sdhc.c revision 1.52 1 1.52 nonaka /* $NetBSD: sdhc.c,v 1.52 2015/01/26 04:56:56 nonaka Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.52 nonaka __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.52 2015/01/26 04:56:56 nonaka Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/kthread.h>
36 1.1 nonaka #include <sys/malloc.h>
37 1.1 nonaka #include <sys/systm.h>
38 1.1 nonaka #include <sys/mutex.h>
39 1.1 nonaka #include <sys/condvar.h>
40 1.1 nonaka
41 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
42 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
45 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
46 1.1 nonaka
47 1.1 nonaka #ifdef SDHC_DEBUG
48 1.1 nonaka int sdhcdebug = 1;
49 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
51 1.1 nonaka #else
52 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
53 1.1 nonaka #endif
54 1.1 nonaka
55 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
56 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
57 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
58 1.1 nonaka #define SDHC_DMA_TIMEOUT hz
59 1.1 nonaka
60 1.1 nonaka struct sdhc_host {
61 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
62 1.1 nonaka
63 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
64 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
65 1.36 jakllsch bus_size_t ios; /* host register space size */
66 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
67 1.1 nonaka
68 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
69 1.1 nonaka
70 1.1 nonaka struct kmutex host_mtx;
71 1.1 nonaka
72 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
73 1.1 nonaka int maxblklen; /* maximum block length */
74 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
75 1.1 nonaka
76 1.1 nonaka uint8_t regs[14]; /* host controller state */
77 1.1 nonaka
78 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
79 1.1 nonaka uint16_t intr_error_status; /* soft error status */
80 1.1 nonaka struct kmutex intr_mtx;
81 1.1 nonaka struct kcondvar intr_cv;
82 1.1 nonaka
83 1.12 nonaka int specver; /* spec. version */
84 1.12 nonaka
85 1.1 nonaka uint32_t flags; /* flags for this host */
86 1.1 nonaka #define SHF_USE_DMA 0x0001
87 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
88 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
89 1.1 nonaka };
90 1.1 nonaka
91 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
92 1.1 nonaka
93 1.11 matt static uint8_t
94 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
95 1.11 matt {
96 1.12 nonaka
97 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
99 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 1.11 matt }
101 1.11 matt
102 1.11 matt static uint16_t
103 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
104 1.11 matt {
105 1.12 nonaka
106 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
108 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 1.11 matt }
110 1.11 matt
111 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
112 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
113 1.11 matt #define HREAD4(hp, reg) \
114 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115 1.11 matt
116 1.11 matt
117 1.11 matt static void
118 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 1.11 matt {
120 1.12 nonaka
121 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
123 1.11 matt } else {
124 1.11 matt const size_t shift = 8 * (o & 3);
125 1.11 matt o &= -4;
126 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
128 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 1.11 matt }
130 1.11 matt }
131 1.11 matt
132 1.11 matt static void
133 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 1.11 matt {
135 1.12 nonaka
136 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
138 1.11 matt } else {
139 1.11 matt const size_t shift = 8 * (o & 2);
140 1.11 matt o &= -4;
141 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 1.11 matt }
145 1.11 matt }
146 1.11 matt
147 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 1.1 nonaka #define HWRITE4(hp, reg, val) \
150 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151 1.11 matt
152 1.1 nonaka #define HCLR1(hp, reg, bits) \
153 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 1.1 nonaka #define HCLR2(hp, reg, bits) \
155 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 1.11 matt #define HCLR4(hp, reg, bits) \
157 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 1.1 nonaka #define HSET1(hp, reg, bits) \
159 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 1.1 nonaka #define HSET2(hp, reg, bits) \
161 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 1.11 matt #define HSET4(hp, reg, bits) \
163 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164 1.1 nonaka
165 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 1.1 nonaka static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 1.1 nonaka struct sdmmc_command *);
179 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
182 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190 1.11 matt
191 1.1 nonaka
192 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
193 1.1 nonaka /* host controller reset */
194 1.1 nonaka sdhc_host_reset,
195 1.1 nonaka
196 1.1 nonaka /* host controller capabilities */
197 1.1 nonaka sdhc_host_ocr,
198 1.1 nonaka sdhc_host_maxblklen,
199 1.1 nonaka
200 1.1 nonaka /* card detection */
201 1.1 nonaka sdhc_card_detect,
202 1.1 nonaka
203 1.1 nonaka /* write protect */
204 1.1 nonaka sdhc_write_protect,
205 1.1 nonaka
206 1.1 nonaka /* bus power, clock frequency and width */
207 1.1 nonaka sdhc_bus_power,
208 1.1 nonaka sdhc_bus_clock,
209 1.1 nonaka sdhc_bus_width,
210 1.8 kiyohara sdhc_bus_rod,
211 1.1 nonaka
212 1.1 nonaka /* command execution */
213 1.1 nonaka sdhc_exec_command,
214 1.1 nonaka
215 1.1 nonaka /* card interrupt */
216 1.1 nonaka sdhc_card_enable_intr,
217 1.1 nonaka sdhc_card_intr_ack
218 1.1 nonaka };
219 1.1 nonaka
220 1.17 jakllsch static int
221 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
222 1.17 jakllsch {
223 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
224 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
225 1.47 skrll
226 1.17 jakllsch if (pnp) {
227 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
228 1.17 jakllsch }
229 1.41 jakllsch for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
230 1.41 jakllsch if (hp->sc->sc_host[host] == hp) {
231 1.41 jakllsch aprint_normal(" slot %zu", host);
232 1.41 jakllsch }
233 1.41 jakllsch }
234 1.17 jakllsch
235 1.17 jakllsch return UNCONF;
236 1.17 jakllsch }
237 1.17 jakllsch
238 1.1 nonaka /*
239 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
240 1.1 nonaka * host controller standard register set. (1.3)
241 1.1 nonaka */
242 1.1 nonaka int
243 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
244 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
245 1.1 nonaka {
246 1.1 nonaka struct sdmmcbus_attach_args saa;
247 1.1 nonaka struct sdhc_host *hp;
248 1.1 nonaka uint32_t caps;
249 1.1 nonaka uint16_t sdhcver;
250 1.1 nonaka
251 1.33 riastrad /* Allocate one more host structure. */
252 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
253 1.33 riastrad if (hp == NULL) {
254 1.33 riastrad aprint_error_dev(sc->sc_dev,
255 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
256 1.33 riastrad goto err1;
257 1.33 riastrad }
258 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
259 1.33 riastrad
260 1.33 riastrad /* Fill in the new host structure. */
261 1.33 riastrad hp->sc = sc;
262 1.33 riastrad hp->iot = iot;
263 1.33 riastrad hp->ioh = ioh;
264 1.36 jakllsch hp->ios = iosize;
265 1.33 riastrad hp->dmat = sc->sc_dmat;
266 1.33 riastrad
267 1.33 riastrad mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
268 1.33 riastrad mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
269 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
270 1.33 riastrad
271 1.52 nonaka if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
272 1.52 nonaka sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
273 1.52 nonaka } else {
274 1.52 nonaka sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
275 1.52 nonaka }
276 1.12 nonaka aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
277 1.33 riastrad hp->specver = SDHC_SPEC_VERSION(sdhcver);
278 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
279 1.12 nonaka case SDHC_SPEC_VERS_100:
280 1.12 nonaka aprint_normal("1.0");
281 1.12 nonaka break;
282 1.12 nonaka
283 1.12 nonaka case SDHC_SPEC_VERS_200:
284 1.12 nonaka aprint_normal("2.0");
285 1.1 nonaka break;
286 1.1 nonaka
287 1.12 nonaka case SDHC_SPEC_VERS_300:
288 1.12 nonaka aprint_normal("3.0");
289 1.9 matt break;
290 1.9 matt
291 1.1 nonaka default:
292 1.12 nonaka aprint_normal("unknown version(0x%x)",
293 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
294 1.1 nonaka break;
295 1.1 nonaka }
296 1.12 nonaka aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
297 1.1 nonaka
298 1.1 nonaka /*
299 1.3 uebayasi * Reset the host controller and enable interrupts.
