Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.30.2.1
      1  1.30.2.1       tls /*	$NetBSD: sdhc.c,v 1.30.2.1 2012/11/20 03:02:33 tls Exp $	*/
      2       1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3       1.1    nonaka 
      4       1.1    nonaka /*
      5       1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6       1.1    nonaka  *
      7       1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8       1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9       1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10       1.1    nonaka  *
     11       1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12       1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13       1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14       1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15       1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16       1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17       1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18       1.1    nonaka  */
     19       1.1    nonaka 
     20       1.1    nonaka /*
     21       1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22       1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23       1.1    nonaka  */
     24       1.1    nonaka 
     25       1.1    nonaka #include <sys/cdefs.h>
     26  1.30.2.1       tls __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.30.2.1 2012/11/20 03:02:33 tls Exp $");
     27      1.10    nonaka 
     28      1.10    nonaka #ifdef _KERNEL_OPT
     29      1.10    nonaka #include "opt_sdmmc.h"
     30      1.10    nonaka #endif
     31       1.1    nonaka 
     32       1.1    nonaka #include <sys/param.h>
     33       1.1    nonaka #include <sys/device.h>
     34       1.1    nonaka #include <sys/kernel.h>
     35       1.1    nonaka #include <sys/kthread.h>
     36       1.1    nonaka #include <sys/malloc.h>
     37       1.1    nonaka #include <sys/systm.h>
     38       1.1    nonaka #include <sys/mutex.h>
     39       1.1    nonaka #include <sys/condvar.h>
     40       1.1    nonaka 
     41       1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42       1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43       1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44       1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45       1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46       1.1    nonaka 
     47       1.1    nonaka #ifdef SDHC_DEBUG
     48       1.1    nonaka int sdhcdebug = 1;
     49       1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50       1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51       1.1    nonaka #else
     52       1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53       1.1    nonaka #endif
     54       1.1    nonaka 
     55       1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56       1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57       1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58       1.1    nonaka #define SDHC_DMA_TIMEOUT	hz
     59       1.1    nonaka 
     60       1.1    nonaka struct sdhc_host {
     61       1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     62       1.1    nonaka 
     63       1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     64       1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     65       1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     66       1.1    nonaka 
     67       1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     68       1.1    nonaka 
     69       1.1    nonaka 	struct kmutex host_mtx;
     70       1.1    nonaka 
     71       1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72       1.1    nonaka 	int maxblklen;			/* maximum block length */
     73       1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74       1.1    nonaka 
     75       1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76       1.1    nonaka 
     77       1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78       1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79       1.1    nonaka 	struct kmutex intr_mtx;
     80       1.1    nonaka 	struct kcondvar intr_cv;
     81       1.1    nonaka 
     82      1.12    nonaka 	int specver;			/* spec. version */
     83      1.12    nonaka 
     84       1.1    nonaka 	uint32_t flags;			/* flags for this host */
     85       1.1    nonaka #define SHF_USE_DMA		0x0001
     86       1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     87      1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     88       1.1    nonaka };
     89       1.1    nonaka 
     90       1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91      1.17  jakllsch #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     92       1.1    nonaka 
     93      1.11      matt static uint8_t
     94      1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
     95      1.11      matt {
     96      1.12    nonaka 
     97      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     98      1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     99      1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    100      1.11      matt }
    101      1.11      matt 
    102      1.11      matt static uint16_t
    103      1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    104      1.11      matt {
    105      1.12    nonaka 
    106      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    107      1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    108      1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    109      1.11      matt }
    110      1.11      matt 
    111      1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    112      1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    113      1.11      matt #define HREAD4(hp, reg)		\
    114       1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    115      1.11      matt 
    116      1.11      matt 
    117      1.11      matt static void
    118      1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    119      1.11      matt {
    120      1.12    nonaka 
    121      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    122      1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    123      1.11      matt 	} else {
    124      1.11      matt 		const size_t shift = 8 * (o & 3);
    125      1.11      matt 		o &= -4;
    126      1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    127      1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    128      1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    129      1.11      matt 	}
    130      1.11      matt }
    131      1.11      matt 
    132      1.11      matt static void
    133      1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    134      1.11      matt {
    135      1.12    nonaka 
    136      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137      1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    138      1.11      matt 	} else {
    139      1.11      matt 		const size_t shift = 8 * (o & 2);
    140      1.11      matt 		o &= -4;
    141      1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142      1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    143      1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144      1.11      matt 	}
    145      1.11      matt }
    146      1.11      matt 
    147      1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    148      1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    149       1.1    nonaka #define HWRITE4(hp, reg, val)						\
    150       1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    151      1.11      matt 
    152       1.1    nonaka #define HCLR1(hp, reg, bits)						\
    153      1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    154       1.1    nonaka #define HCLR2(hp, reg, bits)						\
    155      1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    156      1.11      matt #define HCLR4(hp, reg, bits)						\
    157      1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    158       1.1    nonaka #define HSET1(hp, reg, bits)						\
    159      1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    160       1.1    nonaka #define HSET2(hp, reg, bits)						\
    161      1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    162      1.11      matt #define HSET4(hp, reg, bits)						\
    163      1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    164       1.1    nonaka 
    165       1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    166       1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    167       1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    168       1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    169       1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    170       1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    171       1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    172       1.1    nonaka static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    173       1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    174       1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    175       1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    176       1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    177       1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    178       1.1    nonaka 		    struct sdmmc_command *);
    179       1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    180       1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    181       1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    182       1.1    nonaka static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    183       1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    184       1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    185       1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    186      1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187      1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188      1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189      1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190      1.11      matt 
    191       1.1    nonaka 
    192       1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    193       1.1    nonaka 	/* host controller reset */
    194       1.1    nonaka 	sdhc_host_reset,
    195       1.1    nonaka 
    196       1.1    nonaka 	/* host controller capabilities */
    197       1.1    nonaka 	sdhc_host_ocr,
    198       1.1    nonaka 	sdhc_host_maxblklen,
    199       1.1    nonaka 
    200       1.1    nonaka 	/* card detection */
    201       1.1    nonaka 	sdhc_card_detect,
    202       1.1    nonaka 
    203       1.1    nonaka 	/* write protect */
    204       1.1    nonaka 	sdhc_write_protect,
    205       1.1    nonaka 
    206       1.1    nonaka 	/* bus power, clock frequency and width */
