sdhc.c revision 1.121 1 1.121 jmcneill /* $NetBSD: sdhc.c,v 1.121 2025/02/16 11:15:18 jmcneill Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.121 jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.121 2025/02/16 11:15:18 jmcneill Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/malloc.h>
36 1.1 nonaka #include <sys/systm.h>
37 1.1 nonaka #include <sys/mutex.h>
38 1.1 nonaka #include <sys/condvar.h>
39 1.80 jmcneill #include <sys/atomic.h>
40 1.1 nonaka
41 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
42 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
45 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
46 1.1 nonaka
47 1.1 nonaka #ifdef SDHC_DEBUG
48 1.1 nonaka int sdhcdebug = 1;
49 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
51 1.1 nonaka #else
52 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
53 1.1 nonaka #endif
54 1.1 nonaka
55 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
56 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
57 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
58 1.61 jmcneill #define SDHC_DMA_TIMEOUT (hz*3)
59 1.79 jmcneill #define SDHC_TUNING_TIMEOUT hz
60 1.1 nonaka
61 1.1 nonaka struct sdhc_host {
62 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
63 1.1 nonaka
64 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
65 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
66 1.36 jakllsch bus_size_t ios; /* host register space size */
67 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
68 1.1 nonaka
69 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
70 1.1 nonaka
71 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
72 1.1 nonaka int maxblklen; /* maximum block length */
73 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
74 1.1 nonaka
75 1.1 nonaka uint8_t regs[14]; /* host controller state */
76 1.1 nonaka
77 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
78 1.1 nonaka uint16_t intr_error_status; /* soft error status */
79 1.65 jmcneill kmutex_t intr_lock;
80 1.114 mrg kmutex_t bus_clock_lock;
81 1.65 jmcneill kcondvar_t intr_cv;
82 1.1 nonaka
83 1.80 jmcneill callout_t tuning_timer;
84 1.80 jmcneill int tuning_timing;
85 1.80 jmcneill u_int tuning_timer_count;
86 1.80 jmcneill u_int tuning_timer_pending;
87 1.80 jmcneill
88 1.12 nonaka int specver; /* spec. version */
89 1.12 nonaka
90 1.1 nonaka uint32_t flags; /* flags for this host */
91 1.1 nonaka #define SHF_USE_DMA 0x0001
92 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
93 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
94 1.55 bouyer #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
95 1.63 jmcneill #define SHF_USE_ADMA2_32 0x0010
96 1.63 jmcneill #define SHF_USE_ADMA2_64 0x0020
97 1.63 jmcneill #define SHF_USE_ADMA2_MASK 0x0030
98 1.63 jmcneill
99 1.63 jmcneill bus_dmamap_t adma_map;
100 1.63 jmcneill bus_dma_segment_t adma_segs[1];
101 1.63 jmcneill void *adma2;
102 1.105 mlelstv
103 1.105 mlelstv uint8_t vdd; /* last vdd setting */
104 1.1 nonaka };
105 1.1 nonaka
106 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
107 1.1 nonaka
108 1.11 matt static uint8_t
109 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
110 1.11 matt {
111 1.12 nonaka
112 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
113 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
114 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
115 1.11 matt }
116 1.11 matt
117 1.11 matt static uint16_t
118 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
119 1.11 matt {
120 1.12 nonaka
121 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
122 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
123 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
124 1.11 matt }
125 1.11 matt
126 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
127 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
128 1.11 matt #define HREAD4(hp, reg) \
129 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
130 1.11 matt
131 1.11 matt
132 1.11 matt static void
133 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
134 1.11 matt {
135 1.12 nonaka
136 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
138 1.11 matt } else {
139 1.11 matt const size_t shift = 8 * (o & 3);
140 1.11 matt o &= -4;
141 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 1.110 msaitoh tmp = (val << shift) | (tmp & ~(0xffU << shift));
143 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 1.11 matt }
145 1.11 matt }
146 1.11 matt
147 1.11 matt static void
148 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
149 1.11 matt {
150 1.12 nonaka
151 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
152 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
153 1.11 matt } else {
154 1.11 matt const size_t shift = 8 * (o & 2);
155 1.11 matt o &= -4;
156 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
157 1.110 msaitoh tmp = (val << shift) | (tmp & ~(0xffffU << shift));
158 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
159 1.11 matt }
160 1.11 matt }
161 1.11 matt
162 1.105 mlelstv static void
163 1.105 mlelstv hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
164 1.105 mlelstv {
165 1.105 mlelstv
166 1.105 mlelstv bus_space_write_4(hp->iot, hp->ioh, o, val);
167 1.105 mlelstv }
168 1.105 mlelstv
169 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
170 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
171 1.105 mlelstv #define HWRITE4(hp, reg, val) hwrite4(hp, reg, val)
172 1.11 matt
173 1.1 nonaka #define HCLR1(hp, reg, bits) \
174 1.106 joerg do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
175 1.1 nonaka #define HCLR2(hp, reg, bits) \
176 1.106 joerg do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
177 1.11 matt #define HCLR4(hp, reg, bits) \
178 1.106 joerg do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
179 1.1 nonaka #define HSET1(hp, reg, bits) \
180 1.106 joerg do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
181 1.1 nonaka #define HSET2(hp, reg, bits) \
182 1.106 joerg do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
183 1.11 matt #define HSET4(hp, reg, bits) \
184 1.106 joerg do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
185 1.1 nonaka
186 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
187 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
188 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
189 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
190 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
191 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
192 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
193 1.76 jmcneill static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
194 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
195 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
196 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
197 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
198 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
199 1.1 nonaka struct sdmmc_command *);
200 1.71 jmcneill static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
201 1.83 mlelstv static int sdhc_execute_tuning1(struct sdhc_host *, int);
202 1.79 jmcneill static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
203 1.80 jmcneill static void sdhc_tuning_timer(void *);
204 1.99 nonaka static void sdhc_hw_reset(sdmmc_chipset_handle_t);
205 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
206 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
207 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
208 1.88 mlelstv static int sdhc_wait_intr(struct sdhc_host *, int, int, bool);
209 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
210 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
211 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
212 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
213 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
214 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
215 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
216 1.11 matt
217 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
218 1.1 nonaka /* host controller reset */
219 1.60 skrll .host_reset = sdhc_host_reset,
220 1.1 nonaka
221 1.1 nonaka /* host controller capabilities */
222 1.60 skrll .host_ocr = sdhc_host_ocr,
223 1.60 skrll .host_maxblklen = sdhc_host_maxblklen,
224 1.1 nonaka
225 1.1 nonaka /* card detection */
226 1.60 skrll .card_detect = sdhc_card_detect,
227 1.1 nonaka
228 1.1 nonaka /* write protect */
229 1.60 skrll .write_protect = sdhc_write_protect,
230 1.1 nonaka
231 1.60 skrll /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
232 1.60 skrll .bus_power = sdhc_bus_power,
233 1.76 jmcneill .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
234 1.60 skrll .bus_width = sdhc_bus_width,
235 1.60 skrll .bus_rod = sdhc_bus_rod,
236 1.1 nonaka
237 1.1 nonaka /* command execution */
238 1.60 skrll .exec_command = sdhc_exec_command,
239 1.1 nonaka
240 1.1 nonaka /* card interrupt */
241 1.60 skrll .card_enable_intr = sdhc_card_enable_intr,
242 1.71 jmcneill .card_intr_ack = sdhc_card_intr_ack,
243 1.71 jmcneill
244 1.71 jmcneill /* UHS functions */
245 1.71 jmcneill .signal_voltage = sdhc_signal_voltage,
246 1.76 jmcneill .bus_clock_ddr = sdhc_bus_clock_ddr,
247 1.79 jmcneill .execute_tuning = sdhc_execute_tuning,
248 1.99 nonaka .hw_reset = sdhc_hw_reset,
249 1.1 nonaka };
250 1.1 nonaka
251 1.17 jakllsch static int
252 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
253 1.17 jakllsch {
254 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
255 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
256 1.47 skrll
257 1.17 jakllsch if (pnp) {
258 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
259 1.17 jakllsch }
260 1.41 jakllsch for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
261 1.41 jakllsch if (hp->sc->sc_host[host] == hp) {
262 1.41 jakllsch aprint_normal(" slot %zu", host);
263 1.41 jakllsch }
264 1.41 jakllsch }
265 1.17 jakllsch
266 1.17 jakllsch return UNCONF;
267 1.17 jakllsch }
268 1.17 jakllsch
269 1.1 nonaka /*
270 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
271 1.1 nonaka * host controller standard register set. (1.3)
272 1.1 nonaka */
273 1.1 nonaka int
274 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
275 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
276 1.1 nonaka {
277 1.1 nonaka struct sdmmcbus_attach_args saa;
278 1.1 nonaka struct sdhc_host *hp;
279 1.71 jmcneill uint32_t caps, caps2;
280 1.1 nonaka uint16_t sdhcver;
281 1.63 jmcneill int error;
282 1.1 nonaka
283 1.33 riastrad /* Allocate one more host structure. */
284 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
285 1.33 riastrad if (hp == NULL) {
286 1.33 riastrad aprint_error_dev(sc->sc_dev,
287 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
288 1.33 riastrad goto err1;
289 1.33 riastrad }
290 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
291 1.33 riastrad
292 1.33 riastrad /* Fill in the new host structure. */
293 1.33 riastrad hp->sc = sc;
294 1.33 riastrad hp->iot = iot;
295 1.33 riastrad hp->ioh = ioh;
296 1.36 jakllsch hp->ios = iosize;
297 1.33 riastrad hp->dmat = sc->sc_dmat;
298 1.33 riastrad
299 1.65 jmcneill mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
300 1.114 mrg mutex_init(&hp->bus_clock_lock, MUTEX_DEFAULT, IPL_NONE);
301 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
302 1.80 jmcneill callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
303 1.80 jmcneill callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
304 1.33 riastrad
305 1.101 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
306 1.101 ryo sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
307 1.101 ryo } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
308 1.101 ryo sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
309 1.101 ryo } else if (iosize <= SDHC_HOST_CTL_VERSION) {
310 1.101 ryo sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
311 1.101 ryo } else {
312 1.101 ryo sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
313 1.101 ryo }
314 1.101 ryo aprint_normal_dev(sc->sc_dev, "SDHC ");
315 1.101 ryo hp->specver = SDHC_SPEC_VERSION(sdhcver);
316 1.101 ryo switch (SDHC_SPEC_VERSION(sdhcver)) {
317 1.101 ryo case SDHC_SPEC_VERS_100:
318 1.101 ryo aprint_normal("1.0");
319 1.101 ryo break;
320 1.101 ryo case SDHC_SPEC_VERS_200:
321 1.101 ryo aprint_normal("2.0");
322 1.101 ryo break;
323 1.101 ryo case SDHC_SPEC_VERS_300:
324 1.101 ryo aprint_normal("3.0");
325 1.101 ryo break;
326 1.101 ryo case SDHC_SPEC_VERS_400:
327 1.101 ryo aprint_normal("4.0");
328 1.101 ryo break;
329 1.107 msaitoh case SDHC_SPEC_VERS_410:
330 1.107 msaitoh aprint_normal("4.1");
331 1.107 msaitoh break;
332 1.107 msaitoh case SDHC_SPEC_VERS_420:
333 1.107 msaitoh aprint_normal("4.2");
334 1.107 msaitoh break;
335 1.101 ryo case SDHC_SPEC_NOVERS:
336 1.96 kiyohara hp->specver = -1;
337 1.101 ryo aprint_normal("NO-VERS");
338 1.101 ryo break;
339 1.101 ryo default:
340 1.101 ryo aprint_normal("unknown version(0x%x)",
341 1.101 ryo SDHC_SPEC_VERSION(sdhcver));
342 1.101 ryo break;
343 1.101 ryo }
344 1.101 ryo if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
345 1.96 kiyohara aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
346 1.1 nonaka
347 1.1 nonaka /*
348 1.3 uebayasi * Reset the host controller and enable interrupts.