300 1.1 nonaka */
301 1.1 nonaka (void)sdhc_host_reset(hp);
302 1.1 nonaka
303 1.1 nonaka /* Determine host capabilities. */
304 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
305 1.24 skrll caps = sc->sc_caps;
306 1.24 skrll } else {
307 1.24 skrll mutex_enter(&hp->host_mtx);
308 1.24 skrll caps = HREAD4(hp, SDHC_CAPABILITIES);
309 1.24 skrll mutex_exit(&hp->host_mtx);
310 1.24 skrll }
311 1.1 nonaka
312 1.1 nonaka /* Use DMA if the host system and the controller support it. */
313 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
314 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
315 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
316 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
317 1.1 nonaka aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
318 1.1 nonaka }
319 1.1 nonaka
320 1.1 nonaka /*
321 1.1 nonaka * Determine the base clock frequency. (2.2.24)
322 1.1 nonaka */
323 1.30 matt if (hp->specver == SDHC_SPEC_VERS_300) {
324 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
325 1.30 matt } else {
326 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
327 1.30 matt }
328 1.1 nonaka if (hp->clkbase == 0) {
329 1.9 matt if (sc->sc_clkbase == 0) {
330 1.9 matt /* The attachment driver must tell us. */
331 1.12 nonaka aprint_error_dev(sc->sc_dev,
332 1.12 nonaka "unknown base clock frequency\n");
333 1.9 matt goto err;
334 1.9 matt }
335 1.9 matt hp->clkbase = sc->sc_clkbase;
336 1.9 matt }
337 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
338 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
339 1.1 nonaka aprint_error_dev(sc->sc_dev,
340 1.1 nonaka "base clock frequency out of range: %u MHz\n",
341 1.1 nonaka hp->clkbase / 1000);
342 1.1 nonaka goto err;
343 1.1 nonaka }
344 1.1 nonaka DPRINTF(1,("%s: base clock frequency %u MHz\n",
345 1.1 nonaka device_xname(sc->sc_dev), hp->clkbase / 1000));
346 1.1 nonaka
347 1.1 nonaka /*
348 1.1 nonaka * XXX Set the data timeout counter value according to
349 1.1 nonaka * capabilities. (2.2.15)
350 1.1 nonaka */
351 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
352 1.29 matt #if 1
353 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
354 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
355 1.11 matt #endif
356 1.1 nonaka
357 1.1 nonaka /*
358 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
359 1.1 nonaka */
360 1.48 jmcneill if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
361 1.48 jmcneill (hp->specver < SDHC_SPEC_VERS_300 ||
362 1.48 jmcneill ISSET(caps, SDHC_EMBEDDED_SLOT))) {
363 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
364 1.11 matt }
365 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
366 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
367 1.11 matt }
368 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
369 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
370 1.11 matt }
371 1.1 nonaka
372 1.1 nonaka /*
373 1.1 nonaka * Determine the maximum block length supported by the host
374 1.1 nonaka * controller. (2.2.24)
375 1.1 nonaka */
376 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
377 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
378 1.1 nonaka hp->maxblklen = 512;
379 1.1 nonaka break;
380 1.1 nonaka
381 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
382 1.1 nonaka hp->maxblklen = 1024;
383 1.1 nonaka break;
384 1.1 nonaka
385 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
386 1.1 nonaka hp->maxblklen = 2048;
387 1.1 nonaka break;
388 1.1 nonaka
389 1.9 matt case SDHC_MAX_BLK_LEN_4096:
390 1.9 matt hp->maxblklen = 4096;
391 1.9 matt break;
392 1.9 matt
393 1.1 nonaka default:
394 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
395 1.1 nonaka goto err;
396 1.1 nonaka }
397 1.1 nonaka DPRINTF(1, ("%s: max block length %u byte%s\n",
398 1.1 nonaka device_xname(sc->sc_dev), hp->maxblklen,
399 1.1 nonaka hp->maxblklen > 1 ? "s" : ""));
400 1.1 nonaka
401 1.1 nonaka /*
402 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
403 1.1 nonaka * not invoke any chipset functions before it is attached.)
404 1.1 nonaka */
405 1.1 nonaka memset(&saa, 0, sizeof(saa));
406 1.1 nonaka saa.saa_busname = "sdmmc";
407 1.1 nonaka saa.saa_sct = &sdhc_functions;
408 1.1 nonaka saa.saa_sch = hp;
409 1.1 nonaka saa.saa_dmat = hp->dmat;
410 1.1 nonaka saa.saa_clkmax = hp->clkbase;
411 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
412 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
413 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
414 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
415 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
416 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
417 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
418 1.38 jakllsch else if (hp->specver == SDHC_SPEC_VERS_300)
419 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
420 1.38 jakllsch else
421 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
422 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
423 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
424 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
425 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
426 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
427 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
428 1.39 jakllsch saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
429 1.26 matt }
430 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
431 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
432 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
433 1.1 nonaka
434 1.1 nonaka return 0;
435 1.1 nonaka
436 1.1 nonaka err:
437 1.1 nonaka cv_destroy(&hp->intr_cv);
438 1.1 nonaka mutex_destroy(&hp->intr_mtx);
439 1.1 nonaka mutex_destroy(&hp->host_mtx);
440 1.1 nonaka free(hp, M_DEVBUF);
441 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
442 1.1 nonaka err1:
443 1.1 nonaka return 1;
444 1.1 nonaka }
445 1.1 nonaka
446 1.7 nonaka int
447 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
448 1.7 nonaka {
449 1.36 jakllsch struct sdhc_host *hp;
450 1.7 nonaka int rv = 0;
451 1.7 nonaka
452 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
453 1.36 jakllsch hp = sc->sc_host[n];
454 1.36 jakllsch if (hp == NULL)
455 1.36 jakllsch continue;
456 1.36 jakllsch if (hp->sdmmc != NULL) {
457 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
458 1.36 jakllsch if (rv)
459 1.36 jakllsch break;
460 1.36 jakllsch hp->sdmmc = NULL;
461 1.36 jakllsch }
462 1.36 jakllsch /* disable interrupts */
463 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
464 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
465 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
466 1.36 jakllsch } else {
467 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
468 1.36 jakllsch }
469 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
470 1.36 jakllsch }
471 1.36 jakllsch cv_destroy(&hp->intr_cv);
472 1.36 jakllsch mutex_destroy(&hp->intr_mtx);
473 1.36 jakllsch mutex_destroy(&hp->host_mtx);
474 1.36 jakllsch if (hp->ios > 0) {
475 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
476 1.36 jakllsch hp->ios = 0;
477 1.36 jakllsch }
478 1.36 jakllsch free(hp, M_DEVBUF);
479 1.36 jakllsch sc->sc_host[n] = NULL;
480 1.36 jakllsch }
481 1.7 nonaka
482 1.7 nonaka return rv;
483 1.7 nonaka }
484 1.7 nonaka
485 1.1 nonaka bool
486 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
487 1.1 nonaka {
488 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
