkmin /= 2046;
382 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
383 1.9 matt saa.saa_clkmin /= 16;
384 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
385 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
386 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
387 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
388 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
389 1.1 nonaka #if notyet
390 1.1 nonaka if (ISSET(hp->flags, SHF_USE_DMA))
391 1.1 nonaka saa.saa_caps |= SMC_CAPS_DMA;
392 1.1 nonaka #endif
393 1.1 nonaka hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
394 1.1 nonaka
395 1.1 nonaka return 0;
396 1.1 nonaka
397 1.1 nonaka err:
398 1.1 nonaka cv_destroy(&hp->intr_cv);
399 1.1 nonaka mutex_destroy(&hp->intr_mtx);
400 1.1 nonaka mutex_destroy(&hp->host_mtx);
401 1.1 nonaka free(hp, M_DEVBUF);
402 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
403 1.1 nonaka err1:
404 1.1 nonaka return 1;
405 1.1 nonaka }
406 1.1 nonaka
407 1.7 nonaka int
408 1.7 nonaka sdhc_detach(device_t dev, int flags)
409 1.7 nonaka {
410 1.7 nonaka struct sdhc_host *hp = (struct sdhc_host *)dev;
411 1.7 nonaka struct sdhc_softc *sc = hp->sc;
412 1.7 nonaka int rv = 0;
413 1.7 nonaka
414 1.7 nonaka if (hp->sdmmc)
415 1.7 nonaka rv = config_detach(hp->sdmmc, flags);
416 1.7 nonaka
417 1.7 nonaka cv_destroy(&hp->intr_cv);
418 1.7 nonaka mutex_destroy(&hp->intr_mtx);
419 1.7 nonaka mutex_destroy(&hp->host_mtx);
420 1.7 nonaka free(hp, M_DEVBUF);
421 1.7 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
422 1.7 nonaka
423 1.7 nonaka return rv;
424 1.7 nonaka }
425 1.7 nonaka
426 1.1 nonaka bool
427 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
428 1.1 nonaka {
429 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
430 1.1 nonaka struct sdhc_host *hp;
431 1.12 nonaka size_t i;
432 1.1 nonaka
433 1.1 nonaka /* XXX poll for command completion or suspend command
434 1.1 nonaka * in progress */
435 1.1 nonaka
436 1.1 nonaka /* Save the host controller state. */
437 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
438 1.1 nonaka hp = sc->sc_host[n];
439 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
440 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
441 1.11 matt uint32_t v = HREAD4(hp, i);
442 1.12 nonaka hp->regs[i + 0] = (v >> 0);
443 1.12 nonaka hp->regs[i + 1] = (v >> 8);
444 1.12 nonaka hp->regs[i + 2] = (v >> 16);
445 1.12 nonaka hp->regs[i + 3] = (v >> 24);
446 1.11 matt }
447 1.11 matt } else {
448 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
449 1.11 matt hp->regs[i] = HREAD1(hp, i);
450 1.11 matt }
451 1.11 matt }
452 1.1 nonaka }
453 1.1 nonaka return true;
454 1.1 nonaka }
455 1.1 nonaka
456 1.1 nonaka bool
457 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
458 1.1 nonaka {
459 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
460 1.1 nonaka struct sdhc_host *hp;
461 1.12 nonaka size_t i;
462 1.1 nonaka
463 1.1 nonaka /* Restore the host controller state. */
464 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
465 1.1 nonaka hp = sc->sc_host[n];
466 1.1 nonaka (void)sdhc_host_reset(hp);
467 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
468 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
469 1.11 matt HWRITE4(hp, i,
470 1.12 nonaka (hp->regs[i + 0] << 0)
471 1.12 nonaka | (hp->regs[i + 1] << 8)
472 1.12 nonaka | (hp->regs[i + 2] << 16)
473 1.12 nonaka | (hp->regs[i + 3] << 24));
474 1.11 matt }
475 1.11 matt } else {
476 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
477 1.11 matt HWRITE1(hp, i, hp->regs[i]);
478 1.11 matt }
479 1.11 matt }
480 1.1 nonaka }
481 1.1 nonaka return true;
482 1.1 nonaka }
483 1.1 nonaka
484 1.1 nonaka bool
485 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
486 1.1 nonaka {
487 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
488 1.1 nonaka struct sdhc_host *hp;
489 1.1 nonaka
490 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
491 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
492 1.1 nonaka hp = sc->sc_host[i];
493 1.1 nonaka (void)sdhc_host_reset(hp);
494 1.1 nonaka }
495 1.1 nonaka return true;
496 1.1 nonaka }
497 1.1 nonaka
498 1.1 nonaka /*
499 1.1 nonaka * Reset the host controller. Called during initialization, when
500 1.1 nonaka * cards are removed, upon resume, and during error recovery.
501 1.1 nonaka */
502 1.1 nonaka static int
503 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
504 1.1 nonaka {
505 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
506 1.11 matt uint32_t sdhcimask;
507 1.1 nonaka int error;
508 1.1 nonaka
509 1.1 nonaka /* Don't lock. */
510 1.1 nonaka
511 1.1 nonaka /* Disable all interrupts. */
512 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
513 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
514 1.11 matt } else {
515 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
516 1.11 matt }
517 1.1 nonaka
518 1.1 nonaka /*
519 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
520 1.1 nonaka * the controller to clear the reset bit.
