Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.56
      1  1.56  jmcneill /*	$NetBSD: sdhc.c,v 1.56 2015/05/02 12:10:24 jmcneill Exp $	*/
      2   1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3   1.1    nonaka 
      4   1.1    nonaka /*
      5   1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6   1.1    nonaka  *
      7   1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10   1.1    nonaka  *
     11   1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    nonaka  */
     19   1.1    nonaka 
     20   1.1    nonaka /*
     21   1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22   1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23   1.1    nonaka  */
     24   1.1    nonaka 
     25   1.1    nonaka #include <sys/cdefs.h>
     26  1.56  jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.56 2015/05/02 12:10:24 jmcneill Exp $");
     27  1.10    nonaka 
     28  1.10    nonaka #ifdef _KERNEL_OPT
     29  1.10    nonaka #include "opt_sdmmc.h"
     30  1.10    nonaka #endif
     31   1.1    nonaka 
     32   1.1    nonaka #include <sys/param.h>
     33   1.1    nonaka #include <sys/device.h>
     34   1.1    nonaka #include <sys/kernel.h>
     35   1.1    nonaka #include <sys/kthread.h>
     36   1.1    nonaka #include <sys/malloc.h>
     37   1.1    nonaka #include <sys/systm.h>
     38   1.1    nonaka #include <sys/mutex.h>
     39   1.1    nonaka #include <sys/condvar.h>
     40   1.1    nonaka 
     41   1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42   1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43   1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44   1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45   1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46   1.1    nonaka 
     47   1.1    nonaka #ifdef SDHC_DEBUG
     48   1.1    nonaka int sdhcdebug = 1;
     49   1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50   1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51   1.1    nonaka #else
     52   1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53   1.1    nonaka #endif
     54   1.1    nonaka 
     55   1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56   1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57   1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58   1.1    nonaka #define SDHC_DMA_TIMEOUT	hz
     59   1.1    nonaka 
     60   1.1    nonaka struct sdhc_host {
     61   1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     62   1.1    nonaka 
     63   1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     64   1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     65  1.36  jakllsch 	bus_size_t ios;			/* host register space size */
     66   1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     67   1.1    nonaka 
     68   1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     69   1.1    nonaka 
     70   1.1    nonaka 	struct kmutex host_mtx;
     71   1.1    nonaka 
     72   1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     73   1.1    nonaka 	int maxblklen;			/* maximum block length */
     74   1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     75   1.1    nonaka 
     76   1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     77   1.1    nonaka 
     78   1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     79   1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     80   1.1    nonaka 	struct kmutex intr_mtx;
     81   1.1    nonaka 	struct kcondvar intr_cv;
     82   1.1    nonaka 
     83  1.12    nonaka 	int specver;			/* spec. version */
     84  1.12    nonaka 
     85   1.1    nonaka 	uint32_t flags;			/* flags for this host */
     86   1.1    nonaka #define SHF_USE_DMA		0x0001
     87   1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     88  1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     89  1.55    bouyer #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     90   1.1    nonaka };
     91   1.1    nonaka 
     92   1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     93   1.1    nonaka 
     94  1.11      matt static uint8_t
     95  1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
     96  1.11      matt {
     97  1.12    nonaka 
     98  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     99  1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    100  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    101  1.11      matt }
    102  1.11      matt 
    103  1.11      matt static uint16_t
    104  1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    105  1.11      matt {
    106  1.12    nonaka 
    107  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    108  1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    109  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    110  1.11      matt }
    111  1.11      matt 
    112  1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    113  1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    114  1.11      matt #define HREAD4(hp, reg)		\
    115   1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    116  1.11      matt 
    117  1.11      matt 
    118  1.11      matt static void
    119  1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    120  1.11      matt {
    121  1.12    nonaka 
    122  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    123  1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    124  1.11      matt 	} else {
    125  1.11      matt 		const size_t shift = 8 * (o & 3);
    126  1.11      matt 		o &= -4;
    127  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    128  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    129  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    130  1.11      matt 	}
    131  1.11      matt }
    132  1.11      matt 
    133  1.11      matt static void
    134  1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    135  1.11      matt {
    136  1.12    nonaka 
    137  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    138  1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    139  1.11      matt 	} else {
    140  1.11      matt 		const size_t shift = 8 * (o & 2);
    141  1.11      matt 		o &= -4;
    142  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    143  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    144  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    145  1.11      matt 	}
    146  1.11      matt }
    147  1.11      matt 
    148  1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    149  1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    150   1.1    nonaka #define HWRITE4(hp, reg, val)						\
    151   1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    152  1.11      matt 
    153   1.1    nonaka #define HCLR1(hp, reg, bits)						\
    154  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    155   1.1    nonaka #define HCLR2(hp, reg, bits)						\
    156  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    157  1.11      matt #define HCLR4(hp, reg, bits)						\
    158  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    159   1.1    nonaka #define HSET1(hp, reg, bits)						\
    160  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    161   1.1    nonaka #define HSET2(hp, reg, bits)						\
    162  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    163  1.11      matt #define HSET4(hp, reg, bits)						\