    207       1.1    nonaka 	sdhc_bus_power,
    208       1.1    nonaka 	sdhc_bus_clock,
    209       1.1    nonaka 	sdhc_bus_width,
    210       1.8  kiyohara 	sdhc_bus_rod,
    211       1.1    nonaka 
    212       1.1    nonaka 	/* command execution */
    213       1.1    nonaka 	sdhc_exec_command,
    214       1.1    nonaka 
    215       1.1    nonaka 	/* card interrupt */
    216       1.1    nonaka 	sdhc_card_enable_intr,
    217       1.1    nonaka 	sdhc_card_intr_ack
    218       1.1    nonaka };
    219       1.1    nonaka 
    220      1.17  jakllsch static int
    221      1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    222      1.17  jakllsch {
    223  1.30.2.1       tls 	const struct sdmmcbus_attach_args * const saa = aux;
    224      1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    225      1.17  jakllsch 
    226      1.17  jakllsch 	if (pnp) {
    227      1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    228      1.17  jakllsch 	}
    229      1.17  jakllsch 	aprint_normal(" slot %d", HDEVINST(hp));
    230      1.17  jakllsch 
    231      1.17  jakllsch 	return UNCONF;
    232      1.17  jakllsch }
    233      1.17  jakllsch 
    234       1.1    nonaka /*
    235       1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    236       1.1    nonaka  * host controller standard register set. (1.3)
    237       1.1    nonaka  */
    238       1.1    nonaka int
    239       1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    240       1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    241       1.1    nonaka {
    242       1.1    nonaka 	struct sdmmcbus_attach_args saa;
    243       1.1    nonaka 	struct sdhc_host *hp;
    244       1.1    nonaka 	uint32_t caps;
    245       1.1    nonaka 	uint16_t sdhcver;
    246       1.1    nonaka 
    247       1.1    nonaka 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
    248      1.12    nonaka 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    249       1.1    nonaka 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    250      1.12    nonaka 	case SDHC_SPEC_VERS_100:
    251      1.12    nonaka 		aprint_normal("1.0");
    252      1.12    nonaka 		break;
    253      1.12    nonaka 
    254      1.12    nonaka 	case SDHC_SPEC_VERS_200:
    255      1.12    nonaka 		aprint_normal("2.0");
    256       1.1    nonaka 		break;
    257       1.1    nonaka 
    258      1.12    nonaka 	case SDHC_SPEC_VERS_300:
    259      1.12    nonaka 		aprint_normal("3.0");
    260       1.9      matt 		break;
    261       1.9      matt 
    262       1.1    nonaka 	default:
    263      1.12    nonaka 		aprint_normal("unknown version(0x%x)",
    264      1.12    nonaka 		    SDHC_SPEC_VERSION(sdhcver));
    265       1.1    nonaka 		break;
    266       1.1    nonaka 	}
    267      1.12    nonaka 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    268       1.1    nonaka 
    269       1.1    nonaka 	/* Allocate one more host structure. */
    270       1.1    nonaka 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    271       1.1    nonaka 	if (hp == NULL) {
    272       1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    273       1.1    nonaka 		    "couldn't alloc memory (sdhc host)\n");
    274       1.1    nonaka 		goto err1;
    275       1.1    nonaka 	}
    276       1.1    nonaka 	sc->sc_host[sc->sc_nhosts++] = hp;
    277       1.1    nonaka 
    278       1.1    nonaka 	/* Fill in the new host structure. */
    279       1.1    nonaka 	hp->sc = sc;
    280       1.1    nonaka 	hp->iot = iot;
    281       1.1    nonaka 	hp->ioh = ioh;
    282       1.1    nonaka 	hp->dmat = sc->sc_dmat;
    283      1.12    nonaka 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    284       1.1    nonaka 
    285       1.1    nonaka 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    286       1.1    nonaka 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    287       1.1    nonaka 	cv_init(&hp->intr_cv, "sdhcintr");
    288       1.1    nonaka 
    289       1.1    nonaka 	/*
    290       1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    291       1.1    nonaka 	 */
    292       1.1    nonaka 	(void)sdhc_host_reset(hp);
    293       1.1    nonaka 
    294       1.1    nonaka 	/* Determine host capabilities. */
    295      1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    296      1.24     skrll 		caps = sc->sc_caps;
    297      1.24     skrll 	} else {
    298      1.24     skrll 		mutex_enter(&hp->host_mtx);
    299      1.24     skrll 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    300      1.24     skrll 		mutex_exit(&hp->host_mtx);
    301      1.24     skrll 	}
    302       1.1    nonaka 
    303       1.1    nonaka 	/* Use DMA if the host system and the controller support it. */
    304      1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    305      1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    306      1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    307       1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    308       1.1    nonaka 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    309       1.1    nonaka 	}
    310       1.1    nonaka 
    311       1.1    nonaka 	/*
    312       1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    313       1.1    nonaka 	 */
    314      1.30      matt 	if (hp->specver == SDHC_SPEC_VERS_300) {
    315      1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    316      1.30      matt 	} else {
    317      1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    318      1.30      matt 	}
    319       1.1    nonaka 	if (hp->clkbase == 0) {
    320       1.9      matt 		if (sc->sc_clkbase == 0) {
    321       1.9      matt 			/* The attachment driver must tell us. */
    322      1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    323      1.12    nonaka 			    "unknown base clock frequency\n");
    324       1.9      matt 			goto err;
    325       1.9      matt 		}
    326       1.9      matt 		hp->clkbase = sc->sc_clkbase;
    327       1.9      matt 	}
    328       1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    329       1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    330       1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    331       1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    332       1.1    nonaka 		    hp->clkbase / 1000);
    333       1.1    nonaka 		goto err;
    334       1.1    nonaka 	}
    335       1.1    nonaka 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    336       1.1    nonaka 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    337       1.1    nonaka 
    338       1.1    nonaka 	/*
    339       1.1    nonaka 	 * XXX Set the data timeout counter value according to
    340       1.1    nonaka 	 * capabilities. (2.2.15)
    341       1.1    nonaka 	 */
    342       1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    343      1.29      matt #if 1
    344      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    345      1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    346      1.11      matt #endif
    347       1.1    nonaka 
    348       1.1    nonaka 	/*
    349       1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    350       1.1    nonaka 	 */
    351      1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    352       1.1    nonaka 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    353      1.11      matt 	}
    354      1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    355       1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    356      1.11      matt 	}
    357      1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    358       1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    359      1.11      matt 	}
    360       1.1    nonaka 
    361       1.1    nonaka 	/*
    362       1.1    nonaka 	 * Determine the maximum block length supported by the host
    363       1.1    nonaka 	 * controller. (2.2.24)
    364       1.1    nonaka 	 */
    365       1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    366       1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    367       1.1    nonaka 		hp->maxblklen = 512;
    368       1.1    nonaka 		break;
    369       1.1    nonaka 
    370       1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    371       1.1    nonaka 		hp->maxblklen = 1024;
    372       1.1    nonaka 		break;
    373       1.1    nonaka 
    374       1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    375       1.1    nonaka 		hp->maxblklen = 2048;
    376       1.1    nonaka 		break;
    377       1.1    nonaka 
    378       1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    379       1.9      matt 		hp->maxblklen = 4096;
    380       1.9      matt 		break;
    381       1.9      matt 
    382       1.1    nonaka 	default:
    383       1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    384       1.1    nonaka 		goto err;
    385       1.1    nonaka 	}
    386       1.1    nonaka 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    387       1.1    nonaka 	    device_xname(sc->sc_dev), hp->maxblklen,
    388       1.1    nonaka 	    hp->maxblklen > 1 ? "s" : ""));
    389       1.1    nonaka 
    390       1.1    nonaka 	/*
    391       1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    392       1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    393       1.1    nonaka 	 */
    394       1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    395       1.1    nonaka 	saa.saa_busname = "sdmmc";
    396       1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    397       1.1    nonaka 	saa.saa_sch = hp;
    398       1.1    nonaka 	saa.saa_dmat = hp->dmat;
    399       1.1    nonaka 	saa.saa_clkmin = hp->clkbase / 256;
    400       1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    401      1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    402      1.11      matt 		saa.saa_clkmin /= 2046;
    403      1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    404       1.9      matt 		saa.saa_clkmin /= 16;
    405       1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    406      1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    407      1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    408      1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    409      1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    410      1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    411      1.28      matt 		saa.saa_caps |= SMC_CAPS_DMA;
    412      1.28      matt 		if (hp->specver == SDHC_SPEC_VERS_100) {
    413      1.28      matt 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    414      1.28      matt 		}
    415      1.26      matt 	}
