sdhc.c revision 1.40 1 1.40 jakllsch /* $NetBSD: sdhc.c,v 1.40 2012/12/24 06:09:50 jakllsch Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.40 jakllsch __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.40 2012/12/24 06:09:50 jakllsch Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/kthread.h>
36 1.1 nonaka #include <sys/malloc.h>
37 1.1 nonaka #include <sys/systm.h>
38 1.1 nonaka #include <sys/mutex.h>
39 1.1 nonaka #include <sys/condvar.h>
40 1.1 nonaka
41 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
42 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
45 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
46 1.1 nonaka
47 1.1 nonaka #ifdef SDHC_DEBUG
48 1.1 nonaka int sdhcdebug = 1;
49 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
51 1.1 nonaka #else
52 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
53 1.1 nonaka #endif
54 1.1 nonaka
55 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
56 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
57 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
58 1.1 nonaka #define SDHC_DMA_TIMEOUT hz
59 1.1 nonaka
60 1.1 nonaka struct sdhc_host {
61 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
62 1.1 nonaka
63 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
64 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
65 1.36 jakllsch bus_size_t ios; /* host register space size */
66 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
67 1.1 nonaka
68 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
69 1.1 nonaka
70 1.1 nonaka struct kmutex host_mtx;
71 1.1 nonaka
72 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
73 1.1 nonaka int maxblklen; /* maximum block length */
74 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
75 1.1 nonaka
76 1.1 nonaka uint8_t regs[14]; /* host controller state */
77 1.1 nonaka
78 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
79 1.1 nonaka uint16_t intr_error_status; /* soft error status */
80 1.1 nonaka struct kmutex intr_mtx;
81 1.1 nonaka struct kcondvar intr_cv;
82 1.1 nonaka
83 1.12 nonaka int specver; /* spec. version */
84 1.12 nonaka
85 1.1 nonaka uint32_t flags; /* flags for this host */
86 1.1 nonaka #define SHF_USE_DMA 0x0001
87 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
88 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
89 1.1 nonaka };
90 1.1 nonaka
91 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
92 1.17 jakllsch #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
93 1.1 nonaka
94 1.11 matt static uint8_t
95 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
96 1.11 matt {
97 1.12 nonaka
98 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
99 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
100 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
101 1.11 matt }
102 1.11 matt
103 1.11 matt static uint16_t
104 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
105 1.11 matt {
106 1.12 nonaka
107 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
108 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
109 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
110 1.11 matt }
111 1.11 matt
112 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
113 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
114 1.11 matt #define HREAD4(hp, reg) \
115 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
116 1.11 matt
117 1.11 matt
118 1.11 matt static void
119 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
120 1.11 matt {
121 1.12 nonaka
122 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
123 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
124 1.11 matt } else {
125 1.11 matt const size_t shift = 8 * (o & 3);
126 1.11 matt o &= -4;
127 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
128 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
129 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
130 1.11 matt }
131 1.11 matt }
132 1.11 matt
133 1.11 matt static void
134 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
135 1.11 matt {
136 1.12 nonaka
137 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
138 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
139 1.11 matt } else {
140 1.11 matt const size_t shift = 8 * (o & 2);
141 1.11 matt o &= -4;
142 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
143 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
144 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
145 1.11 matt }
146 1.11 matt }
147 1.11 matt
148 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
149 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
150 1.1 nonaka #define HWRITE4(hp, reg, val) \
151 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
152 1.11 matt
153 1.1 nonaka #define HCLR1(hp, reg, bits) \
154 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
155 1.1 nonaka #define HCLR2(hp, reg, bits) \
156 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
157 1.11 matt #define HCLR4(hp, reg, bits) \
158 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
159 1.1 nonaka #define HSET1(hp, reg, bits) \
160 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
161 1.1 nonaka #define HSET2(hp, reg, bits) \
162 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
163 1.11 matt #define HSET4(hp, reg, bits) \
164 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
165 1.1 nonaka
166 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
167 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
168 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
169 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
170 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
171 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
172 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
173 1.1 nonaka static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
174 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
175 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
176 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
177 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
178 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
179 1.1 nonaka struct sdmmc_command *);
180 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
181 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
182 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
183 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
184 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
185 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
186 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
187 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
190 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
191 1.11 matt
192 1.1 nonaka
193 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
194 1.1 nonaka /* host controller reset */
195 1.1 nonaka sdhc_host_reset,
196 1.1 nonaka
197 1.1 nonaka /* host controller capabilities */
198 1.1 nonaka sdhc_host_ocr,
199 1.1 nonaka sdhc_host_maxblklen,
200 1.1 nonaka
201 1.1 nonaka /* card detection */
202 1.1 nonaka sdhc_card_detect,
203 1.1 nonaka
204 1.1 nonaka /* write protect */
205 1.1 nonaka sdhc_write_protect,
206 1.1 nonaka
207 1.1 nonaka /* bus power, clock frequency and width */
208 1.1 nonaka sdhc_bus_power,
209 1.1 nonaka sdhc_bus_clock,
210 1.1 nonaka sdhc_bus_width,
211 1.8 kiyohara sdhc_bus_rod,
212 1.1 nonaka
213 1.1 nonaka /* command execution */
214 1.1 nonaka sdhc_exec_command,
215 1.1 nonaka
216 1.1 nonaka /* card interrupt */
217 1.1 nonaka sdhc_card_enable_intr,
218 1.1 nonaka sdhc_card_intr_ack
219 1.1 nonaka };
220 1.1 nonaka
221 1.17 jakllsch static int
222 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
223 1.17 jakllsch {
224 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
225 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
226 1.17 jakllsch
227 1.17 jakllsch if (pnp) {
228 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
229 1.17 jakllsch }
230 1.17 jakllsch aprint_normal(" slot %d", HDEVINST(hp));
231 1.17 jakllsch
232 1.17 jakllsch return UNCONF;
233 1.17 jakllsch }
234 1.17 jakllsch
235 1.1 nonaka /*
236 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
237 1.1 nonaka * host controller standard register set. (1.3)
238 1.1 nonaka */
239 1.1 nonaka int
240 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
241 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
242 1.1 nonaka {
243 1.1 nonaka struct sdmmcbus_attach_args saa;
244 1.1 nonaka struct sdhc_host *hp;
245 1.1 nonaka uint32_t caps;
246 1.1 nonaka uint16_t sdhcver;
247 1.1 nonaka
248 1.33 riastrad /* Allocate one more host structure. */
249 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
250 1.33 riastrad if (hp == NULL) {
251 1.33 riastrad aprint_error_dev(sc->sc_dev,
252 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
253 1.33 riastrad goto err1;
254 1.33 riastrad }
255 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
256 1.33 riastrad
257 1.33 riastrad /* Fill in the new host structure. */
258 1.33 riastrad hp->sc = sc;
259 1.33 riastrad hp->iot = iot;
260 1.33 riastrad hp->ioh = ioh;
261 1.36 jakllsch hp->ios = iosize;
262 1.33 riastrad hp->dmat = sc->sc_dmat;
263 1.33 riastrad
264 1.33 riastrad mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
265 1.33 riastrad mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
266 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
267 1.33 riastrad
268 1.33 riastrad sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
269 1.12 nonaka aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
270 1.33 riastrad hp->specver = SDHC_SPEC_VERSION(sdhcver);
271 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
272 1.12 nonaka case SDHC_SPEC_VERS_100:
273 1.12 nonaka aprint_normal("1.0");
274 1.12 nonaka break;
275 1.12 nonaka
276 1.12 nonaka case SDHC_SPEC_VERS_200:
277 1.12 nonaka aprint_normal("2.0");
278 1.1 nonaka break;
279 1.1 nonaka
280 1.12 nonaka case SDHC_SPEC_VERS_300:
281 1.12 nonaka aprint_normal("3.0");
282 1.9 matt break;
283 1.9 matt
284 1.1 nonaka default:
285 1.12 nonaka aprint_normal("unknown version(0x%x)",
286 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
287 1.1 nonaka break;
288 1.1 nonaka }
289 1.12 nonaka aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
290 1.1 nonaka
291 1.1 nonaka /*
292 1.3 uebayasi * Reset the host controller and enable interrupts.
