sdhc.c revision 1.30 1 1.30 matt /* $NetBSD: sdhc.c,v 1.30 2012/08/31 01:44:20 matt Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.30 matt __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.30 2012/08/31 01:44:20 matt Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/kthread.h>
36 1.1 nonaka #include <sys/malloc.h>
37 1.1 nonaka #include <sys/systm.h>
38 1.1 nonaka #include <sys/mutex.h>
39 1.1 nonaka #include <sys/condvar.h>
40 1.1 nonaka
41 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
42 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
45 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
46 1.1 nonaka
47 1.1 nonaka #ifdef SDHC_DEBUG
48 1.1 nonaka int sdhcdebug = 1;
49 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
51 1.1 nonaka #else
52 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
53 1.1 nonaka #endif
54 1.1 nonaka
55 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
56 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
57 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
58 1.1 nonaka #define SDHC_DMA_TIMEOUT hz
59 1.1 nonaka
60 1.1 nonaka struct sdhc_host {
61 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
62 1.1 nonaka
63 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
64 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
65 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
66 1.1 nonaka
67 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
68 1.1 nonaka
69 1.1 nonaka struct kmutex host_mtx;
70 1.1 nonaka
71 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
72 1.1 nonaka int maxblklen; /* maximum block length */
73 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
74 1.1 nonaka
75 1.1 nonaka uint8_t regs[14]; /* host controller state */
76 1.1 nonaka
77 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
78 1.1 nonaka uint16_t intr_error_status; /* soft error status */
79 1.1 nonaka struct kmutex intr_mtx;
80 1.1 nonaka struct kcondvar intr_cv;
81 1.1 nonaka
82 1.12 nonaka int specver; /* spec. version */
83 1.12 nonaka
84 1.1 nonaka uint32_t flags; /* flags for this host */
85 1.1 nonaka #define SHF_USE_DMA 0x0001
86 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
87 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
88 1.1 nonaka };
89 1.1 nonaka
90 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 1.17 jakllsch #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
92 1.1 nonaka
93 1.11 matt static uint8_t
94 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
95 1.11 matt {
96 1.12 nonaka
97 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
99 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 1.11 matt }
101 1.11 matt
102 1.11 matt static uint16_t
103 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
104 1.11 matt {
105 1.12 nonaka
106 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
108 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 1.11 matt }
110 1.11 matt
111 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
112 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
113 1.11 matt #define HREAD4(hp, reg) \
114 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115 1.11 matt
116 1.11 matt
117 1.11 matt static void
118 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 1.11 matt {
120 1.12 nonaka
121 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
123 1.11 matt } else {
124 1.11 matt const size_t shift = 8 * (o & 3);
125 1.11 matt o &= -4;
126 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
128 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 1.11 matt }
130 1.11 matt }
131 1.11 matt
132 1.11 matt static void
133 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 1.11 matt {
135 1.12 nonaka
136 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
138 1.11 matt } else {
139 1.11 matt const size_t shift = 8 * (o & 2);
140 1.11 matt o &= -4;
141 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 1.11 matt }
145 1.11 matt }
146 1.11 matt
147 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 1.1 nonaka #define HWRITE4(hp, reg, val) \
150 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151 1.11 matt
152 1.1 nonaka #define HCLR1(hp, reg, bits) \
153 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 1.1 nonaka #define HCLR2(hp, reg, bits) \
155 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 1.11 matt #define HCLR4(hp, reg, bits) \
157 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 1.1 nonaka #define HSET1(hp, reg, bits) \
159 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 1.1 nonaka #define HSET2(hp, reg, bits) \
161 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 1.11 matt #define HSET4(hp, reg, bits) \
163 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164 1.1 nonaka
165 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 1.1 nonaka static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 1.1 nonaka struct sdmmc_command *);
179 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
182 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190 1.11 matt
191 1.1 nonaka
192 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
193 1.1 nonaka /* host controller reset */
194 1.1 nonaka sdhc_host_reset,
195 1.1 nonaka
196 1.1 nonaka /* host controller capabilities */
197 1.1 nonaka sdhc_host_ocr,
198 1.1 nonaka sdhc_host_maxblklen,
199 1.1 nonaka
200 1.1 nonaka /* card detection */
201 1.1 nonaka sdhc_card_detect,
202 1.1 nonaka
203 1.1 nonaka /* write protect */
204 1.1 nonaka sdhc_write_protect,
205 1.1 nonaka
206 1.1 nonaka /* bus power, clock frequency and width */
207 1.1 nonaka sdhc_bus_power,
208 1.1 nonaka sdhc_bus_clock,
209 1.1 nonaka sdhc_bus_width,
210 1.8 kiyohara sdhc_bus_rod,
211 1.1 nonaka
212 1.1 nonaka /* command execution */
213 1.1 nonaka sdhc_exec_command,
214 1.1 nonaka
215 1.1 nonaka /* card interrupt */
216 1.1 nonaka sdhc_card_enable_intr,
217 1.1 nonaka sdhc_card_intr_ack
218 1.1 nonaka };
219 1.1 nonaka
220 1.17 jakllsch static int
221 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
222 1.17 jakllsch {
223 1.17 jakllsch const struct sdmmcbus_attach_args const * saa = aux;
224 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
225 1.17 jakllsch
226 1.17 jakllsch if (pnp) {
227 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
228 1.17 jakllsch }
229 1.17 jakllsch aprint_normal(" slot %d", HDEVINST(hp));
230 1.17 jakllsch
231 1.17 jakllsch return UNCONF;
232 1.17 jakllsch }
233 1.17 jakllsch
234 1.1 nonaka /*
235 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
236 1.1 nonaka * host controller standard register set. (1.3)
237 1.1 nonaka */
238 1.1 nonaka int
239 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
240 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
241 1.1 nonaka {
242 1.1 nonaka struct sdmmcbus_attach_args saa;
243 1.1 nonaka struct sdhc_host *hp;
244 1.1 nonaka uint32_t caps;
245 1.1 nonaka uint16_t sdhcver;
246 1.1 nonaka
247 1.1 nonaka sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
248 1.12 nonaka aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
249 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
250 1.12 nonaka case SDHC_SPEC_VERS_100:
251 1.12 nonaka aprint_normal("1.0");
252 1.12 nonaka break;
253 1.12 nonaka
254 1.12 nonaka case SDHC_SPEC_VERS_200:
255 1.12 nonaka aprint_normal("2.0");
256 1.1 nonaka break;
257 1.1 nonaka
258 1.12 nonaka case SDHC_SPEC_VERS_300:
259 1.12 nonaka aprint_normal("3.0");
260 1.9 matt break;
261 1.9 matt
262 1.1 nonaka default:
263 1.12 nonaka aprint_normal("unknown version(0x%x)",
264 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
265 1.1 nonaka break;
266 1.1 nonaka }
267 1.12 nonaka aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
268 1.1 nonaka
269 1.1 nonaka /* Allocate one more host structure. */
270 1.1 nonaka hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
271 1.1 nonaka if (hp == NULL) {
272 1.1 nonaka aprint_error_dev(sc->sc_dev,
273 1.1 nonaka "couldn't alloc memory (sdhc host)\n");
274 1.1 nonaka goto err1;
275 1.1 nonaka }
276 1.1 nonaka sc->sc_host[sc->sc_nhosts++] = hp;
277 1.1 nonaka
278 1.1 nonaka /* Fill in the new host structure. */
279 1.1 nonaka hp->sc = sc;
280 1.1 nonaka hp->iot = iot;
281 1.1 nonaka hp->ioh = ioh;
282 1.1 nonaka hp->dmat = sc->sc_dmat;
283 1.12 nonaka hp->specver = SDHC_SPEC_VERSION(sdhcver);
284 1.1 nonaka
285 1.1 nonaka mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
286 1.1 nonaka mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
287 1.1 nonaka cv_init(&hp->intr_cv, "sdhcintr");
288 1.1 nonaka
289 1.1 nonaka /*
290 1.3 uebayasi * Reset the host controller and enable interrupts.
