Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.26
      1  1.26      matt /*	$NetBSD: sdhc.c,v 1.26 2012/07/26 18:36:09 matt Exp $	*/
      2   1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3   1.1    nonaka 
      4   1.1    nonaka /*
      5   1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6   1.1    nonaka  *
      7   1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10   1.1    nonaka  *
     11   1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    nonaka  */
     19   1.1    nonaka 
     20   1.1    nonaka /*
     21   1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22   1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23   1.1    nonaka  */
     24   1.1    nonaka 
     25   1.1    nonaka #include <sys/cdefs.h>
     26  1.26      matt __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.26 2012/07/26 18:36:09 matt Exp $");
     27  1.10    nonaka 
     28  1.10    nonaka #ifdef _KERNEL_OPT
     29  1.10    nonaka #include "opt_sdmmc.h"
     30  1.10    nonaka #endif
     31   1.1    nonaka 
     32   1.1    nonaka #include <sys/param.h>
     33   1.1    nonaka #include <sys/device.h>
     34   1.1    nonaka #include <sys/kernel.h>
     35   1.1    nonaka #include <sys/kthread.h>
     36   1.1    nonaka #include <sys/malloc.h>
     37   1.1    nonaka #include <sys/systm.h>
     38   1.1    nonaka #include <sys/mutex.h>
     39   1.1    nonaka #include <sys/condvar.h>
     40   1.1    nonaka 
     41   1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42   1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43   1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44   1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45   1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46   1.1    nonaka 
     47   1.1    nonaka #ifdef SDHC_DEBUG
     48   1.1    nonaka int sdhcdebug = 1;
     49   1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50   1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51   1.1    nonaka #else
     52   1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53   1.1    nonaka #endif
     54   1.1    nonaka 
     55   1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56   1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57   1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58   1.1    nonaka #define SDHC_DMA_TIMEOUT	hz
     59   1.1    nonaka 
     60   1.1    nonaka struct sdhc_host {
     61   1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     62   1.1    nonaka 
     63   1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     64   1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     65   1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     66   1.1    nonaka 
     67   1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     68   1.1    nonaka 
     69   1.1    nonaka 	struct kmutex host_mtx;
     70   1.1    nonaka 
     71   1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72   1.1    nonaka 	int maxblklen;			/* maximum block length */
     73   1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74   1.1    nonaka 
     75   1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76   1.1    nonaka 
     77   1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78   1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79   1.1    nonaka 	struct kmutex intr_mtx;
     80   1.1    nonaka 	struct kcondvar intr_cv;
     81   1.1    nonaka 
     82  1.12    nonaka 	int specver;			/* spec. version */
     83  1.12    nonaka 
     84   1.1    nonaka 	uint32_t flags;			/* flags for this host */
     85   1.1    nonaka #define SHF_USE_DMA		0x0001
     86   1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     87  1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     88   1.1    nonaka };
     89   1.1    nonaka 
     90   1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91  1.17  jakllsch #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     92   1.1    nonaka 
     93  1.11      matt static uint8_t
     94  1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
     95  1.11      matt {
     96  1.12    nonaka 
     97  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     98  1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     99  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    100  1.11      matt }
    101  1.11      matt 
    102  1.11      matt static uint16_t
    103  1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    104  1.11      matt {
    105  1.12    nonaka 
    106  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    107  1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    108  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    109  1.11      matt }
    110  1.11      matt 
    111  1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    112  1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    113  1.11      matt #define HREAD4(hp, reg)		\
    114   1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    115  1.11      matt 
    116  1.11      matt 
    117  1.11      matt static void
    118  1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    119  1.11      matt {
    120  1.12    nonaka 
    121  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    122  1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    123  1.11      matt 	} else {
    124  1.11      matt 		const size_t shift = 8 * (o & 3);
    125  1.11      matt 		o &= -4;
    126  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    127  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    128  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    129  1.11      matt 	}
    130  1.11      matt }
    131  1.11      matt 
    132  1.11      matt static void
    133  1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    134  1.11      matt {
    135  1.12    nonaka 
    136  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137  1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    138  1.11      matt 	} else {
    139  1.11      matt 		const size_t shift = 8 * (o & 2);
    140  1.11      matt 		o &= -4;
    141  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    143  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144  1.11      matt 	}
    145  1.11      matt }
    146  1.11      matt 
    147  1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    148  1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    149   1.1    nonaka #define HWRITE4(hp, reg, val)						\
    150   1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    151  1.11      matt 
    152   1.1    nonaka #define HCLR1(hp, reg, bits)						\
    153  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    154   1.1    nonaka #define HCLR2(hp, reg, bits)						\
    155  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    156  1.11      matt #define HCLR4(hp, reg, bits)						\
    157  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    158   1.1    nonaka #define HSET1(hp, reg, bits)						\
    159  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    160   1.1    nonaka #define HSET2(hp, reg, bits)						\
    161  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    162  1.11      matt #define HSET4(hp, reg, bits)						\
    163  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    164   1.1    nonaka 
    165   1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    166   1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    167   1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    168   1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    169   1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    170   1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    171   1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    172   1.1    nonaka static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    173   1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    174   1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    175   1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    176   1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    177   1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    178   1.1    nonaka 		    struct sdmmc_command *);
    179   1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    180   1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    181   1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    182   1.1    nonaka static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    183   1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    184   1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    185   1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    186  1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187  1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188  1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189  1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190  1.11      matt 
    191   1.1    nonaka 
    192   1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    193   1.1    nonaka 	/* host controller reset */
    194   1.1    nonaka 	sdhc_host_reset,
    195   1.1    nonaka 
    196   1.1    nonaka 	/* host controller capabilities */
    197   1.1    nonaka 	sdhc_host_ocr,
    198   1.1    nonaka 	sdhc_host_maxblklen,
    199   1.1    nonaka 
    200   1.1    nonaka 	/* card detection */
    201   1.1    nonaka 	sdhc_card_detect,
    202   1.1    nonaka 
    203   1.1    nonaka 	/* write protect */
    204   1.1    nonaka 	sdhc_write_protect,
    205   1.1    nonaka 