489 1.1 nonaka struct sdhc_host *hp;
490 1.12 nonaka size_t i;
491 1.1 nonaka
492 1.1 nonaka /* XXX poll for command completion or suspend command
493 1.1 nonaka * in progress */
494 1.1 nonaka
495 1.1 nonaka /* Save the host controller state. */
496 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
497 1.1 nonaka hp = sc->sc_host[n];
498 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
499 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
500 1.11 matt uint32_t v = HREAD4(hp, i);
501 1.12 nonaka hp->regs[i + 0] = (v >> 0);
502 1.12 nonaka hp->regs[i + 1] = (v >> 8);
503 1.13 bouyer if (i + 3 < sizeof hp->regs) {
504 1.13 bouyer hp->regs[i + 2] = (v >> 16);
505 1.13 bouyer hp->regs[i + 3] = (v >> 24);
506 1.13 bouyer }
507 1.11 matt }
508 1.11 matt } else {
509 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
510 1.11 matt hp->regs[i] = HREAD1(hp, i);
511 1.11 matt }
512 1.11 matt }
513 1.1 nonaka }
514 1.1 nonaka return true;
515 1.1 nonaka }
516 1.1 nonaka
517 1.1 nonaka bool
518 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
519 1.1 nonaka {
520 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
521 1.1 nonaka struct sdhc_host *hp;
522 1.12 nonaka size_t i;
523 1.1 nonaka
524 1.1 nonaka /* Restore the host controller state. */
525 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
526 1.1 nonaka hp = sc->sc_host[n];
527 1.1 nonaka (void)sdhc_host_reset(hp);
528 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
529 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
530 1.13 bouyer if (i + 3 < sizeof hp->regs) {
531 1.13 bouyer HWRITE4(hp, i,
532 1.13 bouyer (hp->regs[i + 0] << 0)
533 1.13 bouyer | (hp->regs[i + 1] << 8)
534 1.13 bouyer | (hp->regs[i + 2] << 16)
535 1.13 bouyer | (hp->regs[i + 3] << 24));
536 1.13 bouyer } else {
537 1.13 bouyer HWRITE4(hp, i,
538 1.13 bouyer (hp->regs[i + 0] << 0)
539 1.13 bouyer | (hp->regs[i + 1] << 8));
540 1.13 bouyer }
541 1.11 matt }
542 1.11 matt } else {
543 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
544 1.11 matt HWRITE1(hp, i, hp->regs[i]);
545 1.11 matt }
546 1.11 matt }
547 1.1 nonaka }
548 1.1 nonaka return true;
549 1.1 nonaka }
550 1.1 nonaka
551 1.1 nonaka bool
552 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
553 1.1 nonaka {
554 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
555 1.1 nonaka struct sdhc_host *hp;
556 1.1 nonaka
557 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
558 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
559 1.1 nonaka hp = sc->sc_host[i];
560 1.1 nonaka (void)sdhc_host_reset(hp);
561 1.1 nonaka }
562 1.1 nonaka return true;
563 1.1 nonaka }
564 1.1 nonaka
565 1.1 nonaka /*
566 1.1 nonaka * Reset the host controller. Called during initialization, when
567 1.1 nonaka * cards are removed, upon resume, and during error recovery.
568 1.1 nonaka */
569 1.1 nonaka static int
570 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
571 1.1 nonaka {
572 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
573 1.11 matt uint32_t sdhcimask;
574 1.1 nonaka int error;
575 1.1 nonaka
576 1.1 nonaka /* Don't lock. */
577 1.1 nonaka
578 1.1 nonaka /* Disable all interrupts. */
579 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
580 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
581 1.11 matt } else {
582 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
583 1.11 matt }
584 1.1 nonaka
585 1.1 nonaka /*
586 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
587 1.1 nonaka * the controller to clear the reset bit.
588 1.1 nonaka */
589 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
590 1.1 nonaka if (error)
591 1.1 nonaka goto out;
592 1.1 nonaka
593 1.1 nonaka /* Set data timeout counter value to max for now. */
594 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
595 1.29 matt #if 1
596 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
597 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
598 1.11 matt #endif
599 1.1 nonaka
600 1.1 nonaka /* Enable interrupts. */
601 1.29 matt mutex_enter(&hp->intr_mtx);
602 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
603 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
604 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
605 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
606 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
607 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
608 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
609 1.11 matt sdhcimask ^=
610 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
611 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
612 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
613 1.11 matt } else {
614 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
615 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
616 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
617 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
618 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
619 1.11 matt }
620 1.29 matt mutex_exit(&hp->intr_mtx);
621 1.1 nonaka
622 1.1 nonaka out:
623 1.1 nonaka return error;
624 1.1 nonaka }
625 1.1 nonaka
626 1.1 nonaka static int
627 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
628 1.1 nonaka {
629 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
630 1.1 nonaka int error;
631 1.1 nonaka
632 1.1 nonaka mutex_enter(&hp->host_mtx);
633 1.1 nonaka error = sdhc_host_reset1(sch);
634 1.1 nonaka mutex_exit(&hp->host_mtx);
635 1.1 nonaka
636 1.1 nonaka return error;
637 1.1 nonaka }
638 1.1 nonaka
639 1.1 nonaka static uint32_t
640 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
641 1.1 nonaka {
642 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
643 1.1 nonaka
644 1.1 nonaka return hp->ocr;
645 1.1 nonaka }
646 1.1 nonaka
647 1.1 nonaka static int
648 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
649 1.1 nonaka {
650 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
651 1.1 nonaka
652 1.1 nonaka return hp->maxblklen;
653 1.1 nonaka }
654 1.1 nonaka
655 1.1 nonaka /*
656 1.1 nonaka * Return non-zero if the card is currently inserted.
657 1.1 nonaka */
658 1.1 nonaka static int
659 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
660 1.1 nonaka {
661 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
662 1.1 nonaka int r;
663 1.1 nonaka
664 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
665 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
666 1.32 kiyohara
667 1.1 nonaka mutex_enter(&hp->host_mtx);
668 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
669 1.1 nonaka mutex_exit(&hp->host_mtx);
670 1.1 nonaka
671 1.11 matt return r ? 1 : 0;
672 1.1 nonaka }
673 1.1 nonaka
674 1.1 nonaka /*
675 1.1 nonaka * Return non-zero if the card is currently write-protected.
676 1.1 nonaka */
677 1.1 nonaka static int
678 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
679 1.1 nonaka {
680 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
681 1.1 nonaka int r;
682 1.1 nonaka
683 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
684 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
685 1.32 kiyohara
686 1.1 nonaka mutex_enter(&hp->host_mtx);
687 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
688 1.1 nonaka mutex_exit(&hp->host_mtx);
689 1.1 nonaka
690 1.12 nonaka return r ? 0 : 1;
691 1.1 nonaka }
692 1.1 nonaka
693 1.1 nonaka /*
694 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
695 1.1 nonaka * Return zero on success.