521 1.1 nonaka */
522 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
523 1.1 nonaka if (error)
524 1.1 nonaka goto out;
525 1.1 nonaka
526 1.1 nonaka /* Set data timeout counter value to max for now. */
527 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
528 1.11 matt #if 0
529 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
530 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
531 1.11 matt #endif
532 1.1 nonaka
533 1.1 nonaka /* Enable interrupts. */
534 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
535 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
536 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
537 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
538 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
539 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
540 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
541 1.11 matt sdhcimask ^=
542 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
543 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
544 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
545 1.11 matt } else {
546 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
547 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
548 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
549 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
550 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
551 1.11 matt }
552 1.1 nonaka
553 1.1 nonaka out:
554 1.1 nonaka return error;
555 1.1 nonaka }
556 1.1 nonaka
557 1.1 nonaka static int
558 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
559 1.1 nonaka {
560 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
561 1.1 nonaka int error;
562 1.1 nonaka
563 1.1 nonaka mutex_enter(&hp->host_mtx);
564 1.1 nonaka error = sdhc_host_reset1(sch);
565 1.1 nonaka mutex_exit(&hp->host_mtx);
566 1.1 nonaka
567 1.1 nonaka return error;
568 1.1 nonaka }
569 1.1 nonaka
570 1.1 nonaka static uint32_t
571 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
572 1.1 nonaka {
573 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
574 1.1 nonaka
575 1.1 nonaka return hp->ocr;
576 1.1 nonaka }
577 1.1 nonaka
578 1.1 nonaka static int
579 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
580 1.1 nonaka {
581 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
582 1.1 nonaka
583 1.1 nonaka return hp->maxblklen;
584 1.1 nonaka }
585 1.1 nonaka
586 1.1 nonaka /*
587 1.1 nonaka * Return non-zero if the card is currently inserted.
588 1.1 nonaka */
589 1.1 nonaka static int
590 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
591 1.1 nonaka {
592 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
593 1.1 nonaka int r;
594 1.1 nonaka
595 1.1 nonaka mutex_enter(&hp->host_mtx);
596 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
597 1.1 nonaka mutex_exit(&hp->host_mtx);
598 1.1 nonaka
599 1.11 matt return r ? 1 : 0;
600 1.1 nonaka }
601 1.1 nonaka
602 1.1 nonaka /*
603 1.1 nonaka * Return non-zero if the card is currently write-protected.
604 1.1 nonaka */
605 1.1 nonaka static int
606 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
607 1.1 nonaka {
608 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
609 1.1 nonaka int r;
610 1.1 nonaka
611 1.1 nonaka mutex_enter(&hp->host_mtx);
612 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
613 1.1 nonaka mutex_exit(&hp->host_mtx);
614 1.1 nonaka
615 1.12 nonaka return r ? 0 : 1;
616 1.1 nonaka }
617 1.1 nonaka
618 1.1 nonaka /*
619 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
620 1.1 nonaka * Return zero on success.
621 1.1 nonaka */
622 1.1 nonaka static int
623 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
624 1.1 nonaka {
625 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
626 1.1 nonaka uint8_t vdd;
627 1.1 nonaka int error = 0;
628 1.1 nonaka
629 1.1 nonaka mutex_enter(&hp->host_mtx);
630 1.1 nonaka
631 1.1 nonaka /*
632 1.1 nonaka * Disable bus power before voltage change.
633 1.1 nonaka */
634 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
635 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
636 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
637 1.1 nonaka
638 1.1 nonaka /* If power is disabled, reset the host and return now. */
639 1.1 nonaka if (ocr == 0) {
640 1.1 nonaka (void)sdhc_host_reset1(hp);
641 1.1 nonaka goto out;
642 1.1 nonaka }
643 1.1 nonaka
644 1.1 nonaka /*
645 1.1 nonaka * Select the lowest voltage according to capabilities.
646 1.1 nonaka */
647 1.1 nonaka ocr &= hp->ocr;
648 1.11 matt if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
649 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
650 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
651 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
652 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
653 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
654 1.11 matt } else {
655 1.1 nonaka /* Unsupported voltage level requested. */
656 1.1 nonaka error = EINVAL;
657 1.1 nonaka goto out;
658 1.1 nonaka }
659 1.1 nonaka
660 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
661 1.11 matt /*
662 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
663 1.11 matt * voltage ramp until power rises.
664 1.11 matt */
665 1.11 matt HWRITE1(hp, SDHC_POWER_CTL,
666 1.11 matt (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
667 1.11 matt sdmmc_delay(10000);
668 1.1 nonaka
669 1.11 matt /*
670 1.11 matt * The host system may not power the bus due to battery low,
671 1.11 matt * etc. In that case, the host controller should clear the
672 1.11 matt * bus power bit.