    206   1.1    nonaka 	/* bus power, clock frequency and width */
    207   1.1    nonaka 	sdhc_bus_power,
    208   1.1    nonaka 	sdhc_bus_clock,
    209   1.1    nonaka 	sdhc_bus_width,
    210   1.8  kiyohara 	sdhc_bus_rod,
    211   1.1    nonaka 
    212   1.1    nonaka 	/* command execution */
    213   1.1    nonaka 	sdhc_exec_command,
    214   1.1    nonaka 
    215   1.1    nonaka 	/* card interrupt */
    216   1.1    nonaka 	sdhc_card_enable_intr,
    217   1.1    nonaka 	sdhc_card_intr_ack
    218   1.1    nonaka };
    219   1.1    nonaka 
    220  1.17  jakllsch static int
    221  1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    222  1.17  jakllsch {
    223  1.17  jakllsch 	const struct sdmmcbus_attach_args const * saa = aux;
    224  1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    225  1.17  jakllsch 
    226  1.17  jakllsch 	if (pnp) {
    227  1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    228  1.17  jakllsch 	}
    229  1.17  jakllsch 	aprint_normal(" slot %d", HDEVINST(hp));
    230  1.17  jakllsch 
    231  1.17  jakllsch 	return UNCONF;
    232  1.17  jakllsch }
    233  1.17  jakllsch 
    234   1.1    nonaka /*
    235   1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    236   1.1    nonaka  * host controller standard register set. (1.3)
    237   1.1    nonaka  */
    238   1.1    nonaka int
    239   1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    240   1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    241   1.1    nonaka {
    242   1.1    nonaka 	struct sdmmcbus_attach_args saa;
    243   1.1    nonaka 	struct sdhc_host *hp;
    244   1.1    nonaka 	uint32_t caps;
    245   1.1    nonaka 	uint16_t sdhcver;
    246   1.1    nonaka 
    247   1.1    nonaka 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
    248  1.12    nonaka 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    249   1.1    nonaka 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    250  1.12    nonaka 	case SDHC_SPEC_VERS_100:
    251  1.12    nonaka 		aprint_normal("1.0");
    252  1.12    nonaka 		break;
    253  1.12    nonaka 
    254  1.12    nonaka 	case SDHC_SPEC_VERS_200:
    255  1.12    nonaka 		aprint_normal("2.0");
    256   1.1    nonaka 		break;
    257   1.1    nonaka 
    258  1.12    nonaka 	case SDHC_SPEC_VERS_300:
    259  1.12    nonaka 		aprint_normal("3.0");
    260   1.9      matt 		break;
    261   1.9      matt 
    262   1.1    nonaka 	default:
    263  1.12    nonaka 		aprint_normal("unknown version(0x%x)",
    264  1.12    nonaka 		    SDHC_SPEC_VERSION(sdhcver));
    265   1.1    nonaka 		break;
    266   1.1    nonaka 	}
    267  1.12    nonaka 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    268   1.1    nonaka 
    269   1.1    nonaka 	/* Allocate one more host structure. */
    270   1.1    nonaka 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    271   1.1    nonaka 	if (hp == NULL) {
    272   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    273   1.1    nonaka 		    "couldn't alloc memory (sdhc host)\n");
    274   1.1    nonaka 		goto err1;
    275   1.1    nonaka 	}
    276   1.1    nonaka 	sc->sc_host[sc->sc_nhosts++] = hp;
    277   1.1    nonaka 
    278   1.1    nonaka 	/* Fill in the new host structure. */
    279   1.1    nonaka 	hp->sc = sc;
    280   1.1    nonaka 	hp->iot = iot;
    281   1.1    nonaka 	hp->ioh = ioh;
    282   1.1    nonaka 	hp->dmat = sc->sc_dmat;
    283  1.12    nonaka 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    284   1.1    nonaka 
    285   1.1    nonaka 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    286   1.1    nonaka 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    287   1.1    nonaka 	cv_init(&hp->intr_cv, "sdhcintr");
    288   1.1    nonaka 
    289   1.1    nonaka 	/*
    290   1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    291   1.1    nonaka 	 */
    292   1.1    nonaka 	(void)sdhc_host_reset(hp);
    293   1.1    nonaka 
    294   1.1    nonaka 	/* Determine host capabilities. */
    295  1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    296  1.24     skrll 		caps = sc->sc_caps;
    297  1.24     skrll 	} else {
    298  1.24     skrll 		mutex_enter(&hp->host_mtx);
    299  1.24     skrll 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    300  1.24     skrll 		mutex_exit(&hp->host_mtx);
    301  1.24     skrll 	}
    302   1.1    nonaka 
    303   1.1    nonaka 	/* Use DMA if the host system and the controller support it. */
    304   1.1    nonaka 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
    305   1.1    nonaka 	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
    306   1.1    nonaka 	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
    307   1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    308   1.1    nonaka 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    309   1.1    nonaka 	}
    310   1.1    nonaka 
    311   1.1    nonaka 	/*
    312   1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    313   1.1    nonaka 	 */
    314  1.12    nonaka 	hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    315   1.1    nonaka 	if (hp->clkbase == 0) {
    316   1.9      matt 		if (sc->sc_clkbase == 0) {
    317   1.9      matt 			/* The attachment driver must tell us. */
    318  1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    319  1.12    nonaka 			    "unknown base clock frequency\n");
    320   1.9      matt 			goto err;
    321   1.9      matt 		}
    322   1.9      matt 		hp->clkbase = sc->sc_clkbase;
    323   1.9      matt 	}
    324   1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    325   1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    326   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    327   1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    328   1.1    nonaka 		    hp->clkbase / 1000);
    329   1.1    nonaka 		goto err;
    330   1.1    nonaka 	}
    331   1.1    nonaka 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    332   1.1    nonaka 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    333   1.1    nonaka 
    334   1.1    nonaka 	/*
    335   1.1    nonaka 	 * XXX Set the data timeout counter value according to
    336   1.1    nonaka 	 * capabilities. (2.2.15)
    337   1.1    nonaka 	 */
    338   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    339  1.11      matt #if 0
    340  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    341  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    342  1.11      matt #endif
    343   1.1    nonaka 
    344   1.1    nonaka 	/*
    345   1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    346   1.1    nonaka 	 */
    347  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    348   1.1    nonaka 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    349  1.11      matt 	}
    350  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    351   1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    352  1.11      matt 	}
    353  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    354   1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    355  1.11      matt 	}
    356   1.1    nonaka 
    357   1.1    nonaka 	/*
    358   1.1    nonaka 	 * Determine the maximum block length supported by the host
    359   1.1    nonaka 	 * controller. (2.2.24)
    360   1.1    nonaka 	 */
    361   1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    362   1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    363   1.1    nonaka 		hp->maxblklen = 512;
    364   1.1    nonaka 		break;
    365   1.1    nonaka 
    366   1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    367   1.1    nonaka 		hp->maxblklen = 1024;
    368   1.1    nonaka 		break;
    369   1.1    nonaka 
    370   1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    371   1.1    nonaka 		hp->maxblklen = 2048;
    372   1.1    nonaka 		break;
    373   1.1    nonaka 
    374   1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    375   1.9      matt 		hp->maxblklen = 4096;
    376   1.9      matt 		break;
    377   1.9      matt 
    378   1.1    nonaka 	default:
    379   1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    380   1.1    nonaka 		goto err;
    381   1.1    nonaka 	}
    382   1.1    nonaka 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    383   1.1    nonaka 	    device_xname(sc->sc_dev), hp->maxblklen,
    384   1.1    nonaka 	    hp->maxblklen > 1 ? "s" : ""));
    385   1.1    nonaka 
    386   1.1    nonaka 	/*
    387   1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    388   1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    389   1.1    nonaka 	 */
    390   1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    391   1.1    nonaka 	saa.saa_busname = "sdmmc";
    392   1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    393   1.1    nonaka 	saa.saa_sch = hp;
    394   1.1    nonaka 	saa.saa_dmat = hp->dmat;
    395   1.1    nonaka 	saa.saa_clkmin = hp->clkbase / 256;
    396   1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    397  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    398  1.11      matt 		saa.saa_clkmin /= 2046;
    399  1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    400   1.9      matt 		saa.saa_clkmin /= 16;
    401   1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    402  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    403  1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    404  1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    405  1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    406  1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    407  1.26      matt 		saa.saa_caps |= SMC_CAPS_DMA;