696 1.1 nonaka */
697 1.1 nonaka static int
698 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
699 1.1 nonaka {
700 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
701 1.1 nonaka uint8_t vdd;
702 1.1 nonaka int error = 0;
703 1.32 kiyohara const uint32_t pcmask =
704 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
705 1.1 nonaka
706 1.1 nonaka mutex_enter(&hp->host_mtx);
707 1.1 nonaka
708 1.1 nonaka /*
709 1.1 nonaka * Disable bus power before voltage change.
710 1.1 nonaka */
711 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
712 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
713 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
714 1.1 nonaka
715 1.1 nonaka /* If power is disabled, reset the host and return now. */
716 1.1 nonaka if (ocr == 0) {
717 1.1 nonaka (void)sdhc_host_reset1(hp);
718 1.1 nonaka goto out;
719 1.1 nonaka }
720 1.1 nonaka
721 1.1 nonaka /*
722 1.1 nonaka * Select the lowest voltage according to capabilities.
723 1.1 nonaka */
724 1.1 nonaka ocr &= hp->ocr;
725 1.11 matt if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
726 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
727 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
728 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
729 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
730 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
731 1.11 matt } else {
732 1.1 nonaka /* Unsupported voltage level requested. */
733 1.1 nonaka error = EINVAL;
734 1.1 nonaka goto out;
735 1.1 nonaka }
736 1.1 nonaka
737 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
738 1.11 matt /*
739 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
740 1.11 matt * voltage ramp until power rises.
741 1.11 matt */
742 1.11 matt HWRITE1(hp, SDHC_POWER_CTL,
743 1.32 kiyohara HREAD1(hp, SDHC_POWER_CTL) & pcmask);
744 1.32 kiyohara sdmmc_delay(1);
745 1.32 kiyohara HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
746 1.32 kiyohara sdmmc_delay(1);
747 1.32 kiyohara HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
748 1.11 matt sdmmc_delay(10000);
749 1.1 nonaka
750 1.11 matt /*
751 1.11 matt * The host system may not power the bus due to battery low,
752 1.11 matt * etc. In that case, the host controller should clear the
753 1.11 matt * bus power bit.
754 1.11 matt */
755 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
756 1.11 matt error = ENXIO;
757 1.11 matt goto out;
758 1.11 matt }
759 1.1 nonaka }
760 1.1 nonaka
761 1.1 nonaka out:
762 1.1 nonaka mutex_exit(&hp->host_mtx);
763 1.1 nonaka
764 1.1 nonaka return error;
765 1.1 nonaka }
766 1.1 nonaka
767 1.1 nonaka /*
768 1.1 nonaka * Return the smallest possible base clock frequency divisor value
769 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
770 1.1 nonaka */
771 1.11 matt static bool
772 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
773 1.1 nonaka {
774 1.11 matt u_int div;
775 1.1 nonaka
776 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
777 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
778 1.11 matt if ((hp->clkbase / div) <= freq) {
779 1.11 matt *divp = SDHC_SDCLK_CGM
780 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
781 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
782 1.18 jakllsch //freq = hp->clkbase / div;
783 1.11 matt return true;
784 1.11 matt }
785 1.11 matt }
786 1.11 matt /* No divisor found. */
787 1.11 matt return false;
788 1.11 matt }
789 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
790 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
791 1.11 matt u_int roundup = dvs & 1;
792 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
793 1.11 matt if (dvs + roundup <= 16) {
794 1.11 matt dvs += roundup - 1;
795 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
796 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
797 1.11 matt DPRINTF(2,
798 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
799 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
800 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
801 1.11 matt return true;
802 1.9 matt }
803 1.11 matt /*
804 1.11 matt * If we drop bits, we need to round up the divisor.
805 1.11 matt */
806 1.11 matt roundup |= dvs & 1;
807 1.9 matt }
808 1.18 jakllsch /* No divisor found. */
809 1.18 jakllsch return false;
810 1.38 jakllsch }
811 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
812 1.38 jakllsch div = howmany(hp->clkbase, freq);
813 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
814 1.38 jakllsch return false;
815 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
816 1.38 jakllsch //freq = hp->clkbase / div;
817 1.38 jakllsch return true;
818 1.38 jakllsch }
819 1.38 jakllsch if (hp->specver == SDHC_SPEC_VERS_300) {
820 1.38 jakllsch div = howmany(hp->clkbase, freq);
821 1.50 mlelstv div = div > 1 ? howmany(div, 2) : 0;
822 1.38 jakllsch if (div > 0x3ff)
823 1.38 jakllsch return false;
824 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
825 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
826 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
827 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
828 1.38 jakllsch //freq = hp->clkbase / div;
829 1.38 jakllsch return true;
830 1.9 matt } else {
831 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
832 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
833 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
834 1.38 jakllsch //freq = hp->clkbase / div;
835 1.38 jakllsch return true;
836 1.38 jakllsch }
837 1.38 jakllsch }
838 1.38 jakllsch /* No divisor found. */
839 1.38 jakllsch return false;
840 1.9 matt }
841 1.1 nonaka /* No divisor found. */
842 1.11 matt return false;
843 1.1 nonaka }
844 1.1 nonaka
845 1.1 nonaka /*
846 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
847 1.1 nonaka * Return zero on success.
848 1.1 nonaka */
849 1.1 nonaka static int
850 1.1 nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
851 1.1 nonaka {
852 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
853 1.11 matt u_int div;
854 1.11 matt u_int timo;
855 1.32 kiyohara int16_t reg;
856 1.1 nonaka int error = 0;
857 1.2 cegger #ifdef DIAGNOSTIC
858 1.12 nonaka bool present;
859 1.1 nonaka
860 1.1 nonaka mutex_enter(&hp->host_mtx);
861 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
862 1.2 cegger mutex_exit(&hp->host_mtx);
863 1.1 nonaka
864 1.1 nonaka /* Must not stop the clock if commands are in progress. */
865 1.12 nonaka if (present && sdhc_card_detect(hp)) {
866 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
867 1.26 matt "%s: command in progress\n", __func__);
868 1.12 nonaka }
869 1.1 nonaka #endif
870 1.1 nonaka
871 1.2 cegger mutex_enter(&hp->host_mtx);
872 1.2 cegger
873 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
874 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
875 1.34 matt if (error != 0)
876 1.34 matt goto out;
877 1.34 matt }
878 1.34 matt
879 1.1 nonaka /*
880 1.1 nonaka * Stop SD clock before changing the frequency.
881 1.1 nonaka */
882 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
883 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
884 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
885 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
886 1.11 matt goto out;
887 1.11 matt }
888 1.11 matt } else {
889 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
890 1.11 matt if (freq == SDMMC_SDCLK_OFF)
891 1.11 matt goto out;
892 1.11 matt }
893 1.1 nonaka
894 1.1 nonaka /*
895 1.1 nonaka * Set the minimum base clock frequency divisor.
