Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.35
      1  1.35  riastrad /*	$NetBSD: sdhc.c,v 1.35 2012/12/13 06:43:37 riastradh Exp $	*/
      2   1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3   1.1    nonaka 
      4   1.1    nonaka /*
      5   1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6   1.1    nonaka  *
      7   1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10   1.1    nonaka  *
     11   1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    nonaka  */
     19   1.1    nonaka 
     20   1.1    nonaka /*
     21   1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22   1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23   1.1    nonaka  */
     24   1.1    nonaka 
     25   1.1    nonaka #include <sys/cdefs.h>
     26  1.35  riastrad __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.35 2012/12/13 06:43:37 riastradh Exp $");
     27  1.10    nonaka 
     28  1.10    nonaka #ifdef _KERNEL_OPT
     29  1.10    nonaka #include "opt_sdmmc.h"
     30  1.10    nonaka #endif
     31   1.1    nonaka 
     32   1.1    nonaka #include <sys/param.h>
     33   1.1    nonaka #include <sys/device.h>
     34   1.1    nonaka #include <sys/kernel.h>
     35   1.1    nonaka #include <sys/kthread.h>
     36   1.1    nonaka #include <sys/malloc.h>
     37   1.1    nonaka #include <sys/systm.h>
     38   1.1    nonaka #include <sys/mutex.h>
     39   1.1    nonaka #include <sys/condvar.h>
     40   1.1    nonaka 
     41   1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42   1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43   1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44   1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45   1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46   1.1    nonaka 
     47   1.1    nonaka #ifdef SDHC_DEBUG
     48   1.1    nonaka int sdhcdebug = 1;
     49   1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50   1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51   1.1    nonaka #else
     52   1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53   1.1    nonaka #endif
     54   1.1    nonaka 
     55   1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56   1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57   1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58   1.1    nonaka #define SDHC_DMA_TIMEOUT	hz
     59   1.1    nonaka 
     60   1.1    nonaka struct sdhc_host {
     61   1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     62   1.1    nonaka 
     63   1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     64   1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     65   1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     66   1.1    nonaka 
     67   1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     68   1.1    nonaka 
     69   1.1    nonaka 	struct kmutex host_mtx;
     70   1.1    nonaka 
     71   1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72   1.1    nonaka 	int maxblklen;			/* maximum block length */
     73   1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74   1.1    nonaka 
     75   1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76   1.1    nonaka 
     77   1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78   1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79   1.1    nonaka 	struct kmutex intr_mtx;
     80   1.1    nonaka 	struct kcondvar intr_cv;
     81   1.1    nonaka 
     82  1.12    nonaka 	int specver;			/* spec. version */
     83  1.12    nonaka 
     84   1.1    nonaka 	uint32_t flags;			/* flags for this host */
     85   1.1    nonaka #define SHF_USE_DMA		0x0001
     86   1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     87  1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     88   1.1    nonaka };
     89   1.1    nonaka 
     90   1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91  1.17  jakllsch #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     92   1.1    nonaka 
     93  1.11      matt static uint8_t
     94  1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
     95  1.11      matt {
     96  1.12    nonaka 
     97  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     98  1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     99  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    100  1.11      matt }
    101  1.11      matt 
    102  1.11      matt static uint16_t
    103  1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    104  1.11      matt {
    105  1.12    nonaka 
    106  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    107  1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    108  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    109  1.11      matt }
    110  1.11      matt 
    111  1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    112  1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    113  1.11      matt #define HREAD4(hp, reg)		\
    114   1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    115  1.11      matt 
    116  1.11      matt 
    117  1.11      matt static void
    118  1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    119  1.11      matt {
    120  1.12    nonaka 
    121  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    122  1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    123  1.11      matt 	} else {
    124  1.11      matt 		const size_t shift = 8 * (o & 3);
    125  1.11      matt 		o &= -4;
    126  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    127  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    128  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    129  1.11      matt 	}
    130  1.11      matt }
    131  1.11      matt 
    132  1.11      matt static void
    133  1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    134  1.11      matt {
    135  1.12    nonaka 
    136  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137  1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    138  1.11      matt 	} else {
    139  1.11      matt 		const size_t shift = 8 * (o & 2);
    140  1.11      matt 		o &= -4;
    141  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    143  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144  1.11      matt 	}
    145  1.11      matt }
    146  1.11      matt 
    147  1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    148  1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    149   1.1    nonaka #define HWRITE4(hp, reg, val)						\
    150   1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    151  1.11      matt 
    152   1.1    nonaka #define HCLR1(hp, reg, bits)						\
    153  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    154   1.1    nonaka #define HCLR2(hp, reg, bits)						\
    155  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    156  1.11      matt #define HCLR4(hp, reg, bits)						\
    157  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    158   1.1    nonaka #define HSET1(hp, reg, bits)						\
    159  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    160   1.1    nonaka #define HSET2(hp, reg, bits)						\
    161  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    162  1.11      matt #define HSET4(hp, reg, bits)						\
    163  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    164   1.1    nonaka 
    165   1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    166   1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    167   1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    168   1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    169   1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    170   1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    171   1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    172   1.1    nonaka static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    173   1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    174   1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    175   1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    176   1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    177   1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    178   1.1    nonaka 		    struct sdmmc_command *);
    179   1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    180   1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    181   1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    182   1.1    nonaka static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    183   1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    184   1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    185   1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    186  1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187  1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188  1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189  1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190  1.11      matt 
    191   1.1    nonaka 
    192   1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    193   1.1    nonaka 	/* host controller reset */
    194   1.1    nonaka 	sdhc_host_reset,
    195   1.1    nonaka 
    196   1.1    nonaka 	/* host controller capabilities */
    197   1.1    nonaka 	sdhc_host_ocr,
    198   1.1    nonaka 	sdhc_host_maxblklen,
    199   1.1    nonaka 
    200   1.1    nonaka 	/* card detection */
    201   1.1    nonaka 	sdhc_card_detect,
    202   1.1    nonaka 
    203   1.1    nonaka 	/* write protect */
    204   1.1    nonaka 	sdhc_write_protect,
    205   1.1    nonaka 
    206   1.1    nonaka 	/* bus power, clock frequency and width */
    207   1.1    nonaka 	sdhc_bus_power,
    208   1.1    nonaka 	sdhc_bus_clock,
    209   1.1    nonaka 	sdhc_bus_width,
    210   1.8  kiyohara 	sdhc_bus_rod,
    211   1.1    nonaka 
    212   1.1    nonaka 	/* command execution */
    213   1.1    nonaka 	sdhc_exec_command,
    214   1.1    nonaka 