    164  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    165   1.1    nonaka 
    166   1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    167   1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    168   1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    169   1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    170   1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    171   1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    172   1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    173   1.1    nonaka static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    174   1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    175   1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    176   1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    177   1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    178   1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    179   1.1    nonaka 		    struct sdmmc_command *);
    180   1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    181   1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    182   1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    183   1.1    nonaka static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    184   1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    185   1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    186   1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    187  1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188  1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189  1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190  1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    191  1.11      matt 
    192   1.1    nonaka 
    193   1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    194   1.1    nonaka 	/* host controller reset */
    195   1.1    nonaka 	sdhc_host_reset,
    196   1.1    nonaka 
    197   1.1    nonaka 	/* host controller capabilities */
    198   1.1    nonaka 	sdhc_host_ocr,
    199   1.1    nonaka 	sdhc_host_maxblklen,
    200   1.1    nonaka 
    201   1.1    nonaka 	/* card detection */
    202   1.1    nonaka 	sdhc_card_detect,
    203   1.1    nonaka 
    204   1.1    nonaka 	/* write protect */
    205   1.1    nonaka 	sdhc_write_protect,
    206   1.1    nonaka 
    207   1.1    nonaka 	/* bus power, clock frequency and width */
    208   1.1    nonaka 	sdhc_bus_power,
    209   1.1    nonaka 	sdhc_bus_clock,
    210   1.1    nonaka 	sdhc_bus_width,
    211   1.8  kiyohara 	sdhc_bus_rod,
    212   1.1    nonaka 
    213   1.1    nonaka 	/* command execution */
    214   1.1    nonaka 	sdhc_exec_command,
    215   1.1    nonaka 
    216   1.1    nonaka 	/* card interrupt */
    217   1.1    nonaka 	sdhc_card_enable_intr,
    218   1.1    nonaka 	sdhc_card_intr_ack
    219   1.1    nonaka };
    220   1.1    nonaka 
    221  1.17  jakllsch static int
    222  1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    223  1.17  jakllsch {
    224  1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    225  1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    226  1.47     skrll 
    227  1.17  jakllsch 	if (pnp) {
    228  1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    229  1.17  jakllsch 	}
    230  1.41  jakllsch 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    231  1.41  jakllsch 		if (hp->sc->sc_host[host] == hp) {
    232  1.41  jakllsch 			aprint_normal(" slot %zu", host);
    233  1.41  jakllsch 		}
    234  1.41  jakllsch 	}
    235  1.17  jakllsch 
    236  1.17  jakllsch 	return UNCONF;
    237  1.17  jakllsch }
    238  1.17  jakllsch 
    239   1.1    nonaka /*
    240   1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    241   1.1    nonaka  * host controller standard register set. (1.3)
    242   1.1    nonaka  */
    243   1.1    nonaka int
    244   1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    245   1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    246   1.1    nonaka {
    247   1.1    nonaka 	struct sdmmcbus_attach_args saa;
    248   1.1    nonaka 	struct sdhc_host *hp;
    249   1.1    nonaka 	uint32_t caps;
    250   1.1    nonaka 	uint16_t sdhcver;
    251   1.1    nonaka 
    252  1.33  riastrad 	/* Allocate one more host structure. */
    253  1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    254  1.33  riastrad 	if (hp == NULL) {
    255  1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    256  1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    257  1.33  riastrad 		goto err1;
    258  1.33  riastrad 	}
    259  1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    260  1.33  riastrad 
    261  1.33  riastrad 	/* Fill in the new host structure. */
    262  1.33  riastrad 	hp->sc = sc;
    263  1.33  riastrad 	hp->iot = iot;
    264  1.33  riastrad 	hp->ioh = ioh;
    265  1.36  jakllsch 	hp->ios = iosize;
    266  1.33  riastrad 	hp->dmat = sc->sc_dmat;
    267  1.33  riastrad 
    268  1.33  riastrad 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    269  1.33  riastrad 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    270  1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    271  1.33  riastrad 
    272  1.52    nonaka 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    273  1.52    nonaka 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    274  1.52    nonaka 	} else {
    275  1.52    nonaka 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    276  1.52    nonaka 	}
    277  1.12    nonaka 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    278  1.33  riastrad 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    279   1.1    nonaka 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    280  1.12    nonaka 	case SDHC_SPEC_VERS_100:
    281  1.12    nonaka 		aprint_normal("1.0");
    282  1.12    nonaka 		break;
    283  1.12    nonaka 
    284  1.12    nonaka 	case SDHC_SPEC_VERS_200:
    285  1.12    nonaka 		aprint_normal("2.0");
    286   1.1    nonaka 		break;
    287   1.1    nonaka 
    288  1.12    nonaka 	case SDHC_SPEC_VERS_300:
    289  1.12    nonaka 		aprint_normal("3.0");
    290   1.9      matt 		break;
    291   1.9      matt 
    292  1.56  jmcneill 	case SDHC_SPEC_VERS_400:
    293  1.56  jmcneill 		aprint_normal("4.0");
    294  1.56  jmcneill 		break;
    295  1.56  jmcneill 
    296   1.1    nonaka 	default:
    297  1.12    nonaka 		aprint_normal("unknown version(0x%x)",
    298  1.12    nonaka 		    SDHC_SPEC_VERSION(sdhcver));
    299   1.1    nonaka 		break;
    300   1.1    nonaka 	}
    301  1.12    nonaka 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    302   1.1    nonaka 
    303   1.1    nonaka 	/*
    304   1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    305   1.1    nonaka 	 */
    306   1.1    nonaka 	(void)sdhc_host_reset(hp);
    307   1.1    nonaka 
    308   1.1    nonaka 	/* Determine host capabilities. */
    309  1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    310  1.24     skrll 		caps = sc->sc_caps;
    311  1.24     skrll 	} else {
    312  1.24     skrll 		mutex_enter(&hp->host_mtx);
    313  1.24     skrll 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    314  1.24     skrll 		mutex_exit(&hp->host_mtx);
    315  1.24     skrll 	}
    316   1.1    nonaka 
    317  1.55    bouyer 	/*
    318  1.55    bouyer 	 * Use DMA if the host system and the controller support it.