    416  1.30.2.1       tls 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    417  1.30.2.1       tls 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    418      1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    419       1.1    nonaka 
    420       1.1    nonaka 	return 0;
    421       1.1    nonaka 
    422       1.1    nonaka err:
    423       1.1    nonaka 	cv_destroy(&hp->intr_cv);
    424       1.1    nonaka 	mutex_destroy(&hp->intr_mtx);
    425       1.1    nonaka 	mutex_destroy(&hp->host_mtx);
    426       1.1    nonaka 	free(hp, M_DEVBUF);
    427       1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    428       1.1    nonaka err1:
    429       1.1    nonaka 	return 1;
    430       1.1    nonaka }
    431       1.1    nonaka 
    432       1.7    nonaka int
    433       1.7    nonaka sdhc_detach(device_t dev, int flags)
    434       1.7    nonaka {
    435       1.7    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    436       1.7    nonaka 	struct sdhc_softc *sc = hp->sc;
    437       1.7    nonaka 	int rv = 0;
    438       1.7    nonaka 
    439       1.7    nonaka 	if (hp->sdmmc)
    440       1.7    nonaka 		rv = config_detach(hp->sdmmc, flags);
    441       1.7    nonaka 
    442       1.7    nonaka 	cv_destroy(&hp->intr_cv);
    443       1.7    nonaka 	mutex_destroy(&hp->intr_mtx);
    444       1.7    nonaka 	mutex_destroy(&hp->host_mtx);
    445       1.7    nonaka 	free(hp, M_DEVBUF);
    446       1.7    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    447       1.7    nonaka 
    448       1.7    nonaka 	return rv;
    449       1.7    nonaka }
    450       1.7    nonaka 
    451       1.1    nonaka bool
    452       1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    453       1.1    nonaka {
    454       1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    455       1.1    nonaka 	struct sdhc_host *hp;
    456      1.12    nonaka 	size_t i;
    457       1.1    nonaka 
    458       1.1    nonaka 	/* XXX poll for command completion or suspend command
    459       1.1    nonaka 	 * in progress */
    460       1.1    nonaka 
    461       1.1    nonaka 	/* Save the host controller state. */
    462      1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    463       1.1    nonaka 		hp = sc->sc_host[n];
    464      1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    465      1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    466      1.11      matt 				uint32_t v = HREAD4(hp, i);
    467      1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    468      1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    469      1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    470      1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    471      1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    472      1.13    bouyer 				}
    473      1.11      matt 			}
    474      1.11      matt 		} else {
    475      1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    476      1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    477      1.11      matt 			}
    478      1.11      matt 		}
    479       1.1    nonaka 	}
    480       1.1    nonaka 	return true;
    481       1.1    nonaka }
    482       1.1    nonaka 
    483       1.1    nonaka bool
    484       1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    485       1.1    nonaka {
    486       1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    487       1.1    nonaka 	struct sdhc_host *hp;
    488      1.12    nonaka 	size_t i;
    489       1.1    nonaka 
    490       1.1    nonaka 	/* Restore the host controller state. */
    491      1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    492       1.1    nonaka 		hp = sc->sc_host[n];
    493       1.1    nonaka 		(void)sdhc_host_reset(hp);
    494      1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    495      1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    496      1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    497      1.13    bouyer 					HWRITE4(hp, i,
    498      1.13    bouyer 					    (hp->regs[i + 0] << 0)
    499      1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    500      1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    501      1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    502      1.13    bouyer 				} else {
    503      1.13    bouyer 					HWRITE4(hp, i,
    504      1.13    bouyer 					    (hp->regs[i + 0] << 0)
    505      1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    506      1.13    bouyer 				}
    507      1.11      matt 			}
    508      1.11      matt 		} else {
    509      1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    510      1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    511      1.11      matt 			}
    512      1.11      matt 		}
    513       1.1    nonaka 	}
    514       1.1    nonaka 	return true;
    515       1.1    nonaka }
    516       1.1    nonaka 
    517       1.1    nonaka bool
    518       1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    519       1.1    nonaka {
    520       1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    521       1.1    nonaka 	struct sdhc_host *hp;
    522       1.1    nonaka 
    523       1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    524      1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    525       1.1    nonaka 		hp = sc->sc_host[i];
    526       1.1    nonaka 		(void)sdhc_host_reset(hp);
    527       1.1    nonaka 	}
    528       1.1    nonaka 	return true;
    529       1.1    nonaka }
    530       1.1    nonaka 
    531       1.1    nonaka /*
    532       1.1    nonaka  * Reset the host controller.  Called during initialization, when
    533       1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    534       1.1    nonaka  */
    535       1.1    nonaka static int
    536       1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    537       1.1    nonaka {
    538       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    539      1.11      matt 	uint32_t sdhcimask;
    540       1.1    nonaka 	int error;
    541       1.1    nonaka 
    542       1.1    nonaka 	/* Don't lock. */
    543       1.1    nonaka 
    544       1.1    nonaka 	/* Disable all interrupts. */
    545      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    546      1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    547      1.11      matt 	} else {
    548      1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    549      1.11      matt 	}
    550       1.1    nonaka 
    551       1.1    nonaka 	/*
    552       1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    553       1.1    nonaka 	 * the controller to clear the reset bit.
    554       1.1    nonaka 	 */
    555       1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    556       1.1    nonaka 	if (error)
    557       1.1    nonaka 		goto out;
    558       1.1    nonaka 
    559       1.1    nonaka 	/* Set data timeout counter value to max for now. */
    560       1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    561      1.29      matt #if 1
    562      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    563      1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    564      1.11      matt #endif
    565       1.1    nonaka 
    566       1.1    nonaka 	/* Enable interrupts. */
    567      1.29      matt 	mutex_enter(&hp->intr_mtx);
    568       1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    569       1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    570       1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    571       1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    572      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    573      1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    574      1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    575      1.11      matt 		sdhcimask ^=
    576      1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    577      1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    578      1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    579      1.11      matt 	} else {
    580      1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    581      1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    582      1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    583      1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    584      1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    585      1.11      matt 	}
    586      1.29      matt 	mutex_exit(&hp->intr_mtx);
    587       1.1    nonaka 
    588       1.1    nonaka out:
    589       1.1    nonaka 	return error;
    590       1.1    nonaka }
    591       1.1    nonaka 
    592       1.1    nonaka static int
    593       1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    594       1.1    nonaka {
    595       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    596       1.1    nonaka 	int error;
    597       1.1    nonaka 
    598       1.1    nonaka 	mutex_enter(&hp->host_mtx);
    599       1.1    nonaka 	error = sdhc_host_reset1(sch);
    600       1.1    nonaka 	mutex_exit(&hp->host_mtx);
    601       1.1    nonaka 
    602       1.1    nonaka 	return error;
    603       1.1    nonaka }
    604       1.1    nonaka 
    605       1.1    nonaka static uint32_t
    606       1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    607       1.1    nonaka {
    608       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    609       1.1    nonaka 
    610       1.1    nonaka 	return hp->ocr;
    611       1.1    nonaka }
    612       1.1    nonaka 
    613       1.1    nonaka static int
    614       1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    615       1.1    nonaka {
    616       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    617       1.1    nonaka 
    618       1.1    nonaka 	return hp->maxblklen;
    619       1.1    nonaka }
    620       1.1    nonaka 
    621       1.1    nonaka /*
    622       1.1    nonaka  * Return non-zero if the card is currently inserted.
    623       1.1    nonaka  */
    624       1.1    nonaka static int
    625       1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    626       1.1    nonaka {
    627       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    628       1.1    nonaka 	int r;
    629       1.1    nonaka 
    630  1.30.2.1       tls 	if (hp->sc->sc_vendor_card_detect)
    631  1.30.2.1       tls 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    632  1.30.2.1       tls 
    633       1.1    nonaka 	mutex_enter(&hp->host_mtx);
    634       1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    635       1.1    nonaka 	mutex_exit(&hp->host_mtx);
    636       1.1    nonaka 
    637      1.11      matt 	return r ? 1 : 0;
    638       1.1    nonaka }
    639       1.1    nonaka 
    640       1.1    nonaka /*
    641       1.1    nonaka  * Return non-zero if the card is currently write-protected.