    215   1.1    nonaka 	/* card interrupt */
    216   1.1    nonaka 	sdhc_card_enable_intr,
    217   1.1    nonaka 	sdhc_card_intr_ack
    218   1.1    nonaka };
    219   1.1    nonaka 
    220  1.17  jakllsch static int
    221  1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    222  1.17  jakllsch {
    223  1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    224  1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    225  1.17  jakllsch 
    226  1.17  jakllsch 	if (pnp) {
    227  1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    228  1.17  jakllsch 	}
    229  1.17  jakllsch 	aprint_normal(" slot %d", HDEVINST(hp));
    230  1.17  jakllsch 
    231  1.17  jakllsch 	return UNCONF;
    232  1.17  jakllsch }
    233  1.17  jakllsch 
    234   1.1    nonaka /*
    235   1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    236   1.1    nonaka  * host controller standard register set. (1.3)
    237   1.1    nonaka  */
    238   1.1    nonaka int
    239   1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    240   1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    241   1.1    nonaka {
    242   1.1    nonaka 	struct sdmmcbus_attach_args saa;
    243   1.1    nonaka 	struct sdhc_host *hp;
    244   1.1    nonaka 	uint32_t caps;
    245   1.1    nonaka 	uint16_t sdhcver;
    246   1.1    nonaka 
    247  1.33  riastrad 	/* Allocate one more host structure. */
    248  1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    249  1.33  riastrad 	if (hp == NULL) {
    250  1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    251  1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    252  1.33  riastrad 		goto err1;
    253  1.33  riastrad 	}
    254  1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    255  1.33  riastrad 
    256  1.33  riastrad 	/* Fill in the new host structure. */
    257  1.33  riastrad 	hp->sc = sc;
    258  1.33  riastrad 	hp->iot = iot;
    259  1.33  riastrad 	hp->ioh = ioh;
    260  1.33  riastrad 	hp->dmat = sc->sc_dmat;
    261  1.33  riastrad 
    262  1.33  riastrad 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    263  1.33  riastrad 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    264  1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    265  1.33  riastrad 
    266  1.33  riastrad 	sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    267  1.12    nonaka 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    268  1.33  riastrad 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    269   1.1    nonaka 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    270  1.12    nonaka 	case SDHC_SPEC_VERS_100:
    271  1.12    nonaka 		aprint_normal("1.0");
    272  1.12    nonaka 		break;
    273  1.12    nonaka 
    274  1.12    nonaka 	case SDHC_SPEC_VERS_200:
    275  1.12    nonaka 		aprint_normal("2.0");
    276   1.1    nonaka 		break;
    277   1.1    nonaka 
    278  1.12    nonaka 	case SDHC_SPEC_VERS_300:
    279  1.12    nonaka 		aprint_normal("3.0");
    280   1.9      matt 		break;
    281   1.9      matt 
    282   1.1    nonaka 	default:
    283  1.12    nonaka 		aprint_normal("unknown version(0x%x)",
    284  1.12    nonaka 		    SDHC_SPEC_VERSION(sdhcver));
    285   1.1    nonaka 		break;
    286   1.1    nonaka 	}
    287  1.12    nonaka 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    288   1.1    nonaka 
    289   1.1    nonaka 	/*
    290   1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    291   1.1    nonaka 	 */
    292   1.1    nonaka 	(void)sdhc_host_reset(hp);
    293   1.1    nonaka 
    294   1.1    nonaka 	/* Determine host capabilities. */
    295  1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    296  1.24     skrll 		caps = sc->sc_caps;
    297  1.24     skrll 	} else {
    298  1.24     skrll 		mutex_enter(&hp->host_mtx);
    299  1.24     skrll 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    300  1.24     skrll 		mutex_exit(&hp->host_mtx);
    301  1.24     skrll 	}
    302   1.1    nonaka 
    303   1.1    nonaka 	/* Use DMA if the host system and the controller support it. */
    304  1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    305  1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    306  1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    307   1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    308   1.1    nonaka 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    309   1.1    nonaka 	}
    310   1.1    nonaka 
    311   1.1    nonaka 	/*
    312   1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    313   1.1    nonaka 	 */
    314  1.30      matt 	if (hp->specver == SDHC_SPEC_VERS_300) {
    315  1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    316  1.30      matt 	} else {
    317  1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    318  1.30      matt 	}
    319   1.1    nonaka 	if (hp->clkbase == 0) {
    320   1.9      matt 		if (sc->sc_clkbase == 0) {
    321   1.9      matt 			/* The attachment driver must tell us. */
    322  1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    323  1.12    nonaka 			    "unknown base clock frequency\n");
    324   1.9      matt 			goto err;
    325   1.9      matt 		}
    326   1.9      matt 		hp->clkbase = sc->sc_clkbase;
    327   1.9      matt 	}
    328   1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    329   1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    330   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    331   1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    332   1.1    nonaka 		    hp->clkbase / 1000);
    333   1.1    nonaka 		goto err;
    334   1.1    nonaka 	}
    335   1.1    nonaka 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    336   1.1    nonaka 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    337   1.1    nonaka 
    338   1.1    nonaka 	/*
    339   1.1    nonaka 	 * XXX Set the data timeout counter value according to
    340   1.1    nonaka 	 * capabilities. (2.2.15)
    341   1.1    nonaka 	 */
    342   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    343  1.29      matt #if 1
    344  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    345  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    346  1.11      matt #endif
    347   1.1    nonaka 
    348   1.1    nonaka 	/*
    349   1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    350   1.1    nonaka 	 */
    351  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    352   1.1    nonaka 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    353  1.11      matt 	}
    354  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    355   1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    356  1.11      matt 	}
    357  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    358   1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    359  1.11      matt 	}
    360   1.1    nonaka 
    361   1.1    nonaka 	/*
    362   1.1    nonaka 	 * Determine the maximum block length supported by the host
    363   1.1    nonaka 	 * controller. (2.2.24)
    364   1.1    nonaka 	 */
    365   1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    366   1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    367   1.1    nonaka 		hp->maxblklen = 512;
    368   1.1    nonaka 		break;
    369   1.1    nonaka 
    370   1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    371   1.1    nonaka 		hp->maxblklen = 1024;
    372   1.1    nonaka 		break;
    373   1.1    nonaka 
    374   1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    375   1.1    nonaka 		hp->maxblklen = 2048;
    376   1.1    nonaka 		break;
    377   1.1    nonaka 
    378   1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    379   1.9      matt 		hp->maxblklen = 4096;
    380   1.9      matt 		break;
    381   1.9      matt 
    382   1.1    nonaka 	default:
    383   1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    384   1.1    nonaka 		goto err;
    385   1.1    nonaka 	}
    386   1.1    nonaka 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    387   1.1    nonaka 	    device_xname(sc->sc_dev), hp->maxblklen,
    388   1.1    nonaka 	    hp->maxblklen > 1 ? "s" : ""));
    389   1.1    nonaka 
    390   1.1    nonaka 	/*
    391   1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    392   1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    393   1.1    nonaka 	 */
    394   1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    395   1.1    nonaka 	saa.saa_busname = "sdmmc";
    396   1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    397   1.1    nonaka 	saa.saa_sch = hp;
    398   1.1    nonaka 	saa.saa_dmat = hp->dmat;
    399   1.1    nonaka 	saa.saa_clkmin = hp->clkbase / 256;
    400   1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    401  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    402  1.11      matt 		saa.saa_clkmin /= 2046;
    403  1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    404   1.9      matt 		saa.saa_clkmin /= 16;
    405   1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    406  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    407  1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    408  1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    409  1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    410  1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    411  1.28      matt 		saa.saa_caps |= SMC_CAPS_DMA;
    412  1.28      matt 		if (hp->specver == SDHC_SPEC_VERS_100) {
    413  1.28      matt 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    414  1.28      matt 		}
    415  1.26      matt 	}
    416  1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    417  1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    418  1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    419   1.1    nonaka 
    420   1.1    nonaka 	return 0;
    421   1.1    nonaka 