    319  1.55    bouyer 	 * Suports integrated or external DMA egine, with or without
    320  1.55    bouyer 	 * SDHC_DMA_ENABLE in the command.
    321  1.55    bouyer 	 */
    322  1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    323  1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    324  1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    325   1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    326  1.55    bouyer 		if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    327  1.55    bouyer 		    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    328  1.55    bouyer 			SET(hp->flags, SHF_MODE_DMAEN);
    329  1.55    bouyer 
    330   1.1    nonaka 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    331   1.1    nonaka 	}
    332   1.1    nonaka 
    333   1.1    nonaka 	/*
    334   1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    335   1.1    nonaka 	 */
    336  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    337  1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    338  1.30      matt 	} else {
    339  1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    340  1.30      matt 	}
    341  1.56  jmcneill 	if (hp->clkbase == 0 ||
    342  1.56  jmcneill 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    343   1.9      matt 		if (sc->sc_clkbase == 0) {
    344   1.9      matt 			/* The attachment driver must tell us. */
    345  1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    346  1.12    nonaka 			    "unknown base clock frequency\n");
    347   1.9      matt 			goto err;
    348   1.9      matt 		}
    349   1.9      matt 		hp->clkbase = sc->sc_clkbase;
    350   1.9      matt 	}
    351   1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    352   1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    353   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    354   1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    355   1.1    nonaka 		    hp->clkbase / 1000);
    356   1.1    nonaka 		goto err;
    357   1.1    nonaka 	}
    358   1.1    nonaka 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    359   1.1    nonaka 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    360   1.1    nonaka 
    361   1.1    nonaka 	/*
    362   1.1    nonaka 	 * XXX Set the data timeout counter value according to
    363   1.1    nonaka 	 * capabilities. (2.2.15)
    364   1.1    nonaka 	 */
    365   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    366  1.29      matt #if 1
    367  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    368  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    369  1.11      matt #endif
    370   1.1    nonaka 
    371   1.1    nonaka 	/*
    372   1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    373   1.1    nonaka 	 */
    374  1.48  jmcneill 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
    375  1.48  jmcneill 	    (hp->specver < SDHC_SPEC_VERS_300 ||
    376  1.48  jmcneill 	     ISSET(caps, SDHC_EMBEDDED_SLOT))) {
    377   1.1    nonaka 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    378  1.11      matt 	}
    379  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    380   1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    381  1.11      matt 	}
    382  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    383   1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    384  1.11      matt 	}
    385   1.1    nonaka 
    386   1.1    nonaka 	/*
    387   1.1    nonaka 	 * Determine the maximum block length supported by the host
    388   1.1    nonaka 	 * controller. (2.2.24)
    389   1.1    nonaka 	 */
    390   1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    391   1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    392   1.1    nonaka 		hp->maxblklen = 512;
    393   1.1    nonaka 		break;
    394   1.1    nonaka 
    395   1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    396   1.1    nonaka 		hp->maxblklen = 1024;
    397   1.1    nonaka 		break;
    398   1.1    nonaka 
    399   1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    400   1.1    nonaka 		hp->maxblklen = 2048;
    401   1.1    nonaka 		break;
    402   1.1    nonaka 
    403   1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    404   1.9      matt 		hp->maxblklen = 4096;
    405   1.9      matt 		break;
    406   1.9      matt 
    407   1.1    nonaka 	default:
    408   1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    409   1.1    nonaka 		goto err;
    410   1.1    nonaka 	}
    411   1.1    nonaka 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    412   1.1    nonaka 	    device_xname(sc->sc_dev), hp->maxblklen,
    413   1.1    nonaka 	    hp->maxblklen > 1 ? "s" : ""));
    414   1.1    nonaka 
    415   1.1    nonaka 	/*
    416   1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    417   1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    418   1.1    nonaka 	 */
    419   1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    420   1.1    nonaka 	saa.saa_busname = "sdmmc";
    421   1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    422   1.1    nonaka 	saa.saa_sch = hp;
    423   1.1    nonaka 	saa.saa_dmat = hp->dmat;
    424   1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    425  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    426  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    427  1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    428  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    429  1.38  jakllsch 	else if (hp->sc->sc_clkmsk != 0)
    430  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    431  1.38  jakllsch 		    (ffs(hp->sc->sc_clkmsk) - 1));
    432  1.56  jmcneill 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    433  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    434  1.38  jakllsch 	else
    435  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256;
    436   1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    437  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    438  1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    439  1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    440  1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    441  1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    442  1.54    nonaka 		saa.saa_caps |= SMC_CAPS_DMA;
    443  1.54    nonaka 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    444  1.54    nonaka 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    445  1.26      matt 	}
    446  1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    447  1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    448  1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    449   1.1    nonaka 
    450   1.1    nonaka 	return 0;
    451   1.1    nonaka 
    452   1.1    nonaka err:
    453   1.1    nonaka 	cv_destroy(&hp->intr_cv);
    454   1.1    nonaka 	mutex_destroy(&hp->intr_mtx);
    455   1.1    nonaka 	mutex_destroy(&hp->host_mtx);
    456   1.1    nonaka 	free(hp, M_DEVBUF);
    457   1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    458   1.1    nonaka err1:
    459   1.1    nonaka 	return 1;
    460   1.1    nonaka }
    461   1.1    nonaka 
    462   1.7    nonaka int
    463  1.36  jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
    464   1.7    nonaka {
    465  1.36  jakllsch 	struct sdhc_host *hp;
    466   1.7    nonaka 	int rv = 0;
    467   1.7    nonaka 
    468  1.36  jakllsch 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    469  1.36  jakllsch 		hp = sc->sc_host[n];
    470  1.36  jakllsch 		if (hp == NULL)
    471  1.36  jakllsch 			continue;
    472  1.36  jakllsch 		if (hp->sdmmc != NULL) {
    473  1.36  jakllsch 			rv = config_detach(hp->sdmmc, flags);
    474  1.36  jakllsch 			if (rv)
    475  1.36  jakllsch 				break;
    476  1.36  jakllsch 			hp->sdmmc = NULL;
    477  1.36  jakllsch 		}
    478  1.36  jakllsch 		/* disable interrupts */
    479  1.36  jakllsch 		if ((flags & DETACH_FORCE) == 0) {
    480  1.36  jakllsch 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    481  1.36  jakllsch 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    482  1.36  jakllsch 			} else {
    483  1.36  jakllsch 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    484  1.36  jakllsch 			}
    485  1.36  jakllsch 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    486  1.36  jakllsch 		}
    487  1.36  jakllsch 		cv_destroy(&hp->intr_cv);
    488  1.36  jakllsch 		mutex_destroy(&hp->intr_mtx);
    489  1.36  jakllsch 		mutex_destroy(&hp->host_mtx);
    490  1.36  jakllsch 		if (hp->ios > 0) {
    491  1.36  jakllsch 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    492  1.36  jakllsch 			hp->ios = 0;
    493  1.36  jakllsch 		}
    494  1.36  jakllsch 		free(hp, M_DEVBUF);
    495  1.36  jakllsch 		sc->sc_host[n] = NULL;
    496  1.36  jakllsch 	}
    497   1.7    nonaka 
    498   1.7    nonaka 	return rv;
    499   1.7    nonaka }
    500   1.7    nonaka 
    501   1.1    nonaka bool
    502   1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    503   1.1    nonaka {
    504   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    505   1.1    nonaka 	struct sdhc_host *hp;
    506  1.12    nonaka 	size_t i;
    507   1.1    nonaka 
    508   1.1    nonaka 	/* XXX poll for command completion or suspend command
    509   1.1    nonaka 	 * in progress */
    510   1.1    nonaka 
    511   1.1    nonaka 	/* Save the host controller state. */
    512  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    513   1.1    nonaka 		hp = sc->sc_host[n];
    514  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    515  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    516  1.11      matt 				uint32_t v = HREAD4(hp, i);
    517  1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    518  1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    519  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    520  1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    521  1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    522  1.13    bouyer 				}
    523  1.11      matt 			}
    524  1.11      matt 		} else {
    525  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    526  1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    527  1.11      matt 			}
    528  1.11      matt 		}
    529   1.1    nonaka 	}
    530   1.1    nonaka 	return true;
    531   1.1    nonaka }
    532   1.1    nonaka 
    533   1.1    nonaka bool
    534   1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    535   1.1    nonaka {
    536   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    537   1.1    nonaka 	struct sdhc_host *hp;
    538  1.12    nonaka 	size_t i;
    539   1.1    nonaka 
    540   1.1    nonaka 	/* Restore the host controller state. */
    541  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    542   1.1    nonaka 		hp = sc->sc_host[n];
    543   1.1    nonaka 		(void)sdhc_host_reset(hp);
    544  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    545  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    546  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    547  1.13    bouyer 					HWRITE4(hp, i,
    548  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    549  1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    550  1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    551  1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    552  1.13    bouyer 				} else {
    553  1.13    bouyer 					HWRITE4(hp, i,
    554  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    555  1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    556  1.13    bouyer 				}
    557  1.11      matt 			}
    558  1.11      matt 		} else {
    559  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    560  1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    561  1.11      matt 			}
    562  1.11      matt 		}
    563   1.1    nonaka 	}
    564   1.1    nonaka 	return true;
    565   1.1    nonaka }
    566   1.1    nonaka 
    567   1.1    nonaka bool
    568   1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    569   1.1    nonaka {
    570   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    571   1.1    nonaka 	struct sdhc_host *hp;
    572   1.1    nonaka 
    573   1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    574  1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    575   1.1    nonaka 		hp = sc->sc_host[i];
    576   1.1    nonaka 		(void)sdhc_host_reset(hp);
    577   1.1    nonaka 	}
    578   1.1    nonaka 	return true;
    579   1.1    nonaka }
    580   1.1    nonaka 
    581   1.1    nonaka /*
    582   1.1    nonaka  * Reset the host controller.  Called during initialization, when
    583   1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    584   1.1    nonaka  */
    585   1.1    nonaka static int
    586   1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    587   1.1    nonaka {
    588   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    589  1.11      matt 	uint32_t sdhcimask;
    590   1.1    nonaka 	int error;
    591   1.1    nonaka 
    592   1.1    nonaka 	/* Don't lock. */
    593   1.1    nonaka 
    594   1.1    nonaka 	/* Disable all interrupts. */
    595  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    596  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    597  1.11      matt 	} else {
    598  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    599  1.11      matt 	}
    600   1.1    nonaka 
    601   1.1    nonaka 	/*
    602   1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    603   1.1    nonaka 	 * the controller to clear the reset bit.