291 1.1 nonaka */
292 1.1 nonaka (void)sdhc_host_reset(hp);
293 1.1 nonaka
294 1.1 nonaka /* Determine host capabilities. */
295 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
296 1.24 skrll caps = sc->sc_caps;
297 1.24 skrll } else {
298 1.24 skrll mutex_enter(&hp->host_mtx);
299 1.24 skrll caps = HREAD4(hp, SDHC_CAPABILITIES);
300 1.24 skrll mutex_exit(&hp->host_mtx);
301 1.24 skrll }
302 1.1 nonaka
303 1.1 nonaka /* Use DMA if the host system and the controller support it. */
304 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
305 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
306 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
307 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
308 1.1 nonaka aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
309 1.1 nonaka }
310 1.1 nonaka
311 1.1 nonaka /*
312 1.1 nonaka * Determine the base clock frequency. (2.2.24)
313 1.1 nonaka */
314 1.30 matt if (hp->specver == SDHC_SPEC_VERS_300) {
315 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
316 1.30 matt } else {
317 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
318 1.30 matt }
319 1.1 nonaka if (hp->clkbase == 0) {
320 1.9 matt if (sc->sc_clkbase == 0) {
321 1.9 matt /* The attachment driver must tell us. */
322 1.12 nonaka aprint_error_dev(sc->sc_dev,
323 1.12 nonaka "unknown base clock frequency\n");
324 1.9 matt goto err;
325 1.9 matt }
326 1.9 matt hp->clkbase = sc->sc_clkbase;
327 1.9 matt }
328 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
329 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
330 1.1 nonaka aprint_error_dev(sc->sc_dev,
331 1.1 nonaka "base clock frequency out of range: %u MHz\n",
332 1.1 nonaka hp->clkbase / 1000);
333 1.1 nonaka goto err;
334 1.1 nonaka }
335 1.1 nonaka DPRINTF(1,("%s: base clock frequency %u MHz\n",
336 1.1 nonaka device_xname(sc->sc_dev), hp->clkbase / 1000));
337 1.1 nonaka
338 1.1 nonaka /*
339 1.1 nonaka * XXX Set the data timeout counter value according to
340 1.1 nonaka * capabilities. (2.2.15)
341 1.1 nonaka */
342 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
343 1.29 matt #if 1
344 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
345 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
346 1.11 matt #endif
347 1.1 nonaka
348 1.1 nonaka /*
349 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
350 1.1 nonaka */
351 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
352 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
353 1.11 matt }
354 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
355 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
356 1.11 matt }
357 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
358 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
359 1.11 matt }
360 1.1 nonaka
361 1.1 nonaka /*
362 1.1 nonaka * Determine the maximum block length supported by the host
363 1.1 nonaka * controller. (2.2.24)
364 1.1 nonaka */
365 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
366 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
367 1.1 nonaka hp->maxblklen = 512;
368 1.1 nonaka break;
369 1.1 nonaka
370 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
371 1.1 nonaka hp->maxblklen = 1024;
372 1.1 nonaka break;
373 1.1 nonaka
374 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
375 1.1 nonaka hp->maxblklen = 2048;
376 1.1 nonaka break;
377 1.1 nonaka
378 1.9 matt case SDHC_MAX_BLK_LEN_4096:
379 1.9 matt hp->maxblklen = 4096;
380 1.9 matt break;
381 1.9 matt
382 1.1 nonaka default:
383 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
384 1.1 nonaka goto err;
385 1.1 nonaka }
386 1.1 nonaka DPRINTF(1, ("%s: max block length %u byte%s\n",
387 1.1 nonaka device_xname(sc->sc_dev), hp->maxblklen,
388 1.1 nonaka hp->maxblklen > 1 ? "s" : ""));
389 1.1 nonaka
390 1.1 nonaka /*
391 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
392 1.1 nonaka * not invoke any chipset functions before it is attached.)