293 1.1 nonaka */
294 1.1 nonaka (void)sdhc_host_reset(hp);
295 1.1 nonaka
296 1.1 nonaka /* Determine host capabilities. */
297 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
298 1.24 skrll caps = sc->sc_caps;
299 1.24 skrll } else {
300 1.24 skrll mutex_enter(&hp->host_mtx);
301 1.24 skrll caps = HREAD4(hp, SDHC_CAPABILITIES);
302 1.24 skrll mutex_exit(&hp->host_mtx);
303 1.24 skrll }
304 1.1 nonaka
305 1.1 nonaka /* Use DMA if the host system and the controller support it. */
306 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
307 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
308 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
309 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
310 1.1 nonaka aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
311 1.1 nonaka }
312 1.1 nonaka
313 1.1 nonaka /*
314 1.1 nonaka * Determine the base clock frequency. (2.2.24)
315 1.1 nonaka */
316 1.30 matt if (hp->specver == SDHC_SPEC_VERS_300) {
317 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
318 1.30 matt } else {
319 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
320 1.30 matt }
321 1.1 nonaka if (hp->clkbase == 0) {
322 1.9 matt if (sc->sc_clkbase == 0) {
323 1.9 matt /* The attachment driver must tell us. */
324 1.12 nonaka aprint_error_dev(sc->sc_dev,
325 1.12 nonaka "unknown base clock frequency\n");
326 1.9 matt goto err;
327 1.9 matt }
328 1.9 matt hp->clkbase = sc->sc_clkbase;
329 1.9 matt }
330 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
331 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
332 1.1 nonaka aprint_error_dev(sc->sc_dev,
333 1.1 nonaka "base clock frequency out of range: %u MHz\n",
334 1.1 nonaka hp->clkbase / 1000);
335 1.1 nonaka goto err;
336 1.1 nonaka }
337 1.1 nonaka DPRINTF(1,("%s: base clock frequency %u MHz\n",
338 1.1 nonaka device_xname(sc->sc_dev), hp->clkbase / 1000));
339 1.1 nonaka
340 1.1 nonaka /*
341 1.1 nonaka * XXX Set the data timeout counter value according to
342 1.1 nonaka * capabilities. (2.2.15)
343 1.1 nonaka */
344 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
345 1.29 matt #if 1
346 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
347 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
348 1.11 matt #endif
349 1.1 nonaka
350 1.1 nonaka /*
351 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
352 1.1 nonaka */
353 1.40 jakllsch if (ISSET(caps, SDHC_EMBEDDED_SLOT) &&
354 1.40 jakllsch ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
355 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
356 1.11 matt }
357 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
358 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
359 1.11 matt }
360 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
361 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
362 1.11 matt }
363 1.1 nonaka
364 1.1 nonaka /*
365 1.1 nonaka * Determine the maximum block length supported by the host
366 1.1 nonaka * controller. (2.2.24)
367 1.1 nonaka */
368 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
369 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
370 1.1 nonaka hp->maxblklen = 512;
371 1.1 nonaka break;
372 1.1 nonaka
373 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
374 1.1 nonaka hp->maxblklen = 1024;
375 1.1 nonaka break;
376 1.1 nonaka
377 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
378 1.1 nonaka hp->maxblklen = 2048;
379 1.1 nonaka break;
380 1.1 nonaka
381 1.9 matt case SDHC_MAX_BLK_LEN_4096:
382 1.9 matt hp->maxblklen = 4096;
383 1.9 matt break;
384 1.9 matt
385 1.1 nonaka default:
386 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
387 1.1 nonaka goto err;
388 1.1 nonaka }
389 1.1 nonaka DPRINTF(1, ("%s: max block length %u byte%s\n",
390 1.1 nonaka device_xname(sc->sc_dev), hp->maxblklen,
391 1.1 nonaka hp->maxblklen > 1 ? "s" : ""));
392 1.1 nonaka
393 1.1 nonaka /*
394 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
395 1.1 nonaka * not invoke any chipset functions before it is attached.)