349 1.1 nonaka */
350 1.1 nonaka (void)sdhc_host_reset(hp);
351 1.1 nonaka
352 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
353 1.93 ryo /* init uSDHC registers */
354 1.93 ryo HWRITE4(hp, SDHC_MMC_BOOT, 0);
355 1.93 ryo HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
356 1.93 ryo SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
357 1.93 ryo HWRITE4(hp, SDHC_WATERMARK_LEVEL,
358 1.93 ryo (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
359 1.93 ryo (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
360 1.93 ryo (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
361 1.93 ryo (0x40 << SDHC_WATERMARK_READ_SHIFT));
362 1.93 ryo HSET4(hp, SDHC_VEND_SPEC,
363 1.93 ryo SDHC_VEND_SPEC_MBO |
364 1.93 ryo SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
365 1.93 ryo SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
366 1.93 ryo SDHC_VEND_SPEC_HCLK_SOFT_EN |
367 1.93 ryo SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
368 1.93 ryo SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
369 1.93 ryo SDHC_VEND_SPEC_FRC_SDCLK_ON);
370 1.93 ryo }
371 1.93 ryo
372 1.1 nonaka /* Determine host capabilities. */
373 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
374 1.24 skrll caps = sc->sc_caps;
375 1.72 jmcneill caps2 = sc->sc_caps2;
376 1.93 ryo } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
377 1.93 ryo /* uSDHC capability register is little bit different */
378 1.93 ryo caps = HREAD4(hp, SDHC_CAPABILITIES);
379 1.93 ryo caps |= SDHC_8BIT_SUPP;
380 1.93 ryo if (caps & SDHC_ADMA1_SUPP)
381 1.93 ryo caps |= SDHC_ADMA2_SUPP;
382 1.93 ryo sc->sc_caps = caps;
383 1.93 ryo /* uSDHC has no SDHC_CAPABILITIES2 register */
384 1.93 ryo caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
385 1.24 skrll } else {
386 1.79 jmcneill caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
387 1.72 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
388 1.79 jmcneill caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
389 1.72 jmcneill } else {
390 1.79 jmcneill caps2 = sc->sc_caps2 = 0;
391 1.72 jmcneill }
392 1.71 jmcneill }
393 1.1 nonaka
394 1.108 mlelstv aprint_verbose(", caps <%08x/%08x>", caps, caps2);
395 1.108 mlelstv
396 1.80 jmcneill const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
397 1.80 jmcneill SDHC_RETUNING_MODES_MASK;
398 1.80 jmcneill if (retuning_mode == SDHC_RETUNING_MODE_1) {
399 1.80 jmcneill hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
400 1.80 jmcneill SDHC_TIMER_COUNT_MASK;
401 1.80 jmcneill if (hp->tuning_timer_count == 0xf)
402 1.80 jmcneill hp->tuning_timer_count = 0;
403 1.80 jmcneill if (hp->tuning_timer_count)
404 1.80 jmcneill hp->tuning_timer_count =
405 1.80 jmcneill 1 << (hp->tuning_timer_count - 1);
406 1.80 jmcneill }
407 1.80 jmcneill
408 1.55 bouyer /*
409 1.55 bouyer * Use DMA if the host system and the controller support it.
410 1.112 msaitoh * Supports integrated or external DMA egine, with or without
411 1.55 bouyer * SDHC_DMA_ENABLE in the command.
412 1.55 bouyer */
413 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
414 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
415 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
416 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
417 1.63 jmcneill
418 1.116 jmcneill if (ISSET(caps, SDHC_ADMA2_SUPP) &&
419 1.116 jmcneill !ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA)) {
420 1.55 bouyer SET(hp->flags, SHF_MODE_DMAEN);
421 1.63 jmcneill /*
422 1.63 jmcneill * 64-bit mode was present in the 2.00 spec, removed
423 1.63 jmcneill * from 3.00, and re-added in 4.00 with a different
424 1.63 jmcneill * descriptor layout. We only support 2.00 and 3.00
425 1.63 jmcneill * descriptors for now.
426 1.63 jmcneill */
427 1.63 jmcneill if (hp->specver == SDHC_SPEC_VERS_200 &&
428 1.63 jmcneill ISSET(caps, SDHC_64BIT_SYS_BUS)) {
429 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_64);
430 1.63 jmcneill aprint_normal(", 64-bit ADMA2");
431 1.63 jmcneill } else {
432 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_32);
433 1.63 jmcneill aprint_normal(", 32-bit ADMA2");
434 1.63 jmcneill }
435 1.63 jmcneill } else {
436 1.63 jmcneill if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
437 1.63 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
438 1.63 jmcneill SET(hp->flags, SHF_MODE_DMAEN);
439 1.64 jmcneill if (sc->sc_vendor_transfer_data_dma) {
440 1.64 jmcneill aprint_normal(", platform DMA");
441 1.64 jmcneill } else {
442 1.64 jmcneill aprint_normal(", SDMA");
443 1.64 jmcneill }
444 1.63 jmcneill }
445 1.58 jmcneill } else {
446 1.58 jmcneill aprint_normal(", PIO");
447 1.1 nonaka }
448 1.1 nonaka
449 1.1 nonaka /*
450 1.1 nonaka * Determine the base clock frequency. (2.2.24)
451 1.1 nonaka */
452 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
453 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
454 1.30 matt } else {
455 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
456 1.30 matt }
457 1.56 jmcneill if (hp->clkbase == 0 ||
458 1.56 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
459 1.9 matt if (sc->sc_clkbase == 0) {
460 1.9 matt /* The attachment driver must tell us. */
461 1.12 nonaka aprint_error_dev(sc->sc_dev,
462 1.12 nonaka "unknown base clock frequency\n");
463 1.9 matt goto err;
464 1.9 matt }
465 1.9 matt hp->clkbase = sc->sc_clkbase;
466 1.9 matt }
467 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
468 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
469 1.1 nonaka aprint_error_dev(sc->sc_dev,
470 1.1 nonaka "base clock frequency out of range: %u MHz\n",
471 1.1 nonaka hp->clkbase / 1000);
472 1.1 nonaka goto err;
473 1.1 nonaka }
474 1.58 jmcneill aprint_normal(", %u kHz", hp->clkbase);
475 1.1 nonaka
476 1.1 nonaka /*
477 1.1 nonaka * XXX Set the data timeout counter value according to
478 1.1 nonaka * capabilities. (2.2.15)
479 1.1 nonaka */
480 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
481 1.29 matt #if 1
482 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
483 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
484 1.11 matt #endif
485 1.1 nonaka
486 1.58 jmcneill if (ISSET(caps, SDHC_EMBEDDED_SLOT))
487 1.58 jmcneill aprint_normal(", embedded slot");
488 1.58 jmcneill
489 1.1 nonaka /*
490 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
491 1.1 nonaka */
492 1.58 jmcneill aprint_normal(",");
493 1.66 jmcneill if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
494 1.66 jmcneill SET(hp->ocr, MMC_OCR_HCS);
495 1.71 jmcneill aprint_normal(" HS");
496 1.71 jmcneill }
497 1.104 hkenken if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
498 1.104 hkenken if (ISSET(caps2, SDHC_SDR50_SUPP)) {
499 1.104 hkenken SET(hp->ocr, MMC_OCR_S18A);
500 1.104 hkenken aprint_normal(" SDR50");
501 1.104 hkenken }
502 1.104 hkenken if (ISSET(caps2, SDHC_DDR50_SUPP)) {
503 1.104 hkenken SET(hp->ocr, MMC_OCR_S18A);
504 1.104 hkenken aprint_normal(" DDR50");
505 1.104 hkenken }
506 1.104 hkenken if (ISSET(caps2, SDHC_SDR104_SUPP)) {
507 1.104 hkenken SET(hp->ocr, MMC_OCR_S18A);
508 1.104 hkenken aprint_normal(" SDR104 HS200");
509 1.104 hkenken }
510 1.104 hkenken if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
511 1.104 hkenken SET(hp->ocr, MMC_OCR_1_65V_1_95V);
512 1.104 hkenken aprint_normal(" 1.8V");
513 1.104 hkenken }
514 1.11 matt }
515 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
516 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
517 1.58 jmcneill aprint_normal(" 3.0V");
518 1.11 matt }
519 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
520 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
521 1.58 jmcneill aprint_normal(" 3.3V");
522 1.11 matt }
523 1.80 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
524 1.80 jmcneill aprint_normal(", re-tuning mode %d", retuning_mode + 1);
525 1.80 jmcneill if (hp->tuning_timer_count)
526 1.80 jmcneill aprint_normal(" (%us timer)", hp->tuning_timer_count);
527 1.80 jmcneill }
528 1.1 nonaka
529 1.1 nonaka /*
530 1.1 nonaka * Determine the maximum block length supported by the host
531 1.1 nonaka * controller. (2.2.24)
532 1.1 nonaka */
533 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
534 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
535 1.1 nonaka hp->maxblklen = 512;
536 1.1 nonaka break;
537 1.1 nonaka
538 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
539 1.1 nonaka hp->maxblklen = 1024;
540 1.1 nonaka break;
541 1.1 nonaka
542 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
543 1.1 nonaka hp->maxblklen = 2048;
544 1.1 nonaka break;
545 1.1 nonaka
546 1.9 matt case SDHC_MAX_BLK_LEN_4096:
547 1.9 matt hp->maxblklen = 4096;
548 1.9 matt break;
549 1.9 matt
550 1.1 nonaka default:
551 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
552 1.1 nonaka goto err;
553 1.1 nonaka }
554 1.58 jmcneill aprint_normal(", %u byte blocks", hp->maxblklen);
555 1.58 jmcneill aprint_normal("\n");
556 1.1 nonaka
557 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
558 1.63 jmcneill int rseg;
559 1.63 jmcneill
560 1.63 jmcneill /* Allocate ADMA2 descriptor memory */
561 1.63 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
562 1.63 jmcneill PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
563 1.63 jmcneill if (error) {
564 1.63 jmcneill aprint_error_dev(sc->sc_dev,
565 1.63 jmcneill "ADMA2 dmamem_alloc failed (%d)\n", error);
566 1.63 jmcneill goto adma_done;
567 1.63 jmcneill }
568 1.63 jmcneill error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
569 1.63 jmcneill PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
570 1.63 jmcneill if (error) {
571 1.63 jmcneill aprint_error_dev(sc->sc_dev,
572 1.63 jmcneill "ADMA2 dmamem_map failed (%d)\n", error);
573 1.63 jmcneill goto adma_done;
574 1.63 jmcneill }
575 1.63 jmcneill error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
576 1.63 jmcneill 0, BUS_DMA_WAITOK, &hp->adma_map);
577 1.63 jmcneill if (error) {
578 1.63 jmcneill aprint_error_dev(sc->sc_dev,
579 1.63 jmcneill "ADMA2 dmamap_create failed (%d)\n", error);
580 1.63 jmcneill goto adma_done;
581 1.63 jmcneill }
582 1.63 jmcneill error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
583 1.63 jmcneill hp->adma2, PAGE_SIZE, NULL,
584 1.63 jmcneill BUS_DMA_WAITOK|BUS_DMA_WRITE);
585 1.63 jmcneill if (error) {
586 1.63 jmcneill aprint_error_dev(sc->sc_dev,
587 1.63 jmcneill "ADMA2 dmamap_load failed (%d)\n", error);
588 1.63 jmcneill goto adma_done;
589 1.63 jmcneill }
590 1.63 jmcneill
591 1.63 jmcneill memset(hp->adma2, 0, PAGE_SIZE);
592 1.63 jmcneill
593 1.63 jmcneill adma_done:
594 1.63 jmcneill if (error)
595 1.63 jmcneill CLR(hp->flags, SHF_USE_ADMA2_MASK);
596 1.63 jmcneill }
597 1.63 jmcneill
598 1.1 nonaka /*
599 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
600 1.1 nonaka * not invoke any chipset functions before it is attached.)