393 1.1 nonaka */
394 1.1 nonaka memset(&saa, 0, sizeof(saa));
395 1.1 nonaka saa.saa_busname = "sdmmc";
396 1.1 nonaka saa.saa_sct = &sdhc_functions;
397 1.1 nonaka saa.saa_sch = hp;
398 1.1 nonaka saa.saa_dmat = hp->dmat;
399 1.1 nonaka saa.saa_clkmin = hp->clkbase / 256;
400 1.1 nonaka saa.saa_clkmax = hp->clkbase;
401 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
402 1.11 matt saa.saa_clkmin /= 2046;
403 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
404 1.9 matt saa.saa_clkmin /= 16;
405 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
406 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
407 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
408 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
409 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
410 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
411 1.28 matt saa.saa_caps |= SMC_CAPS_DMA;
412 1.28 matt if (hp->specver == SDHC_SPEC_VERS_100) {
413 1.28 matt saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
414 1.28 matt }
415 1.26 matt }
416 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
417 1.1 nonaka
418 1.1 nonaka return 0;
419 1.1 nonaka
420 1.1 nonaka err:
421 1.1 nonaka cv_destroy(&hp->intr_cv);
422 1.1 nonaka mutex_destroy(&hp->intr_mtx);
423 1.1 nonaka mutex_destroy(&hp->host_mtx);
424 1.1 nonaka free(hp, M_DEVBUF);
425 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
426 1.1 nonaka err1:
427 1.1 nonaka return 1;
428 1.1 nonaka }
429 1.1 nonaka
430 1.7 nonaka int
431 1.7 nonaka sdhc_detach(device_t dev, int flags)
432 1.7 nonaka {
433 1.7 nonaka struct sdhc_host *hp = (struct sdhc_host *)dev;
434 1.7 nonaka struct sdhc_softc *sc = hp->sc;
435 1.7 nonaka int rv = 0;
436 1.7 nonaka
437 1.7 nonaka if (hp->sdmmc)
438 1.7 nonaka rv = config_detach(hp->sdmmc, flags);
439 1.7 nonaka
440 1.7 nonaka cv_destroy(&hp->intr_cv);
441 1.7 nonaka mutex_destroy(&hp->intr_mtx);
442 1.7 nonaka mutex_destroy(&hp->host_mtx);
443 1.7 nonaka free(hp, M_DEVBUF);
444 1.7 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
445 1.7 nonaka
446 1.7 nonaka return rv;
447 1.7 nonaka }
448 1.7 nonaka
449 1.1 nonaka bool
450 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
451 1.1 nonaka {
452 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
453 1.1 nonaka struct sdhc_host *hp;
454 1.12 nonaka size_t i;
455 1.1 nonaka
456 1.1 nonaka /* XXX poll for command completion or suspend command
457 1.1 nonaka * in progress */
458 1.1 nonaka
459 1.1 nonaka /* Save the host controller state. */
460 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
461 1.1 nonaka hp = sc->sc_host[n];
462 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
463 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
464 1.11 matt uint32_t v = HREAD4(hp, i);
465 1.12 nonaka hp->regs[i + 0] = (v >> 0);
466 1.12 nonaka hp->regs[i + 1] = (v >> 8);
467 1.13 bouyer if (i + 3 < sizeof hp->regs) {
468 1.13 bouyer hp->regs[i + 2] = (v >> 16);
469 1.13 bouyer hp->regs[i + 3] = (v >> 24);
470 1.13 bouyer }
471 1.11 matt }
472 1.11 matt } else {
473 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
474 1.11 matt hp->regs[i] = HREAD1(hp, i);
475 1.11 matt }
476 1.11 matt }
477 1.1 nonaka }
478 1.1 nonaka return true;
479 1.1 nonaka }
480 1.1 nonaka
481 1.1 nonaka bool
482 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
483 1.1 nonaka {
484 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
485 1.1 nonaka struct sdhc_host *hp;
486 1.12 nonaka size_t i;
487 1.1 nonaka
488 1.1 nonaka /* Restore the host controller state. */
489 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
490 1.1 nonaka hp = sc->sc_host[n];
491 1.1 nonaka (void)sdhc_host_reset(hp);
492 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
493 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
494 1.13 bouyer if (i + 3 < sizeof hp->regs) {
495 1.13 bouyer HWRITE4(hp, i,
496 1.13 bouyer (hp->regs[i + 0] << 0)
497 1.13 bouyer | (hp->regs[i + 1] << 8)
498 1.13 bouyer | (hp->regs[i + 2] << 16)
499 1.13 bouyer | (hp->regs[i + 3] << 24));
500 1.13 bouyer } else {
501 1.13 bouyer HWRITE4(hp, i,
502 1.13 bouyer (hp->regs[i + 0] << 0)
503 1.13 bouyer | (hp->regs[i + 1] << 8));
504 1.13 bouyer }
505 1.11 matt }
506 1.11 matt } else {
507 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
508 1.11 matt HWRITE1(hp, i, hp->regs[i]);
509 1.11 matt }
510 1.11 matt }
511 1.1 nonaka }
512 1.1 nonaka return true;
513 1.1 nonaka }
514 1.1 nonaka
515 1.1 nonaka bool
516 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
517 1.1 nonaka {
518 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
519 1.1 nonaka struct sdhc_host *hp;
520 1.1 nonaka
521 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
522 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
523 1.1 nonaka hp = sc->sc_host[i];
524 1.1 nonaka (void)sdhc_host_reset(hp);
525 1.1 nonaka }
526 1.1 nonaka return true;
527 1.1 nonaka }
528 1.1 nonaka
529 1.1 nonaka /*
530 1.1 nonaka * Reset the host controller. Called during initialization, when
531 1.1 nonaka * cards are removed, upon resume, and during error recovery.
532 1.1 nonaka */
533 1.1 nonaka static int
534 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
535 1.1 nonaka {
536 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
537 1.11 matt uint32_t sdhcimask;
538 1.1 nonaka int error;
539 1.1 nonaka
540 1.1 nonaka /* Don't lock. */
541 1.1 nonaka
542 1.1 nonaka /* Disable all interrupts. */
543 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
544 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
545 1.11 matt } else {
546 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
547 1.11 matt }
548 1.1 nonaka
549 1.1 nonaka /*
550 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
551 1.1 nonaka * the controller to clear the reset bit.
552 1.1 nonaka */
553 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
554 1.1 nonaka if (error)
555 1.1 nonaka goto out;
556 1.1 nonaka
557 1.1 nonaka /* Set data timeout counter value to max for now. */
558 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
559 1.29 matt #if 1
560 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
561 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
562 1.11 matt #endif
563 1.1 nonaka
564 1.1 nonaka /* Enable interrupts. */
565 1.29 matt mutex_enter(&hp->intr_mtx);
566 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
567 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
568 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
569 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
570 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
571 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
572 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
573 1.11 matt sdhcimask ^=
574 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
575 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
576 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
577 1.11 matt } else {
578 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
579 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
580 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
581 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
582 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
583 1.11 matt }
584 1.29 matt mutex_exit(&hp->intr_mtx);
585 1.1 nonaka
586 1.1 nonaka out:
587 1.1 nonaka return error;
588 1.1 nonaka }
589 1.1 nonaka
590 1.1 nonaka static int
591 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
592 1.1 nonaka {
593 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
594 1.1 nonaka int error;
595 1.1 nonaka
596 1.1 nonaka mutex_enter(&hp->host_mtx);
597 1.1 nonaka error = sdhc_host_reset1(sch);
598 1.1 nonaka mutex_exit(&hp->host_mtx);
599 1.1 nonaka
600 1.1 nonaka return error;
601 1.1 nonaka }
602 1.1 nonaka
603 1.1 nonaka static uint32_t
604 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
605 1.1 nonaka {
606 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
607 1.1 nonaka
608 1.1 nonaka return hp->ocr;
609 1.1 nonaka }
610 1.1 nonaka
611 1.1 nonaka static int
612 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
613 1.1 nonaka {
614 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
615 1.1 nonaka
616 1.1 nonaka return hp->maxblklen;
617 1.1 nonaka }
618 1.1 nonaka
619 1.1 nonaka /*
620 1.1 nonaka * Return non-zero if the card is currently inserted.