    408  1.26      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    409  1.26      matt 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    410  1.26      matt 		}
    411  1.26      matt 	}
    412  1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    413   1.1    nonaka 
    414   1.1    nonaka 	return 0;
    415   1.1    nonaka 
    416   1.1    nonaka err:
    417   1.1    nonaka 	cv_destroy(&hp->intr_cv);
    418   1.1    nonaka 	mutex_destroy(&hp->intr_mtx);
    419   1.1    nonaka 	mutex_destroy(&hp->host_mtx);
    420   1.1    nonaka 	free(hp, M_DEVBUF);
    421   1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    422   1.1    nonaka err1:
    423   1.1    nonaka 	return 1;
    424   1.1    nonaka }
    425   1.1    nonaka 
    426   1.7    nonaka int
    427   1.7    nonaka sdhc_detach(device_t dev, int flags)
    428   1.7    nonaka {
    429   1.7    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    430   1.7    nonaka 	struct sdhc_softc *sc = hp->sc;
    431   1.7    nonaka 	int rv = 0;
    432   1.7    nonaka 
    433   1.7    nonaka 	if (hp->sdmmc)
    434   1.7    nonaka 		rv = config_detach(hp->sdmmc, flags);
    435   1.7    nonaka 
    436   1.7    nonaka 	cv_destroy(&hp->intr_cv);
    437   1.7    nonaka 	mutex_destroy(&hp->intr_mtx);
    438   1.7    nonaka 	mutex_destroy(&hp->host_mtx);
    439   1.7    nonaka 	free(hp, M_DEVBUF);
    440   1.7    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    441   1.7    nonaka 
    442   1.7    nonaka 	return rv;
    443   1.7    nonaka }
    444   1.7    nonaka 
    445   1.1    nonaka bool
    446   1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    447   1.1    nonaka {
    448   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    449   1.1    nonaka 	struct sdhc_host *hp;
    450  1.12    nonaka 	size_t i;
    451   1.1    nonaka 
    452   1.1    nonaka 	/* XXX poll for command completion or suspend command
    453   1.1    nonaka 	 * in progress */
    454   1.1    nonaka 
    455   1.1    nonaka 	/* Save the host controller state. */
    456  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    457   1.1    nonaka 		hp = sc->sc_host[n];
    458  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    459  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    460  1.11      matt 				uint32_t v = HREAD4(hp, i);
    461  1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    462  1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    463  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    464  1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    465  1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    466  1.13    bouyer 				}
    467  1.11      matt 			}
    468  1.11      matt 		} else {
    469  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    470  1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    471  1.11      matt 			}
    472  1.11      matt 		}
    473   1.1    nonaka 	}
    474   1.1    nonaka 	return true;
    475   1.1    nonaka }
    476   1.1    nonaka 
    477   1.1    nonaka bool
    478   1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    479   1.1    nonaka {
    480   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    481   1.1    nonaka 	struct sdhc_host *hp;
    482  1.12    nonaka 	size_t i;
    483   1.1    nonaka 
    484   1.1    nonaka 	/* Restore the host controller state. */
    485  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    486   1.1    nonaka 		hp = sc->sc_host[n];
    487   1.1    nonaka 		(void)sdhc_host_reset(hp);
    488  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    489  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    490  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    491  1.13    bouyer 					HWRITE4(hp, i,
    492  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    493  1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    494  1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    495  1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    496  1.13    bouyer 				} else {
    497  1.13    bouyer 					HWRITE4(hp, i,
    498  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    499  1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    500  1.13    bouyer 				}
    501  1.11      matt 			}
    502  1.11      matt 		} else {
    503  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    504  1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    505  1.11      matt 			}
    506  1.11      matt 		}
    507   1.1    nonaka 	}
    508   1.1    nonaka 	return true;
    509   1.1    nonaka }
    510   1.1    nonaka 
    511   1.1    nonaka bool
    512   1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    513   1.1    nonaka {
    514   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    515   1.1    nonaka 	struct sdhc_host *hp;
    516   1.1    nonaka 
    517   1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    518  1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    519   1.1    nonaka 		hp = sc->sc_host[i];
    520   1.1    nonaka 		(void)sdhc_host_reset(hp);
    521   1.1    nonaka 	}
    522   1.1    nonaka 	return true;
    523   1.1    nonaka }
    524   1.1    nonaka 
    525   1.1    nonaka /*
    526   1.1    nonaka  * Reset the host controller.  Called during initialization, when
    527   1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    528   1.1    nonaka  */
    529   1.1    nonaka static int
    530   1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    531   1.1    nonaka {
    532   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    533  1.11      matt 	uint32_t sdhcimask;
    534   1.1    nonaka 	int error;
    535   1.1    nonaka 
    536   1.1    nonaka 	/* Don't lock. */
    537   1.1    nonaka 
    538   1.1    nonaka 	/* Disable all interrupts. */
    539  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    540  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    541  1.11      matt 	} else {
    542  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    543  1.11      matt 	}
    544   1.1    nonaka 
    545   1.1    nonaka 	/*
    546   1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    547   1.1    nonaka 	 * the controller to clear the reset bit.
    548   1.1    nonaka 	 */
    549   1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    550   1.1    nonaka 	if (error)
    551   1.1    nonaka 		goto out;
    552   1.1    nonaka 
    553   1.1    nonaka 	/* Set data timeout counter value to max for now. */
    554   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    555  1.11      matt #if 0
    556  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    557  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    558  1.11      matt #endif
    559   1.1    nonaka 
    560   1.1    nonaka 	/* Enable interrupts. */
    561   1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    562   1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    563   1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    564   1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    565  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    566  1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    567  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    568  1.11      matt 		sdhcimask ^=
    569  1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    570  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    571  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    572  1.11      matt 	} else {
    573  1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    574  1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    575  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    576  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    577  1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    578  1.11      matt 	}
    579   1.1    nonaka 
    580   1.1    nonaka out:
    581   1.1    nonaka 	return error;
    582   1.1    nonaka }
    583   1.1    nonaka 
    584   1.1    nonaka static int
    585   1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    586   1.1    nonaka {
    587   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    588   1.1    nonaka 	int error;
    589   1.1    nonaka 
    590   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    591   1.1    nonaka 	error = sdhc_host_reset1(sch);
    592   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    593   1.1    nonaka 
    594   1.1    nonaka 	return error;
    595   1.1    nonaka }
    596   1.1    nonaka 
    597   1.1    nonaka static uint32_t
    598   1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    599   1.1    nonaka {
    600   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    601   1.1    nonaka 
    602   1.1    nonaka 	return hp->ocr;
    603   1.1    nonaka }
    604   1.1    nonaka 
    605   1.1    nonaka static int
    606   1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    607   1.1    nonaka {
    608   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    609   1.1    nonaka 
    610   1.1    nonaka 	return hp->maxblklen;
    611   1.1    nonaka }
    612   1.1    nonaka 
    613   1.1    nonaka /*
    614   1.1    nonaka  * Return non-zero if the card is currently inserted.