673 1.11 matt */
674 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
675 1.11 matt error = ENXIO;
676 1.11 matt goto out;
677 1.11 matt }
678 1.1 nonaka }
679 1.1 nonaka
680 1.1 nonaka out:
681 1.1 nonaka mutex_exit(&hp->host_mtx);
682 1.1 nonaka
683 1.1 nonaka return error;
684 1.1 nonaka }
685 1.1 nonaka
686 1.1 nonaka /*
687 1.1 nonaka * Return the smallest possible base clock frequency divisor value
688 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
689 1.1 nonaka */
690 1.11 matt static bool
691 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
692 1.1 nonaka {
693 1.11 matt u_int div;
694 1.1 nonaka
695 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
696 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
697 1.11 matt if ((hp->clkbase / div) <= freq) {
698 1.11 matt *divp = SDHC_SDCLK_CGM
699 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
700 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
701 1.11 matt return true;
702 1.11 matt }
703 1.11 matt }
704 1.11 matt /* No divisor found. */
705 1.11 matt return false;
706 1.11 matt }
707 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
708 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
709 1.11 matt u_int roundup = dvs & 1;
710 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
711 1.11 matt if (dvs + roundup <= 16) {
712 1.11 matt dvs += roundup - 1;
713 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
714 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
715 1.11 matt DPRINTF(2,
716 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
717 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
718 1.11 matt return true;
719 1.9 matt }
720 1.11 matt /*
721 1.11 matt * If we drop bits, we need to round up the divisor.
722 1.11 matt */
723 1.11 matt roundup |= dvs & 1;
724 1.9 matt }
725 1.11 matt panic("%s: can't find divisor for freq %u", HDEVNAME(hp), freq);
726 1.9 matt } else {
727 1.9 matt for (div = 1; div <= 256; div *= 2) {
728 1.11 matt if ((hp->clkbase / div) <= freq) {
729 1.11 matt *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
730 1.11 matt return true;
731 1.11 matt }
732 1.9 matt }
733 1.9 matt }
734 1.1 nonaka /* No divisor found. */
735 1.11 matt return false;
736 1.1 nonaka }
737 1.1 nonaka
738 1.1 nonaka /*
739 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
740 1.1 nonaka * Return zero on success.
741 1.1 nonaka */
742 1.1 nonaka static int
743 1.1 nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
744 1.1 nonaka {
745 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
746 1.11 matt u_int div;
747 1.11 matt u_int timo;
748 1.1 nonaka int error = 0;
749 1.2 cegger #ifdef DIAGNOSTIC
750 1.12 nonaka bool present;
751 1.1 nonaka
752 1.1 nonaka mutex_enter(&hp->host_mtx);
753 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
754 1.2 cegger mutex_exit(&hp->host_mtx);
755 1.1 nonaka
756 1.1 nonaka /* Must not stop the clock if commands are in progress. */
757 1.12 nonaka if (present && sdhc_card_detect(hp)) {
758 1.1 nonaka printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
759 1.1 nonaka device_xname(hp->sc->sc_dev));
760 1.12 nonaka }
761 1.1 nonaka #endif
762 1.1 nonaka
763 1.2 cegger mutex_enter(&hp->host_mtx);
764 1.2 cegger
765 1.1 nonaka /*
766 1.1 nonaka * Stop SD clock before changing the frequency.
767 1.1 nonaka */
768 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
769 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
770 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
771 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
772 1.11 matt goto out;
773 1.11 matt }
774 1.11 matt } else {
775 1.11 matt HWRITE2(hp, SDHC_CLOCK_CTL, 0);
776 1.11 matt if (freq == SDMMC_SDCLK_OFF)
777 1.11 matt goto out;
778 1.11 matt }
779 1.1 nonaka
780 1.1 nonaka /*
781 1.1 nonaka * Set the minimum base clock frequency divisor.
782 1.1 nonaka */
783 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
784 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
785 1.1 nonaka error = EINVAL;
786 1.1 nonaka goto out;
787 1.1 nonaka }
788 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
789 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
790 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
791 1.11 matt } else {
792 1.11 matt HWRITE2(hp, SDHC_CLOCK_CTL, div);
793 1.11 matt }
794 1.1 nonaka
795 1.1 nonaka /*
796 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
797 1.1 nonaka */
798 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
799 1.11 matt sdmmc_delay(10000);
800 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
801 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
802 1.11 matt } else {
803 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
804 1.11 matt for (timo = 1000; timo > 0; timo--) {
805 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
806 1.12 nonaka SDHC_INTCLK_STABLE))
807 1.11 matt break;
808 1.11 matt sdmmc_delay(10);
809 1.11 matt }
810 1.11 matt if (timo == 0) {
811 1.11 matt error = ETIMEDOUT;
812 1.11 matt goto out;
813 1.11 matt }
814 1.1 nonaka }
815 1.1 nonaka
816 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
817 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
818 1.11 matt /*
819 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
820 1.11 matt * So delay for that time + slop and then
821 1.11 matt * check a few times for completion.
822 1.11 matt */
823 1.11 matt sdmmc_delay(210);
824 1.11 matt for (timo = 10; timo > 0; timo--) {
825 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
826 1.11 matt SDHC_INIT_ACTIVE))
827 1.11 matt break;
828 1.11 matt sdmmc_delay(10);
829 1.11 matt }
830 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
831 1.12 nonaka
832 1.11 matt /*
833 1.11 matt * Enable SD clock.
834 1.11 matt */
835 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
836 1.11 matt } else {
837 1.11 matt /*
838 1.11 matt * Enable SD clock.