621 1.1 nonaka */
622 1.1 nonaka static int
623 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
624 1.1 nonaka {
625 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
626 1.1 nonaka int r;
627 1.1 nonaka
628 1.1 nonaka mutex_enter(&hp->host_mtx);
629 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
630 1.1 nonaka mutex_exit(&hp->host_mtx);
631 1.1 nonaka
632 1.11 matt return r ? 1 : 0;
633 1.1 nonaka }
634 1.1 nonaka
635 1.1 nonaka /*
636 1.1 nonaka * Return non-zero if the card is currently write-protected.
637 1.1 nonaka */
638 1.1 nonaka static int
639 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
640 1.1 nonaka {
641 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
642 1.1 nonaka int r;
643 1.1 nonaka
644 1.1 nonaka mutex_enter(&hp->host_mtx);
645 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
646 1.1 nonaka mutex_exit(&hp->host_mtx);
647 1.1 nonaka
648 1.12 nonaka return r ? 0 : 1;
649 1.1 nonaka }
650 1.1 nonaka
651 1.1 nonaka /*
652 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
653 1.1 nonaka * Return zero on success.
654 1.1 nonaka */
655 1.1 nonaka static int
656 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
657 1.1 nonaka {
658 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
659 1.1 nonaka uint8_t vdd;
660 1.1 nonaka int error = 0;
661 1.1 nonaka
662 1.1 nonaka mutex_enter(&hp->host_mtx);
663 1.1 nonaka
664 1.1 nonaka /*
665 1.1 nonaka * Disable bus power before voltage change.
666 1.1 nonaka */
667 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
668 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
669 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
670 1.1 nonaka
671 1.1 nonaka /* If power is disabled, reset the host and return now. */
672 1.1 nonaka if (ocr == 0) {
673 1.1 nonaka (void)sdhc_host_reset1(hp);
674 1.1 nonaka goto out;
675 1.1 nonaka }
676 1.1 nonaka
677 1.1 nonaka /*
678 1.1 nonaka * Select the lowest voltage according to capabilities.
679 1.1 nonaka */
680 1.1 nonaka ocr &= hp->ocr;
681 1.11 matt if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
682 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
683 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
684 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
685 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
686 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
687 1.11 matt } else {
688 1.1 nonaka /* Unsupported voltage level requested. */
689 1.1 nonaka error = EINVAL;
690 1.1 nonaka goto out;
691 1.1 nonaka }
692 1.1 nonaka
693 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
694 1.11 matt /*
695 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
696 1.11 matt * voltage ramp until power rises.
697 1.11 matt */
698 1.11 matt HWRITE1(hp, SDHC_POWER_CTL,
699 1.11 matt (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
700 1.11 matt sdmmc_delay(10000);
701 1.1 nonaka
702 1.11 matt /*
703 1.11 matt * The host system may not power the bus due to battery low,
704 1.11 matt * etc. In that case, the host controller should clear the
705 1.11 matt * bus power bit.
706 1.11 matt */
707 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
708 1.11 matt error = ENXIO;
709 1.11 matt goto out;
710 1.11 matt }
711 1.1 nonaka }
712 1.1 nonaka
713 1.1 nonaka out:
714 1.1 nonaka mutex_exit(&hp->host_mtx);
715 1.1 nonaka
716 1.1 nonaka return error;
717 1.1 nonaka }
718 1.1 nonaka
719 1.1 nonaka /*
720 1.1 nonaka * Return the smallest possible base clock frequency divisor value
721 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
722 1.1 nonaka */
723 1.11 matt static bool
724 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
725 1.1 nonaka {
726 1.11 matt u_int div;
727 1.1 nonaka
728 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
729 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
730 1.11 matt if ((hp->clkbase / div) <= freq) {
731 1.11 matt *divp = SDHC_SDCLK_CGM
732 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
733 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
734 1.18 jakllsch //freq = hp->clkbase / div;
735 1.11 matt return true;
736 1.11 matt }
737 1.11 matt }
738 1.11 matt /* No divisor found. */
739 1.11 matt return false;
740 1.11 matt }
741 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
742 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
743 1.11 matt u_int roundup = dvs & 1;
744 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
745 1.11 matt if (dvs + roundup <= 16) {
746 1.11 matt dvs += roundup - 1;
747 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
748 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
749 1.11 matt DPRINTF(2,
750 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
751 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
752 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
753 1.11 matt return true;
754 1.9 matt }
755 1.11 matt /*
756 1.11 matt * If we drop bits, we need to round up the divisor.
757 1.11 matt */
758 1.11 matt roundup |= dvs & 1;
759 1.9 matt }
760 1.18 jakllsch /* No divisor found. */
761 1.18 jakllsch return false;
762 1.9 matt } else {
763 1.9 matt for (div = 1; div <= 256; div *= 2) {
764 1.11 matt if ((hp->clkbase / div) <= freq) {
765 1.11 matt *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
766 1.18 jakllsch //freq = hp->clkbase / div;
767 1.11 matt return true;
768 1.11 matt }
769 1.9 matt }
770 1.9 matt }
771 1.1 nonaka /* No divisor found. */
772 1.11 matt return false;
773 1.1 nonaka }
774 1.1 nonaka
775 1.1 nonaka /*
776 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
777 1.1 nonaka * Return zero on success.
778 1.1 nonaka */
779 1.1 nonaka static int
780 1.1 nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
781 1.1 nonaka {
782 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
783 1.11 matt u_int div;
784 1.11 matt u_int timo;
785 1.1 nonaka int error = 0;
786 1.2 cegger #ifdef DIAGNOSTIC
787 1.12 nonaka bool present;
788 1.1 nonaka
789 1.1 nonaka mutex_enter(&hp->host_mtx);
790 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
791 1.2 cegger mutex_exit(&hp->host_mtx);
792 1.1 nonaka
793 1.1 nonaka /* Must not stop the clock if commands are in progress. */
794 1.12 nonaka if (present && sdhc_card_detect(hp)) {
795 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
796 1.26 matt "%s: command in progress\n", __func__);
797 1.12 nonaka }
798 1.1 nonaka #endif
799 1.1 nonaka
800 1.2 cegger mutex_enter(&hp->host_mtx);
801 1.2 cegger
802 1.1 nonaka /*
803 1.1 nonaka * Stop SD clock before changing the frequency.
804 1.1 nonaka */
805 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
806 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
807 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
808 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
809 1.11 matt goto out;
810 1.11 matt }
811 1.11 matt } else {
812 1.11 matt HWRITE2(hp, SDHC_CLOCK_CTL, 0);
813 1.11 matt if (freq == SDMMC_SDCLK_OFF)
814 1.11 matt goto out;
815 1.11 matt }
816 1.1 nonaka
817 1.1 nonaka /*
818 1.1 nonaka * Set the minimum base clock frequency divisor.