    615   1.1    nonaka  */
    616   1.1    nonaka static int
    617   1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    618   1.1    nonaka {
    619   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    620   1.1    nonaka 	int r;
    621   1.1    nonaka 
    622   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    623   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    624   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    625   1.1    nonaka 
    626  1.11      matt 	return r ? 1 : 0;
    627   1.1    nonaka }
    628   1.1    nonaka 
    629   1.1    nonaka /*
    630   1.1    nonaka  * Return non-zero if the card is currently write-protected.
    631   1.1    nonaka  */
    632   1.1    nonaka static int
    633   1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    634   1.1    nonaka {
    635   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    636   1.1    nonaka 	int r;
    637   1.1    nonaka 
    638   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    639   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    640   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    641   1.1    nonaka 
    642  1.12    nonaka 	return r ? 0 : 1;
    643   1.1    nonaka }
    644   1.1    nonaka 
    645   1.1    nonaka /*
    646   1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    647   1.1    nonaka  * Return zero on success.
    648   1.1    nonaka  */
    649   1.1    nonaka static int
    650   1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    651   1.1    nonaka {
    652   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    653   1.1    nonaka 	uint8_t vdd;
    654   1.1    nonaka 	int error = 0;
    655   1.1    nonaka 
    656   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    657   1.1    nonaka 
    658   1.1    nonaka 	/*
    659   1.1    nonaka 	 * Disable bus power before voltage change.
    660   1.1    nonaka 	 */
    661  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    662  1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    663   1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    664   1.1    nonaka 
    665   1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    666   1.1    nonaka 	if (ocr == 0) {
    667   1.1    nonaka 		(void)sdhc_host_reset1(hp);
    668   1.1    nonaka 		goto out;
    669   1.1    nonaka 	}
    670   1.1    nonaka 
    671   1.1    nonaka 	/*
    672   1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    673   1.1    nonaka 	 */
    674   1.1    nonaka 	ocr &= hp->ocr;
    675  1.11      matt 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    676   1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    677  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    678   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    679  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    680   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    681  1.11      matt 	} else {
    682   1.1    nonaka 		/* Unsupported voltage level requested. */
    683   1.1    nonaka 		error = EINVAL;
    684   1.1    nonaka 		goto out;
    685   1.1    nonaka 	}
    686   1.1    nonaka 
    687  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    688  1.11      matt 		/*
    689  1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    690  1.11      matt 		 * voltage ramp until power rises.
    691  1.11      matt 		 */
    692  1.11      matt 		HWRITE1(hp, SDHC_POWER_CTL,
    693  1.11      matt 		    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    694  1.11      matt 		sdmmc_delay(10000);
    695   1.1    nonaka 
    696  1.11      matt 		/*
    697  1.11      matt 		 * The host system may not power the bus due to battery low,
    698  1.11      matt 		 * etc.  In that case, the host controller should clear the
    699  1.11      matt 		 * bus power bit.
    700  1.11      matt 		 */
    701  1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    702  1.11      matt 			error = ENXIO;
    703  1.11      matt 			goto out;
    704  1.11      matt 		}
    705   1.1    nonaka 	}
    706   1.1    nonaka 
    707   1.1    nonaka out:
    708   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    709   1.1    nonaka 
    710   1.1    nonaka 	return error;
    711   1.1    nonaka }
    712   1.1    nonaka 
    713   1.1    nonaka /*
    714   1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    715   1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    716   1.1    nonaka  */
    717  1.11      matt static bool
    718  1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    719   1.1    nonaka {
    720  1.11      matt 	u_int div;
    721   1.1    nonaka 
    722  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    723  1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    724  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    725  1.11      matt 				*divp = SDHC_SDCLK_CGM
    726  1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    727  1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    728  1.18  jakllsch 				//freq = hp->clkbase / div;
    729  1.11      matt 				return true;
    730  1.11      matt 			}
    731  1.11      matt 		}
    732  1.11      matt 		/* No divisor found. */
    733  1.11      matt 		return false;
    734  1.11      matt 	}
    735  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    736  1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    737  1.11      matt 		u_int roundup = dvs & 1;
    738  1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    739  1.11      matt 			if (dvs + roundup <= 16) {
    740  1.11      matt 				dvs += roundup - 1;
    741  1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    742  1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    743  1.11      matt 				DPRINTF(2,
    744  1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    745  1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    746  1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    747  1.11      matt 				return true;
    748   1.9      matt 			}
    749  1.11      matt 			/*
    750  1.11      matt 			 * If we drop bits, we need to round up the divisor.
    751  1.11      matt 			 */
    752  1.11      matt 			roundup |= dvs & 1;
    753   1.9      matt 		}
    754  1.18  jakllsch 		/* No divisor found. */
    755  1.18  jakllsch 		return false;
    756   1.9      matt 	} else {
    757   1.9      matt 		for (div = 1; div <= 256; div *= 2) {
    758  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    759  1.11      matt 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    760  1.18  jakllsch 				//freq = hp->clkbase / div;
    761  1.11      matt 				return true;
    762  1.11      matt 			}
    763   1.9      matt 		}
    764   1.9      matt 	}
    765   1.1    nonaka 	/* No divisor found. */
    766  1.11      matt 	return false;
    767   1.1    nonaka }
    768   1.1    nonaka 
    769   1.1    nonaka /*
    770   1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
    771   1.1    nonaka  * Return zero on success.
    772   1.1    nonaka  */
    773   1.1    nonaka static int
    774   1.1    nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    775   1.1    nonaka {
    776   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    777  1.11      matt 	u_int div;
    778  1.11      matt 	u_int timo;
    779   1.1    nonaka 	int error = 0;
    780   1.2    cegger #ifdef DIAGNOSTIC
    781  1.12    nonaka 	bool present;
    782   1.1    nonaka 
    783   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    784  1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    785   1.2    cegger 	mutex_exit(&hp->host_mtx);
    786   1.1    nonaka 
    787   1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
    788  1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
    789  1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
    790  1.26      matt 		    "%s: command in progress\n", __func__);
    791  1.12    nonaka 	}
    792   1.1    nonaka #endif
    793   1.1    nonaka 
    794   1.2    cegger 	mutex_enter(&hp->host_mtx);
    795   1.2    cegger 
    796   1.1    nonaka 	/*
    797   1.1    nonaka 	 * Stop SD clock before changing the frequency.
    798   1.1    nonaka 	 */
    799  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    800  1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    801  1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
    802  1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    803  1.11      matt 			goto out;
    804  1.11      matt 		}
    805  1.11      matt 	} else {
    806  1.11      matt 		HWRITE2(hp, SDHC_CLOCK_CTL, 0);
    807  1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
    808  1.11      matt 			goto out;
    809  1.11      matt 	}
    810   1.1    nonaka 
    811   1.1    nonaka 	/*
    812   1.1    nonaka 	 * Set the minimum base clock frequency divisor.