601 1.1 nonaka */
602 1.1 nonaka memset(&saa, 0, sizeof(saa));
603 1.1 nonaka saa.saa_busname = "sdmmc";
604 1.1 nonaka saa.saa_sct = &sdhc_functions;
605 1.1 nonaka saa.saa_sch = hp;
606 1.1 nonaka saa.saa_dmat = hp->dmat;
607 1.1 nonaka saa.saa_clkmax = hp->clkbase;
608 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
609 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
610 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
611 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
612 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
613 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
614 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
615 1.56 jmcneill else if (hp->specver >= SDHC_SPEC_VERS_300)
616 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
617 1.38 jakllsch else
618 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
619 1.97 kiyohara if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
620 1.97 kiyohara saa.saa_caps |= SMC_CAPS_AUTO_STOP;
621 1.97 kiyohara saa.saa_caps |= SMC_CAPS_4BIT_MODE;
622 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
623 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
624 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
625 1.113 jmcneill saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED |
626 1.113 jmcneill SMC_CAPS_MMC_HIGHSPEED;
627 1.76 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP))
628 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
629 1.76 jmcneill SMC_CAPS_UHS_SDR50 |
630 1.76 jmcneill SMC_CAPS_MMC_HS200;
631 1.76 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP))
632 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR50;
633 1.76 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP))
634 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_DDR50;
635 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
636 1.54 nonaka saa.saa_caps |= SMC_CAPS_DMA;
637 1.54 nonaka if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
638 1.54 nonaka saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
639 1.26 matt }
640 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
641 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
642 1.77 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
643 1.77 jmcneill saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
644 1.104 hkenken
645 1.104 hkenken if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
646 1.104 hkenken saa.saa_max_seg = 65535;
647 1.104 hkenken
648 1.111 thorpej hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
649 1.1 nonaka
650 1.1 nonaka return 0;
651 1.1 nonaka
652 1.1 nonaka err:
653 1.80 jmcneill callout_destroy(&hp->tuning_timer);
654 1.1 nonaka cv_destroy(&hp->intr_cv);
655 1.114 mrg mutex_destroy(&hp->bus_clock_lock);
656 1.65 jmcneill mutex_destroy(&hp->intr_lock);
657 1.1 nonaka free(hp, M_DEVBUF);
658 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
659 1.1 nonaka err1:
660 1.1 nonaka return 1;
661 1.1 nonaka }
662 1.1 nonaka
663 1.7 nonaka int
664 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
665 1.7 nonaka {
666 1.36 jakllsch struct sdhc_host *hp;
667 1.7 nonaka int rv = 0;
668 1.7 nonaka
669 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
670 1.36 jakllsch hp = sc->sc_host[n];
671 1.36 jakllsch if (hp == NULL)
672 1.36 jakllsch continue;
673 1.36 jakllsch if (hp->sdmmc != NULL) {
674 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
675 1.36 jakllsch if (rv)
676 1.36 jakllsch break;
677 1.36 jakllsch hp->sdmmc = NULL;
678 1.36 jakllsch }
679 1.36 jakllsch /* disable interrupts */
680 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
681 1.78 mlelstv mutex_enter(&hp->intr_lock);
682 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
683 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
684 1.36 jakllsch } else {
685 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
686 1.36 jakllsch }
687 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
688 1.78 mlelstv mutex_exit(&hp->intr_lock);
689 1.36 jakllsch }
690 1.80 jmcneill callout_halt(&hp->tuning_timer, NULL);
691 1.80 jmcneill callout_destroy(&hp->tuning_timer);
692 1.36 jakllsch cv_destroy(&hp->intr_cv);
693 1.65 jmcneill mutex_destroy(&hp->intr_lock);
694 1.36 jakllsch if (hp->ios > 0) {
695 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
696 1.36 jakllsch hp->ios = 0;
697 1.36 jakllsch }
698 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
699 1.63 jmcneill bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
700 1.63 jmcneill bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
701 1.63 jmcneill bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
702 1.63 jmcneill bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
703 1.63 jmcneill }
704 1.36 jakllsch free(hp, M_DEVBUF);
705 1.36 jakllsch sc->sc_host[n] = NULL;
706 1.36 jakllsch }
707 1.7 nonaka
708 1.7 nonaka return rv;
709 1.7 nonaka }
710 1.7 nonaka
711 1.1 nonaka bool
712 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
713 1.1 nonaka {
714 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
715 1.1 nonaka struct sdhc_host *hp;
716 1.12 nonaka size_t i;
717 1.1 nonaka
718 1.1 nonaka /* XXX poll for command completion or suspend command
719 1.1 nonaka * in progress */
720 1.1 nonaka
721 1.1 nonaka /* Save the host controller state. */
722 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
723 1.1 nonaka hp = sc->sc_host[n];
724 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
725 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
726 1.11 matt uint32_t v = HREAD4(hp, i);
727 1.12 nonaka hp->regs[i + 0] = (v >> 0);
728 1.12 nonaka hp->regs[i + 1] = (v >> 8);
729 1.13 bouyer if (i + 3 < sizeof hp->regs) {
730 1.13 bouyer hp->regs[i + 2] = (v >> 16);
731 1.13 bouyer hp->regs[i + 3] = (v >> 24);
732 1.13 bouyer }
733 1.11 matt }
734 1.11 matt } else {
735 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
736 1.11 matt hp->regs[i] = HREAD1(hp, i);
737 1.11 matt }
738 1.11 matt }
739 1.1 nonaka }
740 1.1 nonaka return true;
741 1.1 nonaka }
742 1.1 nonaka
743 1.1 nonaka bool
744 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
745 1.1 nonaka {
746 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
747 1.1 nonaka struct sdhc_host *hp;
748 1.12 nonaka size_t i;
749 1.1 nonaka
750 1.1 nonaka /* Restore the host controller state. */
751 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
752 1.1 nonaka hp = sc->sc_host[n];
753 1.1 nonaka (void)sdhc_host_reset(hp);
754 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
755 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
756 1.13 bouyer if (i + 3 < sizeof hp->regs) {
757 1.13 bouyer HWRITE4(hp, i,
758 1.13 bouyer (hp->regs[i + 0] << 0)
759 1.13 bouyer | (hp->regs[i + 1] << 8)
760 1.13 bouyer | (hp->regs[i + 2] << 16)
761 1.13 bouyer | (hp->regs[i + 3] << 24));
762 1.13 bouyer } else {
763 1.13 bouyer HWRITE4(hp, i,
764 1.13 bouyer (hp->regs[i + 0] << 0)
765 1.13 bouyer | (hp->regs[i + 1] << 8));
766 1.13 bouyer }
767 1.11 matt }
768 1.11 matt } else {
769 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
770 1.11 matt HWRITE1(hp, i, hp->regs[i]);
771 1.11 matt }
772 1.11 matt }
773 1.1 nonaka }
774 1.1 nonaka return true;
775 1.1 nonaka }
776 1.1 nonaka
777 1.1 nonaka bool
778 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
779 1.1 nonaka {
780 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
781 1.1 nonaka struct sdhc_host *hp;
782 1.1 nonaka
783 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
784 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
785 1.1 nonaka hp = sc->sc_host[i];
786 1.1 nonaka (void)sdhc_host_reset(hp);
787 1.1 nonaka }
788 1.1 nonaka return true;
789 1.1 nonaka }
790 1.1 nonaka
791 1.1 nonaka /*
792 1.1 nonaka * Reset the host controller. Called during initialization, when
793 1.1 nonaka * cards are removed, upon resume, and during error recovery.
794 1.1 nonaka */
795 1.1 nonaka static int
796 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
797 1.1 nonaka {
798 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
799 1.11 matt uint32_t sdhcimask;
800 1.1 nonaka int error;
801 1.1 nonaka
802 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
803 1.1 nonaka
804 1.1 nonaka /* Disable all interrupts. */
805 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
806 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
807 1.11 matt } else {
808 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
809 1.11 matt }
810 1.1 nonaka
811 1.105 mlelstv /* Let sdhc_bus_power restore power */
812 1.105 mlelstv hp->vdd = 0;
813 1.105 mlelstv
814 1.1 nonaka /*
815 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
816 1.1 nonaka * the controller to clear the reset bit.
817 1.1 nonaka */
818 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
819 1.1 nonaka if (error)
820 1.1 nonaka goto out;
821 1.1 nonaka
822 1.1 nonaka /* Set data timeout counter value to max for now. */
823 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
824 1.29 matt #if 1
825 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
826 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
827 1.11 matt #endif
828 1.1 nonaka
829 1.1 nonaka /* Enable interrupts. */
830 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
831 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
832 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
833 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
834 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
835 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
836 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
837 1.11 matt sdhcimask ^=
838 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
839 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
840 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
841 1.11 matt } else {
842 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
843 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
844 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
845 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
846 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
847 1.11 matt }
848 1.1 nonaka
849 1.1 nonaka out:
850 1.1 nonaka return error;
851 1.1 nonaka }
852 1.1 nonaka
853 1.1 nonaka static int
854 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
855 1.1 nonaka {
856 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
857 1.1 nonaka int error;
858 1.1 nonaka
859 1.65 jmcneill mutex_enter(&hp->intr_lock);
860 1.1 nonaka error = sdhc_host_reset1(sch);
861 1.65 jmcneill mutex_exit(&hp->intr_lock);
862 1.1 nonaka
863 1.1 nonaka return error;
864 1.1 nonaka }
865 1.1 nonaka
866 1.1 nonaka static uint32_t
867 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
868 1.1 nonaka {
869 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
870 1.1 nonaka
871 1.1 nonaka return hp->ocr;
872 1.1 nonaka }
873 1.1 nonaka
874 1.1 nonaka static int
875 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
876 1.1 nonaka {
877 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
878 1.1 nonaka
879 1.1 nonaka return hp->maxblklen;
880 1.1 nonaka }
881 1.1 nonaka
882 1.1 nonaka /*
883 1.1 nonaka * Return non-zero if the card is currently inserted.
884 1.1 nonaka */
885 1.1 nonaka static int
886 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
887 1.1 nonaka {
888 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
889 1.1 nonaka int r;
890 1.1 nonaka
891 1.119 dyoung if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NON_REMOVABLE))
892 1.119 dyoung return 1;
893 1.119 dyoung
894 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
895 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
896 1.32 kiyohara
897 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
898 1.1 nonaka
899 1.11 matt return r ? 1 : 0;
900 1.1 nonaka }
901 1.1 nonaka
902 1.1 nonaka /*
903 1.1 nonaka * Return non-zero if the card is currently write-protected.
904 1.1 nonaka */
905 1.1 nonaka static int
906 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
907 1.1 nonaka {
908 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
909 1.1 nonaka int r;
910 1.1 nonaka
911 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
912 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
913 1.32 kiyohara
914 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
915 1.1 nonaka
916 1.12 nonaka return r ? 0 : 1;
917 1.1 nonaka }
918 1.1 nonaka
919 1.1 nonaka /*
920 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
921 1.1 nonaka * Return zero on success.
922 1.1 nonaka */
923 1.1 nonaka static int
924 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
925 1.1 nonaka {
926 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
927 1.1 nonaka uint8_t vdd;
928 1.1 nonaka int error = 0;
929 1.32 kiyohara const uint32_t pcmask =
930 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
931 1.105 mlelstv uint32_t reg;
932 1.1 nonaka
933 1.65 jmcneill mutex_enter(&hp->intr_lock);
934 1.1 nonaka
935 1.1 nonaka /*
936 1.1 nonaka * Disable bus power before voltage change.
937 1.1 nonaka */
938 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
939 1.105 mlelstv && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
940 1.105 mlelstv hp->vdd = 0;
941 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
942 1.105 mlelstv }
943 1.1 nonaka
944 1.1 nonaka /* If power is disabled, reset the host and return now. */
945 1.1 nonaka if (ocr == 0) {
946 1.1 nonaka (void)sdhc_host_reset1(hp);
947 1.80 jmcneill callout_halt(&hp->tuning_timer, &hp->intr_lock);
948 1.1 nonaka goto out;
949 1.1 nonaka }
950 1.1 nonaka
951 1.1 nonaka /*
952 1.1 nonaka * Select the lowest voltage according to capabilities.
953 1.1 nonaka */
954 1.1 nonaka ocr &= hp->ocr;
955 1.95 nonaka if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
956 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
957 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
958 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
959 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
960 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
961 1.11 matt } else {
962 1.1 nonaka /* Unsupported voltage level requested. */
963 1.1 nonaka error = EINVAL;
964 1.1 nonaka goto out;
965 1.1 nonaka }
966 1.1 nonaka
967 1.105 mlelstv /*
968 1.105 mlelstv * Did voltage change ?