819 1.1 nonaka */
820 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
821 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
822 1.1 nonaka error = EINVAL;
823 1.1 nonaka goto out;
824 1.1 nonaka }
825 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
826 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
827 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
828 1.11 matt } else {
829 1.11 matt HWRITE2(hp, SDHC_CLOCK_CTL, div);
830 1.11 matt }
831 1.1 nonaka
832 1.1 nonaka /*
833 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
834 1.1 nonaka */
835 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
836 1.11 matt sdmmc_delay(10000);
837 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
838 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
839 1.11 matt } else {
840 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
841 1.11 matt for (timo = 1000; timo > 0; timo--) {
842 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
843 1.12 nonaka SDHC_INTCLK_STABLE))
844 1.11 matt break;
845 1.11 matt sdmmc_delay(10);
846 1.11 matt }
847 1.11 matt if (timo == 0) {
848 1.11 matt error = ETIMEDOUT;
849 1.11 matt goto out;
850 1.11 matt }
851 1.1 nonaka }
852 1.1 nonaka
853 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
854 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
855 1.11 matt /*
856 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
857 1.11 matt * So delay for that time + slop and then
858 1.11 matt * check a few times for completion.
859 1.11 matt */
860 1.11 matt sdmmc_delay(210);
861 1.11 matt for (timo = 10; timo > 0; timo--) {
862 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
863 1.11 matt SDHC_INIT_ACTIVE))
864 1.11 matt break;
865 1.11 matt sdmmc_delay(10);
866 1.11 matt }
867 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
868 1.12 nonaka
869 1.11 matt /*
870 1.11 matt * Enable SD clock.
871 1.11 matt */
872 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
873 1.11 matt } else {
874 1.11 matt /*
875 1.11 matt * Enable SD clock.
876 1.11 matt */
877 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
878 1.1 nonaka
879 1.11 matt if (freq > 25000)
880 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
881 1.11 matt else
882 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
883 1.11 matt }
884 1.8 kiyohara
885 1.1 nonaka out:
886 1.1 nonaka mutex_exit(&hp->host_mtx);
887 1.1 nonaka
888 1.1 nonaka return error;
889 1.1 nonaka }
890 1.1 nonaka
891 1.1 nonaka static int
892 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
893 1.1 nonaka {
894 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
895 1.1 nonaka int reg;
896 1.1 nonaka
897 1.1 nonaka switch (width) {
898 1.1 nonaka case 1:
899 1.1 nonaka case 4:
900 1.1 nonaka break;
901 1.1 nonaka
902 1.11 matt case 8:
903 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
904 1.11 matt break;
905 1.11 matt /* FALLTHROUGH */
906 1.1 nonaka default:
907 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
908 1.1 nonaka HDEVNAME(hp), width));
909 1.1 nonaka return 1;
910 1.1 nonaka }
911 1.1 nonaka
912 1.1 nonaka mutex_enter(&hp->host_mtx);
913 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
914 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
915 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
916 1.11 matt if (width == 4)
917 1.11 matt reg |= SDHC_4BIT_MODE;
918 1.11 matt else if (width == 8)
919 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
920 1.11 matt } else {
921 1.11 matt reg &= ~SDHC_4BIT_MODE;
922 1.11 matt if (width == 4)
923 1.11 matt reg |= SDHC_4BIT_MODE;
924 1.11 matt }
925 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
926 1.1 nonaka mutex_exit(&hp->host_mtx);
927 1.1 nonaka
928 1.1 nonaka return 0;
929 1.1 nonaka }
930 1.1 nonaka
931 1.8 kiyohara static int
932 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
933 1.8 kiyohara {
934 1.8 kiyohara
935 1.8 kiyohara /* Nothing ?? */
936 1.8 kiyohara return 0;
937 1.8 kiyohara }
938 1.8 kiyohara
939 1.1 nonaka static void
940 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
941 1.1 nonaka {
942 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
943 1.1 nonaka
944 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
945 1.29 matt mutex_enter(&hp->intr_mtx);
946 1.11 matt if (enable) {
947 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
948 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
949 1.11 matt } else {
950 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
951 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
952 1.11 matt }
953 1.29 matt mutex_exit(&hp->intr_mtx);
954 1.1 nonaka }
955 1.1 nonaka }
956 1.1 nonaka
957 1.1 nonaka static void
958 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
959 1.1 nonaka {
960 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
961 1.1 nonaka
962 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
963 1.29 matt mutex_enter(&hp->intr_mtx);
964 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
965 1.29 matt mutex_exit(&hp->intr_mtx);
966 1.11 matt }
967 1.1 nonaka }
968 1.1 nonaka
969 1.1 nonaka static int
970 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
971 1.1 nonaka {
972 1.1 nonaka uint32_t state;
973 1.1 nonaka int timeout;
974 1.1 nonaka
975 1.1 nonaka for (timeout = 10; timeout > 0; timeout--) {
976 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
977 1.1 nonaka return 0;
978 1.1 nonaka sdmmc_delay(10000);
979 1.1 nonaka }
980 1.1 nonaka DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
981 1.1 nonaka value, state));
982 1.1 nonaka return ETIMEDOUT;
983 1.1 nonaka }
984 1.1 nonaka
985 1.1 nonaka static void
986 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
987 1.1 nonaka {
988 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
989 1.1 nonaka int error;
990 1.1 nonaka
991 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
992 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
993 1.29 matt mutex_enter(&hp->intr_mtx);
994 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
995 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
996 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
997 1.11 matt } else {
998 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
999 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1000 1.11 matt }
1001 1.29 matt mutex_exit(&hp->intr_mtx);
1002 1.11 matt }
1003 1.11 matt
1004 1.1 nonaka /*
1005 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1006 1.1 nonaka */
1007 1.1 nonaka error = sdhc_start_command(hp, cmd);
1008 1.1 nonaka if (error) {
1009 1.1 nonaka cmd->c_error = error;
1010 1.1 nonaka goto out;
1011 1.1 nonaka }
1012 1.1 nonaka
1013 1.1 nonaka /*
1014 1.1 nonaka * Wait until the command phase is done, or until the command
1015 1.1 nonaka * is marked done for any other reason.
1016 1.1 nonaka */
1017 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1018 1.1 nonaka cmd->c_error = ETIMEDOUT;
1019 1.1 nonaka goto out;
1020 1.1 nonaka }
1021 1.1 nonaka
1022 1.1 nonaka /*
1023 1.1 nonaka * The host controller removes bits [0:7] from the response
1024 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1025 1.1 nonaka * driver (without padding).