    642       1.1    nonaka  */
    643       1.1    nonaka static int
    644       1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    645       1.1    nonaka {
    646       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    647       1.1    nonaka 	int r;
    648       1.1    nonaka 
    649  1.30.2.1       tls 	if (hp->sc->sc_vendor_write_protect)
    650  1.30.2.1       tls 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    651  1.30.2.1       tls 
    652       1.1    nonaka 	mutex_enter(&hp->host_mtx);
    653       1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    654       1.1    nonaka 	mutex_exit(&hp->host_mtx);
    655       1.1    nonaka 
    656      1.12    nonaka 	return r ? 0 : 1;
    657       1.1    nonaka }
    658       1.1    nonaka 
    659       1.1    nonaka /*
    660       1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    661       1.1    nonaka  * Return zero on success.
    662       1.1    nonaka  */
    663       1.1    nonaka static int
    664       1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    665       1.1    nonaka {
    666       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    667       1.1    nonaka 	uint8_t vdd;
    668       1.1    nonaka 	int error = 0;
    669  1.30.2.1       tls 	const uint32_t pcmask =
    670  1.30.2.1       tls 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    671       1.1    nonaka 
    672       1.1    nonaka 	mutex_enter(&hp->host_mtx);
    673       1.1    nonaka 
    674       1.1    nonaka 	/*
    675       1.1    nonaka 	 * Disable bus power before voltage change.
    676       1.1    nonaka 	 */
    677      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    678      1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    679       1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    680       1.1    nonaka 
    681       1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    682       1.1    nonaka 	if (ocr == 0) {
    683       1.1    nonaka 		(void)sdhc_host_reset1(hp);
    684       1.1    nonaka 		goto out;
    685       1.1    nonaka 	}
    686       1.1    nonaka 
    687       1.1    nonaka 	/*
    688       1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    689       1.1    nonaka 	 */
    690       1.1    nonaka 	ocr &= hp->ocr;
    691      1.11      matt 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    692       1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    693      1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    694       1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    695      1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    696       1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    697      1.11      matt 	} else {
    698       1.1    nonaka 		/* Unsupported voltage level requested. */
    699       1.1    nonaka 		error = EINVAL;
    700       1.1    nonaka 		goto out;
    701       1.1    nonaka 	}
    702       1.1    nonaka 
    703      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    704      1.11      matt 		/*
    705      1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    706      1.11      matt 		 * voltage ramp until power rises.
    707      1.11      matt 		 */
    708      1.11      matt 		HWRITE1(hp, SDHC_POWER_CTL,
    709  1.30.2.1       tls 		    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    710  1.30.2.1       tls 		sdmmc_delay(1);
    711  1.30.2.1       tls 		HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
    712  1.30.2.1       tls 		sdmmc_delay(1);
    713  1.30.2.1       tls 		HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    714      1.11      matt 		sdmmc_delay(10000);
    715       1.1    nonaka 
    716      1.11      matt 		/*
    717      1.11      matt 		 * The host system may not power the bus due to battery low,
    718      1.11      matt 		 * etc.  In that case, the host controller should clear the
    719      1.11      matt 		 * bus power bit.
    720      1.11      matt 		 */
    721      1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    722      1.11      matt 			error = ENXIO;
    723      1.11      matt 			goto out;
    724      1.11      matt 		}
    725       1.1    nonaka 	}
    726       1.1    nonaka 
    727       1.1    nonaka out:
    728       1.1    nonaka 	mutex_exit(&hp->host_mtx);
    729       1.1    nonaka 
    730       1.1    nonaka 	return error;
    731       1.1    nonaka }
    732       1.1    nonaka 
    733       1.1    nonaka /*
    734       1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    735       1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    736       1.1    nonaka  */
    737      1.11      matt static bool
    738      1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    739       1.1    nonaka {
    740      1.11      matt 	u_int div;
    741       1.1    nonaka 
    742      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    743      1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    744      1.11      matt 			if ((hp->clkbase / div) <= freq) {
    745      1.11      matt 				*divp = SDHC_SDCLK_CGM
    746      1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    747      1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    748      1.18  jakllsch 				//freq = hp->clkbase / div;
    749      1.11      matt 				return true;
    750      1.11      matt 			}
    751      1.11      matt 		}
    752      1.11      matt 		/* No divisor found. */
    753      1.11      matt 		return false;
    754      1.11      matt 	}
    755      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    756      1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    757      1.11      matt 		u_int roundup = dvs & 1;
    758      1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    759      1.11      matt 			if (dvs + roundup <= 16) {
    760      1.11      matt 				dvs += roundup - 1;
    761      1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    762      1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    763      1.11      matt 				DPRINTF(2,
    764      1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    765      1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    766      1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    767      1.11      matt 				return true;
    768       1.9      matt 			}
    769      1.11      matt 			/*
    770      1.11      matt 			 * If we drop bits, we need to round up the divisor.
    771      1.11      matt 			 */
    772      1.11      matt 			roundup |= dvs & 1;
    773       1.9      matt 		}
    774      1.18  jakllsch 		/* No divisor found. */
    775      1.18  jakllsch 		return false;
    776       1.9      matt 	} else {
    777  1.30.2.1       tls 		if (hp->sc->sc_clkmsk != 0)
    778  1.30.2.1       tls 			*divp = (hp->clkbase / freq) <<
    779  1.30.2.1       tls 			    (ffs(hp->sc->sc_clkmsk) - 1);
    780  1.30.2.1       tls 		else
    781  1.30.2.1       tls 			*divp = (hp->clkbase / freq) << SDHC_SDCLK_DIV_SHIFT;
    782  1.30.2.1       tls 		return true;
    783       1.9      matt 	}
    784       1.1    nonaka 	/* No divisor found. */
    785      1.11      matt 	return false;
    786       1.1    nonaka }
    787       1.1    nonaka 
    788       1.1    nonaka /*
    789       1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
    790       1.1    nonaka  * Return zero on success.
    791       1.1    nonaka  */
    792       1.1    nonaka static int
    793       1.1    nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    794       1.1    nonaka {
    795       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    796      1.11      matt 	u_int div;
    797      1.11      matt 	u_int timo;
    798  1.30.2.1       tls 	int16_t reg;
    799       1.1    nonaka 	int error = 0;
    800       1.2    cegger #ifdef DIAGNOSTIC
    801      1.12    nonaka 	bool present;
    802       1.1    nonaka 
    803       1.1    nonaka 	mutex_enter(&hp->host_mtx);
    804      1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    805       1.2    cegger 	mutex_exit(&hp->host_mtx);
    806       1.1    nonaka 
    807       1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
    808      1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
    809      1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
    810      1.26      matt 		    "%s: command in progress\n", __func__);
    811      1.12    nonaka 	}
    812       1.1    nonaka #endif
    813       1.1    nonaka 
    814       1.2    cegger 	mutex_enter(&hp->host_mtx);
    815       1.2    cegger 
    816       1.1    nonaka 	/*
    817       1.1    nonaka 	 * Stop SD clock before changing the frequency.
    818       1.1    nonaka 	 */
    819      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    820      1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    821      1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
    822      1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    823      1.11      matt 			goto out;
    824      1.11      matt 		}
    825      1.11      matt 	} else {
    826  1.30.2.1       tls 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    827      1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
    828      1.11      matt 			goto out;
    829      1.11      matt 	}
    830       1.1    nonaka 
    831       1.1    nonaka 	/*
    832       1.1    nonaka 	 * Set the minimum base clock frequency divisor.