    604   1.1    nonaka 	 */
    605   1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    606   1.1    nonaka 	if (error)
    607   1.1    nonaka 		goto out;
    608   1.1    nonaka 
    609   1.1    nonaka 	/* Set data timeout counter value to max for now. */
    610   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    611  1.29      matt #if 1
    612  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    613  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    614  1.11      matt #endif
    615   1.1    nonaka 
    616   1.1    nonaka 	/* Enable interrupts. */
    617  1.29      matt 	mutex_enter(&hp->intr_mtx);
    618   1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    619   1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    620   1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    621   1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    622  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    623  1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    624  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    625  1.11      matt 		sdhcimask ^=
    626  1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    627  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    628  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    629  1.11      matt 	} else {
    630  1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    631  1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    632  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    633  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    634  1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    635  1.11      matt 	}
    636  1.29      matt 	mutex_exit(&hp->intr_mtx);
    637   1.1    nonaka 
    638   1.1    nonaka out:
    639   1.1    nonaka 	return error;
    640   1.1    nonaka }
    641   1.1    nonaka 
    642   1.1    nonaka static int
    643   1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    644   1.1    nonaka {
    645   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    646   1.1    nonaka 	int error;
    647   1.1    nonaka 
    648   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    649   1.1    nonaka 	error = sdhc_host_reset1(sch);
    650   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    651   1.1    nonaka 
    652   1.1    nonaka 	return error;
    653   1.1    nonaka }
    654   1.1    nonaka 
    655   1.1    nonaka static uint32_t
    656   1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    657   1.1    nonaka {
    658   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    659   1.1    nonaka 
    660   1.1    nonaka 	return hp->ocr;
    661   1.1    nonaka }
    662   1.1    nonaka 
    663   1.1    nonaka static int
    664   1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    665   1.1    nonaka {
    666   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    667   1.1    nonaka 
    668   1.1    nonaka 	return hp->maxblklen;
    669   1.1    nonaka }
    670   1.1    nonaka 
    671   1.1    nonaka /*
    672   1.1    nonaka  * Return non-zero if the card is currently inserted.
    673   1.1    nonaka  */
    674   1.1    nonaka static int
    675   1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    676   1.1    nonaka {
    677   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    678   1.1    nonaka 	int r;
    679   1.1    nonaka 
    680  1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    681  1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    682  1.32  kiyohara 
    683   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    684   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    685   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    686   1.1    nonaka 
    687  1.11      matt 	return r ? 1 : 0;
    688   1.1    nonaka }
    689   1.1    nonaka 
    690   1.1    nonaka /*
    691   1.1    nonaka  * Return non-zero if the card is currently write-protected.
    692   1.1    nonaka  */
    693   1.1    nonaka static int
    694   1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    695   1.1    nonaka {
    696   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    697   1.1    nonaka 	int r;
    698   1.1    nonaka 
    699  1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    700  1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    701  1.32  kiyohara 
    702   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    703   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    704   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    705   1.1    nonaka 
    706  1.12    nonaka 	return r ? 0 : 1;
    707   1.1    nonaka }
    708   1.1    nonaka 
    709   1.1    nonaka /*
    710   1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    711   1.1    nonaka  * Return zero on success.
    712   1.1    nonaka  */
    713   1.1    nonaka static int
    714   1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    715   1.1    nonaka {
    716   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    717   1.1    nonaka 	uint8_t vdd;
    718   1.1    nonaka 	int error = 0;
    719  1.32  kiyohara 	const uint32_t pcmask =
    720  1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    721   1.1    nonaka 
    722   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    723   1.1    nonaka 
    724   1.1    nonaka 	/*
    725   1.1    nonaka 	 * Disable bus power before voltage change.
    726   1.1    nonaka 	 */
    727  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    728  1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    729   1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    730   1.1    nonaka 
    731   1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    732   1.1    nonaka 	if (ocr == 0) {
    733   1.1    nonaka 		(void)sdhc_host_reset1(hp);
    734   1.1    nonaka 		goto out;
    735   1.1    nonaka 	}
    736   1.1    nonaka 
    737   1.1    nonaka 	/*
    738   1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    739   1.1    nonaka 	 */
    740   1.1    nonaka 	ocr &= hp->ocr;
    741  1.11      matt 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    742   1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    743  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    744   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    745  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    746   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    747  1.11      matt 	} else {
    748   1.1    nonaka 		/* Unsupported voltage level requested. */
    749   1.1    nonaka 		error = EINVAL;
    750   1.1    nonaka 		goto out;
    751   1.1    nonaka 	}
    752   1.1    nonaka 
    753  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    754  1.11      matt 		/*
    755  1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    756  1.11      matt 		 * voltage ramp until power rises.
    757  1.11      matt 		 */
    758  1.11      matt 		HWRITE1(hp, SDHC_POWER_CTL,
    759  1.32  kiyohara 		    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    760  1.32  kiyohara 		sdmmc_delay(1);
    761  1.32  kiyohara 		HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
    762  1.32  kiyohara 		sdmmc_delay(1);
    763  1.32  kiyohara 		HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    764  1.11      matt 		sdmmc_delay(10000);
    765   1.1    nonaka 
    766  1.11      matt 		/*
    767  1.11      matt 		 * The host system may not power the bus due to battery low,
    768  1.11      matt 		 * etc.  In that case, the host controller should clear the
    769  1.11      matt 		 * bus power bit.