    813   1.1    nonaka 	 */
    814  1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    815   1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
    816   1.1    nonaka 		error = EINVAL;
    817   1.1    nonaka 		goto out;
    818   1.1    nonaka 	}
    819  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    820  1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
    821  1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
    822  1.11      matt 	} else {
    823  1.11      matt 		HWRITE2(hp, SDHC_CLOCK_CTL, div);
    824  1.11      matt 	}
    825   1.1    nonaka 
    826   1.1    nonaka 	/*
    827   1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
    828   1.1    nonaka 	 */
    829  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    830  1.11      matt 		sdmmc_delay(10000);
    831  1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
    832  1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    833  1.11      matt 	} else {
    834  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    835  1.11      matt 		for (timo = 1000; timo > 0; timo--) {
    836  1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    837  1.12    nonaka 			    SDHC_INTCLK_STABLE))
    838  1.11      matt 				break;
    839  1.11      matt 			sdmmc_delay(10);
    840  1.11      matt 		}
    841  1.11      matt 		if (timo == 0) {
    842  1.11      matt 			error = ETIMEDOUT;
    843  1.11      matt 			goto out;
    844  1.11      matt 		}
    845   1.1    nonaka 	}
    846   1.1    nonaka 
    847  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    848  1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    849  1.11      matt 		/*
    850  1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
    851  1.11      matt 		 * So delay for that time + slop and then
    852  1.11      matt 		 * check a few times for completion.
    853  1.11      matt 		 */
    854  1.11      matt 		sdmmc_delay(210);
    855  1.11      matt 		for (timo = 10; timo > 0; timo--) {
    856  1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    857  1.11      matt 			    SDHC_INIT_ACTIVE))
    858  1.11      matt 				break;
    859  1.11      matt 			sdmmc_delay(10);
    860  1.11      matt 		}
    861  1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    862  1.12    nonaka 
    863  1.11      matt 		/*
    864  1.11      matt 		 * Enable SD clock.
    865  1.11      matt 		 */
    866  1.11      matt 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    867  1.11      matt 	} else {
    868  1.11      matt 		/*
    869  1.11      matt 		 * Enable SD clock.
    870  1.11      matt 		 */
    871  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    872   1.1    nonaka 
    873  1.11      matt 		if (freq > 25000)
    874  1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    875  1.11      matt 		else
    876  1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    877  1.11      matt 	}
    878   1.8  kiyohara 
    879   1.1    nonaka out:
    880   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    881   1.1    nonaka 
    882   1.1    nonaka 	return error;
    883   1.1    nonaka }
    884   1.1    nonaka 
    885   1.1    nonaka static int
    886   1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    887   1.1    nonaka {
    888   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    889   1.1    nonaka 	int reg;
    890   1.1    nonaka 
    891   1.1    nonaka 	switch (width) {
    892   1.1    nonaka 	case 1:
    893   1.1    nonaka 	case 4:
    894   1.1    nonaka 		break;
    895   1.1    nonaka 
    896  1.11      matt 	case 8:
    897  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    898  1.11      matt 			break;
    899  1.11      matt 		/* FALLTHROUGH */
    900   1.1    nonaka 	default:
    901   1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    902   1.1    nonaka 		    HDEVNAME(hp), width));
    903   1.1    nonaka 		return 1;
    904   1.1    nonaka 	}
    905   1.1    nonaka 
    906   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    907   1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
    908  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    909  1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    910  1.11      matt 		if (width == 4)
    911  1.11      matt 			reg |= SDHC_4BIT_MODE;
    912  1.11      matt 		else if (width == 8)
    913  1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
    914  1.11      matt 	} else {
    915  1.11      matt 		reg &= ~SDHC_4BIT_MODE;
    916  1.11      matt 		if (width == 4)
    917  1.11      matt 			reg |= SDHC_4BIT_MODE;
    918  1.11      matt 	}
    919   1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    920   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    921   1.1    nonaka 
    922   1.1    nonaka 	return 0;
    923   1.1    nonaka }
    924   1.1    nonaka 
    925   1.8  kiyohara static int
    926   1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    927   1.8  kiyohara {
    928   1.8  kiyohara 
    929   1.8  kiyohara 	/* Nothing ?? */
    930   1.8  kiyohara 	return 0;
    931   1.8  kiyohara }
    932   1.8  kiyohara 
    933   1.1    nonaka static void
    934   1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    935   1.1    nonaka {
    936   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    937   1.1    nonaka 
    938  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    939  1.11      matt 		mutex_enter(&hp->host_mtx);
    940  1.11      matt 		if (enable) {
    941  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    942  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    943  1.11      matt 		} else {
    944  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    945  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    946  1.11      matt 		}
    947  1.11      matt 		mutex_exit(&hp->host_mtx);
    948   1.1    nonaka 	}
    949   1.1    nonaka }
    950   1.1    nonaka 
    951   1.1    nonaka static void
    952   1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    953   1.1    nonaka {
    954   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    955   1.1    nonaka 
    956  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    957  1.11      matt 		mutex_enter(&hp->host_mtx);
    958  1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    959  1.11      matt 		mutex_exit(&hp->host_mtx);
    960  1.11      matt 	}
    961   1.1    nonaka }
    962   1.1    nonaka 
    963   1.1    nonaka static int
    964   1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    965   1.1    nonaka {
    966   1.1    nonaka 	uint32_t state;
    967   1.1    nonaka 	int timeout;
    968   1.1    nonaka 
    969   1.1    nonaka 	for (timeout = 10; timeout > 0; timeout--) {
    970   1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
    971   1.1    nonaka 			return 0;
    972   1.1    nonaka 		sdmmc_delay(10000);
    973   1.1    nonaka 	}
    974   1.1    nonaka 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
    975   1.1    nonaka 	    value, state));
    976   1.1    nonaka 	return ETIMEDOUT;
    977   1.1    nonaka }
    978   1.1    nonaka 
    979   1.1    nonaka static void
    980   1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
    981   1.1    nonaka {
    982   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    983   1.1    nonaka 	int error;
    984   1.1    nonaka 
    985  1.26      matt 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    986  1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
    987  1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
    988  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    989  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
    990  1.11      matt 		} else {
    991  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    992  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
    993  1.11      matt 		}
    994  1.11      matt 	}
    995  1.11      matt 
    996   1.1    nonaka 	/*
    997   1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
    998   1.1    nonaka 	 */
    999   1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1000   1.1    nonaka 	if (error) {
   1001   1.1    nonaka 		cmd->c_error = error;
   1002   1.1    nonaka 		goto out;
   1003   1.1    nonaka 	}
   1004   1.1    nonaka 
   1005   1.1    nonaka 	/*
   1006   1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1007   1.1    nonaka 	 * is marked done for any other reason.
   1008   1.1    nonaka 	 */
   1009   1.1    nonaka 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1010   1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1011   1.1    nonaka 		goto out;
   1012   1.1    nonaka 	}
   1013   1.1    nonaka 
   1014   1.1    nonaka 	/*
   1015   1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1016   1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1017   1.1    nonaka 	 * driver (without padding).
   1018   1.1    nonaka 	 */
   1019   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1020   1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1021  1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1022  1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1023  1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1024  1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1025  1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1026   1.1    nonaka 		}
   1027   1.1    nonaka 	}
   1028   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1029  1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1030   1.1    nonaka 
   1031   1.1    nonaka 	/*
   1032   1.1    nonaka 	 * If the command has data to transfer in any direction,
   1033   1.1    nonaka 	 * execute the transfer now.