396 1.1 nonaka */
397 1.1 nonaka memset(&saa, 0, sizeof(saa));
398 1.1 nonaka saa.saa_busname = "sdmmc";
399 1.1 nonaka saa.saa_sct = &sdhc_functions;
400 1.1 nonaka saa.saa_sch = hp;
401 1.1 nonaka saa.saa_dmat = hp->dmat;
402 1.1 nonaka saa.saa_clkmax = hp->clkbase;
403 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
404 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
405 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
406 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
407 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
408 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
409 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
410 1.38 jakllsch else if (hp->specver == SDHC_SPEC_VERS_300)
411 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
412 1.38 jakllsch else
413 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
414 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
415 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
416 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
417 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
418 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
419 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
420 1.39 jakllsch saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
421 1.26 matt }
422 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
423 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
424 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
425 1.1 nonaka
426 1.1 nonaka return 0;
427 1.1 nonaka
428 1.1 nonaka err:
429 1.1 nonaka cv_destroy(&hp->intr_cv);
430 1.1 nonaka mutex_destroy(&hp->intr_mtx);
431 1.1 nonaka mutex_destroy(&hp->host_mtx);
432 1.1 nonaka free(hp, M_DEVBUF);
433 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
434 1.1 nonaka err1:
435 1.1 nonaka return 1;
436 1.1 nonaka }
437 1.1 nonaka
438 1.7 nonaka int
439 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
440 1.7 nonaka {
441 1.36 jakllsch struct sdhc_host *hp;
442 1.7 nonaka int rv = 0;
443 1.7 nonaka
444 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
445 1.36 jakllsch hp = sc->sc_host[n];
446 1.36 jakllsch if (hp == NULL)
447 1.36 jakllsch continue;
448 1.36 jakllsch if (hp->sdmmc != NULL) {
449 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
450 1.36 jakllsch if (rv)
451 1.36 jakllsch break;
452 1.36 jakllsch hp->sdmmc = NULL;
453 1.36 jakllsch }
454 1.36 jakllsch /* disable interrupts */
455 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
456 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
457 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
458 1.36 jakllsch } else {
459 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
460 1.36 jakllsch }
461 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
462 1.36 jakllsch }
463 1.36 jakllsch cv_destroy(&hp->intr_cv);
464 1.36 jakllsch mutex_destroy(&hp->intr_mtx);
465 1.36 jakllsch mutex_destroy(&hp->host_mtx);
466 1.36 jakllsch if (hp->ios > 0) {
467 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
468 1.36 jakllsch hp->ios = 0;
469 1.36 jakllsch }
470 1.36 jakllsch free(hp, M_DEVBUF);
471 1.36 jakllsch sc->sc_host[n] = NULL;
472 1.36 jakllsch }
473 1.7 nonaka
474 1.7 nonaka return rv;
475 1.7 nonaka }
476 1.7 nonaka
477 1.1 nonaka bool
478 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
479 1.1 nonaka {
480 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
481 1.1 nonaka struct sdhc_host *hp;
482 1.12 nonaka size_t i;
483 1.1 nonaka
484 1.1 nonaka /* XXX poll for command completion or suspend command
485 1.1 nonaka * in progress */
486 1.1 nonaka
487 1.1 nonaka /* Save the host controller state. */
488 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
489 1.1 nonaka hp = sc->sc_host[n];
490 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
491 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
492 1.11 matt uint32_t v = HREAD4(hp, i);
493 1.12 nonaka hp->regs[i + 0] = (v >> 0);
494 1.12 nonaka hp->regs[i + 1] = (v >> 8);
495 1.13 bouyer if (i + 3 < sizeof hp->regs) {
496 1.13 bouyer hp->regs[i + 2] = (v >> 16);
497 1.13 bouyer hp->regs[i + 3] = (v >> 24);
498 1.13 bouyer }
499 1.11 matt }
500 1.11 matt } else {
501 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
502 1.11 matt hp->regs[i] = HREAD1(hp, i);
503 1.11 matt }
504 1.11 matt }
505 1.1 nonaka }
506 1.1 nonaka return true;
507 1.1 nonaka }
508 1.1 nonaka
509 1.1 nonaka bool
510 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
511 1.1 nonaka {
512 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
513 1.1 nonaka struct sdhc_host *hp;
514 1.12 nonaka size_t i;
515 1.1 nonaka
516 1.1 nonaka /* Restore the host controller state. */
517 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
518 1.1 nonaka hp = sc->sc_host[n];
519 1.1 nonaka (void)sdhc_host_reset(hp);
520 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
521 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
522 1.13 bouyer if (i + 3 < sizeof hp->regs) {
523 1.13 bouyer HWRITE4(hp, i,
524 1.13 bouyer (hp->regs[i + 0] << 0)
525 1.13 bouyer | (hp->regs[i + 1] << 8)
526 1.13 bouyer | (hp->regs[i + 2] << 16)
527 1.13 bouyer | (hp->regs[i + 3] << 24));
528 1.13 bouyer } else {
529 1.13 bouyer HWRITE4(hp, i,
530 1.13 bouyer (hp->regs[i + 0] << 0)
531 1.13 bouyer | (hp->regs[i + 1] << 8));
532 1.13 bouyer }
533 1.11 matt }
534 1.11 matt } else {
535 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
536 1.11 matt HWRITE1(hp, i, hp->regs[i]);
537 1.11 matt }
538 1.11 matt }
539 1.1 nonaka }
540 1.1 nonaka return true;
541 1.1 nonaka }
542 1.1 nonaka
543 1.1 nonaka bool
544 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
545 1.1 nonaka {
546 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
547 1.1 nonaka struct sdhc_host *hp;
548 1.1 nonaka
549 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
550 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
551 1.1 nonaka hp = sc->sc_host[i];
552 1.1 nonaka (void)sdhc_host_reset(hp);
553 1.1 nonaka }
554 1.1 nonaka return true;
555 1.1 nonaka }
556 1.1 nonaka
557 1.1 nonaka /*
558 1.1 nonaka * Reset the host controller. Called during initialization, when
559 1.1 nonaka * cards are removed, upon resume, and during error recovery.
560 1.1 nonaka */
561 1.1 nonaka static int
562 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
563 1.1 nonaka {
564 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
565 1.11 matt uint32_t sdhcimask;
566 1.1 nonaka int error;
567 1.1 nonaka
568 1.1 nonaka /* Don't lock. */
569 1.1 nonaka
570 1.1 nonaka /* Disable all interrupts. */
571 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
572 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
573 1.11 matt } else {
574 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
575 1.11 matt }
576 1.1 nonaka
577 1.1 nonaka /*
578 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
579 1.1 nonaka * the controller to clear the reset bit.
580 1.1 nonaka */
581 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
582 1.1 nonaka if (error)
583 1.1 nonaka goto out;
584 1.1 nonaka
585 1.1 nonaka /* Set data timeout counter value to max for now. */
586 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
587 1.29 matt #if 1
588 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
589 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
590 1.11 matt #endif
591 1.1 nonaka
592 1.1 nonaka /* Enable interrupts. */
593 1.29 matt mutex_enter(&hp->intr_mtx);
594 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
595 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
596 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
597 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
598 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
599 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
600 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
601 1.11 matt sdhcimask ^=
602 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
603 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
604 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
605 1.11 matt } else {
606 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
607 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
608 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
609 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
610 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
611 1.11 matt }
612 1.29 matt mutex_exit(&hp->intr_mtx);
613 1.1 nonaka
614 1.1 nonaka out:
615 1.1 nonaka return error;
616 1.1 nonaka }
617 1.1 nonaka
618 1.1 nonaka static int
619 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
620 1.1 nonaka {
621 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
622 1.1 nonaka int error;
623 1.1 nonaka
624 1.1 nonaka mutex_enter(&hp->host_mtx);
625 1.1 nonaka error = sdhc_host_reset1(sch);
626 1.1 nonaka mutex_exit(&hp->host_mtx);
627 1.1 nonaka
628 1.1 nonaka return error;
629 1.1 nonaka }
630 1.1 nonaka
631 1.1 nonaka static uint32_t
632 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
633 1.1 nonaka {
634 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
635 1.1 nonaka
636 1.1 nonaka return hp->ocr;
637 1.1 nonaka }
638 1.1 nonaka
639 1.1 nonaka static int
640 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
641 1.1 nonaka {
642 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
643 1.1 nonaka
644 1.1 nonaka return hp->maxblklen;
645 1.1 nonaka }
646 1.1 nonaka
647 1.1 nonaka /*
648 1.1 nonaka * Return non-zero if the card is currently inserted.
649 1.1 nonaka */
650 1.1 nonaka static int
651 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
652 1.1 nonaka {
653 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
654 1.1 nonaka int r;
655 1.1 nonaka
656 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
657 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
658 1.32 kiyohara
659 1.1 nonaka mutex_enter(&hp->host_mtx);
660 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
661 1.1 nonaka mutex_exit(&hp->host_mtx);
662 1.1 nonaka
663 1.11 matt return r ? 1 : 0;
664 1.1 nonaka }
665 1.1 nonaka
666 1.1 nonaka /*
667 1.1 nonaka * Return non-zero if the card is currently write-protected.