    422   1.1    nonaka err:
    423   1.1    nonaka 	cv_destroy(&hp->intr_cv);
    424   1.1    nonaka 	mutex_destroy(&hp->intr_mtx);
    425   1.1    nonaka 	mutex_destroy(&hp->host_mtx);
    426   1.1    nonaka 	free(hp, M_DEVBUF);
    427   1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    428   1.1    nonaka err1:
    429   1.1    nonaka 	return 1;
    430   1.1    nonaka }
    431   1.1    nonaka 
    432   1.7    nonaka int
    433   1.7    nonaka sdhc_detach(device_t dev, int flags)
    434   1.7    nonaka {
    435   1.7    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    436   1.7    nonaka 	struct sdhc_softc *sc = hp->sc;
    437   1.7    nonaka 	int rv = 0;
    438   1.7    nonaka 
    439   1.7    nonaka 	if (hp->sdmmc)
    440   1.7    nonaka 		rv = config_detach(hp->sdmmc, flags);
    441   1.7    nonaka 
    442   1.7    nonaka 	cv_destroy(&hp->intr_cv);
    443   1.7    nonaka 	mutex_destroy(&hp->intr_mtx);
    444   1.7    nonaka 	mutex_destroy(&hp->host_mtx);
    445   1.7    nonaka 	free(hp, M_DEVBUF);
    446   1.7    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    447   1.7    nonaka 
    448   1.7    nonaka 	return rv;
    449   1.7    nonaka }
    450   1.7    nonaka 
    451   1.1    nonaka bool
    452   1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    453   1.1    nonaka {
    454   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    455   1.1    nonaka 	struct sdhc_host *hp;
    456  1.12    nonaka 	size_t i;
    457   1.1    nonaka 
    458   1.1    nonaka 	/* XXX poll for command completion or suspend command
    459   1.1    nonaka 	 * in progress */
    460   1.1    nonaka 
    461   1.1    nonaka 	/* Save the host controller state. */
    462  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    463   1.1    nonaka 		hp = sc->sc_host[n];
    464  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    465  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    466  1.11      matt 				uint32_t v = HREAD4(hp, i);
    467  1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    468  1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    469  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    470  1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    471  1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    472  1.13    bouyer 				}
    473  1.11      matt 			}
    474  1.11      matt 		} else {
    475  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    476  1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    477  1.11      matt 			}
    478  1.11      matt 		}
    479   1.1    nonaka 	}
    480   1.1    nonaka 	return true;
    481   1.1    nonaka }
    482   1.1    nonaka 
    483   1.1    nonaka bool
    484   1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    485   1.1    nonaka {
    486   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    487   1.1    nonaka 	struct sdhc_host *hp;
    488  1.12    nonaka 	size_t i;
    489   1.1    nonaka 
    490   1.1    nonaka 	/* Restore the host controller state. */
    491  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    492   1.1    nonaka 		hp = sc->sc_host[n];
    493   1.1    nonaka 		(void)sdhc_host_reset(hp);
    494  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    495  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    496  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    497  1.13    bouyer 					HWRITE4(hp, i,
    498  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    499  1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    500  1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    501  1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    502  1.13    bouyer 				} else {
    503  1.13    bouyer 					HWRITE4(hp, i,
    504  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    505  1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    506  1.13    bouyer 				}
    507  1.11      matt 			}
    508  1.11      matt 		} else {
    509  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    510  1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    511  1.11      matt 			}
    512  1.11      matt 		}
    513   1.1    nonaka 	}
    514   1.1    nonaka 	return true;
    515   1.1    nonaka }
    516   1.1    nonaka 
    517   1.1    nonaka bool
    518   1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    519   1.1    nonaka {
    520   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    521   1.1    nonaka 	struct sdhc_host *hp;
    522   1.1    nonaka 
    523   1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    524  1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    525   1.1    nonaka 		hp = sc->sc_host[i];
    526   1.1    nonaka 		(void)sdhc_host_reset(hp);
    527   1.1    nonaka 	}
    528   1.1    nonaka 	return true;
    529   1.1    nonaka }
    530   1.1    nonaka 
    531   1.1    nonaka /*
    532   1.1    nonaka  * Reset the host controller.  Called during initialization, when
    533   1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    534   1.1    nonaka  */
    535   1.1    nonaka static int
    536   1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    537   1.1    nonaka {
    538   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    539  1.11      matt 	uint32_t sdhcimask;
    540   1.1    nonaka 	int error;
    541   1.1    nonaka 
    542   1.1    nonaka 	/* Don't lock. */
    543   1.1    nonaka 
    544   1.1    nonaka 	/* Disable all interrupts. */
    545  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    546  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    547  1.11      matt 	} else {
    548  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    549  1.11      matt 	}
    550   1.1    nonaka 
    551   1.1    nonaka 	/*
    552   1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    553   1.1    nonaka 	 * the controller to clear the reset bit.
    554   1.1    nonaka 	 */
    555   1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    556   1.1    nonaka 	if (error)
    557   1.1    nonaka 		goto out;
    558   1.1    nonaka 
    559   1.1    nonaka 	/* Set data timeout counter value to max for now. */
    560   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    561  1.29      matt #if 1
    562  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    563  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    564  1.11      matt #endif
    565   1.1    nonaka 
    566   1.1    nonaka 	/* Enable interrupts. */
    567  1.29      matt 	mutex_enter(&hp->intr_mtx);
    568   1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    569   1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    570   1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    571   1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    572  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    573  1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    574  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    575  1.11      matt 		sdhcimask ^=
    576  1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    577  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    578  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    579  1.11      matt 	} else {
    580  1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    581  1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    582  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    583  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    584  1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    585  1.11      matt 	}
    586  1.29      matt 	mutex_exit(&hp->intr_mtx);
    587   1.1    nonaka 
    588   1.1    nonaka out:
    589   1.1    nonaka 	return error;
    590   1.1    nonaka }
    591   1.1    nonaka 
    592   1.1    nonaka static int
    593   1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    594   1.1    nonaka {
    595   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    596   1.1    nonaka 	int error;
    597   1.1    nonaka 
    598   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    599   1.1    nonaka 	error = sdhc_host_reset1(sch);
    600   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    601   1.1    nonaka 
    602   1.1    nonaka 	return error;
    603   1.1    nonaka }
    604   1.1    nonaka 
    605   1.1    nonaka static uint32_t
    606   1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    607   1.1    nonaka {
    608   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    609   1.1    nonaka 
    610   1.1    nonaka 	return hp->ocr;
    611   1.1    nonaka }
    612   1.1    nonaka 
    613   1.1    nonaka static int
    614   1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    615   1.1    nonaka {
    616   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    617   1.1    nonaka 
    618   1.1    nonaka 	return hp->maxblklen;
    619   1.1    nonaka }
    620   1.1    nonaka 
    621   1.1    nonaka /*
    622   1.1    nonaka  * Return non-zero if the card is currently inserted.
    623   1.1    nonaka  */
    624   1.1    nonaka static int
    625   1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    626   1.1    nonaka {
    627   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    628   1.1    nonaka 	int r;
    629   1.1    nonaka 
    630  1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    631  1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    632  1.32  kiyohara 
    633   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    634   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    635   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    636   1.1    nonaka 
    637  1.11      matt 	return r ? 1 : 0;
    638   1.1    nonaka }
    639   1.1    nonaka 
    640   1.1    nonaka /*
    641   1.1    nonaka  * Return non-zero if the card is currently write-protected.