   1034   1.1    nonaka 	 */
   1035   1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1036   1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1037   1.1    nonaka 
   1038   1.1    nonaka out:
   1039  1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1040  1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1041  1.11      matt 		mutex_enter(&hp->host_mtx);
   1042  1.11      matt 		/* Turn off the LED. */
   1043  1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1044  1.11      matt 		mutex_exit(&hp->host_mtx);
   1045  1.11      matt 	}
   1046   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1047   1.1    nonaka 
   1048   1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1049   1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1050   1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1051   1.1    nonaka }
   1052   1.1    nonaka 
   1053   1.1    nonaka static int
   1054   1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1055   1.1    nonaka {
   1056  1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1057   1.1    nonaka 	uint16_t blksize = 0;
   1058   1.1    nonaka 	uint16_t blkcount = 0;
   1059   1.1    nonaka 	uint16_t mode;
   1060   1.1    nonaka 	uint16_t command;
   1061   1.1    nonaka 	int error;
   1062   1.1    nonaka 
   1063  1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1064   1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1065  1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1066   1.1    nonaka 
   1067   1.1    nonaka 	/*
   1068   1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1069   1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1070   1.1    nonaka 	 */
   1071   1.1    nonaka 
   1072   1.1    nonaka 	/* Fragment the data into proper blocks. */
   1073   1.1    nonaka 	if (cmd->c_datalen > 0) {
   1074   1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1075   1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1076   1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1077   1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1078  1.11      matt 			aprint_error_dev(sc->sc_dev,
   1079   1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1080   1.1    nonaka 			return EINVAL;
   1081   1.1    nonaka 		}
   1082   1.1    nonaka 	}
   1083   1.1    nonaka 
   1084   1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1085   1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1086  1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1087   1.1    nonaka 		return EINVAL;
   1088   1.1    nonaka 	}
   1089   1.1    nonaka 
   1090   1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1091  1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1092   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1093   1.1    nonaka 		mode |= SDHC_READ_MODE;
   1094  1.15  jakllsch 	if (blkcount > 1) {
   1095  1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1096  1.15  jakllsch 		/* XXX only for memory commands? */
   1097  1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1098   1.1    nonaka 	}
   1099   1.7    nonaka 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1100  1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1101   1.7    nonaka 	}
   1102   1.1    nonaka 
   1103   1.1    nonaka 	/*
   1104   1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1105   1.1    nonaka 	 */
   1106  1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1107   1.1    nonaka 
   1108   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1109   1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1110   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1111   1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1112   1.1    nonaka 	if (cmd->c_data != NULL)
   1113   1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1114   1.1    nonaka 
   1115   1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1116   1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1117   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1118   1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1119   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1120   1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1121   1.1    nonaka 	else
   1122   1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1123   1.1    nonaka 
   1124   1.1    nonaka 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1125   1.1    nonaka 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1126   1.1    nonaka 	if (error)
   1127   1.1    nonaka 		return error;
   1128   1.1    nonaka 
   1129   1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1130   1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1131   1.1    nonaka 
   1132  1.19  jakllsch 	blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1133  1.19  jakllsch 	    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1134  1.19  jakllsch 
   1135   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1136   1.1    nonaka 
   1137  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1138  1.11      matt 		/* Alert the user not to remove the card. */
   1139  1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1140  1.11      matt 	}
   1141   1.1    nonaka 
   1142   1.7    nonaka 	/* Set DMA start address. */
   1143   1.7    nonaka 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1144   1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1145   1.7    nonaka 
   1146   1.1    nonaka 	/*
   1147   1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1148   1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1149   1.1    nonaka 	 */
   1150  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1151  1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1152  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1153  1.11      matt 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1154  1.11      matt 	} else {
   1155  1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1156  1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1157  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1158  1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1159  1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1160  1.11      matt 	}
   1161   1.1    nonaka 
   1162   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1163   1.1    nonaka 
   1164   1.1    nonaka 	return 0;
   1165   1.1    nonaka }
   1166   1.1    nonaka 
   1167   1.1    nonaka static void
   1168   1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1169   1.1    nonaka {
   1170   1.1    nonaka 	int error;
   1171   1.1    nonaka 
   1172   1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1173   1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1174   1.1    nonaka 
   1175   1.1    nonaka #ifdef SDHC_DEBUG
   1176   1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1177   1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1178   1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1179   1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1180   1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1181   1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1182   1.1    nonaka 	}
   1183   1.1    nonaka #endif
   1184   1.1    nonaka 
   1185   1.7    nonaka 	if (cmd->c_dmamap != NULL)
   1186   1.7    nonaka 		error = sdhc_transfer_data_dma(hp, cmd);
   1187   1.7    nonaka 	else
   1188   1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1189   1.1    nonaka 	if (error)
   1190   1.1    nonaka 		cmd->c_error = error;
   1191   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1192   1.1    nonaka 
   1193   1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1194   1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1195   1.1    nonaka }
   1196   1.1    nonaka 
   1197   1.1    nonaka static int
   1198   1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1199   1.7    nonaka {
   1200  1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1201  1.19  jakllsch 	bus_addr_t posaddr;
   1202  1.19  jakllsch 	bus_addr_t segaddr;
   1203  1.19  jakllsch 	bus_size_t seglen;
   1204  1.19  jakllsch 	u_int seg = 0;
   1205   1.7    nonaka 	int error = 0;
   1206  1.19  jakllsch 	int status;
   1207   1.7    nonaka 
   1208  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1209  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1210  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1211  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1212  1.11      matt 
   1213   1.7    nonaka 	for (;;) {
   1214  1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1215   1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1216  1.19  jakllsch 		    SDHC_DMA_TIMEOUT);