896 1.1 nonaka */
897 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
898 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
899 1.1 nonaka error = EINVAL;
900 1.1 nonaka goto out;
901 1.1 nonaka }
902 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
903 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
904 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
905 1.11 matt } else {
906 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
907 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
908 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
909 1.11 matt }
910 1.1 nonaka
911 1.1 nonaka /*
912 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
913 1.1 nonaka */
914 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
915 1.11 matt sdmmc_delay(10000);
916 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
917 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
918 1.11 matt } else {
919 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
920 1.11 matt for (timo = 1000; timo > 0; timo--) {
921 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
922 1.12 nonaka SDHC_INTCLK_STABLE))
923 1.11 matt break;
924 1.11 matt sdmmc_delay(10);
925 1.11 matt }
926 1.11 matt if (timo == 0) {
927 1.11 matt error = ETIMEDOUT;
928 1.11 matt goto out;
929 1.11 matt }
930 1.1 nonaka }
931 1.1 nonaka
932 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
933 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
934 1.11 matt /*
935 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
936 1.11 matt * So delay for that time + slop and then
937 1.11 matt * check a few times for completion.
938 1.11 matt */
939 1.11 matt sdmmc_delay(210);
940 1.11 matt for (timo = 10; timo > 0; timo--) {
941 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
942 1.11 matt SDHC_INIT_ACTIVE))
943 1.11 matt break;
944 1.11 matt sdmmc_delay(10);
945 1.11 matt }
946 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
947 1.12 nonaka
948 1.11 matt /*
949 1.11 matt * Enable SD clock.
950 1.11 matt */
951 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
952 1.11 matt } else {
953 1.11 matt /*
954 1.11 matt * Enable SD clock.
955 1.11 matt */
956 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
957 1.1 nonaka
958 1.43 jmcneill if (freq > 25000 &&
959 1.43 jmcneill !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
960 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
961 1.11 matt else
962 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
963 1.11 matt }
964 1.8 kiyohara
965 1.1 nonaka out:
966 1.1 nonaka mutex_exit(&hp->host_mtx);
967 1.1 nonaka
968 1.1 nonaka return error;
969 1.1 nonaka }
970 1.1 nonaka
971 1.1 nonaka static int
972 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
973 1.1 nonaka {
974 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
975 1.1 nonaka int reg;
976 1.1 nonaka
977 1.1 nonaka switch (width) {
978 1.1 nonaka case 1:
979 1.1 nonaka case 4:
980 1.1 nonaka break;
981 1.1 nonaka
982 1.11 matt case 8:
983 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
984 1.11 matt break;
985 1.11 matt /* FALLTHROUGH */
986 1.1 nonaka default:
987 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
988 1.1 nonaka HDEVNAME(hp), width));
989 1.1 nonaka return 1;
990 1.1 nonaka }
991 1.1 nonaka
992 1.1 nonaka mutex_enter(&hp->host_mtx);
993 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
994 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
995 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
996 1.11 matt if (width == 4)
997 1.11 matt reg |= SDHC_4BIT_MODE;
998 1.11 matt else if (width == 8)
999 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
1000 1.11 matt } else {
1001 1.11 matt reg &= ~SDHC_4BIT_MODE;
1002 1.11 matt if (width == 4)
1003 1.11 matt reg |= SDHC_4BIT_MODE;
1004 1.11 matt }
1005 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
1006 1.1 nonaka mutex_exit(&hp->host_mtx);
1007 1.1 nonaka
1008 1.1 nonaka return 0;
1009 1.1 nonaka }
1010 1.1 nonaka
1011 1.8 kiyohara static int
1012 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1013 1.8 kiyohara {
1014 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1015 1.32 kiyohara
1016 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1017 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1018 1.8 kiyohara
1019 1.8 kiyohara return 0;
1020 1.8 kiyohara }
1021 1.8 kiyohara
1022 1.1 nonaka static void
1023 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1024 1.1 nonaka {
1025 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1026 1.1 nonaka
1027 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1028 1.29 matt mutex_enter(&hp->intr_mtx);
1029 1.11 matt if (enable) {
1030 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1031 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1032 1.11 matt } else {
1033 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1034 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1035 1.11 matt }
1036 1.29 matt mutex_exit(&hp->intr_mtx);
1037 1.1 nonaka }
1038 1.1 nonaka }
1039 1.1 nonaka
1040 1.47 skrll static void
1041 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1042 1.1 nonaka {
1043 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1044 1.1 nonaka
1045 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1046 1.29 matt mutex_enter(&hp->intr_mtx);
1047 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1048 1.29 matt mutex_exit(&hp->intr_mtx);
1049 1.11 matt }
1050 1.1 nonaka }
1051 1.1 nonaka
1052 1.1 nonaka static int
1053 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1054 1.1 nonaka {
1055 1.1 nonaka uint32_t state;
1056 1.1 nonaka int timeout;
1057 1.1 nonaka
1058 1.1 nonaka for (timeout = 10; timeout > 0; timeout--) {
1059 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1060 1.1 nonaka return 0;
1061 1.1 nonaka sdmmc_delay(10000);
1062 1.1 nonaka }
1063 1.1 nonaka DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1064 1.1 nonaka value, state));
1065 1.1 nonaka return ETIMEDOUT;
1066 1.1 nonaka }
1067 1.1 nonaka
1068 1.1 nonaka static void
1069 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1070 1.1 nonaka {
1071 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1072 1.1 nonaka int error;
1073 1.1 nonaka
1074 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1075 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1076 1.29 matt mutex_enter(&hp->intr_mtx);
1077 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1078 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1079 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1080 1.11 matt } else {
1081 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1082 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1083 1.47 skrll }
1084 1.29 matt mutex_exit(&hp->intr_mtx);
1085 1.11 matt }
1086 1.11 matt
1087 1.1 nonaka /*
1088 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1089 1.1 nonaka */
1090 1.1 nonaka error = sdhc_start_command(hp, cmd);
1091 1.1 nonaka if (error) {
1092 1.1 nonaka cmd->c_error = error;
1093 1.1 nonaka goto out;
1094 1.1 nonaka }
1095 1.1 nonaka
1096 1.1 nonaka /*
1097 1.1 nonaka * Wait until the command phase is done, or until the command
1098 1.1 nonaka * is marked done for any other reason.
1099 1.1 nonaka */
1100 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1101 1.1 nonaka cmd->c_error = ETIMEDOUT;
1102 1.1 nonaka goto out;
1103 1.1 nonaka }
1104 1.1 nonaka
1105 1.1 nonaka /*
1106 1.1 nonaka * The host controller removes bits [0:7] from the response
1107 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1108 1.1 nonaka * driver (without padding).
1109 1.1 nonaka */
1110 1.1 nonaka mutex_enter(&hp->host_mtx);
1111 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1112 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1113 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1114 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1115 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1116 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1117 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1118 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1119 1.32 kiyohara (cmd->c_resp[1] << 24);
1120 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1121 1.32 kiyohara (cmd->c_resp[2] << 24);
1122 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1123 1.32 kiyohara (cmd->c_resp[3] << 24);
1124 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1125 1.32 kiyohara }
1126 1.1 nonaka }
1127 1.1 nonaka }
1128 1.1 nonaka mutex_exit(&hp->host_mtx);
1129 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1130 1.1 nonaka
1131 1.1 nonaka /*
1132 1.1 nonaka * If the command has data to transfer in any direction,
1133 1.1 nonaka * execute the transfer now.