    833       1.1    nonaka 	 */
    834      1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    835       1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
    836       1.1    nonaka 		error = EINVAL;
    837       1.1    nonaka 		goto out;
    838       1.1    nonaka 	}
    839      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    840      1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
    841      1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
    842      1.11      matt 	} else {
    843  1.30.2.1       tls 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
    844  1.30.2.1       tls 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
    845  1.30.2.1       tls 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
    846      1.11      matt 	}
    847       1.1    nonaka 
    848       1.1    nonaka 	/*
    849       1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
    850       1.1    nonaka 	 */
    851      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    852      1.11      matt 		sdmmc_delay(10000);
    853      1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
    854      1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    855      1.11      matt 	} else {
    856      1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    857      1.11      matt 		for (timo = 1000; timo > 0; timo--) {
    858      1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    859      1.12    nonaka 			    SDHC_INTCLK_STABLE))
    860      1.11      matt 				break;
    861      1.11      matt 			sdmmc_delay(10);
    862      1.11      matt 		}
    863      1.11      matt 		if (timo == 0) {
    864      1.11      matt 			error = ETIMEDOUT;
    865      1.11      matt 			goto out;
    866      1.11      matt 		}
    867       1.1    nonaka 	}
    868       1.1    nonaka 
    869      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    870      1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    871      1.11      matt 		/*
    872      1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
    873      1.11      matt 		 * So delay for that time + slop and then
    874      1.11      matt 		 * check a few times for completion.
    875      1.11      matt 		 */
    876      1.11      matt 		sdmmc_delay(210);
    877      1.11      matt 		for (timo = 10; timo > 0; timo--) {
    878      1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    879      1.11      matt 			    SDHC_INIT_ACTIVE))
    880      1.11      matt 				break;
    881      1.11      matt 			sdmmc_delay(10);
    882      1.11      matt 		}
    883      1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    884      1.12    nonaka 
    885      1.11      matt 		/*
    886      1.11      matt 		 * Enable SD clock.
    887      1.11      matt 		 */
    888      1.11      matt 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    889      1.11      matt 	} else {
    890      1.11      matt 		/*
    891      1.11      matt 		 * Enable SD clock.
    892      1.11      matt 		 */
    893      1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    894       1.1    nonaka 
    895      1.11      matt 		if (freq > 25000)
    896      1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    897      1.11      matt 		else
    898      1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    899      1.11      matt 	}
    900       1.8  kiyohara 
    901       1.1    nonaka out:
    902       1.1    nonaka 	mutex_exit(&hp->host_mtx);
    903       1.1    nonaka 
    904       1.1    nonaka 	return error;
    905       1.1    nonaka }
    906       1.1    nonaka 
    907       1.1    nonaka static int
    908       1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    909       1.1    nonaka {
    910       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    911       1.1    nonaka 	int reg;
    912       1.1    nonaka 
    913       1.1    nonaka 	switch (width) {
    914       1.1    nonaka 	case 1:
    915       1.1    nonaka 	case 4:
    916       1.1    nonaka 		break;
    917       1.1    nonaka 
    918      1.11      matt 	case 8:
    919      1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    920      1.11      matt 			break;
    921      1.11      matt 		/* FALLTHROUGH */
    922       1.1    nonaka 	default:
    923       1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    924       1.1    nonaka 		    HDEVNAME(hp), width));
    925       1.1    nonaka 		return 1;
    926       1.1    nonaka 	}
    927       1.1    nonaka 
    928       1.1    nonaka 	mutex_enter(&hp->host_mtx);
    929       1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
    930      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    931      1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    932      1.11      matt 		if (width == 4)
    933      1.11      matt 			reg |= SDHC_4BIT_MODE;
    934      1.11      matt 		else if (width == 8)
    935      1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
    936      1.11      matt 	} else {
    937      1.11      matt 		reg &= ~SDHC_4BIT_MODE;
    938      1.11      matt 		if (width == 4)
    939      1.11      matt 			reg |= SDHC_4BIT_MODE;
    940      1.11      matt 	}
    941       1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    942       1.1    nonaka 	mutex_exit(&hp->host_mtx);
    943       1.1    nonaka 
    944       1.1    nonaka 	return 0;
    945       1.1    nonaka }
    946       1.1    nonaka 
    947       1.8  kiyohara static int
    948       1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    949       1.8  kiyohara {
    950  1.30.2.1       tls 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    951  1.30.2.1       tls 
    952  1.30.2.1       tls 	if (hp->sc->sc_vendor_rod)
    953  1.30.2.1       tls 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
    954       1.8  kiyohara 
    955       1.8  kiyohara 	return 0;
    956       1.8  kiyohara }
    957       1.8  kiyohara 
    958       1.1    nonaka static void
    959       1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    960       1.1    nonaka {
    961       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    962       1.1    nonaka 
    963      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    964      1.29      matt 		mutex_enter(&hp->intr_mtx);
    965      1.11      matt 		if (enable) {
    966      1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    967      1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    968      1.11      matt 		} else {
    969      1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    970      1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    971      1.11      matt 		}
    972      1.29      matt 		mutex_exit(&hp->intr_mtx);
    973       1.1    nonaka 	}
    974       1.1    nonaka }
    975       1.1    nonaka 
    976       1.1    nonaka static void
    977       1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    978       1.1    nonaka {
    979       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    980       1.1    nonaka 
    981      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    982      1.29      matt 		mutex_enter(&hp->intr_mtx);
    983      1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    984      1.29      matt 		mutex_exit(&hp->intr_mtx);
    985      1.11      matt 	}
    986       1.1    nonaka }
    987       1.1    nonaka 
    988       1.1    nonaka static int
    989       1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    990       1.1    nonaka {
    991       1.1    nonaka 	uint32_t state;
    992       1.1    nonaka 	int timeout;
    993       1.1    nonaka 
    994       1.1    nonaka 	for (timeout = 10; timeout > 0; timeout--) {
    995       1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
    996       1.1    nonaka 			return 0;
    997       1.1    nonaka 		sdmmc_delay(10000);
    998       1.1    nonaka 	}
    999       1.1    nonaka 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
   1000       1.1    nonaka 	    value, state));
   1001       1.1    nonaka 	return ETIMEDOUT;
   1002       1.1    nonaka }
   1003       1.1    nonaka 
   1004       1.1    nonaka static void
   1005       1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1006       1.1    nonaka {
   1007       1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1008       1.1    nonaka 	int error;
   1009       1.1    nonaka 
   1010      1.26      matt 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1011      1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1012      1.29      matt 		mutex_enter(&hp->intr_mtx);
   1013      1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1014      1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1015      1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1016      1.11      matt 		} else {
   1017      1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1018      1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1019      1.11      matt 		}
   1020      1.29      matt 		mutex_exit(&hp->intr_mtx);
   1021      1.11      matt 	}
   1022      1.11      matt 
   1023       1.1    nonaka 	/*
   1024       1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1025       1.1    nonaka 	 */
   1026       1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1027       1.1    nonaka 	if (error) {
   1028       1.1    nonaka 		cmd->c_error = error;
   1029       1.1    nonaka 		goto out;
   1030       1.1    nonaka 	}
   1031       1.1    nonaka 
   1032       1.1    nonaka 	/*
   1033       1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1034       1.1    nonaka 	 * is marked done for any other reason.
   1035       1.1    nonaka 	 */
   1036       1.1    nonaka 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1037       1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1038       1.1    nonaka 		goto out;
   1039       1.1    nonaka 	}
   1040       1.1    nonaka 
   1041       1.1    nonaka 	/*
   1042       1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1043       1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1044       1.1    nonaka 	 * driver (without padding).