   1217  1.19  jakllsch 
   1218  1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1219  1.19  jakllsch 			break;
   1220  1.19  jakllsch 		}
   1221  1.19  jakllsch 		if (!status) {
   1222   1.7    nonaka 			error = ETIMEDOUT;
   1223   1.7    nonaka 			break;
   1224   1.7    nonaka 		}
   1225  1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1226  1.19  jakllsch 			continue;
   1227  1.19  jakllsch 		}
   1228  1.19  jakllsch 
   1229  1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1230   1.7    nonaka 
   1231  1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1232  1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1233  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1234  1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1235  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1236   1.7    nonaka 
   1237  1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1238   1.7    nonaka 			break;
   1239  1.19  jakllsch 		}
   1240  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1241  1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1242  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1243  1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1244  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1245  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1246  1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1247   1.7    nonaka 	}
   1248   1.7    nonaka 
   1249   1.7    nonaka 	return error;
   1250   1.7    nonaka }
   1251   1.7    nonaka 
   1252   1.7    nonaka static int
   1253   1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1254   1.1    nonaka {
   1255   1.1    nonaka 	uint8_t *data = cmd->c_data;
   1256  1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1257  1.11      matt 	u_int len, datalen;
   1258  1.11      matt 	u_int imask;
   1259  1.11      matt 	u_int pmask;
   1260   1.1    nonaka 	int error = 0;
   1261   1.1    nonaka 
   1262  1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1263  1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1264  1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1265  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1266  1.11      matt 			pio_func = esdhc_read_data_pio;
   1267  1.11      matt 		} else {
   1268  1.11      matt 			pio_func = sdhc_read_data_pio;
   1269  1.11      matt 		}
   1270  1.11      matt 	} else {
   1271  1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1272  1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1273  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1274  1.11      matt 			pio_func = esdhc_write_data_pio;
   1275  1.11      matt 		} else {
   1276  1.11      matt 			pio_func = sdhc_write_data_pio;
   1277  1.11      matt 		}
   1278  1.11      matt 	}
   1279   1.1    nonaka 	datalen = cmd->c_datalen;
   1280   1.1    nonaka 
   1281  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1282  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1283  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1284  1.11      matt 
   1285   1.1    nonaka 	while (datalen > 0) {
   1286  1.11      matt 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1287  1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1288  1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1289  1.11      matt 			} else {
   1290  1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1291  1.11      matt 			}
   1292  1.11      matt 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1293  1.11      matt 				error = ETIMEDOUT;
   1294  1.11      matt 				break;
   1295  1.11      matt 			}
   1296  1.11      matt 
   1297  1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1298  1.11      matt 			if (error)
   1299  1.11      matt 				break;
   1300   1.1    nonaka 		}
   1301   1.1    nonaka 
   1302   1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1303  1.11      matt 		(*pio_func)(hp, data, len);
   1304  1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1305  1.11      matt 		    HDEVNAME(hp), len, data));
   1306   1.1    nonaka 
   1307   1.1    nonaka 		data += len;
   1308   1.1    nonaka 		datalen -= len;
   1309   1.1    nonaka 	}
   1310   1.1    nonaka 
   1311   1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1312   1.1    nonaka 	    SDHC_TRANSFER_TIMEOUT))
   1313   1.1    nonaka 		error = ETIMEDOUT;
   1314   1.1    nonaka 
   1315   1.1    nonaka 	return error;
   1316   1.1    nonaka }
   1317   1.1    nonaka 
   1318   1.1    nonaka static void
   1319  1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1320   1.1    nonaka {
   1321   1.1    nonaka 
   1322   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1323   1.1    nonaka 		while (datalen > 3) {
   1324   1.1    nonaka 			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
   1325   1.1    nonaka 			data += 4;
   1326   1.1    nonaka 			datalen -= 4;
   1327   1.1    nonaka 		}
   1328   1.1    nonaka 		if (datalen > 1) {
   1329   1.1    nonaka 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1330   1.1    nonaka 			data += 2;
   1331   1.1    nonaka 			datalen -= 2;
   1332   1.1    nonaka 		}
   1333   1.1    nonaka 		if (datalen > 0) {
   1334   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1335   1.1    nonaka 			data += 1;
   1336   1.1    nonaka 			datalen -= 1;
   1337   1.1    nonaka 		}
   1338   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1339   1.1    nonaka 		while (datalen > 1) {
   1340   1.1    nonaka 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1341   1.1    nonaka 			data += 2;
   1342   1.1    nonaka 			datalen -= 2;
   1343   1.1    nonaka 		}
   1344   1.1    nonaka 		if (datalen > 0) {
   1345   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1346   1.1    nonaka 			data += 1;
   1347   1.1    nonaka 			datalen -= 1;
   1348   1.1    nonaka 		}
   1349   1.1    nonaka 	} else {
   1350   1.1    nonaka 		while (datalen > 0) {
   1351   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1352   1.1    nonaka 			data += 1;
   1353   1.1    nonaka 			datalen -= 1;
   1354   1.1    nonaka 		}
   1355   1.1    nonaka 	}
   1356   1.1    nonaka }
   1357   1.1    nonaka 
   1358   1.1    nonaka static void
   1359  1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1360   1.1    nonaka {
   1361   1.1    nonaka 
   1362   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1363   1.1    nonaka 		while (datalen > 3) {
   1364   1.1    nonaka 			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
   1365   1.1    nonaka 			data += 4;
   1366   1.1    nonaka 			datalen -= 4;
   1367   1.1    nonaka 		}
   1368   1.1    nonaka 		if (datalen > 1) {
   1369   1.1    nonaka 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1370   1.1    nonaka 			data += 2;
   1371   1.1    nonaka 			datalen -= 2;
   1372   1.1    nonaka 		}
   1373   1.1    nonaka 		if (datalen > 0) {
   1374   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1375   1.1    nonaka 			data += 1;
   1376   1.1    nonaka 			datalen -= 1;
   1377   1.1    nonaka 		}
   1378   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1379   1.1    nonaka 		while (datalen > 1) {
   1380   1.1    nonaka 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1381   1.1    nonaka 			data += 2;
   1382   1.1    nonaka 			datalen -= 2;
   1383   1.1    nonaka 		}
   1384   1.1    nonaka 		if (datalen > 0) {
   1385   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1386   1.1    nonaka 			data += 1;
   1387   1.1    nonaka 			datalen -= 1;
   1388   1.1    nonaka 		}
   1389   1.1    nonaka 	} else {
   1390   1.1    nonaka 		while (datalen > 0) {
   1391   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1392   1.1    nonaka 			data += 1;
   1393   1.1    nonaka 			datalen -= 1;
   1394   1.1    nonaka 		}
   1395   1.1    nonaka 	}
   1396   1.1    nonaka }
   1397   1.1    nonaka 
   1398  1.11      matt static void
   1399  1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1400  1.11      matt {
   1401  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1402  1.12    nonaka 	uint32_t v;
   1403  1.12    nonaka 
   1404  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1405  1.23      matt 	size_t count = 0;
   1406  1.23      matt 
   1407  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1408  1.23      matt 		if (count == 0) {
   1409  1.23      matt 			/*
   1410  1.23      matt 			 * If we've drained "watermark" words, we need to wait
   1411  1.23      matt 			 * a little bit so the read FIFO can refill.