1134 1.1 nonaka */
1135 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1136 1.1 nonaka sdhc_transfer_data(hp, cmd);
1137 1.42 jakllsch else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1138 1.42 jakllsch if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1139 1.42 jakllsch cmd->c_error = ETIMEDOUT;
1140 1.42 jakllsch goto out;
1141 1.42 jakllsch }
1142 1.42 jakllsch }
1143 1.1 nonaka
1144 1.1 nonaka out:
1145 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1146 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1147 1.11 matt mutex_enter(&hp->host_mtx);
1148 1.11 matt /* Turn off the LED. */
1149 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1150 1.11 matt mutex_exit(&hp->host_mtx);
1151 1.11 matt }
1152 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1153 1.1 nonaka
1154 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1155 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1156 1.1 nonaka cmd->c_flags, cmd->c_error));
1157 1.1 nonaka }
1158 1.1 nonaka
1159 1.1 nonaka static int
1160 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1161 1.1 nonaka {
1162 1.11 matt struct sdhc_softc * const sc = hp->sc;
1163 1.1 nonaka uint16_t blksize = 0;
1164 1.1 nonaka uint16_t blkcount = 0;
1165 1.1 nonaka uint16_t mode;
1166 1.1 nonaka uint16_t command;
1167 1.1 nonaka int error;
1168 1.1 nonaka
1169 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1170 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1171 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1172 1.1 nonaka
1173 1.1 nonaka /*
1174 1.1 nonaka * The maximum block length for commands should be the minimum
1175 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1176 1.1 nonaka */
1177 1.1 nonaka
1178 1.1 nonaka /* Fragment the data into proper blocks. */
1179 1.1 nonaka if (cmd->c_datalen > 0) {
1180 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1181 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1182 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1183 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1184 1.11 matt aprint_error_dev(sc->sc_dev,
1185 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1186 1.1 nonaka return EINVAL;
1187 1.1 nonaka }
1188 1.1 nonaka }
1189 1.1 nonaka
1190 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1191 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1192 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1193 1.1 nonaka return EINVAL;
1194 1.1 nonaka }
1195 1.1 nonaka
1196 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1197 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1198 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1199 1.1 nonaka mode |= SDHC_READ_MODE;
1200 1.15 jakllsch if (blkcount > 1) {
1201 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1202 1.15 jakllsch /* XXX only for memory commands? */
1203 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1204 1.1 nonaka }
1205 1.45 jakllsch if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1206 1.45 jakllsch !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1207 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1208 1.7 nonaka }
1209 1.1 nonaka
1210 1.1 nonaka /*
1211 1.1 nonaka * Prepare command register value. (2.2.6)
1212 1.1 nonaka */
1213 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1214 1.1 nonaka
1215 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1216 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1217 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1218 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1219 1.1 nonaka if (cmd->c_data != NULL)
1220 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1221 1.1 nonaka
1222 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1223 1.1 nonaka command |= SDHC_NO_RESPONSE;
1224 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1225 1.1 nonaka command |= SDHC_RESP_LEN_136;
1226 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1227 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1228 1.1 nonaka else
1229 1.1 nonaka command |= SDHC_RESP_LEN_48;
1230 1.1 nonaka
1231 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1232 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1233 1.1 nonaka if (error)
1234 1.1 nonaka return error;
1235 1.1 nonaka
1236 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1237 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1238 1.1 nonaka
1239 1.44 hkenken if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1240 1.44 hkenken blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1241 1.44 hkenken SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1242 1.44 hkenken }
1243 1.19 jakllsch
1244 1.1 nonaka mutex_enter(&hp->host_mtx);
1245 1.1 nonaka
1246 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1247 1.11 matt /* Alert the user not to remove the card. */
1248 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1249 1.11 matt }
1250 1.1 nonaka
1251 1.7 nonaka /* Set DMA start address. */
1252 1.7 nonaka if (ISSET(mode, SDHC_DMA_ENABLE))
1253 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1254 1.7 nonaka
1255 1.1 nonaka /*
1256 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1257 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1258 1.1 nonaka */
1259 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1260 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1261 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1262 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1263 1.11 matt } else {
1264 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1265 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1266 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1267 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1268 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1269 1.11 matt }
1270 1.1 nonaka
1271 1.1 nonaka mutex_exit(&hp->host_mtx);
1272 1.1 nonaka
1273 1.1 nonaka return 0;
1274 1.1 nonaka }
1275 1.1 nonaka
1276 1.1 nonaka static void
1277 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1278 1.1 nonaka {
1279 1.51 jmcneill struct sdhc_softc *sc = hp->sc;
1280 1.1 nonaka int error;
1281 1.1 nonaka
1282 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1283 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1284 1.1 nonaka
1285 1.1 nonaka #ifdef SDHC_DEBUG
1286 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1287 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1288 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1289 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1290 1.1 nonaka "CMD52/53 error response flags %#x\n",
1291 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1292 1.1 nonaka }
1293 1.1 nonaka #endif
1294 1.1 nonaka
1295 1.47 skrll if (cmd->c_dmamap != NULL) {
1296 1.47 skrll if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1297 1.51 jmcneill error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1298 1.47 skrll if (error == 0 && !sdhc_wait_intr(hp,
1299 1.47 skrll SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) {
1300 1.47 skrll error = ETIMEDOUT;
1301 1.47 skrll }
1302 1.47 skrll } else {
1303 1.47 skrll error = sdhc_transfer_data_dma(hp, cmd);
1304 1.47 skrll }
1305 1.47 skrll } else
1306 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1307 1.1 nonaka if (error)
1308 1.1 nonaka cmd->c_error = error;
1309 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1310 1.1 nonaka
1311 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1312 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1313 1.1 nonaka }
1314 1.1 nonaka
1315 1.1 nonaka static int
1316 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1317 1.7 nonaka {
1318 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1319 1.19 jakllsch bus_addr_t posaddr;
1320 1.19 jakllsch bus_addr_t segaddr;
1321 1.19 jakllsch bus_size_t seglen;
1322 1.19 jakllsch u_int seg = 0;
1323 1.7 nonaka int error = 0;
1324 1.19 jakllsch int status;
1325 1.7 nonaka
1326 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1327 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1328 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1329 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1330 1.11 matt
1331 1.7 nonaka for (;;) {
1332 1.19 jakllsch status = sdhc_wait_intr(hp,
1333 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1334 1.19 jakllsch SDHC_DMA_TIMEOUT);
1335 1.19 jakllsch
1336 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1337 1.19 jakllsch break;
1338 1.19 jakllsch }
1339 1.19 jakllsch if (!status) {
1340 1.7 nonaka error = ETIMEDOUT;
1341 1.7 nonaka break;
1342 1.7 nonaka }
1343 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1344 1.19 jakllsch continue;
1345 1.19 jakllsch }
1346 1.19 jakllsch
1347 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1348 1.7 nonaka
1349 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1350 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1351 1.19 jakllsch mutex_enter(&hp->host_mtx);