668 1.1 nonaka */
669 1.1 nonaka static int
670 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
671 1.1 nonaka {
672 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
673 1.1 nonaka int r;
674 1.1 nonaka
675 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
676 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
677 1.32 kiyohara
678 1.1 nonaka mutex_enter(&hp->host_mtx);
679 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
680 1.1 nonaka mutex_exit(&hp->host_mtx);
681 1.1 nonaka
682 1.12 nonaka return r ? 0 : 1;
683 1.1 nonaka }
684 1.1 nonaka
685 1.1 nonaka /*
686 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
687 1.1 nonaka * Return zero on success.
688 1.1 nonaka */
689 1.1 nonaka static int
690 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
691 1.1 nonaka {
692 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
693 1.1 nonaka uint8_t vdd;
694 1.1 nonaka int error = 0;
695 1.32 kiyohara const uint32_t pcmask =
696 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
697 1.1 nonaka
698 1.1 nonaka mutex_enter(&hp->host_mtx);
699 1.1 nonaka
700 1.1 nonaka /*
701 1.1 nonaka * Disable bus power before voltage change.
702 1.1 nonaka */
703 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
704 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
705 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
706 1.1 nonaka
707 1.1 nonaka /* If power is disabled, reset the host and return now. */
708 1.1 nonaka if (ocr == 0) {
709 1.1 nonaka (void)sdhc_host_reset1(hp);
710 1.1 nonaka goto out;
711 1.1 nonaka }
712 1.1 nonaka
713 1.1 nonaka /*
714 1.1 nonaka * Select the lowest voltage according to capabilities.
715 1.1 nonaka */
716 1.1 nonaka ocr &= hp->ocr;
717 1.11 matt if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
718 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
719 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
720 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
721 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
722 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
723 1.11 matt } else {
724 1.1 nonaka /* Unsupported voltage level requested. */
725 1.1 nonaka error = EINVAL;
726 1.1 nonaka goto out;
727 1.1 nonaka }
728 1.1 nonaka
729 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
730 1.11 matt /*
731 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
732 1.11 matt * voltage ramp until power rises.
733 1.11 matt */
734 1.11 matt HWRITE1(hp, SDHC_POWER_CTL,
735 1.32 kiyohara HREAD1(hp, SDHC_POWER_CTL) & pcmask);
736 1.32 kiyohara sdmmc_delay(1);
737 1.32 kiyohara HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
738 1.32 kiyohara sdmmc_delay(1);
739 1.32 kiyohara HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
740 1.11 matt sdmmc_delay(10000);
741 1.1 nonaka
742 1.11 matt /*
743 1.11 matt * The host system may not power the bus due to battery low,
744 1.11 matt * etc. In that case, the host controller should clear the
745 1.11 matt * bus power bit.
746 1.11 matt */
747 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
748 1.11 matt error = ENXIO;
749 1.11 matt goto out;
750 1.11 matt }
751 1.1 nonaka }
752 1.1 nonaka
753 1.1 nonaka out:
754 1.1 nonaka mutex_exit(&hp->host_mtx);
755 1.1 nonaka
756 1.1 nonaka return error;
757 1.1 nonaka }
758 1.1 nonaka
759 1.1 nonaka /*
760 1.1 nonaka * Return the smallest possible base clock frequency divisor value
761 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
762 1.1 nonaka */
763 1.11 matt static bool
764 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
765 1.1 nonaka {
766 1.11 matt u_int div;
767 1.1 nonaka
768 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
769 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
770 1.11 matt if ((hp->clkbase / div) <= freq) {
771 1.11 matt *divp = SDHC_SDCLK_CGM
772 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
773 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
774 1.18 jakllsch //freq = hp->clkbase / div;
775 1.11 matt return true;
776 1.11 matt }
777 1.11 matt }
778 1.11 matt /* No divisor found. */
779 1.11 matt return false;
780 1.11 matt }
781 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
782 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
783 1.11 matt u_int roundup = dvs & 1;
784 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
785 1.11 matt if (dvs + roundup <= 16) {
786 1.11 matt dvs += roundup - 1;
787 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
788 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
789 1.11 matt DPRINTF(2,
790 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
791 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
792 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
793 1.11 matt return true;
794 1.9 matt }
795 1.11 matt /*
796 1.11 matt * If we drop bits, we need to round up the divisor.
797 1.11 matt */
798 1.11 matt roundup |= dvs & 1;
799 1.9 matt }
800 1.18 jakllsch /* No divisor found. */
801 1.18 jakllsch return false;
802 1.38 jakllsch }
803 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
804 1.38 jakllsch div = howmany(hp->clkbase, freq);
805 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
806 1.38 jakllsch return false;
807 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
808 1.38 jakllsch //freq = hp->clkbase / div;
809 1.38 jakllsch return true;
810 1.38 jakllsch }
811 1.38 jakllsch if (hp->specver == SDHC_SPEC_VERS_300) {
812 1.38 jakllsch div = howmany(hp->clkbase, freq);
813 1.38 jakllsch if (div > 0x3ff)
814 1.38 jakllsch return false;
815 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
816 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
817 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
818 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
819 1.38 jakllsch //freq = hp->clkbase / div;
820 1.38 jakllsch return true;
821 1.9 matt } else {
822 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
823 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
824 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
825 1.38 jakllsch //freq = hp->clkbase / div;
826 1.38 jakllsch return true;
827 1.38 jakllsch }
828 1.38 jakllsch }
829 1.38 jakllsch /* No divisor found. */
830 1.38 jakllsch return false;
831 1.9 matt }
832 1.1 nonaka /* No divisor found. */
833 1.11 matt return false;
834 1.1 nonaka }
835 1.1 nonaka
836 1.1 nonaka /*
837 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
838 1.1 nonaka * Return zero on success.
839 1.1 nonaka */
840 1.1 nonaka static int
841 1.1 nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
842 1.1 nonaka {
843 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
844 1.11 matt u_int div;
845 1.11 matt u_int timo;
846 1.32 kiyohara int16_t reg;
847 1.1 nonaka int error = 0;
848 1.2 cegger #ifdef DIAGNOSTIC
849 1.12 nonaka bool present;
850 1.1 nonaka
851 1.1 nonaka mutex_enter(&hp->host_mtx);
852 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
853 1.2 cegger mutex_exit(&hp->host_mtx);
854 1.1 nonaka
855 1.1 nonaka /* Must not stop the clock if commands are in progress. */
856 1.12 nonaka if (present && sdhc_card_detect(hp)) {
857 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
858 1.26 matt "%s: command in progress\n", __func__);
859 1.12 nonaka }
860 1.1 nonaka #endif
861 1.1 nonaka
862 1.2 cegger mutex_enter(&hp->host_mtx);
863 1.2 cegger
864 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
865 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
866 1.34 matt if (error != 0)
867 1.34 matt goto out;
868 1.34 matt }
869 1.34 matt
870 1.1 nonaka /*
871 1.1 nonaka * Stop SD clock before changing the frequency.