    642   1.1    nonaka  */
    643   1.1    nonaka static int
    644   1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    645   1.1    nonaka {
    646   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    647   1.1    nonaka 	int r;
    648   1.1    nonaka 
    649  1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    650  1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    651  1.32  kiyohara 
    652   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    653   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    654   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    655   1.1    nonaka 
    656  1.12    nonaka 	return r ? 0 : 1;
    657   1.1    nonaka }
    658   1.1    nonaka 
    659   1.1    nonaka /*
    660   1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    661   1.1    nonaka  * Return zero on success.
    662   1.1    nonaka  */
    663   1.1    nonaka static int
    664   1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    665   1.1    nonaka {
    666   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    667   1.1    nonaka 	uint8_t vdd;
    668   1.1    nonaka 	int error = 0;
    669  1.32  kiyohara 	const uint32_t pcmask =
    670  1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    671   1.1    nonaka 
    672   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    673   1.1    nonaka 
    674   1.1    nonaka 	/*
    675   1.1    nonaka 	 * Disable bus power before voltage change.
    676   1.1    nonaka 	 */
    677  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    678  1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    679   1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    680   1.1    nonaka 
    681   1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    682   1.1    nonaka 	if (ocr == 0) {
    683   1.1    nonaka 		(void)sdhc_host_reset1(hp);
    684   1.1    nonaka 		goto out;
    685   1.1    nonaka 	}
    686   1.1    nonaka 
    687   1.1    nonaka 	/*
    688   1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    689   1.1    nonaka 	 */
    690   1.1    nonaka 	ocr &= hp->ocr;
    691  1.11      matt 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    692   1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    693  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    694   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    695  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    696   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    697  1.11      matt 	} else {
    698   1.1    nonaka 		/* Unsupported voltage level requested. */
    699   1.1    nonaka 		error = EINVAL;
    700   1.1    nonaka 		goto out;
    701   1.1    nonaka 	}
    702   1.1    nonaka 
    703  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    704  1.11      matt 		/*
    705  1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    706  1.11      matt 		 * voltage ramp until power rises.
    707  1.11      matt 		 */
    708  1.11      matt 		HWRITE1(hp, SDHC_POWER_CTL,
    709  1.32  kiyohara 		    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    710  1.32  kiyohara 		sdmmc_delay(1);
    711  1.32  kiyohara 		HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
    712  1.32  kiyohara 		sdmmc_delay(1);
    713  1.32  kiyohara 		HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    714  1.11      matt 		sdmmc_delay(10000);
    715   1.1    nonaka 
    716  1.11      matt 		/*
    717  1.11      matt 		 * The host system may not power the bus due to battery low,
    718  1.11      matt 		 * etc.  In that case, the host controller should clear the
    719  1.11      matt 		 * bus power bit.
    720  1.11      matt 		 */
    721  1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    722  1.11      matt 			error = ENXIO;
    723  1.11      matt 			goto out;
    724  1.11      matt 		}
    725   1.1    nonaka 	}
    726   1.1    nonaka 
    727   1.1    nonaka out:
    728   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    729   1.1    nonaka 
    730   1.1    nonaka 	return error;
    731   1.1    nonaka }
    732   1.1    nonaka 
    733   1.1    nonaka /*
    734   1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    735   1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    736   1.1    nonaka  */
    737  1.11      matt static bool
    738  1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    739   1.1    nonaka {
    740  1.11      matt 	u_int div;
    741   1.1    nonaka 
    742  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    743  1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    744  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    745  1.11      matt 				*divp = SDHC_SDCLK_CGM
    746  1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    747  1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    748  1.18  jakllsch 				//freq = hp->clkbase / div;
    749  1.11      matt 				return true;
    750  1.11      matt 			}
    751  1.11      matt 		}
    752  1.11      matt 		/* No divisor found. */
    753  1.11      matt 		return false;
    754  1.11      matt 	}
    755  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    756  1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    757  1.11      matt 		u_int roundup = dvs & 1;
    758  1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    759  1.11      matt 			if (dvs + roundup <= 16) {
    760  1.11      matt 				dvs += roundup - 1;
    761  1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    762  1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    763  1.11      matt 				DPRINTF(2,
    764  1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    765  1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    766  1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    767  1.11      matt 				return true;
    768   1.9      matt 			}
    769  1.11      matt 			/*
    770  1.11      matt 			 * If we drop bits, we need to round up the divisor.
    771  1.11      matt 			 */
    772  1.11      matt 			roundup |= dvs & 1;
    773   1.9      matt 		}
    774  1.18  jakllsch 		/* No divisor found. */
    775  1.18  jakllsch 		return false;
    776   1.9      matt 	} else {
    777  1.32  kiyohara 		if (hp->sc->sc_clkmsk != 0)
    778  1.32  kiyohara 			*divp = (hp->clkbase / freq) <<
    779  1.32  kiyohara 			    (ffs(hp->sc->sc_clkmsk) - 1);
    780  1.32  kiyohara 		else
    781  1.32  kiyohara 			*divp = (hp->clkbase / freq) << SDHC_SDCLK_DIV_SHIFT;
    782  1.32  kiyohara 		return true;
    783   1.9      matt 	}
    784   1.1    nonaka 	/* No divisor found. */
    785  1.11      matt 	return false;
    786   1.1    nonaka }
    787   1.1    nonaka 
    788   1.1    nonaka /*
    789   1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
    790   1.1    nonaka  * Return zero on success.
    791   1.1    nonaka  */
    792   1.1    nonaka static int
    793   1.1    nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    794   1.1    nonaka {
    795   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    796  1.11      matt 	u_int div;
    797  1.11      matt 	u_int timo;
    798  1.32  kiyohara 	int16_t reg;
    799   1.1    nonaka 	int error = 0;
    800   1.2    cegger #ifdef DIAGNOSTIC
    801  1.12    nonaka 	bool present;
    802   1.1    nonaka 
    803   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    804  1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    805   1.2    cegger 	mutex_exit(&hp->host_mtx);
    806   1.1    nonaka 
    807   1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
    808  1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
    809  1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
    810  1.26      matt 		    "%s: command in progress\n", __func__);
    811  1.12    nonaka 	}
    812   1.1    nonaka #endif
    813   1.1    nonaka 
    814   1.2    cegger 	mutex_enter(&hp->host_mtx);
    815   1.2    cegger 
    816  1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
    817  1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
    818  1.34      matt 		if (error != 0)
    819  1.34      matt 			goto out;
    820  1.34      matt 	}
    821  1.34      matt 
    822   1.1    nonaka 	/*
    823   1.1    nonaka 	 * Stop SD clock before changing the frequency.
    824   1.1    nonaka 	 */
    825  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    826  1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    827  1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
    828  1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    829  1.11      matt 			goto out;
    830  1.11      matt 		}
    831  1.11      matt 	} else {
    832  1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    833  1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
    834  1.11      matt 			goto out;
    835  1.11      matt 	}
    836   1.1    nonaka 
    837   1.1    nonaka 	/*
    838   1.1    nonaka 	 * Set the minimum base clock frequency divisor.