1026 1.1 nonaka */
1027 1.1 nonaka mutex_enter(&hp->host_mtx);
1028 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1029 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1030 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1031 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1032 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1033 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1034 1.1 nonaka }
1035 1.1 nonaka }
1036 1.1 nonaka mutex_exit(&hp->host_mtx);
1037 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1038 1.1 nonaka
1039 1.1 nonaka /*
1040 1.1 nonaka * If the command has data to transfer in any direction,
1041 1.1 nonaka * execute the transfer now.
1042 1.1 nonaka */
1043 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1044 1.1 nonaka sdhc_transfer_data(hp, cmd);
1045 1.1 nonaka
1046 1.1 nonaka out:
1047 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1048 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1049 1.11 matt mutex_enter(&hp->host_mtx);
1050 1.11 matt /* Turn off the LED. */
1051 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1052 1.11 matt mutex_exit(&hp->host_mtx);
1053 1.11 matt }
1054 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1055 1.1 nonaka
1056 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1057 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1058 1.1 nonaka cmd->c_flags, cmd->c_error));
1059 1.1 nonaka }
1060 1.1 nonaka
1061 1.1 nonaka static int
1062 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1063 1.1 nonaka {
1064 1.11 matt struct sdhc_softc * const sc = hp->sc;
1065 1.1 nonaka uint16_t blksize = 0;
1066 1.1 nonaka uint16_t blkcount = 0;
1067 1.1 nonaka uint16_t mode;
1068 1.1 nonaka uint16_t command;
1069 1.1 nonaka int error;
1070 1.1 nonaka
1071 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1072 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1073 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1074 1.1 nonaka
1075 1.1 nonaka /*
1076 1.1 nonaka * The maximum block length for commands should be the minimum
1077 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1078 1.1 nonaka */
1079 1.1 nonaka
1080 1.1 nonaka /* Fragment the data into proper blocks. */
1081 1.1 nonaka if (cmd->c_datalen > 0) {
1082 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1083 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1084 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1085 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1086 1.11 matt aprint_error_dev(sc->sc_dev,
1087 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1088 1.1 nonaka return EINVAL;
1089 1.1 nonaka }
1090 1.1 nonaka }
1091 1.1 nonaka
1092 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1093 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1094 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1095 1.1 nonaka return EINVAL;
1096 1.1 nonaka }
1097 1.1 nonaka
1098 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1099 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1100 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1101 1.1 nonaka mode |= SDHC_READ_MODE;
1102 1.15 jakllsch if (blkcount > 1) {
1103 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1104 1.15 jakllsch /* XXX only for memory commands? */
1105 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1106 1.1 nonaka }
1107 1.7 nonaka if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1108 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1109 1.7 nonaka }
1110 1.1 nonaka
1111 1.1 nonaka /*
1112 1.1 nonaka * Prepare command register value. (2.2.6)
1113 1.1 nonaka */
1114 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1115 1.1 nonaka
1116 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1117 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1118 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1119 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1120 1.1 nonaka if (cmd->c_data != NULL)
1121 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1122 1.1 nonaka
1123 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1124 1.1 nonaka command |= SDHC_NO_RESPONSE;
1125 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1126 1.1 nonaka command |= SDHC_RESP_LEN_136;
1127 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1128 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1129 1.1 nonaka else
1130 1.1 nonaka command |= SDHC_RESP_LEN_48;
1131 1.1 nonaka
1132 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1133 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1134 1.1 nonaka if (error)
1135 1.1 nonaka return error;
1136 1.1 nonaka
1137 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1138 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1139 1.1 nonaka
1140 1.19 jakllsch blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1141 1.19 jakllsch SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1142 1.19 jakllsch
1143 1.1 nonaka mutex_enter(&hp->host_mtx);
1144 1.1 nonaka
1145 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1146 1.11 matt /* Alert the user not to remove the card. */
1147 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1148 1.11 matt }
1149 1.1 nonaka
1150 1.7 nonaka /* Set DMA start address. */
1151 1.7 nonaka if (ISSET(mode, SDHC_DMA_ENABLE))
1152 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1153 1.7 nonaka
1154 1.1 nonaka /*
1155 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1156 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1157 1.1 nonaka */
1158 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1159 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1160 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1161 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1162 1.11 matt } else {
1163 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1164 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1165 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1166 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1167 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1168 1.11 matt }
1169 1.1 nonaka
1170 1.1 nonaka mutex_exit(&hp->host_mtx);
1171 1.1 nonaka
1172 1.1 nonaka return 0;
1173 1.1 nonaka }
1174 1.1 nonaka
1175 1.1 nonaka static void
1176 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1177 1.1 nonaka {
1178 1.1 nonaka int error;
1179 1.1 nonaka
1180 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1181 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1182 1.1 nonaka
1183 1.1 nonaka #ifdef SDHC_DEBUG
1184 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1185 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1186 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1187 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1188 1.1 nonaka "CMD52/53 error response flags %#x\n",
1189 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1190 1.1 nonaka }
1191 1.1 nonaka #endif
1192 1.1 nonaka
1193 1.7 nonaka if (cmd->c_dmamap != NULL)
1194 1.7 nonaka error = sdhc_transfer_data_dma(hp, cmd);
1195 1.7 nonaka else
1196 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1197 1.1 nonaka if (error)
1198 1.1 nonaka cmd->c_error = error;
1199 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1200 1.1 nonaka
1201 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1202 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1203 1.1 nonaka }
1204 1.1 nonaka
1205 1.1 nonaka static int
1206 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1207 1.7 nonaka {
1208 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1209 1.19 jakllsch bus_addr_t posaddr;