969 1.105 mlelstv */
970 1.105 mlelstv if (vdd == hp->vdd)
971 1.105 mlelstv goto out;
972 1.105 mlelstv
973 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
974 1.11 matt /*
975 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
976 1.11 matt * voltage ramp until power rises.
977 1.11 matt */
978 1.57 jmcneill
979 1.57 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
980 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
981 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
982 1.57 jmcneill } else {
983 1.105 mlelstv reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
984 1.105 mlelstv HWRITE1(hp, SDHC_POWER_CTL, reg);
985 1.57 jmcneill sdmmc_delay(1);
986 1.105 mlelstv reg |= (vdd << SDHC_VOLTAGE_SHIFT);
987 1.105 mlelstv HWRITE1(hp, SDHC_POWER_CTL, reg);
988 1.57 jmcneill sdmmc_delay(1);
989 1.105 mlelstv reg |= SDHC_BUS_POWER;
990 1.105 mlelstv HWRITE1(hp, SDHC_POWER_CTL, reg);
991 1.57 jmcneill sdmmc_delay(10000);
992 1.57 jmcneill }
993 1.1 nonaka
994 1.11 matt /*
995 1.11 matt * The host system may not power the bus due to battery low,
996 1.11 matt * etc. In that case, the host controller should clear the
997 1.11 matt * bus power bit.
998 1.11 matt */
999 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
1000 1.11 matt error = ENXIO;
1001 1.11 matt goto out;
1002 1.11 matt }
1003 1.1 nonaka }
1004 1.1 nonaka
1005 1.105 mlelstv /* power successfully changed */
1006 1.105 mlelstv hp->vdd = vdd;
1007 1.105 mlelstv
1008 1.1 nonaka out:
1009 1.65 jmcneill mutex_exit(&hp->intr_lock);
1010 1.1 nonaka
1011 1.1 nonaka return error;
1012 1.1 nonaka }
1013 1.1 nonaka
1014 1.1 nonaka /*
1015 1.1 nonaka * Return the smallest possible base clock frequency divisor value
1016 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
1017 1.1 nonaka */
1018 1.11 matt static bool
1019 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
1020 1.1 nonaka {
1021 1.11 matt u_int div;
1022 1.1 nonaka
1023 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
1024 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
1025 1.11 matt if ((hp->clkbase / div) <= freq) {
1026 1.11 matt *divp = SDHC_SDCLK_CGM
1027 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
1028 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
1029 1.18 jakllsch //freq = hp->clkbase / div;
1030 1.11 matt return true;
1031 1.11 matt }
1032 1.11 matt }
1033 1.11 matt /* No divisor found. */
1034 1.11 matt return false;
1035 1.11 matt }
1036 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
1037 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
1038 1.11 matt u_int roundup = dvs & 1;
1039 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
1040 1.11 matt if (dvs + roundup <= 16) {
1041 1.11 matt dvs += roundup - 1;
1042 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
1043 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
1044 1.11 matt DPRINTF(2,
1045 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
1046 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
1047 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
1048 1.11 matt return true;
1049 1.9 matt }
1050 1.11 matt /*
1051 1.11 matt * If we drop bits, we need to round up the divisor.
1052 1.11 matt */
1053 1.11 matt roundup |= dvs & 1;
1054 1.9 matt }
1055 1.18 jakllsch /* No divisor found. */
1056 1.18 jakllsch return false;
1057 1.38 jakllsch }
1058 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
1059 1.38 jakllsch div = howmany(hp->clkbase, freq);
1060 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
1061 1.38 jakllsch return false;
1062 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
1063 1.38 jakllsch //freq = hp->clkbase / div;
1064 1.38 jakllsch return true;
1065 1.38 jakllsch }
1066 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1067 1.38 jakllsch div = howmany(hp->clkbase, freq);
1068 1.50 mlelstv div = div > 1 ? howmany(div, 2) : 0;
1069 1.38 jakllsch if (div > 0x3ff)
1070 1.38 jakllsch return false;
1071 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
1072 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
1073 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
1074 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
1075 1.67 mlelstv //freq = hp->clkbase / (div ? div * 2 : 1);
1076 1.38 jakllsch return true;
1077 1.9 matt } else {
1078 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
1079 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
1080 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
1081 1.38 jakllsch //freq = hp->clkbase / div;
1082 1.38 jakllsch return true;
1083 1.38 jakllsch }
1084 1.38 jakllsch }
1085 1.38 jakllsch /* No divisor found. */
1086 1.38 jakllsch return false;
1087 1.9 matt }
1088 1.1 nonaka /* No divisor found. */
1089 1.11 matt return false;
1090 1.1 nonaka }
1091 1.1 nonaka
1092 1.1 nonaka /*
1093 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
1094 1.1 nonaka * Return zero on success.
1095 1.1 nonaka */
1096 1.1 nonaka static int
1097 1.76 jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
1098 1.1 nonaka {
1099 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1100 1.11 matt u_int div;
1101 1.11 matt u_int timo;
1102 1.32 kiyohara int16_t reg;
1103 1.1 nonaka int error = 0;
1104 1.65 jmcneill bool present __diagused;
1105 1.65 jmcneill
1106 1.2 cegger #ifdef DIAGNOSTIC
1107 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
1108 1.1 nonaka
1109 1.1 nonaka /* Must not stop the clock if commands are in progress. */
1110 1.12 nonaka if (present && sdhc_card_detect(hp)) {
1111 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
1112 1.26 matt "%s: command in progress\n", __func__);
1113 1.12 nonaka }
1114 1.1 nonaka #endif
1115 1.1 nonaka
1116 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
1117 1.114 mrg mutex_enter(&hp->bus_clock_lock);
1118 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1119 1.114 mrg mutex_exit(&hp->bus_clock_lock);
1120 1.34 matt if (error != 0)
1121 1.114 mrg return error;
1122 1.34 matt }
1123 1.34 matt
1124 1.114 mrg mutex_enter(&hp->intr_lock);
1125 1.114 mrg
1126 1.1 nonaka /*
1127 1.1 nonaka * Stop SD clock before changing the frequency.
1128 1.1 nonaka */
1129 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1130 1.93 ryo HCLR4(hp, SDHC_VEND_SPEC,
1131 1.93 ryo SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1132 1.93 ryo SDHC_VEND_SPEC_FRC_SDCLK_ON);
1133 1.93 ryo if (freq == SDMMC_SDCLK_OFF) {
1134 1.93 ryo goto out;
1135 1.93 ryo }
1136 1.93 ryo } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1137 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1138 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
1139 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1140 1.11 matt goto out;
1141 1.11 matt }
1142 1.11 matt } else {
1143 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1144 1.11 matt if (freq == SDMMC_SDCLK_OFF)
1145 1.11 matt goto out;
1146 1.11 matt }
1147 1.1 nonaka
1148 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1149 1.93 ryo if (ddr)
1150 1.93 ryo HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1151 1.93 ryo else
1152 1.93 ryo HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1153 1.93 ryo } else if (hp->specver >= SDHC_SPEC_VERS_300) {
1154 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1155 1.71 jmcneill if (freq > 100000) {
1156 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1157 1.71 jmcneill } else if (freq > 50000) {
1158 1.98 nonaka if (ddr) {
1159 1.98 nonaka HSET2(hp, SDHC_HOST_CTL2,
1160 1.98 nonaka SDHC_UHS_MODE_SELECT_DDR50);
1161 1.98 nonaka } else {
1162 1.98 nonaka HSET2(hp, SDHC_HOST_CTL2,
1163 1.98 nonaka SDHC_UHS_MODE_SELECT_SDR50);
1164 1.98 nonaka }
1165 1.71 jmcneill } else if (freq > 25000) {
1166 1.76 jmcneill if (ddr) {
1167 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1168 1.76 jmcneill SDHC_UHS_MODE_SELECT_DDR50);
1169 1.76 jmcneill } else {
1170 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1171 1.76 jmcneill SDHC_UHS_MODE_SELECT_SDR25);
1172 1.76 jmcneill }
1173 1.74 jmcneill } else if (freq > 400) {
1174 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1175 1.71 jmcneill }
1176 1.71 jmcneill }
1177 1.71 jmcneill
1178 1.1 nonaka /*
1179 1.82 mlelstv * Slow down Ricoh 5U823 controller that isn't reliable
1180 1.82 mlelstv * at 100MHz bus clock.
1181 1.82 mlelstv */
1182 1.82 mlelstv if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
1183 1.82 mlelstv if (freq == 100000)
1184 1.82 mlelstv --freq;
1185 1.82 mlelstv }
1186 1.82 mlelstv
1187 1.82 mlelstv /*
1188 1.1 nonaka * Set the minimum base clock frequency divisor.
1189 1.1 nonaka */
1190 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
1191 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
1192 1.68 mlelstv aprint_error_dev(hp->sc->sc_dev,
1193 1.68 mlelstv "Invalid bus clock %d kHz\n", freq);
1194 1.1 nonaka error = EINVAL;
1195 1.1 nonaka goto out;
1196 1.1 nonaka }
1197 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1198 1.93 ryo if (ddr) {
1199 1.93 ryo /* in ddr mode, divisor >>= 1 */
1200 1.93 ryo div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
1201 1.93 ryo SDHC_SDCLK_DIV_SHIFT)) |
1202 1.93 ryo (div & (SDHC_SDCLK_DVS_MASK <<
1203 1.93 ryo SDHC_SDCLK_DVS_SHIFT));
1204 1.93 ryo }
1205 1.93 ryo for (timo = 1000; timo > 0; timo--) {
1206 1.93 ryo if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
1207 1.93 ryo break;
1208 1.93 ryo sdmmc_delay(10);
1209 1.93 ryo }
1210 1.93 ryo HWRITE4(hp, SDHC_CLOCK_CTL,
1211 1.93 ryo div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
1212 1.93 ryo } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1213 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
1214 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
1215 1.11 matt } else {
1216 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
1217 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1218 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1219 1.11 matt }
1220 1.1 nonaka
1221 1.1 nonaka /*
1222 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
1223 1.1 nonaka */
1224 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1225 1.93 ryo HSET4(hp, SDHC_VEND_SPEC,
1226 1.93 ryo SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1227 1.93 ryo SDHC_VEND_SPEC_FRC_SDCLK_ON);
1228 1.93 ryo } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1229 1.11 matt sdmmc_delay(10000);
1230 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
1231 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1232 1.11 matt } else {
1233 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1234 1.11 matt for (timo = 1000; timo > 0; timo--) {
1235 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1236 1.12 nonaka SDHC_INTCLK_STABLE))
1237 1.11 matt break;
1238 1.11 matt sdmmc_delay(10);
1239 1.11 matt }
1240 1.11 matt if (timo == 0) {
1241 1.11 matt error = ETIMEDOUT;
1242 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
1243 1.11 matt goto out;
1244 1.11 matt }
1245 1.1 nonaka }
1246 1.1 nonaka
1247 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1248 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1249 1.11 matt /*
1250 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
1251 1.11 matt * So delay for that time + slop and then
1252 1.11 matt * check a few times for completion.
1253 1.11 matt */
1254 1.11 matt sdmmc_delay(210);
1255 1.11 matt for (timo = 10; timo > 0; timo--) {
1256 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1257 1.11 matt SDHC_INIT_ACTIVE))
1258 1.11 matt break;
1259 1.11 matt sdmmc_delay(10);
1260 1.11 matt }
1261 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1262 1.12 nonaka
1263 1.11 matt /*
1264 1.11 matt * Enable SD clock.
1265 1.11 matt */
1266 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1267 1.93 ryo HSET4(hp, SDHC_VEND_SPEC,
1268 1.93 ryo SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1269 1.93 ryo SDHC_VEND_SPEC_FRC_SDCLK_ON);
1270 1.93 ryo } else {
1271 1.93 ryo HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1272 1.93 ryo }
1273 1.11 matt } else {
1274 1.11 matt /*
1275 1.11 matt * Enable SD clock.