839 1.11 matt */
840 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
841 1.1 nonaka
842 1.11 matt if (freq > 25000)
843 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
844 1.11 matt else
845 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
846 1.11 matt }
847 1.8 kiyohara
848 1.1 nonaka out:
849 1.1 nonaka mutex_exit(&hp->host_mtx);
850 1.1 nonaka
851 1.1 nonaka return error;
852 1.1 nonaka }
853 1.1 nonaka
854 1.1 nonaka static int
855 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
856 1.1 nonaka {
857 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
858 1.1 nonaka int reg;
859 1.1 nonaka
860 1.1 nonaka switch (width) {
861 1.1 nonaka case 1:
862 1.1 nonaka case 4:
863 1.1 nonaka break;
864 1.1 nonaka
865 1.11 matt case 8:
866 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
867 1.11 matt break;
868 1.11 matt /* FALLTHROUGH */
869 1.1 nonaka default:
870 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
871 1.1 nonaka HDEVNAME(hp), width));
872 1.1 nonaka return 1;
873 1.1 nonaka }
874 1.1 nonaka
875 1.1 nonaka mutex_enter(&hp->host_mtx);
876 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
877 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
878 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
879 1.11 matt if (width == 4)
880 1.11 matt reg |= SDHC_4BIT_MODE;
881 1.11 matt else if (width == 8)
882 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
883 1.11 matt } else {
884 1.11 matt reg &= ~SDHC_4BIT_MODE;
885 1.11 matt if (width == 4)
886 1.11 matt reg |= SDHC_4BIT_MODE;
887 1.11 matt }
888 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
889 1.1 nonaka mutex_exit(&hp->host_mtx);
890 1.1 nonaka
891 1.1 nonaka return 0;
892 1.1 nonaka }
893 1.1 nonaka
894 1.8 kiyohara static int
895 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
896 1.8 kiyohara {
897 1.8 kiyohara
898 1.8 kiyohara /* Nothing ?? */
899 1.8 kiyohara return 0;
900 1.8 kiyohara }
901 1.8 kiyohara
902 1.1 nonaka static void
903 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
904 1.1 nonaka {
905 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
906 1.1 nonaka
907 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
908 1.11 matt mutex_enter(&hp->host_mtx);
909 1.11 matt if (enable) {
910 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
911 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
912 1.11 matt } else {
913 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
914 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
915 1.11 matt }
916 1.11 matt mutex_exit(&hp->host_mtx);
917 1.1 nonaka }
918 1.1 nonaka }
919 1.1 nonaka
920 1.1 nonaka static void
921 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
922 1.1 nonaka {
923 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
924 1.1 nonaka
925 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
926 1.11 matt mutex_enter(&hp->host_mtx);
927 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
928 1.11 matt mutex_exit(&hp->host_mtx);
929 1.11 matt }
930 1.1 nonaka }
931 1.1 nonaka
932 1.1 nonaka static int
933 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
934 1.1 nonaka {
935 1.1 nonaka uint32_t state;
936 1.1 nonaka int timeout;
937 1.1 nonaka
938 1.1 nonaka for (timeout = 10; timeout > 0; timeout--) {
939 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
940 1.1 nonaka return 0;
941 1.1 nonaka sdmmc_delay(10000);
942 1.1 nonaka }
943 1.1 nonaka DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
944 1.1 nonaka value, state));
945 1.1 nonaka return ETIMEDOUT;
946 1.1 nonaka }
947 1.1 nonaka
948 1.1 nonaka static void
949 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
950 1.1 nonaka {
951 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
952 1.1 nonaka int error;
953 1.1 nonaka
954 1.11 matt #if 0
955 1.11 matt if (cmd->c_data) {
956 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
957 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
958 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
959 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
960 1.11 matt } else {
961 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
962 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
963 1.11 matt }
964 1.11 matt }
965 1.11 matt #endif
966 1.11 matt
967 1.1 nonaka /*
968 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
969 1.1 nonaka */
970 1.1 nonaka error = sdhc_start_command(hp, cmd);
971 1.1 nonaka if (error) {
972 1.1 nonaka cmd->c_error = error;
973 1.1 nonaka goto out;
974 1.1 nonaka }
975 1.1 nonaka
976 1.1 nonaka /*
977 1.1 nonaka * Wait until the command phase is done, or until the command
978 1.1 nonaka * is marked done for any other reason.
979 1.1 nonaka */
980 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
981 1.1 nonaka cmd->c_error = ETIMEDOUT;
982 1.1 nonaka goto out;
983 1.1 nonaka }
984 1.1 nonaka
985 1.1 nonaka /*
986 1.1 nonaka * The host controller removes bits [0:7] from the response
987 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
988 1.1 nonaka * driver (without padding).
989 1.1 nonaka */
990 1.1 nonaka mutex_enter(&hp->host_mtx);
991 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
992 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_136)) {
993 1.1 nonaka uint8_t *p = (uint8_t *)cmd->c_resp;
994 1.1 nonaka int i;
995 1.1 nonaka
996 1.1 nonaka for (i = 0; i < 15; i++)
997 1.1 nonaka *p++ = HREAD1(hp, SDHC_RESPONSE + i);
998 1.1 nonaka } else {
999 1.1 nonaka cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
1000 1.1 nonaka }
1001 1.1 nonaka }
1002 1.1 nonaka mutex_exit(&hp->host_mtx);
1003 1.1 nonaka DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1004 1.1 nonaka
1005 1.1 nonaka /*
1006 1.1 nonaka * If the command has data to transfer in any direction,
1007 1.1 nonaka * execute the transfer now.