1210 1.19 jakllsch bus_addr_t segaddr;
1211 1.19 jakllsch bus_size_t seglen;
1212 1.19 jakllsch u_int seg = 0;
1213 1.7 nonaka int error = 0;
1214 1.19 jakllsch int status;
1215 1.7 nonaka
1216 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1217 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1218 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1219 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1220 1.11 matt
1221 1.7 nonaka for (;;) {
1222 1.19 jakllsch status = sdhc_wait_intr(hp,
1223 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1224 1.19 jakllsch SDHC_DMA_TIMEOUT);
1225 1.19 jakllsch
1226 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1227 1.19 jakllsch break;
1228 1.19 jakllsch }
1229 1.19 jakllsch if (!status) {
1230 1.7 nonaka error = ETIMEDOUT;
1231 1.7 nonaka break;
1232 1.7 nonaka }
1233 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1234 1.19 jakllsch continue;
1235 1.19 jakllsch }
1236 1.19 jakllsch
1237 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1238 1.7 nonaka
1239 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1240 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1241 1.19 jakllsch mutex_enter(&hp->host_mtx);
1242 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1243 1.19 jakllsch mutex_exit(&hp->host_mtx);
1244 1.7 nonaka
1245 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1246 1.7 nonaka break;
1247 1.19 jakllsch }
1248 1.19 jakllsch mutex_enter(&hp->host_mtx);
1249 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1250 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1251 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1252 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1253 1.19 jakllsch mutex_exit(&hp->host_mtx);
1254 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1255 1.7 nonaka }
1256 1.7 nonaka
1257 1.7 nonaka return error;
1258 1.7 nonaka }
1259 1.7 nonaka
1260 1.7 nonaka static int
1261 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1262 1.1 nonaka {
1263 1.1 nonaka uint8_t *data = cmd->c_data;
1264 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1265 1.11 matt u_int len, datalen;
1266 1.11 matt u_int imask;
1267 1.11 matt u_int pmask;
1268 1.1 nonaka int error = 0;
1269 1.1 nonaka
1270 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1271 1.11 matt imask = SDHC_BUFFER_READ_READY;
1272 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1273 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1274 1.11 matt pio_func = esdhc_read_data_pio;
1275 1.11 matt } else {
1276 1.11 matt pio_func = sdhc_read_data_pio;
1277 1.11 matt }
1278 1.11 matt } else {
1279 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1280 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1281 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1282 1.11 matt pio_func = esdhc_write_data_pio;
1283 1.11 matt } else {
1284 1.11 matt pio_func = sdhc_write_data_pio;
1285 1.11 matt }
1286 1.11 matt }
1287 1.1 nonaka datalen = cmd->c_datalen;
1288 1.1 nonaka
1289 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1290 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1291 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1292 1.11 matt
1293 1.1 nonaka while (datalen > 0) {
1294 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1295 1.29 matt mutex_enter(&hp->intr_mtx);
1296 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1297 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1298 1.11 matt } else {
1299 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1300 1.11 matt }
1301 1.29 matt mutex_exit(&hp->intr_mtx);
1302 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1303 1.11 matt error = ETIMEDOUT;
1304 1.11 matt break;
1305 1.11 matt }
1306 1.11 matt
1307 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1308 1.11 matt if (error)
1309 1.11 matt break;
1310 1.1 nonaka }
1311 1.1 nonaka
1312 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1313 1.11 matt (*pio_func)(hp, data, len);
1314 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1315 1.11 matt HDEVNAME(hp), len, data));
1316 1.1 nonaka
1317 1.1 nonaka data += len;
1318 1.1 nonaka datalen -= len;
1319 1.1 nonaka }
1320 1.1 nonaka
1321 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1322 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1323 1.1 nonaka error = ETIMEDOUT;
1324 1.1 nonaka
1325 1.1 nonaka return error;
1326 1.1 nonaka }
1327 1.1 nonaka
1328 1.1 nonaka static void
1329 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1330 1.1 nonaka {
1331 1.1 nonaka
1332 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1333 1.1 nonaka while (datalen > 3) {
1334 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1335 1.1 nonaka data += 4;
1336 1.1 nonaka datalen -= 4;
1337 1.1 nonaka }
1338 1.1 nonaka if (datalen > 1) {
1339 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1340 1.1 nonaka data += 2;
1341 1.1 nonaka datalen -= 2;
1342 1.1 nonaka }
1343 1.1 nonaka if (datalen > 0) {
1344 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1345 1.1 nonaka data += 1;
1346 1.1 nonaka datalen -= 1;
1347 1.1 nonaka }
1348 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1349 1.1 nonaka while (datalen > 1) {
1350 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1351 1.1 nonaka data += 2;
1352 1.1 nonaka datalen -= 2;
1353 1.1 nonaka }
1354 1.1 nonaka if (datalen > 0) {
1355 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1356 1.1 nonaka data += 1;
1357 1.1 nonaka datalen -= 1;
1358 1.1 nonaka }
1359 1.1 nonaka } else {
1360 1.1 nonaka while (datalen > 0) {
1361 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1362 1.1 nonaka data += 1;
1363 1.1 nonaka datalen -= 1;
1364 1.1 nonaka }
1365 1.1 nonaka }
1366 1.1 nonaka }
1367 1.1 nonaka
1368 1.1 nonaka static void
1369 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1370 1.1 nonaka {
1371 1.1 nonaka
1372 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1373 1.1 nonaka while (datalen > 3) {
1374 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1375 1.1 nonaka data += 4;
1376 1.1 nonaka datalen -= 4;
1377 1.1 nonaka }
1378 1.1 nonaka if (datalen > 1) {
1379 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1380 1.1 nonaka data += 2;
1381 1.1 nonaka datalen -= 2;
1382 1.1 nonaka }
1383 1.1 nonaka if (datalen > 0) {
1384 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1385 1.1 nonaka data += 1;
1386 1.1 nonaka datalen -= 1;
1387 1.1 nonaka }
1388 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1389 1.1 nonaka while (datalen > 1) {
1390 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1391 1.1 nonaka data += 2;
1392 1.1 nonaka datalen -= 2;
1393 1.1 nonaka }
1394 1.1 nonaka if (datalen > 0) {
1395 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1396 1.1 nonaka data += 1;
1397 1.1 nonaka datalen -= 1;
1398 1.1 nonaka }
1399 1.1 nonaka } else {
1400 1.1 nonaka while (datalen > 0) {
1401 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1402 1.1 nonaka data += 1;
1403 1.1 nonaka datalen -= 1;
1404 1.1 nonaka }
1405 1.1 nonaka }
1406 1.1 nonaka }
1407 1.1 nonaka
1408 1.11 matt static void
1409 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1410 1.11 matt {
1411 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1412 1.12 nonaka uint32_t v;
1413 1.12 nonaka
1414 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1415 1.23 matt size_t count = 0;
1416 1.23 matt
1417 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1418 1.23 matt if (count == 0) {
1419 1.23 matt /*
1420 1.23 matt * If we've drained "watermark" words, we need to wait
1421 1.23 matt * a little bit so the read FIFO can refill.