1276 1.11 matt */
1277 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1278 1.1 nonaka
1279 1.43 jmcneill if (freq > 25000 &&
1280 1.43 jmcneill !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1281 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1282 1.11 matt else
1283 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1284 1.11 matt }
1285 1.8 kiyohara
1286 1.114 mrg mutex_exit(&hp->intr_lock);
1287 1.114 mrg
1288 1.102 jmcneill if (hp->sc->sc_vendor_bus_clock_post) {
1289 1.114 mrg mutex_enter(&hp->bus_clock_lock);
1290 1.102 jmcneill error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
1291 1.114 mrg mutex_exit(&hp->bus_clock_lock);
1292 1.102 jmcneill }
1293 1.114 mrg return error;
1294 1.102 jmcneill
1295 1.1 nonaka out:
1296 1.65 jmcneill mutex_exit(&hp->intr_lock);
1297 1.1 nonaka
1298 1.1 nonaka return error;
1299 1.1 nonaka }
1300 1.1 nonaka
1301 1.1 nonaka static int
1302 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1303 1.1 nonaka {
1304 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1305 1.1 nonaka int reg;
1306 1.1 nonaka
1307 1.1 nonaka switch (width) {
1308 1.1 nonaka case 1:
1309 1.1 nonaka case 4:
1310 1.1 nonaka break;
1311 1.1 nonaka
1312 1.11 matt case 8:
1313 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1314 1.11 matt break;
1315 1.11 matt /* FALLTHROUGH */
1316 1.1 nonaka default:
1317 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
1318 1.1 nonaka HDEVNAME(hp), width));
1319 1.1 nonaka return 1;
1320 1.1 nonaka }
1321 1.1 nonaka
1322 1.89 jmcneill if (hp->sc->sc_vendor_bus_width) {
1323 1.89 jmcneill const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
1324 1.89 jmcneill if (error != 0)
1325 1.89 jmcneill return error;
1326 1.89 jmcneill }
1327 1.89 jmcneill
1328 1.65 jmcneill mutex_enter(&hp->intr_lock);
1329 1.65 jmcneill
1330 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
1331 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1332 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1333 1.11 matt if (width == 4)
1334 1.11 matt reg |= SDHC_4BIT_MODE;
1335 1.11 matt else if (width == 8)
1336 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
1337 1.11 matt } else {
1338 1.11 matt reg &= ~SDHC_4BIT_MODE;
1339 1.59 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1340 1.59 jmcneill reg &= ~SDHC_8BIT_MODE;
1341 1.59 jmcneill }
1342 1.59 jmcneill if (width == 4) {
1343 1.11 matt reg |= SDHC_4BIT_MODE;
1344 1.59 jmcneill } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1345 1.59 jmcneill reg |= SDHC_8BIT_MODE;
1346 1.59 jmcneill }
1347 1.11 matt }
1348 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
1349 1.65 jmcneill
1350 1.65 jmcneill mutex_exit(&hp->intr_lock);
1351 1.1 nonaka
1352 1.1 nonaka return 0;
1353 1.1 nonaka }
1354 1.1 nonaka
1355 1.8 kiyohara static int
1356 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1357 1.8 kiyohara {
1358 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1359 1.32 kiyohara
1360 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1361 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1362 1.8 kiyohara
1363 1.8 kiyohara return 0;
1364 1.8 kiyohara }
1365 1.8 kiyohara
1366 1.1 nonaka static void
1367 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1368 1.1 nonaka {
1369 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1370 1.1 nonaka
1371 1.93 ryo if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1372 1.65 jmcneill mutex_enter(&hp->intr_lock);
1373 1.11 matt if (enable) {
1374 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1375 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1376 1.11 matt } else {
1377 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1378 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1379 1.11 matt }
1380 1.65 jmcneill mutex_exit(&hp->intr_lock);
1381 1.1 nonaka }
1382 1.1 nonaka }
1383 1.1 nonaka
1384 1.47 skrll static void
1385 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1386 1.1 nonaka {
1387 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1388 1.1 nonaka
1389 1.93 ryo if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1390 1.65 jmcneill mutex_enter(&hp->intr_lock);
1391 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1392 1.65 jmcneill mutex_exit(&hp->intr_lock);
1393 1.11 matt }
1394 1.1 nonaka }
1395 1.1 nonaka
1396 1.1 nonaka static int
1397 1.71 jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1398 1.71 jmcneill {
1399 1.71 jmcneill struct sdhc_host *hp = (struct sdhc_host *)sch;
1400 1.100 jmcneill int error = 0;
1401 1.71 jmcneill
1402 1.98 nonaka if (hp->specver < SDHC_SPEC_VERS_300)
1403 1.98 nonaka return EINVAL;
1404 1.98 nonaka
1405 1.78 mlelstv mutex_enter(&hp->intr_lock);
1406 1.71 jmcneill switch (signal_voltage) {
1407 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_180:
1408 1.100 jmcneill if (hp->sc->sc_vendor_signal_voltage != NULL) {
1409 1.100 jmcneill error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1410 1.100 jmcneill signal_voltage);
1411 1.100 jmcneill if (error != 0)
1412 1.100 jmcneill break;
1413 1.100 jmcneill }
1414 1.93 ryo if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1415 1.93 ryo HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1416 1.71 jmcneill break;
1417 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_330:
1418 1.93 ryo if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1419 1.93 ryo HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1420 1.100 jmcneill if (hp->sc->sc_vendor_signal_voltage != NULL) {
1421 1.100 jmcneill error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1422 1.100 jmcneill signal_voltage);
1423 1.100 jmcneill if (error != 0)
1424 1.100 jmcneill break;
1425 1.100 jmcneill }
1426 1.71 jmcneill break;
1427 1.71 jmcneill default:
1428 1.100 jmcneill error = EINVAL;
1429 1.100 jmcneill break;
1430 1.71 jmcneill }
1431 1.78 mlelstv mutex_exit(&hp->intr_lock);
1432 1.71 jmcneill
1433 1.100 jmcneill return error;
1434 1.71 jmcneill }
1435 1.71 jmcneill
1436 1.79 jmcneill /*
1437 1.79 jmcneill * Sampling clock tuning procedure (UHS)
1438 1.79 jmcneill */
1439 1.79 jmcneill static int
1440 1.83 mlelstv sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
1441 1.79 jmcneill {
1442 1.79 jmcneill struct sdmmc_command cmd;
1443 1.79 jmcneill uint8_t hostctl;
1444 1.79 jmcneill int opcode, error, retry = 40;
1445 1.79 jmcneill
1446 1.83 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
1447 1.83 mlelstv
1448 1.80 jmcneill hp->tuning_timing = timing;
1449 1.80 jmcneill
1450 1.79 jmcneill switch (timing) {
1451 1.79 jmcneill case SDMMC_TIMING_MMC_HS200:
1452 1.79 jmcneill opcode = MMC_SEND_TUNING_BLOCK_HS200;
1453 1.79 jmcneill break;
1454 1.79 jmcneill case SDMMC_TIMING_UHS_SDR50:
1455 1.79 jmcneill if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1456 1.79 jmcneill return 0;
1457 1.79 jmcneill /* FALLTHROUGH */
1458 1.79 jmcneill case SDMMC_TIMING_UHS_SDR104:
1459 1.79 jmcneill opcode = MMC_SEND_TUNING_BLOCK;
1460 1.79 jmcneill break;
1461 1.79 jmcneill default:
1462 1.79 jmcneill return EINVAL;
1463 1.79 jmcneill }
1464 1.79 jmcneill
1465 1.79 jmcneill hostctl = HREAD1(hp, SDHC_HOST_CTL);
1466 1.79 jmcneill
1467 1.79 jmcneill /* enable buffer read ready interrupt */
1468 1.79 jmcneill HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1469 1.79 jmcneill HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1470 1.79 jmcneill
1471 1.79 jmcneill /* disable DMA */
1472 1.79 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1473 1.79 jmcneill
1474 1.79 jmcneill /* reset tuning circuit */
1475 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1476 1.79 jmcneill
1477 1.79 jmcneill /* start of tuning */
1478 1.79 jmcneill HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1479 1.79 jmcneill
1480 1.79 jmcneill do {
1481 1.79 jmcneill memset(&cmd, 0, sizeof(cmd));
1482 1.79 jmcneill cmd.c_opcode = opcode;
1483 1.79 jmcneill cmd.c_arg = 0;
1484 1.79 jmcneill cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1485 1.79 jmcneill if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1486 1.79 jmcneill cmd.c_blklen = cmd.c_datalen = 128;
1487 1.79 jmcneill } else {
1488 1.79 jmcneill cmd.c_blklen = cmd.c_datalen = 64;
1489 1.79 jmcneill }
1490 1.79 jmcneill
1491 1.79 jmcneill error = sdhc_start_command(hp, &cmd);
1492 1.79 jmcneill if (error)
1493 1.79 jmcneill break;
1494 1.79 jmcneill
1495 1.79 jmcneill if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1496 1.88 mlelstv SDHC_TUNING_TIMEOUT, false)) {
1497 1.79 jmcneill break;
1498 1.79 jmcneill }
1499 1.79 jmcneill
1500 1.79 jmcneill delay(1000);
1501 1.79 jmcneill } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1502 1.79 jmcneill
1503 1.79 jmcneill /* disable buffer read ready interrupt */
1504 1.79 jmcneill HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1505 1.79 jmcneill HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1506 1.79 jmcneill
1507 1.79 jmcneill if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1508 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2,
1509 1.79 jmcneill SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1510 1.79 jmcneill sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1511 1.79 jmcneill aprint_error_dev(hp->sc->sc_dev,
1512 1.79 jmcneill "tuning did not complete, using fixed sampling clock\n");
1513 1.103 jmcneill return 0; /* tuning did not complete */
1514 1.79 jmcneill }
1515 1.79 jmcneill
1516 1.79 jmcneill if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1517 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2,
1518 1.79 jmcneill SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1519 1.79 jmcneill sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1520 1.79 jmcneill aprint_error_dev(hp->sc->sc_dev,
1521 1.79 jmcneill "tuning failed, using fixed sampling clock\n");
1522 1.103 jmcneill return 0; /* tuning failed */
1523 1.79 jmcneill }
1524 1.79 jmcneill
1525 1.80 jmcneill if (hp->tuning_timer_count) {
1526 1.80 jmcneill callout_schedule(&hp->tuning_timer,
1527 1.80 jmcneill hz * hp->tuning_timer_count);
1528 1.80 jmcneill }
1529 1.80 jmcneill
1530 1.79 jmcneill return 0; /* tuning completed */
1531 1.79 jmcneill }
1532 1.79 jmcneill
1533 1.83 mlelstv static int
1534 1.83 mlelstv sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1535 1.83 mlelstv {
1536 1.83 mlelstv struct sdhc_host *hp = (struct sdhc_host *)sch;
1537 1.83 mlelstv int error;
1538 1.83 mlelstv
1539 1.83 mlelstv mutex_enter(&hp->intr_lock);
1540 1.83 mlelstv error = sdhc_execute_tuning1(hp, timing);
1541 1.83 mlelstv mutex_exit(&hp->intr_lock);
1542 1.83 mlelstv return error;
1543 1.83 mlelstv }
1544 1.83 mlelstv
1545 1.80 jmcneill static void
1546 1.80 jmcneill sdhc_tuning_timer(void *arg)
1547 1.80 jmcneill {
1548 1.80 jmcneill struct sdhc_host *hp = arg;
1549 1.80 jmcneill
1550 1.80 jmcneill atomic_swap_uint(&hp->tuning_timer_pending, 1);
1551 1.80 jmcneill }
1552 1.80 jmcneill
1553 1.99 nonaka static void
1554 1.99 nonaka sdhc_hw_reset(sdmmc_chipset_handle_t sch)
1555 1.99 nonaka {
1556 1.99 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1557 1.99 nonaka struct sdhc_softc *sc = hp->sc;
1558 1.99 nonaka
1559 1.99 nonaka if (sc->sc_vendor_hw_reset != NULL)
1560 1.99 nonaka sc->sc_vendor_hw_reset(sc, hp);
1561 1.99 nonaka }
1562 1.99 nonaka
1563 1.71 jmcneill static int
1564 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1565 1.1 nonaka {
1566 1.121 jmcneill struct timeval start, diff;
1567 1.1 nonaka uint32_t state;
1568 1.1 nonaka
1569 1.121 jmcneill microuptime(&start);
1570 1.121 jmcneill for (;;) {
1571 1.121 jmcneill state = HREAD4(hp, SDHC_PRESENT_STATE);
1572 1.121 jmcneill if ((state & mask) == value) {
1573 1.1 nonaka return 0;
1574 1.121 jmcneill }
1575 1.121 jmcneill microuptime(&diff);
1576 1.121 jmcneill timersub(&diff, &start, &diff);
1577 1.121 jmcneill if (diff.tv_sec != 0) {
1578 1.121 jmcneill aprint_error_dev(hp->sc->sc_dev,
1579 1.121 jmcneill "timeout waiting for mask %#x value %#x "
1580 1.121 jmcneill "(state=%#x)\n",
1581 1.121 jmcneill mask, value, state);
1582 1.121 jmcneill return ETIMEDOUT;
1583 1.121 jmcneill }
1584 1.1 nonaka }
1585 1.1 nonaka }
1586 1.1 nonaka
1587 1.1 nonaka static void
1588 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1589 1.1 nonaka {
1590 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1591 1.1 nonaka int error;
1592 1.88 mlelstv bool probing;
1593 1.1 nonaka
1594 1.83 mlelstv mutex_enter(&hp->intr_lock);
1595 1.83 mlelstv
1596 1.80 jmcneill if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
1597 1.83 mlelstv (void)sdhc_execute_tuning1(hp, hp->tuning_timing);
1598 1.80 jmcneill }
1599 1.80 jmcneill
1600 1.93 ryo if (cmd->c_data &&
1601 1.93 ryo ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1602 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1603 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1604 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1605 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1606 1.11 matt } else {
1607 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1608 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1609 1.47 skrll }
1610 1.11 matt }
1611 1.11 matt
1612 1.61 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1613 1.61 jmcneill const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1614 1.61 jmcneill if (cmd->c_data != NULL) {
1615 1.61 jmcneill HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1616 1.61 jmcneill HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1617 1.61 jmcneill } else {
1618 1.61 jmcneill HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1619 1.61 jmcneill HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1620 1.61 jmcneill }
1621 1.61 jmcneill }
1622 1.61 jmcneill
1623 1.102 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
1624 1.102 jmcneill if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1625 1.102 jmcneill SET(cmd->c_flags, SCF_RSP_BSY);
1626 1.102 jmcneill }
1627 1.102 jmcneill
1628 1.1 nonaka /*
1629 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1630 1.1 nonaka */
1631 1.1 nonaka error = sdhc_start_command(hp, cmd);
1632 1.1 nonaka if (error) {
1633 1.1 nonaka cmd->c_error = error;
1634 1.1 nonaka goto out;
1635 1.1 nonaka }
1636 1.1 nonaka
1637 1.1 nonaka /*
1638 1.1 nonaka * Wait until the command phase is done, or until the command
1639 1.1 nonaka * is marked done for any other reason.