1008 1.1 nonaka */
1009 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1010 1.1 nonaka sdhc_transfer_data(hp, cmd);
1011 1.1 nonaka
1012 1.1 nonaka out:
1013 1.11 matt #if 0
1014 1.11 matt if (cmd->c_dmamap != NULL && cmd->c_error == 0
1015 1.11 matt && ISSET(hp->flags, SHF_USE_DMA)
1016 1.11 matt && ISSET(cmd->c_flags, SCF_CMD_READ) {
1017 1.11 matt if (((uintptr_t)cmd->c_data & PAGE_MASK) + cmd->c_datalen > PAGE_SIZE) {
1018 1.11 matt memcpy(cmd->c_data,
1019 1.11 matt (void *)hp->sc->dma_map->dm_segs[0].ds_addr,
1020 1.11 matt cmd->c_datalen);
1021 1.11 matt }
1022 1.11 matt bus_dmamap_unload(hp->sc->dt, hp->sc->dma_map);
1023 1.11 matt }
1024 1.11 matt #endif
1025 1.11 matt
1026 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1027 1.11 matt mutex_enter(&hp->host_mtx);
1028 1.11 matt /* Turn off the LED. */
1029 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1030 1.11 matt mutex_exit(&hp->host_mtx);
1031 1.11 matt }
1032 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1033 1.1 nonaka
1034 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1035 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1036 1.1 nonaka cmd->c_flags, cmd->c_error));
1037 1.1 nonaka }
1038 1.1 nonaka
1039 1.1 nonaka static int
1040 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1041 1.1 nonaka {
1042 1.11 matt struct sdhc_softc * const sc = hp->sc;
1043 1.1 nonaka uint16_t blksize = 0;
1044 1.1 nonaka uint16_t blkcount = 0;
1045 1.1 nonaka uint16_t mode;
1046 1.1 nonaka uint16_t command;
1047 1.1 nonaka int error;
1048 1.1 nonaka
1049 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1050 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1051 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1052 1.1 nonaka
1053 1.1 nonaka /*
1054 1.1 nonaka * The maximum block length for commands should be the minimum
1055 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1056 1.1 nonaka */
1057 1.1 nonaka
1058 1.1 nonaka /* Fragment the data into proper blocks. */
1059 1.1 nonaka if (cmd->c_datalen > 0) {
1060 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1061 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1062 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1063 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1064 1.11 matt aprint_error_dev(sc->sc_dev,
1065 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1066 1.1 nonaka return EINVAL;
1067 1.1 nonaka }
1068 1.1 nonaka }
1069 1.1 nonaka
1070 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1071 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1072 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1073 1.1 nonaka return EINVAL;
1074 1.1 nonaka }
1075 1.1 nonaka
1076 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1077 1.1 nonaka mode = 0;
1078 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1079 1.1 nonaka mode |= SDHC_READ_MODE;
1080 1.1 nonaka if (blkcount > 0) {
1081 1.1 nonaka mode |= SDHC_BLOCK_COUNT_ENABLE;
1082 1.1 nonaka if (blkcount > 1) {
1083 1.1 nonaka mode |= SDHC_MULTI_BLOCK_MODE;
1084 1.1 nonaka /* XXX only for memory commands? */
1085 1.1 nonaka mode |= SDHC_AUTO_CMD12_ENABLE;
1086 1.1 nonaka }
1087 1.1 nonaka }
1088 1.7 nonaka if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1089 1.7 nonaka if (cmd->c_dmamap->dm_nsegs == 1) {
1090 1.7 nonaka mode |= SDHC_DMA_ENABLE;
1091 1.7 nonaka } else {
1092 1.7 nonaka cmd->c_dmamap = NULL;
1093 1.7 nonaka }
1094 1.7 nonaka }
1095 1.1 nonaka
1096 1.1 nonaka /*
1097 1.1 nonaka * Prepare command register value. (2.2.6)
1098 1.1 nonaka */
1099 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1100 1.1 nonaka
1101 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1102 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1103 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1104 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1105 1.1 nonaka if (cmd->c_data != NULL)
1106 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1107 1.1 nonaka
1108 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1109 1.1 nonaka command |= SDHC_NO_RESPONSE;
1110 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1111 1.1 nonaka command |= SDHC_RESP_LEN_136;
1112 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1113 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1114 1.1 nonaka else
1115 1.1 nonaka command |= SDHC_RESP_LEN_48;
1116 1.1 nonaka
1117 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1118 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1119 1.1 nonaka if (error)
1120 1.1 nonaka return error;
1121 1.1 nonaka
1122 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1123 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1124 1.1 nonaka
1125 1.1 nonaka mutex_enter(&hp->host_mtx);
1126 1.1 nonaka
1127 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1128 1.11 matt /* Alert the user not to remove the card. */
1129 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1130 1.11 matt }
1131 1.1 nonaka
1132 1.7 nonaka /* Set DMA start address. */
1133 1.7 nonaka if (ISSET(mode, SDHC_DMA_ENABLE))
1134 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1135 1.7 nonaka
1136 1.1 nonaka /*
1137 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1138 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1139 1.1 nonaka */
1140 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1141 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1142 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1143 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1144 1.11 matt } else {
1145 1.11 matt HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1146 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1147 1.11 matt if (blkcount > 1)
1148 1.11 matt HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1149 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1150 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1151 1.11 matt }