   1045       1.1    nonaka 	 */
   1046       1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1047       1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1048      1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1049      1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1050      1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1051      1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1052      1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1053  1.30.2.1       tls 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1054  1.30.2.1       tls 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1055  1.30.2.1       tls 				    (cmd->c_resp[1] << 24);
   1056  1.30.2.1       tls 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1057  1.30.2.1       tls 				    (cmd->c_resp[2] << 24);
   1058  1.30.2.1       tls 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1059  1.30.2.1       tls 				    (cmd->c_resp[3] << 24);
   1060  1.30.2.1       tls 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1061  1.30.2.1       tls 			}
   1062       1.1    nonaka 		}
   1063       1.1    nonaka 	}
   1064       1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1065      1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1066       1.1    nonaka 
   1067       1.1    nonaka 	/*
   1068       1.1    nonaka 	 * If the command has data to transfer in any direction,
   1069       1.1    nonaka 	 * execute the transfer now.
   1070       1.1    nonaka 	 */
   1071       1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1072       1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1073       1.1    nonaka 
   1074       1.1    nonaka out:
   1075      1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1076      1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1077      1.11      matt 		mutex_enter(&hp->host_mtx);
   1078      1.11      matt 		/* Turn off the LED. */
   1079      1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1080      1.11      matt 		mutex_exit(&hp->host_mtx);
   1081      1.11      matt 	}
   1082       1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1083       1.1    nonaka 
   1084       1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1085       1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1086       1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1087       1.1    nonaka }
   1088       1.1    nonaka 
   1089       1.1    nonaka static int
   1090       1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1091       1.1    nonaka {
   1092      1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1093       1.1    nonaka 	uint16_t blksize = 0;
   1094       1.1    nonaka 	uint16_t blkcount = 0;
   1095       1.1    nonaka 	uint16_t mode;
   1096       1.1    nonaka 	uint16_t command;
   1097       1.1    nonaka 	int error;
   1098       1.1    nonaka 
   1099      1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1100       1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1101      1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1102       1.1    nonaka 
   1103       1.1    nonaka 	/*
   1104       1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1105       1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1106       1.1    nonaka 	 */
   1107       1.1    nonaka 
   1108       1.1    nonaka 	/* Fragment the data into proper blocks. */
   1109       1.1    nonaka 	if (cmd->c_datalen > 0) {
   1110       1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1111       1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1112       1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1113       1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1114      1.11      matt 			aprint_error_dev(sc->sc_dev,
   1115       1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1116       1.1    nonaka 			return EINVAL;
   1117       1.1    nonaka 		}
   1118       1.1    nonaka 	}
   1119       1.1    nonaka 
   1120       1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1121       1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1122      1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1123       1.1    nonaka 		return EINVAL;
   1124       1.1    nonaka 	}
   1125       1.1    nonaka 
   1126       1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1127      1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1128       1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1129       1.1    nonaka 		mode |= SDHC_READ_MODE;
   1130      1.15  jakllsch 	if (blkcount > 1) {
   1131      1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1132      1.15  jakllsch 		/* XXX only for memory commands? */
   1133      1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1134       1.1    nonaka 	}
   1135       1.7    nonaka 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1136      1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1137       1.7    nonaka 	}
   1138       1.1    nonaka 
   1139       1.1    nonaka 	/*
   1140       1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1141       1.1    nonaka 	 */
   1142      1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1143       1.1    nonaka 
   1144       1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1145       1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1146       1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1147       1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1148       1.1    nonaka 	if (cmd->c_data != NULL)
   1149       1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1150       1.1    nonaka 
   1151       1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1152       1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1153       1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1154       1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1155       1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1156       1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1157       1.1    nonaka 	else
   1158       1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1159       1.1    nonaka 
   1160       1.1    nonaka 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1161       1.1    nonaka 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1162       1.1    nonaka 	if (error)
   1163       1.1    nonaka 		return error;
   1164       1.1    nonaka 
   1165       1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1166       1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1167       1.1    nonaka 
   1168      1.19  jakllsch 	blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1169      1.19  jakllsch 	    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1170      1.19  jakllsch 
   1171       1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1172       1.1    nonaka 
   1173      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1174      1.11      matt 		/* Alert the user not to remove the card. */
   1175      1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1176      1.11      matt 	}
   1177       1.1    nonaka 
   1178       1.7    nonaka 	/* Set DMA start address. */
   1179       1.7    nonaka 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1180       1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1181       1.7    nonaka 
   1182       1.1    nonaka 	/*
   1183       1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1184       1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1185       1.1    nonaka 	 */
   1186      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1187      1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1188      1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1189      1.11      matt 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1190      1.11      matt 	} else {
   1191      1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1192      1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1193      1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1194      1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1195      1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1196      1.11      matt 	}
   1197       1.1    nonaka 
   1198       1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1199       1.1    nonaka 
   1200       1.1    nonaka 	return 0;
   1201       1.1    nonaka }
   1202       1.1    nonaka 
   1203       1.1    nonaka static void
   1204       1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1205       1.1    nonaka {
   1206       1.1    nonaka 	int error;
   1207       1.1    nonaka 
   1208       1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1209       1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1210       1.1    nonaka 
   1211       1.1    nonaka #ifdef SDHC_DEBUG
   1212       1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1213       1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1214       1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1215       1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1216       1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1217       1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1218       1.1    nonaka 	}
   1219       1.1    nonaka #endif
   1220       1.1    nonaka 
   1221       1.7    nonaka 	if (cmd->c_dmamap != NULL)
   1222       1.7    nonaka 		error = sdhc_transfer_data_dma(hp, cmd);
   1223       1.7    nonaka 	else
   1224       1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1225       1.1    nonaka 	if (error)
   1226       1.1    nonaka 		cmd->c_error = error;
   1227       1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1228       1.1    nonaka 
   1229       1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1230       1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1231       1.1    nonaka }
   1232       1.1    nonaka 
   1233       1.1    nonaka static int
   1234       1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1235       1.7    nonaka {
   1236      1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1237      1.19  jakllsch 	bus_addr_t posaddr;