1640 1.1 nonaka */
1641 1.88 mlelstv probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
1642 1.105 mlelstv if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
1643 1.84 mlelstv DPRINTF(1,("%s: timeout for command\n", __func__));
1644 1.94 kiyohara sdmmc_delay(50);
1645 1.1 nonaka cmd->c_error = ETIMEDOUT;
1646 1.1 nonaka goto out;
1647 1.1 nonaka }
1648 1.1 nonaka
1649 1.1 nonaka /*
1650 1.1 nonaka * The host controller removes bits [0:7] from the response
1651 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1652 1.1 nonaka * driver (without padding).
1653 1.1 nonaka */
1654 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1655 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1656 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1657 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1658 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1659 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1660 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1661 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1662 1.32 kiyohara (cmd->c_resp[1] << 24);
1663 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1664 1.32 kiyohara (cmd->c_resp[2] << 24);
1665 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1666 1.32 kiyohara (cmd->c_resp[3] << 24);
1667 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1668 1.32 kiyohara }
1669 1.1 nonaka }
1670 1.1 nonaka }
1671 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1672 1.1 nonaka
1673 1.1 nonaka /*
1674 1.1 nonaka * If the command has data to transfer in any direction,
1675 1.1 nonaka * execute the transfer now.
1676 1.1 nonaka */
1677 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1678 1.1 nonaka sdhc_transfer_data(hp, cmd);
1679 1.42 jakllsch else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1680 1.97 kiyohara if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
1681 1.97 kiyohara !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
1682 1.85 mlelstv DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
1683 1.85 mlelstv HDEVNAME(hp)));
1684 1.42 jakllsch cmd->c_error = ETIMEDOUT;
1685 1.42 jakllsch goto out;
1686 1.42 jakllsch }
1687 1.42 jakllsch }
1688 1.1 nonaka
1689 1.1 nonaka out:
1690 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1691 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1692 1.11 matt /* Turn off the LED. */
1693 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1694 1.11 matt }
1695 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1696 1.1 nonaka
1697 1.97 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
1698 1.97 kiyohara cmd->c_opcode == MMC_STOP_TRANSMISSION)
1699 1.97 kiyohara (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
1700 1.97 kiyohara
1701 1.65 jmcneill mutex_exit(&hp->intr_lock);
1702 1.65 jmcneill
1703 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1704 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1705 1.1 nonaka cmd->c_flags, cmd->c_error));
1706 1.1 nonaka }
1707 1.1 nonaka
1708 1.1 nonaka static int
1709 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1710 1.1 nonaka {
1711 1.11 matt struct sdhc_softc * const sc = hp->sc;
1712 1.1 nonaka uint16_t blksize = 0;
1713 1.1 nonaka uint16_t blkcount = 0;
1714 1.1 nonaka uint16_t mode;
1715 1.1 nonaka uint16_t command;
1716 1.84 mlelstv uint32_t pmask;
1717 1.1 nonaka int error;
1718 1.1 nonaka
1719 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1720 1.65 jmcneill
1721 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1722 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1723 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1724 1.1 nonaka
1725 1.1 nonaka /*
1726 1.1 nonaka * The maximum block length for commands should be the minimum
1727 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1728 1.1 nonaka */
1729 1.1 nonaka
1730 1.1 nonaka /* Fragment the data into proper blocks. */
1731 1.1 nonaka if (cmd->c_datalen > 0) {
1732 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1733 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1734 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1735 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1736 1.11 matt aprint_error_dev(sc->sc_dev,
1737 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1738 1.1 nonaka return EINVAL;
1739 1.1 nonaka }
1740 1.1 nonaka }
1741 1.1 nonaka
1742 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1743 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1744 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1745 1.1 nonaka return EINVAL;
1746 1.1 nonaka }
1747 1.1 nonaka
1748 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1749 1.108 mlelstv mode = 0;
1750 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1751 1.1 nonaka mode |= SDHC_READ_MODE;
1752 1.108 mlelstv if (blkcount > 0) {
1753 1.108 mlelstv mode |= SDHC_BLOCK_COUNT_ENABLE;
1754 1.108 mlelstv if (blkcount > 1) {
1755 1.108 mlelstv mode |= SDHC_MULTI_BLOCK_MODE;
1756 1.108 mlelstv if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
1757 1.108 mlelstv && !ISSET(cmd->c_flags, SCF_NO_STOP))
1758 1.108 mlelstv mode |= SDHC_AUTO_CMD12_ENABLE;
1759 1.108 mlelstv }
1760 1.1 nonaka }
1761 1.45 jakllsch if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1762 1.55 bouyer ISSET(hp->flags, SHF_MODE_DMAEN)) {
1763 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1764 1.7 nonaka }
1765 1.1 nonaka
1766 1.1 nonaka /*
1767 1.1 nonaka * Prepare command register value. (2.2.6)
1768 1.1 nonaka */
1769 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1770 1.1 nonaka
1771 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1772 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1773 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1774 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1775 1.79 jmcneill if (cmd->c_datalen > 0)
1776 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1777 1.1 nonaka
1778 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1779 1.1 nonaka command |= SDHC_NO_RESPONSE;
1780 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1781 1.1 nonaka command |= SDHC_RESP_LEN_136;
1782 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1783 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1784 1.1 nonaka else
1785 1.1 nonaka command |= SDHC_RESP_LEN_48;
1786 1.1 nonaka
1787 1.84 mlelstv /* Wait until command and optionally data inhibit bits are clear. (1.5) */
1788 1.84 mlelstv pmask = SDHC_CMD_INHIBIT_CMD;
1789 1.91 mlelstv if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
1790 1.84 mlelstv pmask |= SDHC_CMD_INHIBIT_DAT;
1791 1.84 mlelstv error = sdhc_wait_state(hp, pmask, 0);
1792 1.68 mlelstv if (error) {
1793 1.84 mlelstv (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1794 1.84 mlelstv device_printf(sc->sc_dev, "command or data phase inhibited\n");
1795 1.1 nonaka return error;
1796 1.68 mlelstv }
1797 1.1 nonaka
1798 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1799 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1800 1.1 nonaka
1801 1.93 ryo if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1802 1.44 hkenken blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1803 1.44 hkenken SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1804 1.44 hkenken }
1805 1.19 jakllsch
1806 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1807 1.11 matt /* Alert the user not to remove the card. */
1808 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1809 1.11 matt }
1810 1.1 nonaka
1811 1.7 nonaka /* Set DMA start address. */
1812 1.79 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1813 1.63 jmcneill for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1814 1.69 jmcneill bus_addr_t paddr =
1815 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_addr;
1816 1.63 jmcneill uint16_t len =
1817 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1818 1.63 jmcneill 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1819 1.63 jmcneill uint16_t attr =
1820 1.63 jmcneill SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1821 1.63 jmcneill if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1822 1.63 jmcneill attr |= SDHC_ADMA2_END;
1823 1.63 jmcneill }
1824 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1825 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc =
1826 1.63 jmcneill hp->adma2;
1827 1.63 jmcneill desc[seg].attribute = htole16(attr);
1828 1.63 jmcneill desc[seg].length = htole16(len);
1829 1.63 jmcneill desc[seg].address = htole32(paddr);
1830 1.63 jmcneill } else {
1831 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc =
1832 1.63 jmcneill hp->adma2;
1833 1.63 jmcneill desc[seg].attribute = htole16(attr);
1834 1.63 jmcneill desc[seg].length = htole16(len);
1835 1.63 jmcneill desc[seg].address = htole32(paddr & 0xffffffff);
1836 1.63 jmcneill desc[seg].address_hi = htole32(
1837 1.63 jmcneill (uint64_t)paddr >> 32);
1838 1.63 jmcneill }
1839 1.63 jmcneill }
1840 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1841 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1842 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1843 1.63 jmcneill } else {
1844 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1845 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1846 1.63 jmcneill }
1847 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1848 1.63 jmcneill BUS_DMASYNC_PREWRITE);
1849 1.117 jmcneill
1850 1.117 jmcneill const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1851 1.117 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1852 1.117 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1853 1.117 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1854 1.117 jmcneill (uint64_t)desc_addr >> 32);
1855 1.117 jmcneill }
1856 1.117 jmcneill
1857 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1858 1.93 ryo HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1859 1.93 ryo HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
1860 1.93 ryo } else {
1861 1.93 ryo HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1862 1.93 ryo HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1863 1.93 ryo }
1864 1.63 jmcneill } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1865 1.63 jmcneill !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1866 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1867 1.93 ryo HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1868 1.93 ryo }
1869 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1870 1.63 jmcneill }
1871 1.7 nonaka
1872 1.1 nonaka /*
1873 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1874 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1875 1.1 nonaka */
1876 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1877 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1878 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1879 1.93 ryo if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1880 1.93 ryo /* mode bits is in MIX_CTRL register on uSDHC */
1881 1.93 ryo HWRITE4(hp, SDHC_MIX_CTRL, mode |
1882 1.104 hkenken (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
1883 1.104 hkenken if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1884 1.104 hkenken command |= SDHC_COMMAND_TYPE_ABORT;
1885 1.93 ryo HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
1886 1.93 ryo } else {
1887 1.93 ryo HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1888 1.93 ryo }
1889 1.11 matt } else {
1890 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1891 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1892 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1893 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1894 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1895 1.11 matt }
1896 1.1 nonaka
1897 1.1 nonaka return 0;
1898 1.1 nonaka }
1899 1.1 nonaka
1900 1.1 nonaka static void
1901 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1902 1.1 nonaka {
1903 1.51 jmcneill struct sdhc_softc *sc = hp->sc;
1904 1.1 nonaka int error;
1905 1.1 nonaka
1906 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1907 1.65 jmcneill
1908 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1909 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1910 1.1 nonaka
1911 1.1 nonaka #ifdef SDHC_DEBUG
1912 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1913 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1914 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1915 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1916 1.1 nonaka "CMD52/53 error response flags %#x\n",
1917 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1918 1.1 nonaka }
1919 1.1 nonaka #endif
1920 1.1 nonaka