872 1.1 nonaka */
873 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
874 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
875 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
876 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
877 1.11 matt goto out;
878 1.11 matt }
879 1.11 matt } else {
880 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
881 1.11 matt if (freq == SDMMC_SDCLK_OFF)
882 1.11 matt goto out;
883 1.11 matt }
884 1.1 nonaka
885 1.1 nonaka /*
886 1.1 nonaka * Set the minimum base clock frequency divisor.
887 1.1 nonaka */
888 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
889 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
890 1.1 nonaka error = EINVAL;
891 1.1 nonaka goto out;
892 1.1 nonaka }
893 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
894 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
895 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
896 1.11 matt } else {
897 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
898 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
899 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
900 1.11 matt }
901 1.1 nonaka
902 1.1 nonaka /*
903 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
904 1.1 nonaka */
905 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
906 1.11 matt sdmmc_delay(10000);
907 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
908 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
909 1.11 matt } else {
910 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
911 1.11 matt for (timo = 1000; timo > 0; timo--) {
912 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
913 1.12 nonaka SDHC_INTCLK_STABLE))
914 1.11 matt break;
915 1.11 matt sdmmc_delay(10);
916 1.11 matt }
917 1.11 matt if (timo == 0) {
918 1.11 matt error = ETIMEDOUT;
919 1.11 matt goto out;
920 1.11 matt }
921 1.1 nonaka }
922 1.1 nonaka
923 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
924 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
925 1.11 matt /*
926 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
927 1.11 matt * So delay for that time + slop and then
928 1.11 matt * check a few times for completion.
929 1.11 matt */
930 1.11 matt sdmmc_delay(210);
931 1.11 matt for (timo = 10; timo > 0; timo--) {
932 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
933 1.11 matt SDHC_INIT_ACTIVE))
934 1.11 matt break;
935 1.11 matt sdmmc_delay(10);
936 1.11 matt }
937 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
938 1.12 nonaka
939 1.11 matt /*
940 1.11 matt * Enable SD clock.
941 1.11 matt */
942 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
943 1.11 matt } else {
944 1.11 matt /*
945 1.11 matt * Enable SD clock.
946 1.11 matt */
947 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
948 1.1 nonaka
949 1.11 matt if (freq > 25000)
950 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
951 1.11 matt else
952 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
953 1.11 matt }
954 1.8 kiyohara
955 1.1 nonaka out:
956 1.1 nonaka mutex_exit(&hp->host_mtx);
957 1.1 nonaka
958 1.1 nonaka return error;
959 1.1 nonaka }
960 1.1 nonaka
961 1.1 nonaka static int
962 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
963 1.1 nonaka {
964 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
965 1.1 nonaka int reg;
966 1.1 nonaka
967 1.1 nonaka switch (width) {
968 1.1 nonaka case 1:
969 1.1 nonaka case 4:
970 1.1 nonaka break;
971 1.1 nonaka
972 1.11 matt case 8:
973 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
974 1.11 matt break;
975 1.11 matt /* FALLTHROUGH */
976 1.1 nonaka default:
977 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
978 1.1 nonaka HDEVNAME(hp), width));
979 1.1 nonaka return 1;
980 1.1 nonaka }
981 1.1 nonaka
982 1.1 nonaka mutex_enter(&hp->host_mtx);
983 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
984 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
985 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
986 1.11 matt if (width == 4)
987 1.11 matt reg |= SDHC_4BIT_MODE;
988 1.11 matt else if (width == 8)
989 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
990 1.11 matt } else {
991 1.11 matt reg &= ~SDHC_4BIT_MODE;
992 1.11 matt if (width == 4)
993 1.11 matt reg |= SDHC_4BIT_MODE;
994 1.11 matt }
995 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
996 1.1 nonaka mutex_exit(&hp->host_mtx);
997 1.1 nonaka
998 1.1 nonaka return 0;
999 1.1 nonaka }
1000 1.1 nonaka
1001 1.8 kiyohara static int
1002 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1003 1.8 kiyohara {
1004 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1005 1.32 kiyohara
1006 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1007 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1008 1.8 kiyohara
1009 1.8 kiyohara return 0;
1010 1.8 kiyohara }
1011 1.8 kiyohara
1012 1.1 nonaka static void
1013 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1014 1.1 nonaka {
1015 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1016 1.1 nonaka
1017 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1018 1.29 matt mutex_enter(&hp->intr_mtx);
1019 1.11 matt if (enable) {
1020 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1021 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1022 1.11 matt } else {
1023 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1024 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1025 1.11 matt }
1026 1.29 matt mutex_exit(&hp->intr_mtx);
1027 1.1 nonaka }
1028 1.1 nonaka }
1029 1.1 nonaka
1030 1.1 nonaka static void
1031 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1032 1.1 nonaka {
1033 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1034 1.1 nonaka
1035 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1036 1.29 matt mutex_enter(&hp->intr_mtx);
1037 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1038 1.29 matt mutex_exit(&hp->intr_mtx);
1039 1.11 matt }
1040 1.1 nonaka }
1041 1.1 nonaka
1042 1.1 nonaka static int
1043 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1044 1.1 nonaka {
1045 1.1 nonaka uint32_t state;
1046 1.1 nonaka int timeout;
1047 1.1 nonaka
1048 1.1 nonaka for (timeout = 10; timeout > 0; timeout--) {
1049 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1050 1.1 nonaka return 0;
1051 1.1 nonaka sdmmc_delay(10000);
1052 1.1 nonaka }
1053 1.1 nonaka DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1054 1.1 nonaka value, state));
1055 1.1 nonaka return ETIMEDOUT;
1056 1.1 nonaka }
1057 1.1 nonaka
1058 1.1 nonaka static void
1059 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1060 1.1 nonaka {
1061 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1062 1.1 nonaka int error;
1063 1.1 nonaka
1064 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1065 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1066 1.29 matt mutex_enter(&hp->intr_mtx);
1067 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1068 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1069 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1070 1.11 matt } else {
1071 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1072 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1073 1.11 matt }
1074 1.29 matt mutex_exit(&hp->intr_mtx);
1075 1.11 matt }
1076 1.11 matt
1077 1.1 nonaka /*
1078 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1079 1.1 nonaka */
1080 1.1 nonaka error = sdhc_start_command(hp, cmd);
1081 1.1 nonaka if (error) {
1082 1.1 nonaka cmd->c_error = error;
1083 1.1 nonaka goto out;
1084 1.1 nonaka }
1085 1.1 nonaka
1086 1.1 nonaka /*
1087 1.1 nonaka * Wait until the command phase is done, or until the command
1088 1.1 nonaka * is marked done for any other reason.
1089 1.1 nonaka */
1090 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1091 1.1 nonaka cmd->c_error = ETIMEDOUT;
1092 1.1 nonaka goto out;
1093 1.1 nonaka }
1094 1.1 nonaka
1095 1.1 nonaka /*
1096 1.1 nonaka * The host controller removes bits [0:7] from the response
1097 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1098 1.1 nonaka * driver (without padding).