1152 1.1 nonaka
1153 1.1 nonaka mutex_exit(&hp->host_mtx);
1154 1.1 nonaka
1155 1.1 nonaka return 0;
1156 1.1 nonaka }
1157 1.1 nonaka
1158 1.1 nonaka static void
1159 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1160 1.1 nonaka {
1161 1.1 nonaka int error;
1162 1.1 nonaka
1163 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1164 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1165 1.1 nonaka
1166 1.1 nonaka #ifdef SDHC_DEBUG
1167 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1168 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1169 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1170 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1171 1.1 nonaka "CMD52/53 error response flags %#x\n",
1172 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1173 1.1 nonaka }
1174 1.1 nonaka #endif
1175 1.1 nonaka
1176 1.7 nonaka if (cmd->c_dmamap != NULL)
1177 1.7 nonaka error = sdhc_transfer_data_dma(hp, cmd);
1178 1.7 nonaka else
1179 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1180 1.1 nonaka if (error)
1181 1.1 nonaka cmd->c_error = error;
1182 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1183 1.1 nonaka
1184 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1185 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1186 1.1 nonaka }
1187 1.1 nonaka
1188 1.1 nonaka static int
1189 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1190 1.7 nonaka {
1191 1.7 nonaka bus_dmamap_t dmap = cmd->c_dmamap;
1192 1.7 nonaka uint16_t blklen = cmd->c_blklen;
1193 1.7 nonaka uint16_t blkcnt = cmd->c_datalen / blklen;
1194 1.7 nonaka uint16_t remain;
1195 1.7 nonaka int error = 0;
1196 1.7 nonaka
1197 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1198 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1199 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1200 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1201 1.11 matt
1202 1.7 nonaka for (;;) {
1203 1.7 nonaka if (!sdhc_wait_intr(hp,
1204 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1205 1.7 nonaka SDHC_DMA_TIMEOUT)) {
1206 1.7 nonaka error = ETIMEDOUT;
1207 1.7 nonaka break;
1208 1.7 nonaka }
1209 1.7 nonaka
1210 1.7 nonaka /* single block mode */
1211 1.7 nonaka if (blkcnt == 1)
1212 1.7 nonaka break;
1213 1.7 nonaka
1214 1.7 nonaka /* multi block mode */
1215 1.7 nonaka remain = HREAD2(hp, SDHC_BLOCK_COUNT);
1216 1.7 nonaka if (remain == 0)
1217 1.7 nonaka break;
1218 1.7 nonaka
1219 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR,
1220 1.7 nonaka dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
1221 1.7 nonaka }
1222 1.7 nonaka
1223 1.7 nonaka #if 0
1224 1.7 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1225 1.7 nonaka SDHC_TRANSFER_TIMEOUT))
1226 1.7 nonaka error = ETIMEDOUT;
1227 1.7 nonaka #endif
1228 1.7 nonaka
1229 1.7 nonaka return error;
1230 1.7 nonaka }
1231 1.7 nonaka
1232 1.7 nonaka static int
1233 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1234 1.1 nonaka {
1235 1.1 nonaka uint8_t *data = cmd->c_data;
1236 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1237 1.11 matt u_int len, datalen;
1238 1.11 matt u_int imask;
1239 1.11 matt u_int pmask;
1240 1.1 nonaka int error = 0;
1241 1.1 nonaka
1242 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1243 1.11 matt imask = SDHC_BUFFER_READ_READY;
1244 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1245 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1246 1.11 matt pio_func = esdhc_read_data_pio;
1247 1.11 matt } else {
1248 1.11 matt pio_func = sdhc_read_data_pio;
1249 1.11 matt }
1250 1.11 matt } else {
1251 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1252 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1253 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1254 1.11 matt pio_func = esdhc_write_data_pio;
1255 1.11 matt } else {
1256 1.11 matt pio_func = sdhc_write_data_pio;
1257 1.11 matt }
1258 1.11 matt }
1259 1.1 nonaka datalen = cmd->c_datalen;
1260 1.1 nonaka
1261 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1262 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1263 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1264 1.11 matt
1265 1.1 nonaka while (datalen > 0) {
1266 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1267 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1268 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1269 1.11 matt } else {
1270 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1271 1.11 matt }
1272 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1273 1.11 matt error = ETIMEDOUT;
1274 1.11 matt break;
1275 1.11 matt }
1276 1.11 matt
1277 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1278 1.11 matt if (error)
1279 1.11 matt break;
1280 1.1 nonaka }
1281 1.1 nonaka
1282 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1283 1.11 matt (*pio_func)(hp, data, len);
1284 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1285 1.11 matt HDEVNAME(hp), len, data));
1286 1.1 nonaka
1287 1.1 nonaka data += len;
1288 1.1 nonaka datalen -= len;
1289 1.1 nonaka }
1290 1.1 nonaka
1291 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1292 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1293 1.1 nonaka error = ETIMEDOUT;
1294 1.1 nonaka
1295 1.1 nonaka return error;
1296 1.1 nonaka }
1297 1.1 nonaka
1298 1.1 nonaka static void
1299 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1300 1.1 nonaka {
1301 1.1 nonaka
1302 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1303 1.1 nonaka while (datalen > 3) {
1304 1.1 nonaka *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1305 1.1 nonaka data += 4;
1306 1.1 nonaka datalen -= 4;
1307 1.1 nonaka }
1308 1.1 nonaka if (datalen > 1) {
1309 1.1 nonaka *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1310 1.1 nonaka data += 2;