    839   1.1    nonaka 	 */
    840  1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    841   1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
    842   1.1    nonaka 		error = EINVAL;
    843   1.1    nonaka 		goto out;
    844   1.1    nonaka 	}
    845  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    846  1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
    847  1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
    848  1.11      matt 	} else {
    849  1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
    850  1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
    851  1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
    852  1.11      matt 	}
    853   1.1    nonaka 
    854   1.1    nonaka 	/*
    855   1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
    856   1.1    nonaka 	 */
    857  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    858  1.11      matt 		sdmmc_delay(10000);
    859  1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
    860  1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    861  1.11      matt 	} else {
    862  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    863  1.11      matt 		for (timo = 1000; timo > 0; timo--) {
    864  1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    865  1.12    nonaka 			    SDHC_INTCLK_STABLE))
    866  1.11      matt 				break;
    867  1.11      matt 			sdmmc_delay(10);
    868  1.11      matt 		}
    869  1.11      matt 		if (timo == 0) {
    870  1.11      matt 			error = ETIMEDOUT;
    871  1.11      matt 			goto out;
    872  1.11      matt 		}
    873   1.1    nonaka 	}
    874   1.1    nonaka 
    875  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    876  1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    877  1.11      matt 		/*
    878  1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
    879  1.11      matt 		 * So delay for that time + slop and then
    880  1.11      matt 		 * check a few times for completion.
    881  1.11      matt 		 */
    882  1.11      matt 		sdmmc_delay(210);
    883  1.11      matt 		for (timo = 10; timo > 0; timo--) {
    884  1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    885  1.11      matt 			    SDHC_INIT_ACTIVE))
    886  1.11      matt 				break;
    887  1.11      matt 			sdmmc_delay(10);
    888  1.11      matt 		}
    889  1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    890  1.12    nonaka 
    891  1.11      matt 		/*
    892  1.11      matt 		 * Enable SD clock.
    893  1.11      matt 		 */
    894  1.11      matt 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    895  1.11      matt 	} else {
    896  1.11      matt 		/*
    897  1.11      matt 		 * Enable SD clock.
    898  1.11      matt 		 */
    899  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    900   1.1    nonaka 
    901  1.11      matt 		if (freq > 25000)
    902  1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    903  1.11      matt 		else
    904  1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    905  1.11      matt 	}
    906   1.8  kiyohara 
    907   1.1    nonaka out:
    908   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    909   1.1    nonaka 
    910   1.1    nonaka 	return error;
    911   1.1    nonaka }
    912   1.1    nonaka 
    913   1.1    nonaka static int
    914   1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    915   1.1    nonaka {
    916   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    917   1.1    nonaka 	int reg;
    918   1.1    nonaka 
    919   1.1    nonaka 	switch (width) {
    920   1.1    nonaka 	case 1:
    921   1.1    nonaka 	case 4:
    922   1.1    nonaka 		break;
    923   1.1    nonaka 
    924  1.11      matt 	case 8:
    925  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    926  1.11      matt 			break;
    927  1.11      matt 		/* FALLTHROUGH */
    928   1.1    nonaka 	default:
    929   1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    930   1.1    nonaka 		    HDEVNAME(hp), width));
    931   1.1    nonaka 		return 1;
    932   1.1    nonaka 	}
    933   1.1    nonaka 
    934   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    935   1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
    936  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    937  1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    938  1.11      matt 		if (width == 4)
    939  1.11      matt 			reg |= SDHC_4BIT_MODE;
    940  1.11      matt 		else if (width == 8)
    941  1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
    942  1.11      matt 	} else {
    943  1.11      matt 		reg &= ~SDHC_4BIT_MODE;
    944  1.11      matt 		if (width == 4)
    945  1.11      matt 			reg |= SDHC_4BIT_MODE;
    946  1.11      matt 	}
    947   1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    948   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    949   1.1    nonaka 
    950   1.1    nonaka 	return 0;
    951   1.1    nonaka }
    952   1.1    nonaka 
    953   1.8  kiyohara static int
    954   1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    955   1.8  kiyohara {
    956  1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    957  1.32  kiyohara 
    958  1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
    959  1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
    960   1.8  kiyohara 
    961   1.8  kiyohara 	return 0;
    962   1.8  kiyohara }
    963   1.8  kiyohara 
    964   1.1    nonaka static void
    965   1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    966   1.1    nonaka {
    967   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    968   1.1    nonaka 
    969  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    970  1.29      matt 		mutex_enter(&hp->intr_mtx);
    971  1.11      matt 		if (enable) {
    972  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    973  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    974  1.11      matt 		} else {
    975  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    976  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    977  1.11      matt 		}
    978  1.29      matt 		mutex_exit(&hp->intr_mtx);
    979   1.1    nonaka 	}
    980   1.1    nonaka }
    981   1.1    nonaka 
    982   1.1    nonaka static void
    983   1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    984   1.1    nonaka {
    985   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    986   1.1    nonaka 
    987  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    988  1.29      matt 		mutex_enter(&hp->intr_mtx);
    989  1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    990  1.29      matt 		mutex_exit(&hp->intr_mtx);
    991  1.11      matt 	}
    992   1.1    nonaka }
    993   1.1    nonaka 
    994   1.1    nonaka static int
    995   1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    996   1.1    nonaka {
    997   1.1    nonaka 	uint32_t state;
    998   1.1    nonaka 	int timeout;
    999   1.1    nonaka 
   1000   1.1    nonaka 	for (timeout = 10; timeout > 0; timeout--) {
   1001   1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1002   1.1    nonaka 			return 0;
   1003   1.1    nonaka 		sdmmc_delay(10000);
   1004   1.1    nonaka 	}
   1005   1.1    nonaka 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
   1006   1.1    nonaka 	    value, state));
   1007   1.1    nonaka 	return ETIMEDOUT;
   1008   1.1    nonaka }
   1009   1.1    nonaka 
   1010   1.1    nonaka static void
   1011   1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1012   1.1    nonaka {
   1013   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1014   1.1    nonaka 	int error;
   1015   1.1    nonaka 
   1016  1.26      matt 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1017  1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1018  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1019  1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1020  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1021  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1022  1.11      matt 		} else {
   1023  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1024  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1025  1.11      matt 		}
   1026  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1027  1.11      matt 	}
   1028  1.11      matt 
   1029   1.1    nonaka 	/*
   1030   1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1031   1.1    nonaka 	 */
   1032   1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1033   1.1    nonaka 	if (error) {
   1034   1.1    nonaka 		cmd->c_error = error;
   1035   1.1    nonaka 		goto out;
   1036   1.1    nonaka 	}
   1037   1.1    nonaka 
   1038   1.1    nonaka 	/*
   1039   1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1040   1.1    nonaka 	 * is marked done for any other reason.
   1041   1.1    nonaka 	 */
   1042   1.1    nonaka 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1043   1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1044   1.1    nonaka 		goto out;
   1045   1.1    nonaka 	}
   1046   1.1    nonaka 
   1047   1.1    nonaka 	/*
   1048   1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1049   1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1050   1.1    nonaka 	 * driver (without padding).
   1051   1.1    nonaka 	 */
   1052   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1053   1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1054  1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1055  1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1056  1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1057  1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1058  1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1059  1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1060  1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1061  1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1062  1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1063  1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1064  1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1065  1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1066  1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1067  1.32  kiyohara 			}
   1068   1.1    nonaka 		}
   1069   1.1    nonaka 	}
   1070   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1071  1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1072   1.1    nonaka 
   1073   1.1    nonaka 	/*
   1074   1.1    nonaka 	 * If the command has data to transfer in any direction,
   1075   1.1    nonaka 	 * execute the transfer now.