   1238      1.19  jakllsch 	bus_addr_t segaddr;
   1239      1.19  jakllsch 	bus_size_t seglen;
   1240      1.19  jakllsch 	u_int seg = 0;
   1241       1.7    nonaka 	int error = 0;
   1242      1.19  jakllsch 	int status;
   1243       1.7    nonaka 
   1244      1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1245      1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1246      1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1247      1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1248      1.11      matt 
   1249       1.7    nonaka 	for (;;) {
   1250      1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1251       1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1252      1.19  jakllsch 		    SDHC_DMA_TIMEOUT);
   1253      1.19  jakllsch 
   1254      1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1255      1.19  jakllsch 			break;
   1256      1.19  jakllsch 		}
   1257      1.19  jakllsch 		if (!status) {
   1258       1.7    nonaka 			error = ETIMEDOUT;
   1259       1.7    nonaka 			break;
   1260       1.7    nonaka 		}
   1261      1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1262      1.19  jakllsch 			continue;
   1263      1.19  jakllsch 		}
   1264      1.19  jakllsch 
   1265      1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1266       1.7    nonaka 
   1267      1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1268      1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1269      1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1270      1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1271      1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1272       1.7    nonaka 
   1273      1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1274       1.7    nonaka 			break;
   1275      1.19  jakllsch 		}
   1276      1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1277      1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1278      1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1279      1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1280      1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1281      1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1282      1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1283       1.7    nonaka 	}
   1284       1.7    nonaka 
   1285       1.7    nonaka 	return error;
   1286       1.7    nonaka }
   1287       1.7    nonaka 
   1288       1.7    nonaka static int
   1289       1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1290       1.1    nonaka {
   1291       1.1    nonaka 	uint8_t *data = cmd->c_data;
   1292      1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1293      1.11      matt 	u_int len, datalen;
   1294      1.11      matt 	u_int imask;
   1295      1.11      matt 	u_int pmask;
   1296       1.1    nonaka 	int error = 0;
   1297       1.1    nonaka 
   1298      1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1299      1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1300      1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1301      1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1302      1.11      matt 			pio_func = esdhc_read_data_pio;
   1303      1.11      matt 		} else {
   1304      1.11      matt 			pio_func = sdhc_read_data_pio;
   1305      1.11      matt 		}
   1306      1.11      matt 	} else {
   1307      1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1308      1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1309      1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1310      1.11      matt 			pio_func = esdhc_write_data_pio;
   1311      1.11      matt 		} else {
   1312      1.11      matt 			pio_func = sdhc_write_data_pio;
   1313      1.11      matt 		}
   1314      1.11      matt 	}
   1315       1.1    nonaka 	datalen = cmd->c_datalen;
   1316       1.1    nonaka 
   1317      1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1318      1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1319      1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1320      1.11      matt 
   1321       1.1    nonaka 	while (datalen > 0) {
   1322      1.11      matt 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1323      1.29      matt 			mutex_enter(&hp->intr_mtx);
   1324      1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1325      1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1326      1.11      matt 			} else {
   1327      1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1328      1.11      matt 			}
   1329      1.29      matt 			mutex_exit(&hp->intr_mtx);
   1330      1.11      matt 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1331      1.11      matt 				error = ETIMEDOUT;
   1332      1.11      matt 				break;
   1333      1.11      matt 			}
   1334      1.11      matt 
   1335      1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1336      1.11      matt 			if (error)
   1337      1.11      matt 				break;
   1338       1.1    nonaka 		}
   1339       1.1    nonaka 
   1340       1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1341      1.11      matt 		(*pio_func)(hp, data, len);
   1342      1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1343      1.11      matt 		    HDEVNAME(hp), len, data));
   1344       1.1    nonaka 
   1345       1.1    nonaka 		data += len;
   1346       1.1    nonaka 		datalen -= len;
   1347       1.1    nonaka 	}
   1348       1.1    nonaka 
   1349       1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1350       1.1    nonaka 	    SDHC_TRANSFER_TIMEOUT))
   1351       1.1    nonaka 		error = ETIMEDOUT;
   1352       1.1    nonaka 
   1353       1.1    nonaka 	return error;
   1354       1.1    nonaka }
   1355       1.1    nonaka 
   1356       1.1    nonaka static void
   1357      1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1358       1.1    nonaka {
   1359       1.1    nonaka 
   1360       1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1361       1.1    nonaka 		while (datalen > 3) {
   1362      1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1363       1.1    nonaka 			data += 4;
   1364       1.1    nonaka 			datalen -= 4;
   1365       1.1    nonaka 		}
   1366       1.1    nonaka 		if (datalen > 1) {
   1367      1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1368       1.1    nonaka 			data += 2;
   1369       1.1    nonaka 			datalen -= 2;
   1370       1.1    nonaka 		}
   1371       1.1    nonaka 		if (datalen > 0) {
   1372       1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1373       1.1    nonaka 			data += 1;
   1374       1.1    nonaka 			datalen -= 1;
   1375       1.1    nonaka 		}
   1376       1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1377       1.1    nonaka 		while (datalen > 1) {
   1378      1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1379       1.1    nonaka 			data += 2;
   1380       1.1    nonaka 			datalen -= 2;
   1381       1.1    nonaka 		}
   1382       1.1    nonaka 		if (datalen > 0) {
   1383       1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1384       1.1    nonaka 			data += 1;
   1385       1.1    nonaka 			datalen -= 1;
   1386       1.1    nonaka 		}
   1387       1.1    nonaka 	} else {
   1388       1.1    nonaka 		while (datalen > 0) {
   1389       1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1390       1.1    nonaka 			data += 1;
   1391       1.1    nonaka 			datalen -= 1;
   1392       1.1    nonaka 		}
   1393       1.1    nonaka 	}
   1394       1.1    nonaka }
   1395       1.1    nonaka 
   1396       1.1    nonaka static void
   1397      1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1398       1.1    nonaka {
   1399       1.1    nonaka 
   1400       1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1401       1.1    nonaka 		while (datalen > 3) {
   1402      1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1403       1.1    nonaka 			data += 4;
   1404       1.1    nonaka 			datalen -= 4;
   1405       1.1    nonaka 		}
   1406       1.1    nonaka 		if (datalen > 1) {
   1407      1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1408       1.1    nonaka 			data += 2;
   1409       1.1    nonaka 			datalen -= 2;
   1410       1.1    nonaka 		}
   1411       1.1    nonaka 		if (datalen > 0) {
   1412       1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1413       1.1    nonaka 			data += 1;
   1414       1.1    nonaka 			datalen -= 1;
   1415       1.1    nonaka 		}
   1416       1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1417       1.1    nonaka 		while (datalen > 1) {
   1418      1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1419       1.1    nonaka 			data += 2;
   1420       1.1    nonaka 			datalen -= 2;
   1421       1.1    nonaka 		}
   1422       1.1    nonaka 		if (datalen > 0) {
   1423       1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1424       1.1    nonaka 			data += 1;
   1425       1.1    nonaka 			datalen -= 1;
   1426       1.1    nonaka 		}
   1427       1.1    nonaka 	} else {
   1428       1.1    nonaka 		while (datalen > 0) {
   1429       1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1430       1.1    nonaka 			data += 1;
   1431       1.1    nonaka 			datalen -= 1;
   1432       1.1    nonaka 		}
   1433       1.1    nonaka 	}
   1434       1.1    nonaka }
   1435       1.1    nonaka 
   1436      1.11      matt static void
   1437      1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1438      1.11      matt {
   1439      1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1440      1.12    nonaka 	uint32_t v;
   1441      1.12    nonaka 
   1442      1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1443      1.23      matt 	size_t count = 0;
   1444      1.23      matt 
   1445      1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1446      1.23      matt 		if (count == 0) {
   1447      1.23      matt 			/*
   1448      1.23      matt 			 * If we've drained "watermark" words, we need to wait
   1449      1.23      matt 			 * a little bit so the read FIFO can refill.