    770  1.11      matt 		 */
    771  1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    772  1.11      matt 			error = ENXIO;
    773  1.11      matt 			goto out;
    774  1.11      matt 		}
    775   1.1    nonaka 	}
    776   1.1    nonaka 
    777   1.1    nonaka out:
    778   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    779   1.1    nonaka 
    780   1.1    nonaka 	return error;
    781   1.1    nonaka }
    782   1.1    nonaka 
    783   1.1    nonaka /*
    784   1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    785   1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    786   1.1    nonaka  */
    787  1.11      matt static bool
    788  1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    789   1.1    nonaka {
    790  1.11      matt 	u_int div;
    791   1.1    nonaka 
    792  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    793  1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    794  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    795  1.11      matt 				*divp = SDHC_SDCLK_CGM
    796  1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    797  1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    798  1.18  jakllsch 				//freq = hp->clkbase / div;
    799  1.11      matt 				return true;
    800  1.11      matt 			}
    801  1.11      matt 		}
    802  1.11      matt 		/* No divisor found. */
    803  1.11      matt 		return false;
    804  1.11      matt 	}
    805  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    806  1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    807  1.11      matt 		u_int roundup = dvs & 1;
    808  1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    809  1.11      matt 			if (dvs + roundup <= 16) {
    810  1.11      matt 				dvs += roundup - 1;
    811  1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    812  1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    813  1.11      matt 				DPRINTF(2,
    814  1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    815  1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    816  1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    817  1.11      matt 				return true;
    818   1.9      matt 			}
    819  1.11      matt 			/*
    820  1.11      matt 			 * If we drop bits, we need to round up the divisor.
    821  1.11      matt 			 */
    822  1.11      matt 			roundup |= dvs & 1;
    823   1.9      matt 		}
    824  1.18  jakllsch 		/* No divisor found. */
    825  1.18  jakllsch 		return false;
    826  1.38  jakllsch 	}
    827  1.38  jakllsch 	if (hp->sc->sc_clkmsk != 0) {
    828  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    829  1.38  jakllsch 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    830  1.38  jakllsch 			return false;
    831  1.38  jakllsch 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    832  1.38  jakllsch 		//freq = hp->clkbase / div;
    833  1.38  jakllsch 		return true;
    834  1.38  jakllsch 	}
    835  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    836  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    837  1.50   mlelstv 		div = div > 1 ? howmany(div, 2) : 0;
    838  1.38  jakllsch 		if (div > 0x3ff)
    839  1.38  jakllsch 			return false;
    840  1.38  jakllsch 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    841  1.38  jakllsch 			 << SDHC_SDCLK_XDIV_SHIFT) |
    842  1.38  jakllsch 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    843  1.38  jakllsch 			 << SDHC_SDCLK_DIV_SHIFT);
    844  1.38  jakllsch 		//freq = hp->clkbase / div;
    845  1.38  jakllsch 		return true;
    846   1.9      matt 	} else {
    847  1.38  jakllsch 		for (div = 1; div <= 256; div *= 2) {
    848  1.38  jakllsch 			if ((hp->clkbase / div) <= freq) {
    849  1.38  jakllsch 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    850  1.38  jakllsch 				//freq = hp->clkbase / div;
    851  1.38  jakllsch 				return true;
    852  1.38  jakllsch 			}
    853  1.38  jakllsch 		}
    854  1.38  jakllsch 		/* No divisor found. */
    855  1.38  jakllsch 		return false;
    856   1.9      matt 	}
    857   1.1    nonaka 	/* No divisor found. */
    858  1.11      matt 	return false;
    859   1.1    nonaka }
    860   1.1    nonaka 
    861   1.1    nonaka /*
    862   1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
    863   1.1    nonaka  * Return zero on success.
    864   1.1    nonaka  */
    865   1.1    nonaka static int
    866   1.1    nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    867   1.1    nonaka {
    868   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    869  1.11      matt 	u_int div;
    870  1.11      matt 	u_int timo;
    871  1.32  kiyohara 	int16_t reg;
    872   1.1    nonaka 	int error = 0;
    873   1.2    cegger #ifdef DIAGNOSTIC
    874  1.12    nonaka 	bool present;
    875   1.1    nonaka 
    876   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    877  1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    878   1.2    cegger 	mutex_exit(&hp->host_mtx);
    879   1.1    nonaka 
    880   1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
    881  1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
    882  1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
    883  1.26      matt 		    "%s: command in progress\n", __func__);
    884  1.12    nonaka 	}
    885   1.1    nonaka #endif
    886   1.1    nonaka 
    887   1.2    cegger 	mutex_enter(&hp->host_mtx);
    888   1.2    cegger 
    889  1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
    890  1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
    891  1.34      matt 		if (error != 0)
    892  1.34      matt 			goto out;
    893  1.34      matt 	}
    894  1.34      matt 
    895   1.1    nonaka 	/*
    896   1.1    nonaka 	 * Stop SD clock before changing the frequency.
    897   1.1    nonaka 	 */
    898  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    899  1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    900  1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
    901  1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    902  1.11      matt 			goto out;
    903  1.11      matt 		}
    904  1.11      matt 	} else {
    905  1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    906  1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
    907  1.11      matt 			goto out;
    908  1.11      matt 	}
    909   1.1    nonaka 
    910   1.1    nonaka 	/*
    911   1.1    nonaka 	 * Set the minimum base clock frequency divisor.