1099 1.1 nonaka */
1100 1.1 nonaka mutex_enter(&hp->host_mtx);
1101 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1102 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1103 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1104 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1105 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1106 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1107 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1108 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1109 1.32 kiyohara (cmd->c_resp[1] << 24);
1110 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1111 1.32 kiyohara (cmd->c_resp[2] << 24);
1112 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1113 1.32 kiyohara (cmd->c_resp[3] << 24);
1114 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1115 1.32 kiyohara }
1116 1.1 nonaka }
1117 1.1 nonaka }
1118 1.1 nonaka mutex_exit(&hp->host_mtx);
1119 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1120 1.1 nonaka
1121 1.1 nonaka /*
1122 1.1 nonaka * If the command has data to transfer in any direction,
1123 1.1 nonaka * execute the transfer now.
1124 1.1 nonaka */
1125 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1126 1.1 nonaka sdhc_transfer_data(hp, cmd);
1127 1.1 nonaka
1128 1.1 nonaka out:
1129 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1130 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1131 1.11 matt mutex_enter(&hp->host_mtx);
1132 1.11 matt /* Turn off the LED. */
1133 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1134 1.11 matt mutex_exit(&hp->host_mtx);
1135 1.11 matt }
1136 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1137 1.1 nonaka
1138 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1139 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1140 1.1 nonaka cmd->c_flags, cmd->c_error));
1141 1.1 nonaka }
1142 1.1 nonaka
1143 1.1 nonaka static int
1144 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1145 1.1 nonaka {
1146 1.11 matt struct sdhc_softc * const sc = hp->sc;
1147 1.1 nonaka uint16_t blksize = 0;
1148 1.1 nonaka uint16_t blkcount = 0;
1149 1.1 nonaka uint16_t mode;
1150 1.1 nonaka uint16_t command;
1151 1.1 nonaka int error;
1152 1.1 nonaka
1153 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1154 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1155 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1156 1.1 nonaka
1157 1.1 nonaka /*
1158 1.1 nonaka * The maximum block length for commands should be the minimum
1159 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1160 1.1 nonaka */
1161 1.1 nonaka
1162 1.1 nonaka /* Fragment the data into proper blocks. */
1163 1.1 nonaka if (cmd->c_datalen > 0) {
1164 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1165 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1166 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1167 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1168 1.11 matt aprint_error_dev(sc->sc_dev,
1169 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1170 1.1 nonaka return EINVAL;
1171 1.1 nonaka }
1172 1.1 nonaka }
1173 1.1 nonaka
1174 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1175 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1176 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1177 1.1 nonaka return EINVAL;
1178 1.1 nonaka }
1179 1.1 nonaka
1180 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1181 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1182 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1183 1.1 nonaka mode |= SDHC_READ_MODE;
1184 1.15 jakllsch if (blkcount > 1) {
1185 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1186 1.15 jakllsch /* XXX only for memory commands? */
1187 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1188 1.1 nonaka }
1189 1.7 nonaka if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1190 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1191 1.7 nonaka }
1192 1.1 nonaka
1193 1.1 nonaka /*
1194 1.1 nonaka * Prepare command register value. (2.2.6)
1195 1.1 nonaka */
1196 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1197 1.1 nonaka
1198 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1199 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1200 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1201 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1202 1.1 nonaka if (cmd->c_data != NULL)
1203 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1204 1.1 nonaka
1205 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1206 1.1 nonaka command |= SDHC_NO_RESPONSE;
1207 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1208 1.1 nonaka command |= SDHC_RESP_LEN_136;
1209 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1210 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1211 1.1 nonaka else
1212 1.1 nonaka command |= SDHC_RESP_LEN_48;
1213 1.1 nonaka
1214 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1215 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1216 1.1 nonaka if (error)
1217 1.1 nonaka return error;
1218 1.1 nonaka
1219 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1220 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1221 1.1 nonaka
1222 1.19 jakllsch blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1223 1.19 jakllsch SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1224 1.19 jakllsch
1225 1.1 nonaka mutex_enter(&hp->host_mtx);
1226 1.1 nonaka
1227 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1228 1.11 matt /* Alert the user not to remove the card. */
1229 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1230 1.11 matt }
1231 1.1 nonaka
1232 1.7 nonaka /* Set DMA start address. */
1233 1.7 nonaka if (ISSET(mode, SDHC_DMA_ENABLE))
1234 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1235 1.7 nonaka
1236 1.1 nonaka /*
1237 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1238 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1239 1.1 nonaka */
1240 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1241 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1242 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1243 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1244 1.11 matt } else {
1245 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1246 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1247 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1248 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1249 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1250 1.11 matt }
1251 1.1 nonaka
1252 1.1 nonaka mutex_exit(&hp->host_mtx);
1253 1.1 nonaka
1254 1.1 nonaka return 0;
1255 1.1 nonaka }
1256 1.1 nonaka
1257 1.1 nonaka static void
1258 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1259 1.1 nonaka {
1260 1.1 nonaka int error;
1261 1.1 nonaka
1262 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1263 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1264 1.1 nonaka
1265 1.1 nonaka #ifdef SDHC_DEBUG
1266 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1267 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1268 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1269 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1270 1.1 nonaka "CMD52/53 error response flags %#x\n",
1271 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1272 1.1 nonaka }
1273 1.1 nonaka #endif
1274 1.1 nonaka
1275 1.7 nonaka if (cmd->c_dmamap != NULL)
1276 1.7 nonaka error = sdhc_transfer_data_dma(hp, cmd);
1277 1.7 nonaka else
1278 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1279 1.1 nonaka if (error)
1280 1.1 nonaka cmd->c_error = error;
1281 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1282 1.1 nonaka
1283 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1284 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1285 1.1 nonaka }
1286 1.1 nonaka
1287 1.1 nonaka static int
1288 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1289 1.7 nonaka {
1290 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1291 1.19 jakllsch bus_addr_t posaddr;
1292 1.19 jakllsch bus_addr_t segaddr;
1293 1.19 jakllsch bus_size_t seglen;
1294 1.19 jakllsch u_int seg = 0;
1295 1.7 nonaka int error = 0;
1296 1.19 jakllsch int status;
1297 1.7 nonaka
1298 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1299 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1300 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1301 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1302 1.11 matt
1303 1.7 nonaka for (;;) {
1304 1.19 jakllsch status = sdhc_wait_intr(hp,
1305 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1306 1.19 jakllsch SDHC_DMA_TIMEOUT);
1307 1.19 jakllsch
1308 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1309 1.19 jakllsch break;
1310 1.19 jakllsch }
1311 1.19 jakllsch if (!status) {
1312 1.7 nonaka error = ETIMEDOUT;
1313 1.7 nonaka break;
1314 1.7 nonaka }
1315 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1316 1.19 jakllsch continue;
1317 1.19 jakllsch }
1318 1.19 jakllsch