   1412  1.23      matt 			 */
   1413  1.23      matt 			sdmmc_delay(10);
   1414  1.23      matt 			count = watermark;
   1415  1.23      matt 		}
   1416  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1417  1.11      matt 		v = le32toh(v);
   1418  1.11      matt 		*(uint32_t *)data = v;
   1419  1.11      matt 		data += 4;
   1420  1.11      matt 		datalen -= 4;
   1421  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1422  1.23      matt 		count--;
   1423  1.11      matt 	}
   1424  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1425  1.23      matt 		if (count == 0) {
   1426  1.23      matt 			sdmmc_delay(10);
   1427  1.23      matt 		}
   1428  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1429  1.11      matt 		v = le32toh(v);
   1430  1.11      matt 		do {
   1431  1.11      matt 			*data++ = v;
   1432  1.11      matt 			v >>= 8;
   1433  1.11      matt 		} while (--datalen > 0);
   1434  1.11      matt 	}
   1435  1.11      matt }
   1436  1.11      matt 
   1437  1.11      matt static void
   1438  1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1439  1.11      matt {
   1440  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1441  1.12    nonaka 	uint32_t v;
   1442  1.12    nonaka 
   1443  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1444  1.23      matt 	size_t count = watermark;
   1445  1.23      matt 
   1446  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1447  1.23      matt 		if (count == 0) {
   1448  1.23      matt 			sdmmc_delay(10);
   1449  1.23      matt 			count = watermark;
   1450  1.23      matt 		}
   1451  1.12    nonaka 		v = *(uint32_t *)data;
   1452  1.11      matt 		v = htole32(v);
   1453  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1454  1.11      matt 		data += 4;
   1455  1.11      matt 		datalen -= 4;
   1456  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1457  1.23      matt 		count--;
   1458  1.11      matt 	}
   1459  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1460  1.23      matt 		if (count == 0) {
   1461  1.23      matt 			sdmmc_delay(10);
   1462  1.23      matt 		}
   1463  1.12    nonaka 		v = *(uint32_t *)data;
   1464  1.11      matt 		v = htole32(v);
   1465  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1466  1.11      matt 	}
   1467  1.11      matt }
   1468  1.11      matt 
   1469   1.1    nonaka /* Prepare for another command. */
   1470   1.1    nonaka static int
   1471   1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1472   1.1    nonaka {
   1473   1.1    nonaka 	int timo;
   1474   1.1    nonaka 
   1475   1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1476   1.1    nonaka 
   1477   1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1478   1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   1479   1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1480   1.1    nonaka 			break;
   1481   1.1    nonaka 		sdmmc_delay(10000);
   1482   1.1    nonaka 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1483   1.1    nonaka 	}
   1484   1.1    nonaka 	if (timo == 0) {
   1485   1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1486   1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1487   1.1    nonaka 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1488   1.1    nonaka 		return ETIMEDOUT;
   1489   1.1    nonaka 	}
   1490   1.1    nonaka 
   1491  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1492  1.11      matt 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1493  1.11      matt 	}
   1494  1.11      matt 
   1495   1.1    nonaka 	return 0;
   1496   1.1    nonaka }
   1497   1.1    nonaka 
   1498   1.1    nonaka static int
   1499   1.1    nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1500   1.1    nonaka {
   1501   1.1    nonaka 	int status;
   1502   1.1    nonaka 
   1503   1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   1504   1.1    nonaka 
   1505   1.1    nonaka 	mutex_enter(&hp->intr_mtx);
   1506   1.1    nonaka 	status = hp->intr_status & mask;
   1507   1.1    nonaka 	while (status == 0) {
   1508   1.1    nonaka 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1509   1.1    nonaka 		    == EWOULDBLOCK) {
   1510   1.1    nonaka 			status |= SDHC_ERROR_INTERRUPT;
   1511   1.1    nonaka 			break;
   1512   1.1    nonaka 		}
   1513   1.1    nonaka 		status = hp->intr_status & mask;
   1514   1.1    nonaka 	}
   1515   1.1    nonaka 	hp->intr_status &= ~status;
   1516   1.1    nonaka 
   1517   1.1    nonaka 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1518   1.1    nonaka 	    hp->intr_error_status));
   1519   1.1    nonaka 
   1520   1.1    nonaka 	/* Command timeout has higher priority than command complete. */
   1521  1.11      matt 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1522   1.1    nonaka 		hp->intr_error_status = 0;
   1523  1.11      matt 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1524  1.11      matt 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1525  1.11      matt 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1526  1.11      matt 		}
   1527   1.1    nonaka 		status = 0;
   1528   1.1    nonaka 	}
   1529   1.1    nonaka 	mutex_exit(&hp->intr_mtx);
   1530   1.1    nonaka 
   1531   1.1    nonaka 	return status;
   1532   1.1    nonaka }
   1533   1.1    nonaka 
   1534   1.1    nonaka /*
   1535   1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1536   1.1    nonaka  */
   1537   1.1    nonaka int
   1538   1.1    nonaka sdhc_intr(void *arg)
   1539   1.1    nonaka {
   1540   1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1541   1.1    nonaka 	struct sdhc_host *hp;
   1542   1.1    nonaka 	int done = 0;
   1543   1.1    nonaka 	uint16_t status;
   1544   1.1    nonaka 	uint16_t error;
   1545   1.1    nonaka 
   1546   1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   1547  1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1548   1.1    nonaka 		hp = sc->sc_host[host];
   1549   1.1    nonaka 		if (hp == NULL)
   1550   1.1    nonaka 			continue;
   1551   1.1    nonaka 
   1552  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1553  1.11      matt 			/* Find out which interrupts are pending. */
   1554  1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1555  1.11      matt 			status = xstatus;
   1556  1.11      matt 			error = xstatus >> 16;
   1557  1.22      matt 			if (error)
   1558  1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   1559  1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1560  1.11      matt 				continue; /* no interrupt for us */
   1561  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1562  1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1563  1.11      matt 		} else {
   1564  1.11      matt 			/* Find out which interrupts are pending. */
   1565  1.11      matt 			error = 0;
   1566  1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1567  1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1568  1.11      matt 				continue; /* no interrupt for us */
   1569  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1570  1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1571  1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1572  1.11      matt 				/* Acknowledge error interrupts. */
   1573  1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1574  1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1575  1.11      matt 			}
   1576  1.11      matt 		}
   1577  1.11      matt 
   1578  1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1579  1.11      matt 		    status, error));
   1580   1.1    nonaka 
   1581   1.1    nonaka 		/* Claim this interrupt. */
   1582   1.1    nonaka 		done = 1;
   1583   1.1    nonaka 
   1584   1.1    nonaka 		/*
   1585   1.1    nonaka 		 * Service error interrupts.
   1586   1.1    nonaka 		 */
   1587  1.11      matt 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1588  1.11      matt 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1589  1.11      matt 			hp->intr_error_status |= error;
   1590  1.11      matt 			hp->intr_status |= status;
   1591  1.11      matt 			cv_broadcast(&hp->intr_cv);
   1592   1.1    nonaka 		}
   1593   1.1    nonaka 
   1594   1.1    nonaka 		/*
   1595   1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   1596   1.1    nonaka 		 */
   1597   1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1598   1.1    nonaka 			sdmmc_needs_discover(hp->sdmmc);
   1599  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1600  1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1601  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1602  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1603  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1604  1.11      matt 			}
   1605   1.9      matt 		}
   1606   1.1    nonaka 
   1607   1.1    nonaka 		/*
   1608   1.1    nonaka 		 * Wake up the blocking process to service command
   1609   1.1    nonaka 		 * related interrupt(s).
   1610   1.1    nonaka 		 */
   1611  1.11      matt 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1612  1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1613   1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1614   1.1    nonaka 			hp->intr_status |= status;
   1615  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1616  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1617  1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1618  1.11      matt 			}
   1619   1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   1620   1.1    nonaka 		}
   1621   1.1    nonaka 
   1622   1.1    nonaka 		/*
   1623   1.1    nonaka 		 * Service SD card interrupts.
   1624   1.1    nonaka 		 */
   1625  1.11      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1626  1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1627   1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1628   1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1629   1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   1630   1.1    nonaka 		}
   1631   1.1    nonaka 	}
   1632   1.1    nonaka 
   1633   1.1    nonaka 	return done;
   1634   1.1    nonaka }
   1635   1.1    nonaka 
   1636   1.1    nonaka #ifdef SDHC_DEBUG
   1637   1.1    nonaka void
   1638   1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   1639   1.1    nonaka {
   1640   1.1    nonaka 
   1641   1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1642   1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1643  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1644  1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1645  1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   1646   1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1647   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1648   1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1649   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1650   1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1651   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1652   1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1653   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1654   1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1655   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1656   1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1657   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1658   1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1659   1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   1660   1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1661   1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1662   1.1    nonaka }
   1663   1.1    nonaka #endif
   1664