   1076   1.1    nonaka 	 */
   1077   1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1078   1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1079   1.1    nonaka 
   1080   1.1    nonaka out:
   1081  1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1082  1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1083  1.11      matt 		mutex_enter(&hp->host_mtx);
   1084  1.11      matt 		/* Turn off the LED. */
   1085  1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1086  1.11      matt 		mutex_exit(&hp->host_mtx);
   1087  1.11      matt 	}
   1088   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1089   1.1    nonaka 
   1090   1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1091   1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1092   1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1093   1.1    nonaka }
   1094   1.1    nonaka 
   1095   1.1    nonaka static int
   1096   1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1097   1.1    nonaka {
   1098  1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1099   1.1    nonaka 	uint16_t blksize = 0;
   1100   1.1    nonaka 	uint16_t blkcount = 0;
   1101   1.1    nonaka 	uint16_t mode;
   1102   1.1    nonaka 	uint16_t command;
   1103   1.1    nonaka 	int error;
   1104   1.1    nonaka 
   1105  1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1106   1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1107  1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1108   1.1    nonaka 
   1109   1.1    nonaka 	/*
   1110   1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1111   1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1112   1.1    nonaka 	 */
   1113   1.1    nonaka 
   1114   1.1    nonaka 	/* Fragment the data into proper blocks. */
   1115   1.1    nonaka 	if (cmd->c_datalen > 0) {
   1116   1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1117   1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1118   1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1119   1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1120  1.11      matt 			aprint_error_dev(sc->sc_dev,
   1121   1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1122   1.1    nonaka 			return EINVAL;
   1123   1.1    nonaka 		}
   1124   1.1    nonaka 	}
   1125   1.1    nonaka 
   1126   1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1127   1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1128  1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1129   1.1    nonaka 		return EINVAL;
   1130   1.1    nonaka 	}
   1131   1.1    nonaka 
   1132   1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1133  1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1134   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1135   1.1    nonaka 		mode |= SDHC_READ_MODE;
   1136  1.15  jakllsch 	if (blkcount > 1) {
   1137  1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1138  1.15  jakllsch 		/* XXX only for memory commands? */
   1139  1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1140   1.1    nonaka 	}
   1141   1.7    nonaka 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1142  1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1143   1.7    nonaka 	}
   1144   1.1    nonaka 
   1145   1.1    nonaka 	/*
   1146   1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1147   1.1    nonaka 	 */
   1148  1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1149   1.1    nonaka 
   1150   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1151   1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1152   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1153   1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1154   1.1    nonaka 	if (cmd->c_data != NULL)
   1155   1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1156   1.1    nonaka 
   1157   1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1158   1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1159   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1160   1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1161   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1162   1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1163   1.1    nonaka 	else
   1164   1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1165   1.1    nonaka 
   1166   1.1    nonaka 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1167   1.1    nonaka 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1168   1.1    nonaka 	if (error)
   1169   1.1    nonaka 		return error;
   1170   1.1    nonaka 
   1171   1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1172   1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1173   1.1    nonaka 
   1174  1.19  jakllsch 	blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1175  1.19  jakllsch 	    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1176  1.19  jakllsch 
   1177   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1178   1.1    nonaka 
   1179  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1180  1.11      matt 		/* Alert the user not to remove the card. */
   1181  1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1182  1.11      matt 	}
   1183   1.1    nonaka 
   1184   1.7    nonaka 	/* Set DMA start address. */
   1185   1.7    nonaka 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1186   1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1187   1.7    nonaka 
   1188   1.1    nonaka 	/*
   1189   1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1190   1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1191   1.1    nonaka 	 */
   1192  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1193  1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1194  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1195  1.11      matt 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1196  1.11      matt 	} else {
   1197  1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1198  1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1199  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1200  1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1201  1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1202  1.11      matt 	}
   1203   1.1    nonaka 
   1204   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1205   1.1    nonaka 
   1206   1.1    nonaka 	return 0;
   1207   1.1    nonaka }
   1208   1.1    nonaka 
   1209   1.1    nonaka static void
   1210   1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1211   1.1    nonaka {
   1212   1.1    nonaka 	int error;
   1213   1.1    nonaka 
   1214   1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1215   1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1216   1.1    nonaka 
   1217   1.1    nonaka #ifdef SDHC_DEBUG
   1218   1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1219   1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1220   1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1221   1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1222   1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1223   1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1224   1.1    nonaka 	}
   1225   1.1    nonaka #endif
   1226   1.1    nonaka 
   1227   1.7    nonaka 	if (cmd->c_dmamap != NULL)
   1228   1.7    nonaka 		error = sdhc_transfer_data_dma(hp, cmd);
   1229   1.7    nonaka 	else
   1230   1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1231   1.1    nonaka 	if (error)
   1232   1.1    nonaka 		cmd->c_error = error;
   1233   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1234   1.1    nonaka 
   1235   1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1236   1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1237   1.1    nonaka }
   1238   1.1    nonaka 
   1239   1.1    nonaka static int
   1240   1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1241   1.7    nonaka {
   1242  1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1243  1.19  jakllsch 	bus_addr_t posaddr;
   1244  1.19  jakllsch 	bus_addr_t segaddr;
   1245  1.19  jakllsch 	bus_size_t seglen;
   1246  1.19  jakllsch 	u_int seg = 0;
   1247   1.7    nonaka 	int error = 0;
   1248  1.19  jakllsch 	int status;
   1249   1.7    nonaka 
   1250  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1251  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1252  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1253  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1254  1.11      matt 
   1255   1.7    nonaka 	for (;;) {
   1256  1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1257   1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1258  1.19  jakllsch 		    SDHC_DMA_TIMEOUT);
   1259  1.19  jakllsch 
   1260  1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1261  1.19  jakllsch 			break;
   1262  1.19  jakllsch 		}
   1263  1.19  jakllsch 		if (!status) {
   1264   1.7    nonaka 			error = ETIMEDOUT;
   1265   1.7    nonaka 			break;
   1266   1.7    nonaka 		}
   1267  1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1268  1.19  jakllsch 			continue;
   1269  1.19  jakllsch 		}
   1270  1.19  jakllsch 
   1271  1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1272   1.7    nonaka 
   1273  1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1274  1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1275  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1276  1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1277  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1278   1.7    nonaka 
   1279  1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1280   1.7    nonaka 			break;
   1281  1.19  jakllsch 		}
   1282  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1283  1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1284  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1285  1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1286  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1287  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1288  1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1289   1.7    nonaka 	}