1352 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1353 1.19 jakllsch mutex_exit(&hp->host_mtx);
1354 1.7 nonaka
1355 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1356 1.37 jakllsch continue;
1357 1.19 jakllsch }
1358 1.19 jakllsch mutex_enter(&hp->host_mtx);
1359 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1360 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1361 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1362 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1363 1.19 jakllsch mutex_exit(&hp->host_mtx);
1364 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1365 1.7 nonaka }
1366 1.7 nonaka
1367 1.7 nonaka return error;
1368 1.7 nonaka }
1369 1.7 nonaka
1370 1.7 nonaka static int
1371 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1372 1.1 nonaka {
1373 1.1 nonaka uint8_t *data = cmd->c_data;
1374 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1375 1.11 matt u_int len, datalen;
1376 1.11 matt u_int imask;
1377 1.11 matt u_int pmask;
1378 1.1 nonaka int error = 0;
1379 1.1 nonaka
1380 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1381 1.11 matt imask = SDHC_BUFFER_READ_READY;
1382 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1383 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1384 1.11 matt pio_func = esdhc_read_data_pio;
1385 1.11 matt } else {
1386 1.11 matt pio_func = sdhc_read_data_pio;
1387 1.11 matt }
1388 1.11 matt } else {
1389 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1390 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1391 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1392 1.11 matt pio_func = esdhc_write_data_pio;
1393 1.11 matt } else {
1394 1.11 matt pio_func = sdhc_write_data_pio;
1395 1.11 matt }
1396 1.11 matt }
1397 1.1 nonaka datalen = cmd->c_datalen;
1398 1.1 nonaka
1399 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1400 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1401 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1402 1.11 matt
1403 1.1 nonaka while (datalen > 0) {
1404 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1405 1.29 matt mutex_enter(&hp->intr_mtx);
1406 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1407 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1408 1.11 matt } else {
1409 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1410 1.11 matt }
1411 1.29 matt mutex_exit(&hp->intr_mtx);
1412 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1413 1.11 matt error = ETIMEDOUT;
1414 1.11 matt break;
1415 1.11 matt }
1416 1.11 matt
1417 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1418 1.11 matt if (error)
1419 1.11 matt break;
1420 1.1 nonaka }
1421 1.1 nonaka
1422 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1423 1.11 matt (*pio_func)(hp, data, len);
1424 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1425 1.11 matt HDEVNAME(hp), len, data));
1426 1.1 nonaka
1427 1.1 nonaka data += len;
1428 1.1 nonaka datalen -= len;
1429 1.1 nonaka }
1430 1.1 nonaka
1431 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1432 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1433 1.1 nonaka error = ETIMEDOUT;
1434 1.1 nonaka
1435 1.1 nonaka return error;
1436 1.1 nonaka }
1437 1.1 nonaka
1438 1.1 nonaka static void
1439 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1440 1.1 nonaka {
1441 1.1 nonaka
1442 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1443 1.1 nonaka while (datalen > 3) {
1444 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1445 1.1 nonaka data += 4;
1446 1.1 nonaka datalen -= 4;
1447 1.1 nonaka }
1448 1.1 nonaka if (datalen > 1) {
1449 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1450 1.1 nonaka data += 2;
1451 1.1 nonaka datalen -= 2;
1452 1.1 nonaka }
1453 1.1 nonaka if (datalen > 0) {
1454 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1455 1.1 nonaka data += 1;
1456 1.1 nonaka datalen -= 1;
1457 1.1 nonaka }
1458 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1459 1.1 nonaka while (datalen > 1) {
1460 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1461 1.1 nonaka data += 2;
1462 1.1 nonaka datalen -= 2;
1463 1.1 nonaka }
1464 1.1 nonaka if (datalen > 0) {
1465 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1466 1.1 nonaka data += 1;
1467 1.1 nonaka datalen -= 1;
1468 1.1 nonaka }
1469 1.1 nonaka } else {
1470 1.1 nonaka while (datalen > 0) {
1471 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1472 1.1 nonaka data += 1;
1473 1.1 nonaka datalen -= 1;
1474 1.1 nonaka }
1475 1.1 nonaka }
1476 1.1 nonaka }
1477 1.1 nonaka
1478 1.1 nonaka static void
1479 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1480 1.1 nonaka {
1481 1.1 nonaka
1482 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1483 1.1 nonaka while (datalen > 3) {
1484 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1485 1.1 nonaka data += 4;
1486 1.1 nonaka datalen -= 4;
1487 1.1 nonaka }
1488 1.1 nonaka if (datalen > 1) {
1489 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1490 1.1 nonaka data += 2;
1491 1.1 nonaka datalen -= 2;
1492 1.1 nonaka }
1493 1.1 nonaka if (datalen > 0) {
1494 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1495 1.1 nonaka data += 1;
1496 1.1 nonaka datalen -= 1;
1497 1.1 nonaka }
1498 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1499 1.1 nonaka while (datalen > 1) {
1500 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1501 1.1 nonaka data += 2;
1502 1.1 nonaka datalen -= 2;
1503 1.1 nonaka }
1504 1.1 nonaka if (datalen > 0) {
1505 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1506 1.1 nonaka data += 1;
1507 1.1 nonaka datalen -= 1;
1508 1.1 nonaka }
1509 1.1 nonaka } else {
1510 1.1 nonaka while (datalen > 0) {
1511 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1512 1.1 nonaka data += 1;
1513 1.1 nonaka datalen -= 1;
1514 1.1 nonaka }
1515 1.1 nonaka }
1516 1.1 nonaka }
1517 1.1 nonaka
1518 1.11 matt static void
1519 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1520 1.11 matt {
1521 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1522 1.12 nonaka uint32_t v;
1523 1.12 nonaka
1524 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1525 1.23 matt size_t count = 0;
1526 1.23 matt
1527 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1528 1.23 matt if (count == 0) {
1529 1.23 matt /*
1530 1.23 matt * If we've drained "watermark" words, we need to wait
1531 1.23 matt * a little bit so the read FIFO can refill.
1532 1.23 matt */
1533 1.23 matt sdmmc_delay(10);
1534 1.23 matt count = watermark;
1535 1.23 matt }
1536 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1537 1.11 matt v = le32toh(v);
1538 1.11 matt *(uint32_t *)data = v;
1539 1.11 matt data += 4;
1540 1.11 matt datalen -= 4;
1541 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1542 1.23 matt count--;
1543 1.11 matt }
1544 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1545 1.23 matt if (count == 0) {
1546 1.23 matt sdmmc_delay(10);
1547 1.23 matt }
1548 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1549 1.11 matt v = le32toh(v);
1550 1.11 matt do {
1551 1.11 matt *data++ = v;
1552 1.11 matt v >>= 8;
1553 1.11 matt } while (--datalen > 0);
1554 1.11 matt }
1555 1.11 matt }
1556 1.11 matt
1557 1.11 matt static void
1558 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1559 1.11 matt {
1560 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1561 1.12 nonaka uint32_t v;
1562 1.12 nonaka
1563 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1564 1.23 matt size_t count = watermark;
1565 1.23 matt
1566 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1567 1.23 matt if (count == 0) {
1568 1.23 matt sdmmc_delay(10);
1569 1.23 matt count = watermark;
1570 1.23 matt }
1571 1.12 nonaka v = *(uint32_t *)data;
1572 1.11 matt v = htole32(v);
1573 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1574 1.11 matt data += 4;
1575 1.11 matt datalen -= 4;
1576 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1577 1.23 matt count--;
1578 1.11 matt }
1579 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1580 1.23 matt if (count == 0) {
1581 1.23 matt sdmmc_delay(10);
1582 1.23 matt }
1583 1.12 nonaka v = *(uint32_t *)data;
1584 1.11 matt v = htole32(v);
1585 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1586 1.11 matt }
1587 1.11 matt }
1588 1.11 matt
1589 1.1 nonaka /* Prepare for another command. */
1590 1.1 nonaka static int
1591 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1592 1.1 nonaka {
1593 1.1 nonaka int timo;
1594 1.1 nonaka
1595 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1596 1.1 nonaka
1597 1.35 riastrad /* Request the reset. */
1598 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1599 1.35 riastrad
1600 1.35 riastrad /*
1601 1.35 riastrad * If necessary, wait for the controller to set the bits to
1602 1.35 riastrad * acknowledge the reset.