    912   1.1    nonaka 	 */
    913  1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    914   1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
    915   1.1    nonaka 		error = EINVAL;
    916   1.1    nonaka 		goto out;
    917   1.1    nonaka 	}
    918  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    919  1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
    920  1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
    921  1.11      matt 	} else {
    922  1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
    923  1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
    924  1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
    925  1.11      matt 	}
    926   1.1    nonaka 
    927   1.1    nonaka 	/*
    928   1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
    929   1.1    nonaka 	 */
    930  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    931  1.11      matt 		sdmmc_delay(10000);
    932  1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
    933  1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    934  1.11      matt 	} else {
    935  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    936  1.11      matt 		for (timo = 1000; timo > 0; timo--) {
    937  1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    938  1.12    nonaka 			    SDHC_INTCLK_STABLE))
    939  1.11      matt 				break;
    940  1.11      matt 			sdmmc_delay(10);
    941  1.11      matt 		}
    942  1.11      matt 		if (timo == 0) {
    943  1.11      matt 			error = ETIMEDOUT;
    944  1.11      matt 			goto out;
    945  1.11      matt 		}
    946   1.1    nonaka 	}
    947   1.1    nonaka 
    948  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    949  1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    950  1.11      matt 		/*
    951  1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
    952  1.11      matt 		 * So delay for that time + slop and then
    953  1.11      matt 		 * check a few times for completion.
    954  1.11      matt 		 */
    955  1.11      matt 		sdmmc_delay(210);
    956  1.11      matt 		for (timo = 10; timo > 0; timo--) {
    957  1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    958  1.11      matt 			    SDHC_INIT_ACTIVE))
    959  1.11      matt 				break;
    960  1.11      matt 			sdmmc_delay(10);
    961  1.11      matt 		}
    962  1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    963  1.12    nonaka 
    964  1.11      matt 		/*
    965  1.11      matt 		 * Enable SD clock.
    966  1.11      matt 		 */
    967  1.11      matt 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    968  1.11      matt 	} else {
    969  1.11      matt 		/*
    970  1.11      matt 		 * Enable SD clock.
    971  1.11      matt 		 */
    972  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    973   1.1    nonaka 
    974  1.43  jmcneill 		if (freq > 25000 &&
    975  1.43  jmcneill 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
    976  1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    977  1.11      matt 		else
    978  1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    979  1.11      matt 	}
    980   1.8  kiyohara 
    981   1.1    nonaka out:
    982   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    983   1.1    nonaka 
    984   1.1    nonaka 	return error;
    985   1.1    nonaka }
    986   1.1    nonaka 
    987   1.1    nonaka static int
    988   1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    989   1.1    nonaka {
    990   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    991   1.1    nonaka 	int reg;
    992   1.1    nonaka 
    993   1.1    nonaka 	switch (width) {
    994   1.1    nonaka 	case 1:
    995   1.1    nonaka 	case 4:
    996   1.1    nonaka 		break;
    997   1.1    nonaka 
    998  1.11      matt 	case 8:
    999  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1000  1.11      matt 			break;
   1001  1.11      matt 		/* FALLTHROUGH */
   1002   1.1    nonaka 	default:
   1003   1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1004   1.1    nonaka 		    HDEVNAME(hp), width));
   1005   1.1    nonaka 		return 1;
   1006   1.1    nonaka 	}
   1007   1.1    nonaka 
   1008   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1009   1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1010  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1011  1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1012  1.11      matt 		if (width == 4)
   1013  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1014  1.11      matt 		else if (width == 8)
   1015  1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
   1016  1.11      matt 	} else {
   1017  1.11      matt 		reg &= ~SDHC_4BIT_MODE;
   1018  1.11      matt 		if (width == 4)
   1019  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1020  1.11      matt 	}
   1021   1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1022   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1023   1.1    nonaka 
   1024   1.1    nonaka 	return 0;
   1025   1.1    nonaka }
   1026   1.1    nonaka 
   1027   1.8  kiyohara static int
   1028   1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1029   1.8  kiyohara {
   1030  1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1031  1.32  kiyohara 
   1032  1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
   1033  1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1034   1.8  kiyohara 
   1035   1.8  kiyohara 	return 0;
   1036   1.8  kiyohara }
   1037   1.8  kiyohara 
   1038   1.1    nonaka static void
   1039   1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1040   1.1    nonaka {
   1041   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1042   1.1    nonaka 
   1043  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1044  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1045  1.11      matt 		if (enable) {
   1046  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1047  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1048  1.11      matt 		} else {
   1049  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1050  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1051  1.11      matt 		}
   1052  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1053   1.1    nonaka 	}
   1054   1.1    nonaka }
   1055   1.1    nonaka 
   1056  1.47     skrll static void
   1057   1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1058   1.1    nonaka {
   1059   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1060   1.1    nonaka 
   1061  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1062  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1063  1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1064  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1065  1.11      matt 	}
   1066   1.1    nonaka }
   1067   1.1    nonaka 
   1068   1.1    nonaka static int
   1069   1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1070   1.1    nonaka {
   1071   1.1    nonaka 	uint32_t state;
   1072   1.1    nonaka 	int timeout;
   1073   1.1    nonaka 
   1074   1.1    nonaka 	for (timeout = 10; timeout > 0; timeout--) {
   1075   1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1076   1.1    nonaka 			return 0;
   1077   1.1    nonaka 		sdmmc_delay(10000);
   1078   1.1    nonaka 	}
   1079   1.1    nonaka 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
   1080   1.1    nonaka 	    value, state));
   1081   1.1    nonaka 	return ETIMEDOUT;
   1082   1.1    nonaka }
   1083   1.1    nonaka 
   1084   1.1    nonaka static void
   1085   1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1086   1.1    nonaka {
   1087   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1088   1.1    nonaka 	int error;
   1089   1.1    nonaka 
   1090  1.26      matt 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1091  1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1092  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1093  1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1094  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1095  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1096  1.11      matt 		} else {
   1097  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1098  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1099  1.47     skrll 		}
   1100  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1101  1.11      matt 	}
   1102  1.11      matt 
   1103   1.1    nonaka 	/*
   1104   1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1105   1.1    nonaka 	 */
   1106   1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1107   1.1    nonaka 	if (error) {
   1108   1.1    nonaka 		cmd->c_error = error;
   1109   1.1    nonaka 		goto out;
   1110   1.1    nonaka 	}
   1111   1.1    nonaka 
   1112   1.1    nonaka 	/*
   1113   1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1114   1.1    nonaka 	 * is marked done for any other reason.