   1290   1.7    nonaka 
   1291   1.7    nonaka 	return error;
   1292   1.7    nonaka }
   1293   1.7    nonaka 
   1294   1.7    nonaka static int
   1295   1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1296   1.1    nonaka {
   1297   1.1    nonaka 	uint8_t *data = cmd->c_data;
   1298  1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1299  1.11      matt 	u_int len, datalen;
   1300  1.11      matt 	u_int imask;
   1301  1.11      matt 	u_int pmask;
   1302   1.1    nonaka 	int error = 0;
   1303   1.1    nonaka 
   1304  1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1305  1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1306  1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1307  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1308  1.11      matt 			pio_func = esdhc_read_data_pio;
   1309  1.11      matt 		} else {
   1310  1.11      matt 			pio_func = sdhc_read_data_pio;
   1311  1.11      matt 		}
   1312  1.11      matt 	} else {
   1313  1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1314  1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1315  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1316  1.11      matt 			pio_func = esdhc_write_data_pio;
   1317  1.11      matt 		} else {
   1318  1.11      matt 			pio_func = sdhc_write_data_pio;
   1319  1.11      matt 		}
   1320  1.11      matt 	}
   1321   1.1    nonaka 	datalen = cmd->c_datalen;
   1322   1.1    nonaka 
   1323  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1324  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1325  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1326  1.11      matt 
   1327   1.1    nonaka 	while (datalen > 0) {
   1328  1.11      matt 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1329  1.29      matt 			mutex_enter(&hp->intr_mtx);
   1330  1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1331  1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1332  1.11      matt 			} else {
   1333  1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1334  1.11      matt 			}
   1335  1.29      matt 			mutex_exit(&hp->intr_mtx);
   1336  1.11      matt 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1337  1.11      matt 				error = ETIMEDOUT;
   1338  1.11      matt 				break;
   1339  1.11      matt 			}
   1340  1.11      matt 
   1341  1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1342  1.11      matt 			if (error)
   1343  1.11      matt 				break;
   1344   1.1    nonaka 		}
   1345   1.1    nonaka 
   1346   1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1347  1.11      matt 		(*pio_func)(hp, data, len);
   1348  1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1349  1.11      matt 		    HDEVNAME(hp), len, data));
   1350   1.1    nonaka 
   1351   1.1    nonaka 		data += len;
   1352   1.1    nonaka 		datalen -= len;
   1353   1.1    nonaka 	}
   1354   1.1    nonaka 
   1355   1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1356   1.1    nonaka 	    SDHC_TRANSFER_TIMEOUT))
   1357   1.1    nonaka 		error = ETIMEDOUT;
   1358   1.1    nonaka 
   1359   1.1    nonaka 	return error;
   1360   1.1    nonaka }
   1361   1.1    nonaka 
   1362   1.1    nonaka static void
   1363  1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1364   1.1    nonaka {
   1365   1.1    nonaka 
   1366   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1367   1.1    nonaka 		while (datalen > 3) {
   1368  1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1369   1.1    nonaka 			data += 4;
   1370   1.1    nonaka 			datalen -= 4;
   1371   1.1    nonaka 		}
   1372   1.1    nonaka 		if (datalen > 1) {
   1373  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1374   1.1    nonaka 			data += 2;
   1375   1.1    nonaka 			datalen -= 2;
   1376   1.1    nonaka 		}
   1377   1.1    nonaka 		if (datalen > 0) {
   1378   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1379   1.1    nonaka 			data += 1;
   1380   1.1    nonaka 			datalen -= 1;
   1381   1.1    nonaka 		}
   1382   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1383   1.1    nonaka 		while (datalen > 1) {
   1384  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1385   1.1    nonaka 			data += 2;
   1386   1.1    nonaka 			datalen -= 2;
   1387   1.1    nonaka 		}
   1388   1.1    nonaka 		if (datalen > 0) {
   1389   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1390   1.1    nonaka 			data += 1;
   1391   1.1    nonaka 			datalen -= 1;
   1392   1.1    nonaka 		}
   1393   1.1    nonaka 	} else {
   1394   1.1    nonaka 		while (datalen > 0) {
   1395   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1396   1.1    nonaka 			data += 1;
   1397   1.1    nonaka 			datalen -= 1;
   1398   1.1    nonaka 		}
   1399   1.1    nonaka 	}
   1400   1.1    nonaka }
   1401   1.1    nonaka 
   1402   1.1    nonaka static void
   1403  1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1404   1.1    nonaka {
   1405   1.1    nonaka 
   1406   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1407   1.1    nonaka 		while (datalen > 3) {
   1408  1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1409   1.1    nonaka 			data += 4;
   1410   1.1    nonaka 			datalen -= 4;
   1411   1.1    nonaka 		}
   1412   1.1    nonaka 		if (datalen > 1) {
   1413  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1414   1.1    nonaka 			data += 2;
   1415   1.1    nonaka 			datalen -= 2;
   1416   1.1    nonaka 		}
   1417   1.1    nonaka 		if (datalen > 0) {
   1418   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1419   1.1    nonaka 			data += 1;
   1420   1.1    nonaka 			datalen -= 1;
   1421   1.1    nonaka 		}
   1422   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1423   1.1    nonaka 		while (datalen > 1) {
   1424  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1425   1.1    nonaka 			data += 2;
   1426   1.1    nonaka 			datalen -= 2;
   1427   1.1    nonaka 		}
   1428   1.1    nonaka 		if (datalen > 0) {
   1429   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1430   1.1    nonaka 			data += 1;
   1431   1.1    nonaka 			datalen -= 1;
   1432   1.1    nonaka 		}
   1433   1.1    nonaka 	} else {
   1434   1.1    nonaka 		while (datalen > 0) {
   1435   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1436   1.1    nonaka 			data += 1;
   1437   1.1    nonaka 			datalen -= 1;
   1438   1.1    nonaka 		}
   1439   1.1    nonaka 	}
   1440   1.1    nonaka }
   1441   1.1    nonaka 
   1442  1.11      matt static void
   1443  1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1444  1.11      matt {
   1445  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1446  1.12    nonaka 	uint32_t v;
   1447  1.12    nonaka 
   1448  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1449  1.23      matt 	size_t count = 0;
   1450  1.23      matt 
   1451  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1452  1.23      matt 		if (count == 0) {
   1453  1.23      matt 			/*
   1454  1.23      matt 			 * If we've drained "watermark" words, we need to wait
   1455  1.23      matt 			 * a little bit so the read FIFO can refill.
   1456  1.23      matt 			 */
   1457  1.23      matt 			sdmmc_delay(10);
   1458  1.23      matt 			count = watermark;
   1459  1.23      matt 		}
   1460  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1461  1.11      matt 		v = le32toh(v);
   1462  1.11      matt 		*(uint32_t *)data = v;
   1463  1.11      matt 		data += 4;
   1464  1.11      matt 		datalen -= 4;
   1465  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1466  1.23      matt 		count--;
   1467  1.11      matt 	}
   1468  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1469  1.23      matt 		if (count == 0) {
   1470  1.23      matt 			sdmmc_delay(10);
   1471  1.23      matt 		}
   1472  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1473  1.11      matt 		v = le32toh(v);
   1474  1.11      matt 		do {
   1475  1.11      matt 			*data++ = v;
   1476  1.11      matt 			v >>= 8;
   1477  1.11      matt 		} while (--datalen > 0);
   1478  1.11      matt 	}
   1479  1.11      matt }
   1480  1.11      matt 
   1481  1.11      matt static void
   1482  1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1483  1.11      matt {
   1484  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1485  1.12    nonaka 	uint32_t v;
   1486  1.12    nonaka 
   1487  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1488  1.23      matt 	size_t count = watermark;
   1489  1.23      matt 
   1490  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1491  1.23      matt 		if (count == 0) {
   1492  1.23      matt 			sdmmc_delay(10);
   1493  1.23      matt 			count = watermark;
   1494  1.23      matt 		}
   1495  1.12    nonaka 		v = *(uint32_t *)data;
   1496  1.11      matt 		v = htole32(v);
   1497  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1498  1.11      matt 		data += 4;
   1499  1.11      matt 		datalen -= 4;
   1500  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1501  1.23      matt 		count--;
   1502  1.11      matt 	}
   1503  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1504  1.23      matt 		if (count == 0) {
   1505  1.23      matt 			sdmmc_delay(10);
   1506  1.23      matt 		}
   1507  1.12    nonaka 		v = *(uint32_t *)data;
   1508  1.11      matt 		v = htole32(v);
   1509  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1510  1.11      matt 	}
   1511  1.11      matt }
   1512  1.11      matt 
   1513   1.1    nonaka /* Prepare for another command. */
   1514   1.1    nonaka static int
   1515   1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1516   1.1    nonaka {
   1517   1.1    nonaka 	int timo;
   1518   1.1    nonaka 
   1519   1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1520   1.1    nonaka 
   1521  1.35  riastrad 	/* Request the reset.  */
   1522   1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1523  1.35  riastrad 
   1524  1.35  riastrad 	/*
   1525  1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   1526  1.35  riastrad 	 * acknowledge the reset.