1319 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1320 1.7 nonaka
1321 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1322 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1323 1.19 jakllsch mutex_enter(&hp->host_mtx);
1324 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1325 1.19 jakllsch mutex_exit(&hp->host_mtx);
1326 1.7 nonaka
1327 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1328 1.37 jakllsch continue;
1329 1.19 jakllsch }
1330 1.19 jakllsch mutex_enter(&hp->host_mtx);
1331 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1332 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1333 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1334 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1335 1.19 jakllsch mutex_exit(&hp->host_mtx);
1336 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1337 1.7 nonaka }
1338 1.7 nonaka
1339 1.7 nonaka return error;
1340 1.7 nonaka }
1341 1.7 nonaka
1342 1.7 nonaka static int
1343 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1344 1.1 nonaka {
1345 1.1 nonaka uint8_t *data = cmd->c_data;
1346 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1347 1.11 matt u_int len, datalen;
1348 1.11 matt u_int imask;
1349 1.11 matt u_int pmask;
1350 1.1 nonaka int error = 0;
1351 1.1 nonaka
1352 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1353 1.11 matt imask = SDHC_BUFFER_READ_READY;
1354 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1355 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1356 1.11 matt pio_func = esdhc_read_data_pio;
1357 1.11 matt } else {
1358 1.11 matt pio_func = sdhc_read_data_pio;
1359 1.11 matt }
1360 1.11 matt } else {
1361 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1362 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1363 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1364 1.11 matt pio_func = esdhc_write_data_pio;
1365 1.11 matt } else {
1366 1.11 matt pio_func = sdhc_write_data_pio;
1367 1.11 matt }
1368 1.11 matt }
1369 1.1 nonaka datalen = cmd->c_datalen;
1370 1.1 nonaka
1371 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1372 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1373 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1374 1.11 matt
1375 1.1 nonaka while (datalen > 0) {
1376 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1377 1.29 matt mutex_enter(&hp->intr_mtx);
1378 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1379 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1380 1.11 matt } else {
1381 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1382 1.11 matt }
1383 1.29 matt mutex_exit(&hp->intr_mtx);
1384 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1385 1.11 matt error = ETIMEDOUT;
1386 1.11 matt break;
1387 1.11 matt }
1388 1.11 matt
1389 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1390 1.11 matt if (error)
1391 1.11 matt break;
1392 1.1 nonaka }
1393 1.1 nonaka
1394 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1395 1.11 matt (*pio_func)(hp, data, len);
1396 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1397 1.11 matt HDEVNAME(hp), len, data));
1398 1.1 nonaka
1399 1.1 nonaka data += len;
1400 1.1 nonaka datalen -= len;
1401 1.1 nonaka }
1402 1.1 nonaka
1403 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1404 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1405 1.1 nonaka error = ETIMEDOUT;
1406 1.1 nonaka
1407 1.1 nonaka return error;
1408 1.1 nonaka }
1409 1.1 nonaka
1410 1.1 nonaka static void
1411 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1412 1.1 nonaka {
1413 1.1 nonaka
1414 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1415 1.1 nonaka while (datalen > 3) {
1416 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1417 1.1 nonaka data += 4;
1418 1.1 nonaka datalen -= 4;
1419 1.1 nonaka }
1420 1.1 nonaka if (datalen > 1) {
1421 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1422 1.1 nonaka data += 2;
1423 1.1 nonaka datalen -= 2;
1424 1.1 nonaka }
1425 1.1 nonaka if (datalen > 0) {
1426 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1427 1.1 nonaka data += 1;
1428 1.1 nonaka datalen -= 1;
1429 1.1 nonaka }
1430 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1431 1.1 nonaka while (datalen > 1) {
1432 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1433 1.1 nonaka data += 2;
1434 1.1 nonaka datalen -= 2;
1435 1.1 nonaka }
1436 1.1 nonaka if (datalen > 0) {
1437 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1438 1.1 nonaka data += 1;
1439 1.1 nonaka datalen -= 1;
1440 1.1 nonaka }
1441 1.1 nonaka } else {
1442 1.1 nonaka while (datalen > 0) {
1443 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1444 1.1 nonaka data += 1;
1445 1.1 nonaka datalen -= 1;
1446 1.1 nonaka }
1447 1.1 nonaka }
1448 1.1 nonaka }
1449 1.1 nonaka
1450 1.1 nonaka static void
1451 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1452 1.1 nonaka {
1453 1.1 nonaka
1454 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1455 1.1 nonaka while (datalen > 3) {
1456 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1457 1.1 nonaka data += 4;
1458 1.1 nonaka datalen -= 4;
1459 1.1 nonaka }
1460 1.1 nonaka if (datalen > 1) {
1461 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1462 1.1 nonaka data += 2;
1463 1.1 nonaka datalen -= 2;
1464 1.1 nonaka }
1465 1.1 nonaka if (datalen > 0) {
1466 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1467 1.1 nonaka data += 1;
1468 1.1 nonaka datalen -= 1;
1469 1.1 nonaka }
1470 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1471 1.1 nonaka while (datalen > 1) {
1472 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1473 1.1 nonaka data += 2;
1474 1.1 nonaka datalen -= 2;
1475 1.1 nonaka }
1476 1.1 nonaka if (datalen > 0) {
1477 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1478 1.1 nonaka data += 1;
1479 1.1 nonaka datalen -= 1;
1480 1.1 nonaka }
1481 1.1 nonaka } else {
1482 1.1 nonaka while (datalen > 0) {
1483 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1484 1.1 nonaka data += 1;
1485 1.1 nonaka datalen -= 1;
1486 1.1 nonaka }
1487 1.1 nonaka }
1488 1.1 nonaka }
1489 1.1 nonaka
1490 1.11 matt static void
1491 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1492 1.11 matt {
1493 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1494 1.12 nonaka uint32_t v;
1495 1.12 nonaka
1496 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1497 1.23 matt size_t count = 0;
1498 1.23 matt
1499 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1500 1.23 matt if (count == 0) {
1501 1.23 matt /*
1502 1.23 matt * If we've drained "watermark" words, we need to wait
1503 1.23 matt * a little bit so the read FIFO can refill.
1504 1.23 matt */
1505 1.23 matt sdmmc_delay(10);
1506 1.23 matt count = watermark;
1507 1.23 matt }
1508 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1509 1.11 matt v = le32toh(v);
1510 1.11 matt *(uint32_t *)data = v;
1511 1.11 matt data += 4;
1512 1.11 matt datalen -= 4;
1513 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1514 1.23 matt count--;
1515 1.11 matt }
1516 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1517 1.23 matt if (count == 0) {
1518 1.23 matt sdmmc_delay(10);
1519 1.23 matt }
1520 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1521 1.11 matt v = le32toh(v);
1522 1.11 matt do {
1523 1.11 matt *data++ = v;
1524 1.11 matt v >>= 8;
1525 1.11 matt } while (--datalen > 0);
1526 1.11 matt }
1527 1.11 matt }
1528 1.11 matt
1529 1.11 matt static void
1530 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1531 1.11 matt {
1532 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1533 1.12 nonaka uint32_t v;
1534 1.12 nonaka
1535 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1536 1.23 matt size_t count = watermark;
1537 1.23 matt
1538 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1539 1.23 matt if (count == 0) {
1540 1.23 matt sdmmc_delay(10);
1541 1.23 matt count = watermark;
1542 1.23 matt }
1543 1.12 nonaka v = *(uint32_t *)data;
1544 1.11 matt v = htole32(v);
1545 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1546 1.11 matt data += 4;
1547 1.11 matt datalen -= 4;
1548 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1549 1.23 matt count--;
1550 1.11 matt }
1551 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1552 1.23 matt if (count == 0) {
1553 1.23 matt sdmmc_delay(10);
1554 1.23 matt }
1555 1.12 nonaka v = *(uint32_t *)data;
1556 1.11 matt v = htole32(v);
1557 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1558 1.11 matt }
1559 1.11 matt }
1560 1.11 matt
1561 1.1 nonaka /* Prepare for another command. */
1562 1.1 nonaka static int
1563 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1564 1.1 nonaka {
1565 1.1 nonaka int timo;
1566 1.1 nonaka
1567 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1568 1.1 nonaka
1569 1.35 riastrad /* Request the reset. */
1570 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1571 1.35 riastrad
1572 1.35 riastrad /*
1573 1.35 riastrad * If necessary, wait for the controller to set the bits to
1574 1.35 riastrad * acknowledge the reset.