1921 1.47 skrll if (cmd->c_dmamap != NULL) {
1922 1.47 skrll if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1923 1.51 jmcneill error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1924 1.47 skrll if (error == 0 && !sdhc_wait_intr(hp,
1925 1.88 mlelstv SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
1926 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
1927 1.47 skrll error = ETIMEDOUT;
1928 1.47 skrll }
1929 1.47 skrll } else {
1930 1.47 skrll error = sdhc_transfer_data_dma(hp, cmd);
1931 1.47 skrll }
1932 1.47 skrll } else
1933 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1934 1.1 nonaka if (error)
1935 1.1 nonaka cmd->c_error = error;
1936 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1937 1.1 nonaka
1938 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1939 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1940 1.1 nonaka }
1941 1.1 nonaka
1942 1.1 nonaka static int
1943 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1944 1.7 nonaka {
1945 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1946 1.19 jakllsch bus_addr_t posaddr;
1947 1.19 jakllsch bus_addr_t segaddr;
1948 1.19 jakllsch bus_size_t seglen;
1949 1.19 jakllsch u_int seg = 0;
1950 1.7 nonaka int error = 0;
1951 1.19 jakllsch int status;
1952 1.7 nonaka
1953 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1954 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1955 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1956 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1957 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1958 1.11 matt
1959 1.7 nonaka for (;;) {
1960 1.19 jakllsch status = sdhc_wait_intr(hp,
1961 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1962 1.88 mlelstv SDHC_DMA_TIMEOUT, false);
1963 1.19 jakllsch
1964 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1965 1.19 jakllsch break;
1966 1.19 jakllsch }
1967 1.19 jakllsch if (!status) {
1968 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
1969 1.7 nonaka error = ETIMEDOUT;
1970 1.7 nonaka break;
1971 1.7 nonaka }
1972 1.63 jmcneill
1973 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1974 1.63 jmcneill continue;
1975 1.63 jmcneill }
1976 1.63 jmcneill
1977 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1978 1.19 jakllsch continue;
1979 1.19 jakllsch }
1980 1.19 jakllsch
1981 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1982 1.7 nonaka
1983 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1984 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1985 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1986 1.7 nonaka
1987 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1988 1.37 jakllsch continue;
1989 1.19 jakllsch }
1990 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1991 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1992 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1993 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1994 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1995 1.7 nonaka }
1996 1.7 nonaka
1997 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1998 1.63 jmcneill bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1999 1.63 jmcneill PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
2000 1.63 jmcneill }
2001 1.63 jmcneill
2002 1.7 nonaka return error;
2003 1.7 nonaka }
2004 1.7 nonaka
2005 1.7 nonaka static int
2006 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
2007 1.1 nonaka {
2008 1.1 nonaka uint8_t *data = cmd->c_data;
2009 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
2010 1.11 matt u_int len, datalen;
2011 1.11 matt u_int imask;
2012 1.11 matt u_int pmask;
2013 1.1 nonaka int error = 0;
2014 1.1 nonaka
2015 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
2016 1.78 mlelstv
2017 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
2018 1.11 matt imask = SDHC_BUFFER_READ_READY;
2019 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
2020 1.93 ryo if (ISSET(hp->sc->sc_flags,
2021 1.93 ryo SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2022 1.11 matt pio_func = esdhc_read_data_pio;
2023 1.11 matt } else {
2024 1.11 matt pio_func = sdhc_read_data_pio;
2025 1.11 matt }
2026 1.11 matt } else {
2027 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
2028 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
2029 1.93 ryo if (ISSET(hp->sc->sc_flags,
2030 1.93 ryo SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2031 1.11 matt pio_func = esdhc_write_data_pio;
2032 1.11 matt } else {
2033 1.11 matt pio_func = sdhc_write_data_pio;
2034 1.11 matt }
2035 1.11 matt }
2036 1.1 nonaka datalen = cmd->c_datalen;
2037 1.1 nonaka
2038 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
2039 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
2040 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
2041 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
2042 1.11 matt
2043 1.1 nonaka while (datalen > 0) {
2044 1.92 ryo if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
2045 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2046 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
2047 1.11 matt } else {
2048 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
2049 1.11 matt }
2050 1.88 mlelstv if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
2051 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
2052 1.11 matt error = ETIMEDOUT;
2053 1.11 matt break;
2054 1.11 matt }
2055 1.11 matt
2056 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
2057 1.11 matt if (error)
2058 1.11 matt break;
2059 1.1 nonaka }
2060 1.1 nonaka
2061 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
2062 1.11 matt (*pio_func)(hp, data, len);
2063 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
2064 1.11 matt HDEVNAME(hp), len, data));
2065 1.1 nonaka
2066 1.1 nonaka data += len;
2067 1.1 nonaka datalen -= len;
2068 1.1 nonaka }
2069 1.1 nonaka
2070 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
2071 1.88 mlelstv SDHC_TRANSFER_TIMEOUT, false)) {
2072 1.84 mlelstv DPRINTF(1,("%s: timeout for transfer\n", __func__));
2073 1.1 nonaka error = ETIMEDOUT;
2074 1.84 mlelstv }
2075 1.1 nonaka
2076 1.1 nonaka return error;
2077 1.1 nonaka }
2078 1.1 nonaka
2079 1.1 nonaka static void
2080 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2081 1.1 nonaka {
2082 1.1 nonaka
2083 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
2084 1.1 nonaka while (datalen > 3) {
2085 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
2086 1.1 nonaka data += 4;
2087 1.1 nonaka datalen -= 4;
2088 1.1 nonaka }
2089 1.1 nonaka if (datalen > 1) {
2090 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2091 1.1 nonaka data += 2;
2092 1.1 nonaka datalen -= 2;
2093 1.1 nonaka }
2094 1.1 nonaka if (datalen > 0) {
2095 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
2096 1.1 nonaka data += 1;
2097 1.1 nonaka datalen -= 1;
2098 1.1 nonaka }
2099 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
2100 1.1 nonaka while (datalen > 1) {
2101 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2102 1.1 nonaka data += 2;
2103 1.1 nonaka datalen -= 2;
2104 1.1 nonaka }
2105 1.1 nonaka if (datalen > 0) {
2106 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
2107 1.1 nonaka data += 1;
2108 1.1 nonaka datalen -= 1;
2109 1.1 nonaka }
2110 1.1 nonaka } else {
2111 1.1 nonaka while (datalen > 0) {
2112 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
2113 1.1 nonaka data += 1;
2114 1.1 nonaka datalen -= 1;
2115 1.1 nonaka }
2116 1.1 nonaka }
2117 1.1 nonaka }
2118 1.1 nonaka
2119 1.1 nonaka static void
2120 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2121 1.1 nonaka {
2122 1.1 nonaka
2123 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
2124 1.1 nonaka while (datalen > 3) {
2125 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
2126 1.1 nonaka data += 4;
2127 1.1 nonaka datalen -= 4;
2128 1.1 nonaka }
2129 1.1 nonaka if (datalen > 1) {
2130 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2131 1.1 nonaka data += 2;
2132 1.1 nonaka datalen -= 2;
2133 1.1 nonaka }
2134 1.1 nonaka if (datalen > 0) {
2135 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
2136 1.1 nonaka data += 1;
2137 1.1 nonaka datalen -= 1;
2138 1.1 nonaka }
2139 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
2140 1.1 nonaka while (datalen > 1) {
2141 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2142 1.1 nonaka data += 2;
2143 1.1 nonaka datalen -= 2;
2144 1.1 nonaka }
2145 1.1 nonaka if (datalen > 0) {
2146 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
2147 1.1 nonaka data += 1;
2148 1.1 nonaka datalen -= 1;
2149 1.1 nonaka }
2150 1.1 nonaka } else {
2151 1.1 nonaka while (datalen > 0) {
2152 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
2153 1.1 nonaka data += 1;
2154 1.1 nonaka datalen -= 1;
2155 1.1 nonaka }
2156 1.1 nonaka }
2157 1.1 nonaka }
2158 1.1 nonaka
2159 1.11 matt static void
2160 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2161 1.11 matt {
2162 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2163 1.12 nonaka uint32_t v;
2164 1.12 nonaka
2165 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
2166 1.23 matt size_t count = 0;
2167 1.23 matt
2168 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2169 1.23 matt if (count == 0) {
2170 1.23 matt /*
2171 1.23 matt * If we've drained "watermark" words, we need to wait
2172 1.23 matt * a little bit so the read FIFO can refill.
2173 1.23 matt */
2174 1.23 matt sdmmc_delay(10);
2175 1.23 matt count = watermark;
2176 1.23 matt }
2177 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
2178 1.11 matt v = le32toh(v);
2179 1.11 matt *(uint32_t *)data = v;
2180 1.11 matt data += 4;
2181 1.11 matt datalen -= 4;
2182 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
2183 1.23 matt count--;
2184 1.11 matt }
2185 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2186 1.23 matt if (count == 0) {
2187 1.23 matt sdmmc_delay(10);
2188 1.23 matt }
2189 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
2190 1.11 matt v = le32toh(v);
2191 1.11 matt do {
2192 1.11 matt *data++ = v;
2193 1.11 matt v >>= 8;
2194 1.11 matt } while (--datalen > 0);
2195 1.11 matt }
2196 1.11 matt }
2197 1.11 matt
2198 1.11 matt static void
2199 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2200 1.11 matt {
2201 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2202 1.12 nonaka uint32_t v;
2203 1.12 nonaka
2204 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
2205 1.23 matt size_t count = watermark;
2206 1.23 matt
2207 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2208 1.23 matt if (count == 0) {
2209 1.23 matt sdmmc_delay(10);
2210 1.23 matt count = watermark;
2211 1.23 matt }
2212 1.12 nonaka v = *(uint32_t *)data;
2213 1.11 matt v = htole32(v);
2214 1.11 matt HWRITE4(hp, SDHC_DATA, v);
2215 1.11 matt data += 4;
2216 1.11 matt datalen -= 4;
2217 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
2218 1.23 matt count--;
2219 1.11 matt }
2220 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2221 1.23 matt if (count == 0) {
2222 1.23 matt sdmmc_delay(10);
2223 1.23 matt }
2224 1.12 nonaka v = *(uint32_t *)data;
2225 1.11 matt v = htole32(v);
2226 1.11 matt HWRITE4(hp, SDHC_DATA, v);
2227 1.11 matt }
2228 1.11 matt }
2229 1.11 matt
2230 1.1 nonaka /* Prepare for another command. */
2231 1.1 nonaka static int
2232 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
2233 1.1 nonaka {
2234 1.1 nonaka int timo;
2235 1.1 nonaka
2236 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
2237 1.78 mlelstv
2238 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
2239 1.1 nonaka
2240 1.35 riastrad /* Request the reset. */
2241 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
2242 1.35 riastrad
2243 1.35 riastrad /*
2244 1.35 riastrad * If necessary, wait for the controller to set the bits to
2245 1.35 riastrad * acknowledge the reset.
2246 1.35 riastrad */
2247 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
2248 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
2249 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
2250 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2251 1.35 riastrad break;
2252 1.35 riastrad /* Short delay because I worry we may miss it... */
2253 1.35 riastrad sdmmc_delay(1);
2254 1.35 riastrad }
2255 1.90 mlelstv if (timo == 0) {
2256 1.84 mlelstv DPRINTF(1,("%s: timeout for reset on\n", __func__));
2257 1.35 riastrad return ETIMEDOUT;
2258 1.90 mlelstv }
2259 1.35 riastrad }
2260 1.35 riastrad
2261 1.35 riastrad /*
2262 1.35 riastrad * Wait for the controller to clear the bits to indicate that
2263 1.35 riastrad * the reset has completed.