1422 1.23 matt */
1423 1.23 matt sdmmc_delay(10);
1424 1.23 matt count = watermark;
1425 1.23 matt }
1426 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1427 1.11 matt v = le32toh(v);
1428 1.11 matt *(uint32_t *)data = v;
1429 1.11 matt data += 4;
1430 1.11 matt datalen -= 4;
1431 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1432 1.23 matt count--;
1433 1.11 matt }
1434 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1435 1.23 matt if (count == 0) {
1436 1.23 matt sdmmc_delay(10);
1437 1.23 matt }
1438 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1439 1.11 matt v = le32toh(v);
1440 1.11 matt do {
1441 1.11 matt *data++ = v;
1442 1.11 matt v >>= 8;
1443 1.11 matt } while (--datalen > 0);
1444 1.11 matt }
1445 1.11 matt }
1446 1.11 matt
1447 1.11 matt static void
1448 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1449 1.11 matt {
1450 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1451 1.12 nonaka uint32_t v;
1452 1.12 nonaka
1453 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1454 1.23 matt size_t count = watermark;
1455 1.23 matt
1456 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1457 1.23 matt if (count == 0) {
1458 1.23 matt sdmmc_delay(10);
1459 1.23 matt count = watermark;
1460 1.23 matt }
1461 1.12 nonaka v = *(uint32_t *)data;
1462 1.11 matt v = htole32(v);
1463 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1464 1.11 matt data += 4;
1465 1.11 matt datalen -= 4;
1466 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1467 1.23 matt count--;
1468 1.11 matt }
1469 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1470 1.23 matt if (count == 0) {
1471 1.23 matt sdmmc_delay(10);
1472 1.23 matt }
1473 1.12 nonaka v = *(uint32_t *)data;
1474 1.11 matt v = htole32(v);
1475 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1476 1.11 matt }
1477 1.11 matt }
1478 1.11 matt
1479 1.1 nonaka /* Prepare for another command. */
1480 1.1 nonaka static int
1481 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1482 1.1 nonaka {
1483 1.1 nonaka int timo;
1484 1.1 nonaka
1485 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1486 1.1 nonaka
1487 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1488 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1489 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1490 1.1 nonaka break;
1491 1.1 nonaka sdmmc_delay(10000);
1492 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1493 1.1 nonaka }
1494 1.1 nonaka if (timo == 0) {
1495 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1496 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1497 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1498 1.1 nonaka return ETIMEDOUT;
1499 1.1 nonaka }
1500 1.1 nonaka
1501 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1502 1.11 matt HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1503 1.11 matt }
1504 1.11 matt
1505 1.1 nonaka return 0;
1506 1.1 nonaka }
1507 1.1 nonaka
1508 1.1 nonaka static int
1509 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1510 1.1 nonaka {
1511 1.1 nonaka int status;
1512 1.1 nonaka
1513 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1514 1.1 nonaka
1515 1.1 nonaka mutex_enter(&hp->intr_mtx);
1516 1.1 nonaka status = hp->intr_status & mask;
1517 1.1 nonaka while (status == 0) {
1518 1.1 nonaka if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1519 1.1 nonaka == EWOULDBLOCK) {
1520 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1521 1.1 nonaka break;
1522 1.1 nonaka }
1523 1.1 nonaka status = hp->intr_status & mask;
1524 1.1 nonaka }
1525 1.1 nonaka hp->intr_status &= ~status;
1526 1.1 nonaka
1527 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1528 1.1 nonaka hp->intr_error_status));
1529 1.1 nonaka
1530 1.1 nonaka /* Command timeout has higher priority than command complete. */
1531 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1532 1.1 nonaka hp->intr_error_status = 0;
1533 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1534 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1535 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1536 1.11 matt }
1537 1.1 nonaka status = 0;
1538 1.1 nonaka }
1539 1.1 nonaka mutex_exit(&hp->intr_mtx);
1540 1.1 nonaka
1541 1.1 nonaka return status;
1542 1.1 nonaka }
1543 1.1 nonaka
1544 1.1 nonaka /*
1545 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
1546 1.1 nonaka */
1547 1.1 nonaka int
1548 1.1 nonaka sdhc_intr(void *arg)
1549 1.1 nonaka {
1550 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1551 1.1 nonaka struct sdhc_host *hp;
1552 1.1 nonaka int done = 0;
1553 1.1 nonaka uint16_t status;
1554 1.1 nonaka uint16_t error;
1555 1.1 nonaka
1556 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
1557 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
1558 1.1 nonaka hp = sc->sc_host[host];
1559 1.1 nonaka if (hp == NULL)
1560 1.1 nonaka continue;
1561 1.1 nonaka
1562 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1563 1.11 matt /* Find out which interrupts are pending. */
1564 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1565 1.11 matt status = xstatus;
1566 1.11 matt error = xstatus >> 16;
1567 1.22 matt if (error)
1568 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
1569 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1570 1.11 matt continue; /* no interrupt for us */
1571 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1572 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1573 1.11 matt } else {
1574 1.11 matt /* Find out which interrupts are pending. */
1575 1.11 matt error = 0;
1576 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1577 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1578 1.11 matt continue; /* no interrupt for us */
1579 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1580 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
1581 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1582 1.11 matt /* Acknowledge error interrupts. */
1583 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
1584 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
1585 1.11 matt }
1586 1.11 matt }
1587 1.11 matt
1588 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1589 1.11 matt status, error));
1590 1.1 nonaka
1591 1.29 matt mutex_enter(&hp->intr_mtx);
1592 1.29 matt
1593 1.1 nonaka /* Claim this interrupt. */
1594 1.1 nonaka done = 1;
1595 1.1 nonaka
1596 1.1 nonaka /*
1597 1.1 nonaka * Service error interrupts.
1598 1.1 nonaka */
1599 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1600 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
1601 1.11 matt hp->intr_error_status |= error;
1602 1.11 matt hp->intr_status |= status;
1603 1.11 matt cv_broadcast(&hp->intr_cv);
1604 1.1 nonaka }
1605 1.1 nonaka
1606 1.1 nonaka /*
1607 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
1608 1.1 nonaka */
1609 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1610 1.1 nonaka sdmmc_needs_discover(hp->sdmmc);
1611 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1612 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
1613 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1614 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1615 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1616 1.11 matt }
1617 1.9 matt }
1618 1.1 nonaka
1619 1.1 nonaka /*
1620 1.1 nonaka * Wake up the blocking process to service command
1621 1.1 nonaka * related interrupt(s).
1622 1.1 nonaka */
1623 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
1624 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1625 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1626 1.1 nonaka hp->intr_status |= status;
1627 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1628 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1629 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1630 1.11 matt }
1631 1.1 nonaka cv_broadcast(&hp->intr_cv);
1632 1.1 nonaka }
1633 1.1 nonaka
1634 1.1 nonaka /*
1635 1.1 nonaka * Service SD card interrupts.
1636 1.1 nonaka */
1637 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1638 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
1639 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1640 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1641 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
1642 1.1 nonaka }
1643 1.29 matt mutex_exit(&hp->intr_mtx);
1644 1.1 nonaka }
1645 1.1 nonaka
1646 1.1 nonaka return done;
1647 1.1 nonaka }
1648 1.1 nonaka
1649 1.1 nonaka #ifdef SDHC_DEBUG
1650 1.1 nonaka void
1651 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
1652 1.1 nonaka {
1653 1.1 nonaka
1654 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1655 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
1656 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1657 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1658 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
1659 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1660 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
1661 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1662 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
1663 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1664 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
1665 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1666 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
1667 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1668 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1669 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1670 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1671 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1672 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
1673 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1674 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
1675 1.1 nonaka }
1676 1.1 nonaka #endif
1677