1575 1.35 riastrad */
1576 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1577 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1578 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
1579 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1580 1.35 riastrad break;
1581 1.35 riastrad /* Short delay because I worry we may miss it... */
1582 1.35 riastrad sdmmc_delay(1);
1583 1.35 riastrad }
1584 1.35 riastrad if (timo == 0)
1585 1.35 riastrad return ETIMEDOUT;
1586 1.35 riastrad }
1587 1.35 riastrad
1588 1.35 riastrad /*
1589 1.35 riastrad * Wait for the controller to clear the bits to indicate that
1590 1.35 riastrad * the reset has completed.
1591 1.35 riastrad */
1592 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1593 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1594 1.1 nonaka break;
1595 1.1 nonaka sdmmc_delay(10000);
1596 1.1 nonaka }
1597 1.1 nonaka if (timo == 0) {
1598 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1599 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1600 1.1 nonaka return ETIMEDOUT;
1601 1.1 nonaka }
1602 1.1 nonaka
1603 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1604 1.11 matt HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1605 1.11 matt }
1606 1.11 matt
1607 1.1 nonaka return 0;
1608 1.1 nonaka }
1609 1.1 nonaka
1610 1.1 nonaka static int
1611 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1612 1.1 nonaka {
1613 1.1 nonaka int status;
1614 1.1 nonaka
1615 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1616 1.1 nonaka
1617 1.1 nonaka mutex_enter(&hp->intr_mtx);
1618 1.1 nonaka status = hp->intr_status & mask;
1619 1.1 nonaka while (status == 0) {
1620 1.1 nonaka if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1621 1.1 nonaka == EWOULDBLOCK) {
1622 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1623 1.1 nonaka break;
1624 1.1 nonaka }
1625 1.1 nonaka status = hp->intr_status & mask;
1626 1.1 nonaka }
1627 1.1 nonaka hp->intr_status &= ~status;
1628 1.1 nonaka
1629 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1630 1.1 nonaka hp->intr_error_status));
1631 1.1 nonaka
1632 1.1 nonaka /* Command timeout has higher priority than command complete. */
1633 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1634 1.1 nonaka hp->intr_error_status = 0;
1635 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1636 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1637 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1638 1.11 matt }
1639 1.1 nonaka status = 0;
1640 1.1 nonaka }
1641 1.1 nonaka mutex_exit(&hp->intr_mtx);
1642 1.1 nonaka
1643 1.1 nonaka return status;
1644 1.1 nonaka }
1645 1.1 nonaka
1646 1.1 nonaka /*
1647 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
1648 1.1 nonaka */
1649 1.1 nonaka int
1650 1.1 nonaka sdhc_intr(void *arg)
1651 1.1 nonaka {
1652 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1653 1.1 nonaka struct sdhc_host *hp;
1654 1.1 nonaka int done = 0;
1655 1.1 nonaka uint16_t status;
1656 1.1 nonaka uint16_t error;
1657 1.1 nonaka
1658 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
1659 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
1660 1.1 nonaka hp = sc->sc_host[host];
1661 1.1 nonaka if (hp == NULL)
1662 1.1 nonaka continue;
1663 1.1 nonaka
1664 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1665 1.11 matt /* Find out which interrupts are pending. */
1666 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1667 1.11 matt status = xstatus;
1668 1.11 matt error = xstatus >> 16;
1669 1.22 matt if (error)
1670 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
1671 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1672 1.11 matt continue; /* no interrupt for us */
1673 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1674 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1675 1.11 matt } else {
1676 1.11 matt /* Find out which interrupts are pending. */
1677 1.11 matt error = 0;
1678 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1679 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1680 1.11 matt continue; /* no interrupt for us */
1681 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1682 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
1683 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1684 1.11 matt /* Acknowledge error interrupts. */
1685 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
1686 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
1687 1.11 matt }
1688 1.11 matt }
1689 1.11 matt
1690 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1691 1.11 matt status, error));
1692 1.1 nonaka
1693 1.29 matt mutex_enter(&hp->intr_mtx);
1694 1.29 matt
1695 1.1 nonaka /* Claim this interrupt. */
1696 1.1 nonaka done = 1;
1697 1.1 nonaka
1698 1.1 nonaka /*
1699 1.1 nonaka * Service error interrupts.
1700 1.1 nonaka */
1701 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1702 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
1703 1.11 matt hp->intr_error_status |= error;
1704 1.11 matt hp->intr_status |= status;
1705 1.11 matt cv_broadcast(&hp->intr_cv);
1706 1.1 nonaka }
1707 1.1 nonaka
1708 1.1 nonaka /*
1709 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
1710 1.1 nonaka */
1711 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1712 1.1 nonaka sdmmc_needs_discover(hp->sdmmc);
1713 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1714 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
1715 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1716 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1717 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1718 1.11 matt }
1719 1.9 matt }
1720 1.1 nonaka
1721 1.1 nonaka /*
1722 1.1 nonaka * Wake up the blocking process to service command
1723 1.1 nonaka * related interrupt(s).
1724 1.1 nonaka */
1725 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
1726 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1727 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1728 1.1 nonaka hp->intr_status |= status;
1729 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1730 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1731 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1732 1.11 matt }
1733 1.1 nonaka cv_broadcast(&hp->intr_cv);
1734 1.1 nonaka }
1735 1.1 nonaka
1736 1.1 nonaka /*
1737 1.1 nonaka * Service SD card interrupts.
1738 1.1 nonaka */
1739 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1740 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
1741 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1742 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1743 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
1744 1.1 nonaka }
1745 1.29 matt mutex_exit(&hp->intr_mtx);
1746 1.1 nonaka }
1747 1.1 nonaka
1748 1.1 nonaka return done;
1749 1.1 nonaka }
1750 1.1 nonaka
1751 1.1 nonaka #ifdef SDHC_DEBUG
1752 1.1 nonaka void
1753 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
1754 1.1 nonaka {
1755 1.1 nonaka
1756 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1757 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
1758 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1759 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1760 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
1761 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1762 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
1763 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1764 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
1765 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1766 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
1767 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1768 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
1769 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1770 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1771 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1772 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1773 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1774 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
1775 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1776 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
1777 1.1 nonaka }
1778 1.1 nonaka #endif
1779