   1450      1.23      matt 			 */
   1451      1.23      matt 			sdmmc_delay(10);
   1452      1.23      matt 			count = watermark;
   1453      1.23      matt 		}
   1454      1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1455      1.11      matt 		v = le32toh(v);
   1456      1.11      matt 		*(uint32_t *)data = v;
   1457      1.11      matt 		data += 4;
   1458      1.11      matt 		datalen -= 4;
   1459      1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1460      1.23      matt 		count--;
   1461      1.11      matt 	}
   1462      1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1463      1.23      matt 		if (count == 0) {
   1464      1.23      matt 			sdmmc_delay(10);
   1465      1.23      matt 		}
   1466      1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1467      1.11      matt 		v = le32toh(v);
   1468      1.11      matt 		do {
   1469      1.11      matt 			*data++ = v;
   1470      1.11      matt 			v >>= 8;
   1471      1.11      matt 		} while (--datalen > 0);
   1472      1.11      matt 	}
   1473      1.11      matt }
   1474      1.11      matt 
   1475      1.11      matt static void
   1476      1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1477      1.11      matt {
   1478      1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1479      1.12    nonaka 	uint32_t v;
   1480      1.12    nonaka 
   1481      1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1482      1.23      matt 	size_t count = watermark;
   1483      1.23      matt 
   1484      1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1485      1.23      matt 		if (count == 0) {
   1486      1.23      matt 			sdmmc_delay(10);
   1487      1.23      matt 			count = watermark;
   1488      1.23      matt 		}
   1489      1.12    nonaka 		v = *(uint32_t *)data;
   1490      1.11      matt 		v = htole32(v);
   1491      1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1492      1.11      matt 		data += 4;
   1493      1.11      matt 		datalen -= 4;
   1494      1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1495      1.23      matt 		count--;
   1496      1.11      matt 	}
   1497      1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1498      1.23      matt 		if (count == 0) {
   1499      1.23      matt 			sdmmc_delay(10);
   1500      1.23      matt 		}
   1501      1.12    nonaka 		v = *(uint32_t *)data;
   1502      1.11      matt 		v = htole32(v);
   1503      1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1504      1.11      matt 	}
   1505      1.11      matt }
   1506      1.11      matt 
   1507       1.1    nonaka /* Prepare for another command. */
   1508       1.1    nonaka static int
   1509       1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1510       1.1    nonaka {
   1511       1.1    nonaka 	int timo;
   1512       1.1    nonaka 
   1513       1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1514       1.1    nonaka 
   1515       1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1516       1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   1517       1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1518       1.1    nonaka 			break;
   1519       1.1    nonaka 		sdmmc_delay(10000);
   1520       1.1    nonaka 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1521       1.1    nonaka 	}
   1522       1.1    nonaka 	if (timo == 0) {
   1523       1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1524       1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1525       1.1    nonaka 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1526       1.1    nonaka 		return ETIMEDOUT;
   1527       1.1    nonaka 	}
   1528       1.1    nonaka 
   1529      1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1530      1.11      matt 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1531      1.11      matt 	}
   1532      1.11      matt 
   1533       1.1    nonaka 	return 0;
   1534       1.1    nonaka }
   1535       1.1    nonaka 
   1536       1.1    nonaka static int
   1537       1.1    nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1538       1.1    nonaka {
   1539       1.1    nonaka 	int status;
   1540       1.1    nonaka 
   1541       1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   1542       1.1    nonaka 
   1543       1.1    nonaka 	mutex_enter(&hp->intr_mtx);
   1544       1.1    nonaka 	status = hp->intr_status & mask;
   1545       1.1    nonaka 	while (status == 0) {
   1546       1.1    nonaka 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1547       1.1    nonaka 		    == EWOULDBLOCK) {
   1548       1.1    nonaka 			status |= SDHC_ERROR_INTERRUPT;
   1549       1.1    nonaka 			break;
   1550       1.1    nonaka 		}
   1551       1.1    nonaka 		status = hp->intr_status & mask;
   1552       1.1    nonaka 	}
   1553       1.1    nonaka 	hp->intr_status &= ~status;
   1554       1.1    nonaka 
   1555       1.1    nonaka 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1556       1.1    nonaka 	    hp->intr_error_status));
   1557       1.1    nonaka 
   1558       1.1    nonaka 	/* Command timeout has higher priority than command complete. */
   1559      1.11      matt 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1560       1.1    nonaka 		hp->intr_error_status = 0;
   1561      1.11      matt 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1562      1.11      matt 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1563      1.11      matt 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1564      1.11      matt 		}
   1565       1.1    nonaka 		status = 0;
   1566       1.1    nonaka 	}
   1567       1.1    nonaka 	mutex_exit(&hp->intr_mtx);
   1568       1.1    nonaka 
   1569       1.1    nonaka 	return status;
   1570       1.1    nonaka }
   1571       1.1    nonaka 
   1572       1.1    nonaka /*
   1573       1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1574       1.1    nonaka  */
   1575       1.1    nonaka int
   1576       1.1    nonaka sdhc_intr(void *arg)
   1577       1.1    nonaka {
   1578       1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1579       1.1    nonaka 	struct sdhc_host *hp;
   1580       1.1    nonaka 	int done = 0;
   1581       1.1    nonaka 	uint16_t status;
   1582       1.1    nonaka 	uint16_t error;
   1583       1.1    nonaka 
   1584       1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   1585      1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1586       1.1    nonaka 		hp = sc->sc_host[host];
   1587       1.1    nonaka 		if (hp == NULL)
   1588       1.1    nonaka 			continue;
   1589       1.1    nonaka 
   1590      1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1591      1.11      matt 			/* Find out which interrupts are pending. */
   1592      1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1593      1.11      matt 			status = xstatus;
   1594      1.11      matt 			error = xstatus >> 16;
   1595      1.22      matt 			if (error)
   1596      1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   1597      1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1598      1.11      matt 				continue; /* no interrupt for us */
   1599      1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1600      1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1601      1.11      matt 		} else {
   1602      1.11      matt 			/* Find out which interrupts are pending. */
   1603      1.11      matt 			error = 0;
   1604      1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1605      1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1606      1.11      matt 				continue; /* no interrupt for us */
   1607      1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1608      1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1609      1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1610      1.11      matt 				/* Acknowledge error interrupts. */
   1611      1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1612      1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1613      1.11      matt 			}
   1614      1.11      matt 		}
   1615      1.11      matt 
   1616      1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1617      1.11      matt 		    status, error));
   1618       1.1    nonaka 
   1619      1.29      matt 		mutex_enter(&hp->intr_mtx);
   1620      1.29      matt 
   1621       1.1    nonaka 		/* Claim this interrupt. */
   1622       1.1    nonaka 		done = 1;
   1623       1.1    nonaka 
   1624       1.1    nonaka 		/*
   1625       1.1    nonaka 		 * Service error interrupts.
   1626       1.1    nonaka 		 */
   1627      1.11      matt 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1628      1.11      matt 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1629      1.11      matt 			hp->intr_error_status |= error;
   1630      1.11      matt 			hp->intr_status |= status;
   1631      1.11      matt 			cv_broadcast(&hp->intr_cv);
   1632       1.1    nonaka 		}
   1633       1.1    nonaka 
   1634       1.1    nonaka 		/*
   1635       1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   1636       1.1    nonaka 		 */
   1637       1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1638       1.1    nonaka 			sdmmc_needs_discover(hp->sdmmc);
   1639      1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1640      1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1641      1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1642      1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1643      1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1644      1.11      matt 			}
   1645       1.9      matt 		}
   1646       1.1    nonaka 
   1647       1.1    nonaka 		/*
   1648       1.1    nonaka 		 * Wake up the blocking process to service command
   1649       1.1    nonaka 		 * related interrupt(s).
   1650       1.1    nonaka 		 */
   1651      1.11      matt 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1652      1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1653       1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1654       1.1    nonaka 			hp->intr_status |= status;
   1655      1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1656      1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1657      1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1658      1.11      matt 			}
   1659       1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   1660       1.1    nonaka 		}
   1661       1.1    nonaka 
   1662       1.1    nonaka 		/*
   1663       1.1    nonaka 		 * Service SD card interrupts.
   1664       1.1    nonaka 		 */
   1665      1.11      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1666      1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1667       1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1668       1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1669       1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   1670       1.1    nonaka 		}
   1671      1.29      matt 		mutex_exit(&hp->intr_mtx);
   1672       1.1    nonaka 	}
   1673       1.1    nonaka 
   1674       1.1    nonaka 	return done;
   1675       1.1    nonaka }
   1676       1.1    nonaka 
   1677       1.1    nonaka #ifdef SDHC_DEBUG
   1678       1.1    nonaka void
   1679       1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   1680       1.1    nonaka {
   1681       1.1    nonaka 
   1682       1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1683       1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1684      1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1685      1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1686      1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   1687       1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1688       1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1689       1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1690       1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1691       1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1692       1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1693       1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1694       1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1695       1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1696       1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1697       1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1698       1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1699       1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1700       1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   1701       1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1702       1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1703       1.1    nonaka }
   1704       1.1    nonaka #endif
   1705