1311 1.1 nonaka datalen -= 2;
1312 1.1 nonaka }
1313 1.1 nonaka if (datalen > 0) {
1314 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1315 1.1 nonaka data += 1;
1316 1.1 nonaka datalen -= 1;
1317 1.1 nonaka }
1318 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1319 1.1 nonaka while (datalen > 1) {
1320 1.1 nonaka *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1321 1.1 nonaka data += 2;
1322 1.1 nonaka datalen -= 2;
1323 1.1 nonaka }
1324 1.1 nonaka if (datalen > 0) {
1325 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1326 1.1 nonaka data += 1;
1327 1.1 nonaka datalen -= 1;
1328 1.1 nonaka }
1329 1.1 nonaka } else {
1330 1.1 nonaka while (datalen > 0) {
1331 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1332 1.1 nonaka data += 1;
1333 1.1 nonaka datalen -= 1;
1334 1.1 nonaka }
1335 1.1 nonaka }
1336 1.1 nonaka }
1337 1.1 nonaka
1338 1.1 nonaka static void
1339 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1340 1.1 nonaka {
1341 1.1 nonaka
1342 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1343 1.1 nonaka while (datalen > 3) {
1344 1.1 nonaka HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1345 1.1 nonaka data += 4;
1346 1.1 nonaka datalen -= 4;
1347 1.1 nonaka }
1348 1.1 nonaka if (datalen > 1) {
1349 1.1 nonaka HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1350 1.1 nonaka data += 2;
1351 1.1 nonaka datalen -= 2;
1352 1.1 nonaka }
1353 1.1 nonaka if (datalen > 0) {
1354 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1355 1.1 nonaka data += 1;
1356 1.1 nonaka datalen -= 1;
1357 1.1 nonaka }
1358 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1359 1.1 nonaka while (datalen > 1) {
1360 1.1 nonaka HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1361 1.1 nonaka data += 2;
1362 1.1 nonaka datalen -= 2;
1363 1.1 nonaka }
1364 1.1 nonaka if (datalen > 0) {
1365 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1366 1.1 nonaka data += 1;
1367 1.1 nonaka datalen -= 1;
1368 1.1 nonaka }
1369 1.1 nonaka } else {
1370 1.1 nonaka while (datalen > 0) {
1371 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1372 1.1 nonaka data += 1;
1373 1.1 nonaka datalen -= 1;
1374 1.1 nonaka }
1375 1.1 nonaka }
1376 1.1 nonaka }
1377 1.1 nonaka
1378 1.11 matt static void
1379 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1380 1.11 matt {
1381 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1382 1.12 nonaka uint32_t v;
1383 1.12 nonaka
1384 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1385 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1386 1.11 matt v = le32toh(v);
1387 1.11 matt *(uint32_t *)data = v;
1388 1.11 matt data += 4;
1389 1.11 matt datalen -= 4;
1390 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1391 1.11 matt }
1392 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1393 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1394 1.11 matt v = le32toh(v);
1395 1.11 matt do {
1396 1.11 matt *data++ = v;
1397 1.11 matt v >>= 8;
1398 1.11 matt } while (--datalen > 0);
1399 1.11 matt }
1400 1.11 matt }
1401 1.11 matt
1402 1.11 matt static void
1403 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1404 1.11 matt {
1405 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1406 1.12 nonaka uint32_t v;
1407 1.12 nonaka
1408 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1409 1.12 nonaka v = *(uint32_t *)data;
1410 1.11 matt v = htole32(v);
1411 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1412 1.11 matt data += 4;
1413 1.11 matt datalen -= 4;
1414 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1415 1.11 matt }
1416 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1417 1.12 nonaka v = *(uint32_t *)data;
1418 1.11 matt v = htole32(v);
1419 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1420 1.11 matt }
1421 1.11 matt }
1422 1.11 matt
1423 1.1 nonaka /* Prepare for another command. */
1424 1.1 nonaka static int
1425 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1426 1.1 nonaka {
1427 1.1 nonaka int timo;
1428 1.1 nonaka
1429 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1430 1.1 nonaka
1431 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1432 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1433 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1434 1.1 nonaka break;
1435 1.1 nonaka sdmmc_delay(10000);
1436 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1437 1.1 nonaka }
1438 1.1 nonaka if (timo == 0) {
1439 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1440 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1441 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1442 1.1 nonaka return ETIMEDOUT;
1443 1.1 nonaka }
1444 1.1 nonaka
1445 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1446 1.11 matt HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1447 1.11 matt }
1448 1.11 matt
1449 1.1 nonaka return 0;
1450 1.1 nonaka }
1451 1.1 nonaka
1452 1.1 nonaka static int
1453 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1454 1.1 nonaka {
1455 1.1 nonaka int status;
1456 1.1 nonaka
1457 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1458 1.1 nonaka
1459 1.1 nonaka mutex_enter(&hp->intr_mtx);
1460 1.1 nonaka status = hp->intr_status & mask;
1461 1.1 nonaka while (status == 0) {
1462 1.1 nonaka if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1463 1.1 nonaka == EWOULDBLOCK) {
1464 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1465 1.1 nonaka break;
1466 1.1 nonaka }
1467 1.1 nonaka status = hp->intr_status & mask;
1468 1.1 nonaka }
1469 1.1 nonaka hp->intr_status &= ~status;
1470 1.1 nonaka
1471 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1472 1.1 nonaka hp->intr_error_status));
1473 1.1 nonaka
1474 1.1 nonaka /* Command timeout has higher priority than command complete. */
1475 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1476 1.1 nonaka hp->intr_error_status = 0;