   1527  1.35  riastrad 	 */
   1528  1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1529  1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1530  1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   1531  1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1532  1.35  riastrad 				break;
   1533  1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   1534  1.35  riastrad 			sdmmc_delay(1);
   1535  1.35  riastrad 		}
   1536  1.35  riastrad 		if (timo == 0)
   1537  1.35  riastrad 			return ETIMEDOUT;
   1538  1.35  riastrad 	}
   1539  1.35  riastrad 
   1540  1.35  riastrad 	/*
   1541  1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   1542  1.35  riastrad 	 * the reset has completed.
   1543  1.35  riastrad 	 */
   1544   1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   1545   1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1546   1.1    nonaka 			break;
   1547   1.1    nonaka 		sdmmc_delay(10000);
   1548   1.1    nonaka 	}
   1549   1.1    nonaka 	if (timo == 0) {
   1550   1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1551   1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1552   1.1    nonaka 		return ETIMEDOUT;
   1553   1.1    nonaka 	}
   1554   1.1    nonaka 
   1555  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1556  1.11      matt 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1557  1.11      matt 	}
   1558  1.11      matt 
   1559   1.1    nonaka 	return 0;
   1560   1.1    nonaka }
   1561   1.1    nonaka 
   1562   1.1    nonaka static int
   1563   1.1    nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1564   1.1    nonaka {
   1565   1.1    nonaka 	int status;
   1566   1.1    nonaka 
   1567   1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   1568   1.1    nonaka 
   1569   1.1    nonaka 	mutex_enter(&hp->intr_mtx);
   1570   1.1    nonaka 	status = hp->intr_status & mask;
   1571   1.1    nonaka 	while (status == 0) {
   1572   1.1    nonaka 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1573   1.1    nonaka 		    == EWOULDBLOCK) {
   1574   1.1    nonaka 			status |= SDHC_ERROR_INTERRUPT;
   1575   1.1    nonaka 			break;
   1576   1.1    nonaka 		}
   1577   1.1    nonaka 		status = hp->intr_status & mask;
   1578   1.1    nonaka 	}
   1579   1.1    nonaka 	hp->intr_status &= ~status;
   1580   1.1    nonaka 
   1581   1.1    nonaka 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1582   1.1    nonaka 	    hp->intr_error_status));
   1583   1.1    nonaka 
   1584   1.1    nonaka 	/* Command timeout has higher priority than command complete. */
   1585  1.11      matt 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1586   1.1    nonaka 		hp->intr_error_status = 0;
   1587  1.11      matt 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1588  1.11      matt 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1589  1.11      matt 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1590  1.11      matt 		}
   1591   1.1    nonaka 		status = 0;
   1592   1.1    nonaka 	}
   1593   1.1    nonaka 	mutex_exit(&hp->intr_mtx);
   1594   1.1    nonaka 
   1595   1.1    nonaka 	return status;
   1596   1.1    nonaka }
   1597   1.1    nonaka 
   1598   1.1    nonaka /*
   1599   1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1600   1.1    nonaka  */
   1601   1.1    nonaka int
   1602   1.1    nonaka sdhc_intr(void *arg)
   1603   1.1    nonaka {
   1604   1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1605   1.1    nonaka 	struct sdhc_host *hp;
   1606   1.1    nonaka 	int done = 0;
   1607   1.1    nonaka 	uint16_t status;
   1608   1.1    nonaka 	uint16_t error;
   1609   1.1    nonaka 
   1610   1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   1611  1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1612   1.1    nonaka 		hp = sc->sc_host[host];
   1613   1.1    nonaka 		if (hp == NULL)
   1614   1.1    nonaka 			continue;
   1615   1.1    nonaka 
   1616  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1617  1.11      matt 			/* Find out which interrupts are pending. */
   1618  1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1619  1.11      matt 			status = xstatus;
   1620  1.11      matt 			error = xstatus >> 16;
   1621  1.22      matt 			if (error)
   1622  1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   1623  1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1624  1.11      matt 				continue; /* no interrupt for us */
   1625  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1626  1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1627  1.11      matt 		} else {
   1628  1.11      matt 			/* Find out which interrupts are pending. */
   1629  1.11      matt 			error = 0;
   1630  1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1631  1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1632  1.11      matt 				continue; /* no interrupt for us */
   1633  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1634  1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1635  1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1636  1.11      matt 				/* Acknowledge error interrupts. */
   1637  1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1638  1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1639  1.11      matt 			}
   1640  1.11      matt 		}
   1641  1.11      matt 
   1642  1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1643  1.11      matt 		    status, error));
   1644   1.1    nonaka 
   1645  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1646  1.29      matt 
   1647   1.1    nonaka 		/* Claim this interrupt. */
   1648   1.1    nonaka 		done = 1;
   1649   1.1    nonaka 
   1650   1.1    nonaka 		/*
   1651   1.1    nonaka 		 * Service error interrupts.
   1652   1.1    nonaka 		 */
   1653  1.11      matt 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1654  1.11      matt 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1655  1.11      matt 			hp->intr_error_status |= error;
   1656  1.11      matt 			hp->intr_status |= status;
   1657  1.11      matt 			cv_broadcast(&hp->intr_cv);
   1658   1.1    nonaka 		}
   1659   1.1    nonaka 
   1660   1.1    nonaka 		/*
   1661   1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   1662   1.1    nonaka 		 */
   1663   1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1664   1.1    nonaka 			sdmmc_needs_discover(hp->sdmmc);
   1665  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1666  1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1667  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1668  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1669  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1670  1.11      matt 			}
   1671   1.9      matt 		}
   1672   1.1    nonaka 
   1673   1.1    nonaka 		/*
   1674   1.1    nonaka 		 * Wake up the blocking process to service command
   1675   1.1    nonaka 		 * related interrupt(s).
   1676   1.1    nonaka 		 */
   1677  1.11      matt 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1678  1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1679   1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1680   1.1    nonaka 			hp->intr_status |= status;
   1681  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1682  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1683  1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1684  1.11      matt 			}
   1685   1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   1686   1.1    nonaka 		}
   1687   1.1    nonaka 
   1688   1.1    nonaka 		/*
   1689   1.1    nonaka 		 * Service SD card interrupts.
   1690   1.1    nonaka 		 */
   1691  1.11      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1692  1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1693   1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1694   1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1695   1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   1696   1.1    nonaka 		}
   1697  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1698   1.1    nonaka 	}
   1699   1.1    nonaka 
   1700   1.1    nonaka 	return done;
   1701   1.1    nonaka }
   1702   1.1    nonaka 
   1703   1.1    nonaka #ifdef SDHC_DEBUG
   1704   1.1    nonaka void
   1705   1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   1706   1.1    nonaka {
   1707   1.1    nonaka 
   1708   1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1709   1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1710  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1711  1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1712  1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   1713   1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1714   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1715   1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1716   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1717   1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1718   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1719   1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1720   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1721   1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1722   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1723   1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1724   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1725   1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1726   1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   1727   1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1728   1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1729   1.1    nonaka }
   1730   1.1    nonaka #endif
   1731