1603 1.35 riastrad */
1604 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1605 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1606 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
1607 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1608 1.35 riastrad break;
1609 1.35 riastrad /* Short delay because I worry we may miss it... */
1610 1.35 riastrad sdmmc_delay(1);
1611 1.35 riastrad }
1612 1.35 riastrad if (timo == 0)
1613 1.35 riastrad return ETIMEDOUT;
1614 1.35 riastrad }
1615 1.35 riastrad
1616 1.35 riastrad /*
1617 1.35 riastrad * Wait for the controller to clear the bits to indicate that
1618 1.35 riastrad * the reset has completed.
1619 1.35 riastrad */
1620 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1621 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1622 1.1 nonaka break;
1623 1.1 nonaka sdmmc_delay(10000);
1624 1.1 nonaka }
1625 1.1 nonaka if (timo == 0) {
1626 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1627 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1628 1.1 nonaka return ETIMEDOUT;
1629 1.1 nonaka }
1630 1.1 nonaka
1631 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1632 1.11 matt HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1633 1.11 matt }
1634 1.11 matt
1635 1.1 nonaka return 0;
1636 1.1 nonaka }
1637 1.1 nonaka
1638 1.1 nonaka static int
1639 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1640 1.1 nonaka {
1641 1.1 nonaka int status;
1642 1.1 nonaka
1643 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1644 1.1 nonaka
1645 1.1 nonaka mutex_enter(&hp->intr_mtx);
1646 1.1 nonaka status = hp->intr_status & mask;
1647 1.1 nonaka while (status == 0) {
1648 1.1 nonaka if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1649 1.1 nonaka == EWOULDBLOCK) {
1650 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1651 1.1 nonaka break;
1652 1.1 nonaka }
1653 1.1 nonaka status = hp->intr_status & mask;
1654 1.1 nonaka }
1655 1.1 nonaka hp->intr_status &= ~status;
1656 1.1 nonaka
1657 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1658 1.1 nonaka hp->intr_error_status));
1659 1.47 skrll
1660 1.1 nonaka /* Command timeout has higher priority than command complete. */
1661 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1662 1.1 nonaka hp->intr_error_status = 0;
1663 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1664 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1665 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1666 1.11 matt }
1667 1.1 nonaka status = 0;
1668 1.1 nonaka }
1669 1.1 nonaka mutex_exit(&hp->intr_mtx);
1670 1.1 nonaka
1671 1.1 nonaka return status;
1672 1.1 nonaka }
1673 1.1 nonaka
1674 1.1 nonaka /*
1675 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
1676 1.1 nonaka */
1677 1.1 nonaka int
1678 1.1 nonaka sdhc_intr(void *arg)
1679 1.1 nonaka {
1680 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1681 1.1 nonaka struct sdhc_host *hp;
1682 1.1 nonaka int done = 0;
1683 1.1 nonaka uint16_t status;
1684 1.1 nonaka uint16_t error;
1685 1.1 nonaka
1686 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
1687 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
1688 1.1 nonaka hp = sc->sc_host[host];
1689 1.1 nonaka if (hp == NULL)
1690 1.1 nonaka continue;
1691 1.1 nonaka
1692 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1693 1.11 matt /* Find out which interrupts are pending. */
1694 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1695 1.11 matt status = xstatus;
1696 1.11 matt error = xstatus >> 16;
1697 1.22 matt if (error)
1698 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
1699 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1700 1.11 matt continue; /* no interrupt for us */
1701 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1702 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1703 1.11 matt } else {
1704 1.11 matt /* Find out which interrupts are pending. */
1705 1.11 matt error = 0;
1706 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1707 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1708 1.11 matt continue; /* no interrupt for us */
1709 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1710 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
1711 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1712 1.11 matt /* Acknowledge error interrupts. */
1713 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
1714 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
1715 1.11 matt }
1716 1.11 matt }
1717 1.47 skrll
1718 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1719 1.11 matt status, error));
1720 1.1 nonaka
1721 1.29 matt mutex_enter(&hp->intr_mtx);
1722 1.29 matt
1723 1.1 nonaka /* Claim this interrupt. */
1724 1.1 nonaka done = 1;
1725 1.1 nonaka
1726 1.1 nonaka /*
1727 1.1 nonaka * Service error interrupts.
1728 1.1 nonaka */
1729 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1730 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
1731 1.11 matt hp->intr_error_status |= error;
1732 1.11 matt hp->intr_status |= status;
1733 1.11 matt cv_broadcast(&hp->intr_cv);
1734 1.1 nonaka }
1735 1.1 nonaka
1736 1.1 nonaka /*
1737 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
1738 1.1 nonaka */
1739 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1740 1.46 jakllsch if (hp->sdmmc != NULL) {
1741 1.46 jakllsch sdmmc_needs_discover(hp->sdmmc);
1742 1.46 jakllsch }
1743 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1744 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
1745 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1746 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1747 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1748 1.11 matt }
1749 1.9 matt }
1750 1.1 nonaka
1751 1.1 nonaka /*
1752 1.1 nonaka * Wake up the blocking process to service command
1753 1.1 nonaka * related interrupt(s).
1754 1.1 nonaka */
1755 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
1756 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1757 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1758 1.1 nonaka hp->intr_status |= status;
1759 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1760 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1761 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1762 1.11 matt }
1763 1.1 nonaka cv_broadcast(&hp->intr_cv);
1764 1.1 nonaka }
1765 1.1 nonaka
1766 1.1 nonaka /*
1767 1.1 nonaka * Service SD card interrupts.
1768 1.1 nonaka */
1769 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1770 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
1771 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1772 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1773 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
1774 1.1 nonaka }
1775 1.29 matt mutex_exit(&hp->intr_mtx);
1776 1.1 nonaka }
1777 1.1 nonaka
1778 1.1 nonaka return done;
1779 1.1 nonaka }
1780 1.1 nonaka
1781 1.1 nonaka #ifdef SDHC_DEBUG
1782 1.1 nonaka void
1783 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
1784 1.1 nonaka {
1785 1.1 nonaka
1786 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1787 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
1788 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1789 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1790 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
1791 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1792 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
1793 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1794 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
1795 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1796 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
1797 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1798 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
1799 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1800 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1801 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1802 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1803 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1804 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
1805 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1806 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
1807 1.1 nonaka }
1808 1.1 nonaka #endif
1809