1477 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1478 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1479 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1480 1.11 matt }
1481 1.1 nonaka status = 0;
1482 1.1 nonaka }
1483 1.1 nonaka mutex_exit(&hp->intr_mtx);
1484 1.1 nonaka
1485 1.1 nonaka return status;
1486 1.1 nonaka }
1487 1.1 nonaka
1488 1.1 nonaka /*
1489 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
1490 1.1 nonaka */
1491 1.1 nonaka int
1492 1.1 nonaka sdhc_intr(void *arg)
1493 1.1 nonaka {
1494 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1495 1.1 nonaka struct sdhc_host *hp;
1496 1.1 nonaka int done = 0;
1497 1.1 nonaka uint16_t status;
1498 1.1 nonaka uint16_t error;
1499 1.1 nonaka
1500 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
1501 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
1502 1.1 nonaka hp = sc->sc_host[host];
1503 1.1 nonaka if (hp == NULL)
1504 1.1 nonaka continue;
1505 1.1 nonaka
1506 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1507 1.11 matt /* Find out which interrupts are pending. */
1508 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1509 1.11 matt status = xstatus;
1510 1.11 matt error = xstatus >> 16;
1511 1.11 matt status |= (error ? SDHC_ERROR_INTERRUPT : 0);
1512 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1513 1.11 matt continue; /* no interrupt for us */
1514 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1515 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1516 1.11 matt } else {
1517 1.11 matt /* Find out which interrupts are pending. */
1518 1.11 matt error = 0;
1519 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1520 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1521 1.11 matt continue; /* no interrupt for us */
1522 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1523 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
1524 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1525 1.11 matt /* Acknowledge error interrupts. */
1526 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
1527 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
1528 1.11 matt }
1529 1.11 matt }
1530 1.11 matt
1531 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1532 1.11 matt status, error));
1533 1.1 nonaka
1534 1.1 nonaka /* Claim this interrupt. */
1535 1.1 nonaka done = 1;
1536 1.1 nonaka
1537 1.1 nonaka /*
1538 1.1 nonaka * Service error interrupts.
1539 1.1 nonaka */
1540 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1541 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
1542 1.11 matt hp->intr_error_status |= error;
1543 1.11 matt hp->intr_status |= status;
1544 1.11 matt cv_broadcast(&hp->intr_cv);
1545 1.1 nonaka }
1546 1.1 nonaka
1547 1.1 nonaka /*
1548 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
1549 1.1 nonaka */
1550 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1551 1.1 nonaka sdmmc_needs_discover(hp->sdmmc);
1552 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1553 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
1554 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1555 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1556 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1557 1.11 matt }
1558 1.9 matt }
1559 1.1 nonaka
1560 1.1 nonaka /*
1561 1.1 nonaka * Wake up the blocking process to service command
1562 1.1 nonaka * related interrupt(s).
1563 1.1 nonaka */
1564 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
1565 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1566 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1567 1.1 nonaka hp->intr_status |= status;
1568 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1569 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1570 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1571 1.11 matt }
1572 1.1 nonaka cv_broadcast(&hp->intr_cv);
1573 1.1 nonaka }
1574 1.1 nonaka
1575 1.1 nonaka /*
1576 1.1 nonaka * Service SD card interrupts.
1577 1.1 nonaka */
1578 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1579 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
1580 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1581 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1582 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
1583 1.1 nonaka }
1584 1.1 nonaka }
1585 1.1 nonaka
1586 1.1 nonaka return done;
1587 1.1 nonaka }
1588 1.1 nonaka
1589 1.1 nonaka #ifdef SDHC_DEBUG
1590 1.1 nonaka void
1591 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
1592 1.1 nonaka {
1593 1.1 nonaka
1594 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1595 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
1596 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1597 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1598 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
1599 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1600 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
1601 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1602 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
1603 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1604 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
1605 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1606 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
1607 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1608 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1609 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1610 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1611 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1612 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
1613 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1614 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
1615 1.1 nonaka }
1616 1.1 nonaka #endif
1617