2264 1.35 riastrad */
2265 1.1 nonaka for (timo = 10; timo > 0; timo--) {
2266 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2267 1.1 nonaka break;
2268 1.1 nonaka sdmmc_delay(10000);
2269 1.1 nonaka }
2270 1.1 nonaka if (timo == 0) {
2271 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
2272 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
2273 1.1 nonaka return ETIMEDOUT;
2274 1.1 nonaka }
2275 1.1 nonaka
2276 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2277 1.53 nonaka HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
2278 1.11 matt }
2279 1.11 matt
2280 1.1 nonaka return 0;
2281 1.1 nonaka }
2282 1.1 nonaka
2283 1.1 nonaka static int
2284 1.88 mlelstv sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
2285 1.1 nonaka {
2286 1.84 mlelstv int status, error, nointr;
2287 1.1 nonaka
2288 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
2289 1.65 jmcneill
2290 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
2291 1.1 nonaka
2292 1.84 mlelstv nointr = 0;
2293 1.1 nonaka status = hp->intr_status & mask;
2294 1.1 nonaka while (status == 0) {
2295 1.65 jmcneill if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
2296 1.1 nonaka == EWOULDBLOCK) {
2297 1.84 mlelstv nointr = 1;
2298 1.1 nonaka break;
2299 1.1 nonaka }
2300 1.1 nonaka status = hp->intr_status & mask;
2301 1.1 nonaka }
2302 1.84 mlelstv error = hp->intr_error_status;
2303 1.84 mlelstv
2304 1.84 mlelstv DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2305 1.84 mlelstv error));
2306 1.84 mlelstv
2307 1.1 nonaka hp->intr_status &= ~status;
2308 1.84 mlelstv hp->intr_error_status &= ~error;
2309 1.1 nonaka
2310 1.84 mlelstv if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2311 1.84 mlelstv if (ISSET(error, SDHC_DMA_ERROR))
2312 1.84 mlelstv device_printf(hp->sc->sc_dev,"dma error\n");
2313 1.84 mlelstv if (ISSET(error, SDHC_ADMA_ERROR))
2314 1.84 mlelstv device_printf(hp->sc->sc_dev,"adma error\n");
2315 1.84 mlelstv if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
2316 1.84 mlelstv device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
2317 1.84 mlelstv if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
2318 1.84 mlelstv device_printf(hp->sc->sc_dev,"current limit error\n");
2319 1.84 mlelstv if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
2320 1.84 mlelstv device_printf(hp->sc->sc_dev,"data end bit error\n");
2321 1.84 mlelstv if (ISSET(error, SDHC_DATA_CRC_ERROR))
2322 1.84 mlelstv device_printf(hp->sc->sc_dev,"data crc error\n");
2323 1.84 mlelstv if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
2324 1.84 mlelstv device_printf(hp->sc->sc_dev,"data timeout error\n");
2325 1.84 mlelstv if (ISSET(error, SDHC_CMD_INDEX_ERROR))
2326 1.84 mlelstv device_printf(hp->sc->sc_dev,"cmd index error\n");
2327 1.84 mlelstv if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
2328 1.84 mlelstv device_printf(hp->sc->sc_dev,"cmd end bit error\n");
2329 1.84 mlelstv if (ISSET(error, SDHC_CMD_CRC_ERROR))
2330 1.84 mlelstv device_printf(hp->sc->sc_dev,"cmd crc error\n");
2331 1.88 mlelstv if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
2332 1.88 mlelstv if (!probing)
2333 1.88 mlelstv device_printf(hp->sc->sc_dev,"cmd timeout error\n");
2334 1.88 mlelstv #ifdef SDHC_DEBUG
2335 1.88 mlelstv else if (sdhcdebug > 0)
2336 1.88 mlelstv device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
2337 1.88 mlelstv #endif
2338 1.88 mlelstv }
2339 1.84 mlelstv if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
2340 1.84 mlelstv device_printf(hp->sc->sc_dev,"vendor error %#x\n",
2341 1.84 mlelstv (error & ~SDHC_EINTR_STATUS_MASK));
2342 1.84 mlelstv if (error == 0)
2343 1.84 mlelstv device_printf(hp->sc->sc_dev,"no error\n");
2344 1.84 mlelstv
2345 1.84 mlelstv /* Command timeout has higher priority than command complete. */
2346 1.84 mlelstv if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
2347 1.84 mlelstv CLR(status, SDHC_COMMAND_COMPLETE);
2348 1.84 mlelstv
2349 1.84 mlelstv /* Transfer complete has higher priority than data timeout. */
2350 1.84 mlelstv if (ISSET(status, SDHC_TRANSFER_COMPLETE))
2351 1.84 mlelstv CLR(error, SDHC_DATA_TIMEOUT_ERROR);
2352 1.84 mlelstv }
2353 1.47 skrll
2354 1.84 mlelstv if (nointr ||
2355 1.84 mlelstv (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
2356 1.84 mlelstv if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2357 1.84 mlelstv (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
2358 1.1 nonaka hp->intr_error_status = 0;
2359 1.1 nonaka status = 0;
2360 1.1 nonaka }
2361 1.1 nonaka
2362 1.1 nonaka return status;
2363 1.1 nonaka }
2364 1.1 nonaka
2365 1.1 nonaka /*
2366 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
2367 1.1 nonaka */
2368 1.1 nonaka int
2369 1.1 nonaka sdhc_intr(void *arg)
2370 1.1 nonaka {
2371 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2372 1.1 nonaka struct sdhc_host *hp;
2373 1.1 nonaka int done = 0;
2374 1.1 nonaka uint16_t status;
2375 1.1 nonaka uint16_t error;
2376 1.1 nonaka
2377 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
2378 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
2379 1.1 nonaka hp = sc->sc_host[host];
2380 1.1 nonaka if (hp == NULL)
2381 1.1 nonaka continue;
2382 1.1 nonaka
2383 1.65 jmcneill mutex_enter(&hp->intr_lock);
2384 1.65 jmcneill
2385 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2386 1.11 matt /* Find out which interrupts are pending. */
2387 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2388 1.11 matt status = xstatus;
2389 1.11 matt error = xstatus >> 16;
2390 1.93 ryo if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
2391 1.93 ryo (xstatus & SDHC_TRANSFER_COMPLETE) &&
2392 1.93 ryo !(xstatus & SDHC_DMA_INTERRUPT)) {
2393 1.93 ryo /* read again due to uSDHC errata */
2394 1.93 ryo status = xstatus = HREAD4(hp,
2395 1.93 ryo SDHC_NINTR_STATUS);
2396 1.93 ryo error = xstatus >> 16;
2397 1.93 ryo }
2398 1.93 ryo if (ISSET(sc->sc_flags,
2399 1.93 ryo SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2400 1.87 mlelstv if ((error & SDHC_NINTR_STATUS_MASK) != 0)
2401 1.87 mlelstv SET(status, SDHC_ERROR_INTERRUPT);
2402 1.87 mlelstv }
2403 1.22 matt if (error)
2404 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
2405 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2406 1.65 jmcneill goto next_port; /* no interrupt for us */
2407 1.11 matt /* Acknowledge the interrupts we are about to handle. */
2408 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2409 1.11 matt } else {
2410 1.11 matt /* Find out which interrupts are pending. */
2411 1.11 matt error = 0;
2412 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
2413 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2414 1.65 jmcneill goto next_port; /* no interrupt for us */
2415 1.11 matt /* Acknowledge the interrupts we are about to handle. */
2416 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
2417 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2418 1.11 matt /* Acknowledge error interrupts. */
2419 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
2420 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
2421 1.11 matt }
2422 1.11 matt }
2423 1.47 skrll
2424 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2425 1.11 matt status, error));
2426 1.1 nonaka
2427 1.1 nonaka /* Claim this interrupt. */
2428 1.1 nonaka done = 1;
2429 1.1 nonaka
2430 1.84 mlelstv if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
2431 1.84 mlelstv ISSET(error, SDHC_ADMA_ERROR)) {
2432 1.63 jmcneill uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2433 1.63 jmcneill printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2434 1.63 jmcneill adma_err);
2435 1.63 jmcneill }
2436 1.63 jmcneill
2437 1.1 nonaka /*
2438 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
2439 1.1 nonaka */
2440 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2441 1.46 jakllsch if (hp->sdmmc != NULL) {
2442 1.46 jakllsch sdmmc_needs_discover(hp->sdmmc);
2443 1.46 jakllsch }
2444 1.93 ryo if (ISSET(sc->sc_flags,
2445 1.93 ryo SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2446 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
2447 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2448 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2449 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2450 1.11 matt }
2451 1.9 matt }
2452 1.1 nonaka
2453 1.1 nonaka /*
2454 1.80 jmcneill * Schedule re-tuning process (UHS).
2455 1.80 jmcneill */
2456 1.80 jmcneill if (ISSET(status, SDHC_RETUNING_EVENT)) {
2457 1.80 jmcneill atomic_swap_uint(&hp->tuning_timer_pending, 1);
2458 1.80 jmcneill }
2459 1.80 jmcneill
2460 1.80 jmcneill /*
2461 1.1 nonaka * Wake up the blocking process to service command
2462 1.1 nonaka * related interrupt(s).
2463 1.1 nonaka */
2464 1.86 mlelstv if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
2465 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2466 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2467 1.84 mlelstv hp->intr_error_status |= error;
2468 1.1 nonaka hp->intr_status |= status;
2469 1.93 ryo if (ISSET(sc->sc_flags,
2470 1.93 ryo SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2471 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2472 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2473 1.11 matt }
2474 1.1 nonaka cv_broadcast(&hp->intr_cv);
2475 1.1 nonaka }
2476 1.1 nonaka
2477 1.1 nonaka /*
2478 1.1 nonaka * Service SD card interrupts.
2479 1.1 nonaka */
2480 1.93 ryo if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
2481 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
2482 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2483 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2484 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
2485 1.1 nonaka }
2486 1.65 jmcneill next_port:
2487 1.65 jmcneill mutex_exit(&hp->intr_lock);
2488 1.1 nonaka }
2489 1.1 nonaka
2490 1.1 nonaka return done;
2491 1.1 nonaka }
2492 1.1 nonaka
2493 1.65 jmcneill kmutex_t *
2494 1.65 jmcneill sdhc_host_lock(struct sdhc_host *hp)
2495 1.65 jmcneill {
2496 1.65 jmcneill return &hp->intr_lock;
2497 1.65 jmcneill }
2498 1.65 jmcneill
2499 1.99 nonaka uint8_t
2500 1.99 nonaka sdhc_host_read_1(struct sdhc_host *hp, int reg)
2501 1.99 nonaka {
2502 1.99 nonaka return HREAD1(hp, reg);
2503 1.99 nonaka }
2504 1.99 nonaka
2505 1.99 nonaka uint16_t
2506 1.99 nonaka sdhc_host_read_2(struct sdhc_host *hp, int reg)
2507 1.99 nonaka {
2508 1.99 nonaka return HREAD2(hp, reg);
2509 1.99 nonaka }
2510 1.99 nonaka
2511 1.99 nonaka uint32_t
2512 1.99 nonaka sdhc_host_read_4(struct sdhc_host *hp, int reg)
2513 1.99 nonaka {
2514 1.99 nonaka return HREAD4(hp, reg);
2515 1.99 nonaka }
2516 1.99 nonaka
2517 1.99 nonaka void
2518 1.99 nonaka sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
2519 1.99 nonaka {
2520 1.99 nonaka HWRITE1(hp, reg, val);
2521 1.99 nonaka }
2522 1.99 nonaka
2523 1.99 nonaka void
2524 1.99 nonaka sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
2525 1.99 nonaka {
2526 1.99 nonaka HWRITE2(hp, reg, val);
2527 1.99 nonaka }
2528 1.99 nonaka
2529 1.99 nonaka void
2530 1.99 nonaka sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
2531 1.99 nonaka {
2532 1.99 nonaka HWRITE4(hp, reg, val);
2533 1.99 nonaka }
2534 1.99 nonaka
2535 1.1 nonaka #ifdef SDHC_DEBUG
2536 1.1 nonaka void
2537 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
2538 1.1 nonaka {
2539 1.1 nonaka
2540 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2541 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
2542 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2543 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2544 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
2545 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2546 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
2547 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2548 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
2549 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2550 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
2551 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2552 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
2553 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2554 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2555 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2556 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2557 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2558 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
2559 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2560 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
2561 1.1 nonaka }
2562 1.1 nonaka #endif
2563