   1115   1.1    nonaka 	 */
   1116   1.1    nonaka 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1117   1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1118   1.1    nonaka 		goto out;
   1119   1.1    nonaka 	}
   1120   1.1    nonaka 
   1121   1.1    nonaka 	/*
   1122   1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1123   1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1124   1.1    nonaka 	 * driver (without padding).
   1125   1.1    nonaka 	 */
   1126   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1127   1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1128  1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1129  1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1130  1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1131  1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1132  1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1133  1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1134  1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1135  1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1136  1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1137  1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1138  1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1139  1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1140  1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1141  1.32  kiyohara 			}
   1142   1.1    nonaka 		}
   1143   1.1    nonaka 	}
   1144   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1145  1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1146   1.1    nonaka 
   1147   1.1    nonaka 	/*
   1148   1.1    nonaka 	 * If the command has data to transfer in any direction,
   1149   1.1    nonaka 	 * execute the transfer now.
   1150   1.1    nonaka 	 */
   1151   1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1152   1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1153  1.42  jakllsch 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1154  1.42  jakllsch 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
   1155  1.42  jakllsch 			cmd->c_error = ETIMEDOUT;
   1156  1.42  jakllsch 			goto out;
   1157  1.42  jakllsch 		}
   1158  1.42  jakllsch 	}
   1159   1.1    nonaka 
   1160   1.1    nonaka out:
   1161  1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1162  1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1163  1.11      matt 		mutex_enter(&hp->host_mtx);
   1164  1.11      matt 		/* Turn off the LED. */
   1165  1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1166  1.11      matt 		mutex_exit(&hp->host_mtx);
   1167  1.11      matt 	}
   1168   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1169   1.1    nonaka 
   1170   1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1171   1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1172   1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1173   1.1    nonaka }
   1174   1.1    nonaka 
   1175   1.1    nonaka static int
   1176   1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1177   1.1    nonaka {
   1178  1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1179   1.1    nonaka 	uint16_t blksize = 0;
   1180   1.1    nonaka 	uint16_t blkcount = 0;
   1181   1.1    nonaka 	uint16_t mode;
   1182   1.1    nonaka 	uint16_t command;
   1183   1.1    nonaka 	int error;
   1184   1.1    nonaka 
   1185  1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1186   1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1187  1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1188   1.1    nonaka 
   1189   1.1    nonaka 	/*
   1190   1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1191   1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1192   1.1    nonaka 	 */
   1193   1.1    nonaka 
   1194   1.1    nonaka 	/* Fragment the data into proper blocks. */
   1195   1.1    nonaka 	if (cmd->c_datalen > 0) {
   1196   1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1197   1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1198   1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1199   1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1200  1.11      matt 			aprint_error_dev(sc->sc_dev,
   1201   1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1202   1.1    nonaka 			return EINVAL;
   1203   1.1    nonaka 		}
   1204   1.1    nonaka 	}
   1205   1.1    nonaka 
   1206   1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1207   1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1208  1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1209   1.1    nonaka 		return EINVAL;
   1210   1.1    nonaka 	}
   1211   1.1    nonaka 
   1212   1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1213  1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1214   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1215   1.1    nonaka 		mode |= SDHC_READ_MODE;
   1216  1.15  jakllsch 	if (blkcount > 1) {
   1217  1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1218  1.15  jakllsch 		/* XXX only for memory commands? */
   1219  1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1220   1.1    nonaka 	}
   1221  1.45  jakllsch 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1222  1.55    bouyer 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1223  1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1224   1.7    nonaka 	}
   1225   1.1    nonaka 
   1226   1.1    nonaka 	/*
   1227   1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1228   1.1    nonaka 	 */
   1229  1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1230   1.1    nonaka 
   1231   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1232   1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1233   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1234   1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1235   1.1    nonaka 	if (cmd->c_data != NULL)
   1236   1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1237   1.1    nonaka 
   1238   1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1239   1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1240   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1241   1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1242   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1243   1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1244   1.1    nonaka 	else
   1245   1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1246   1.1    nonaka 
   1247   1.1    nonaka 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1248   1.1    nonaka 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1249   1.1    nonaka 	if (error)
   1250   1.1    nonaka 		return error;
   1251   1.1    nonaka 
   1252   1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1253   1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1254   1.1    nonaka 
   1255  1.44   hkenken 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1256  1.44   hkenken 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1257  1.44   hkenken 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1258  1.44   hkenken 	}
   1259  1.19  jakllsch 
   1260   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1261   1.1    nonaka 
   1262  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1263  1.11      matt 		/* Alert the user not to remove the card. */
   1264  1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1265  1.11      matt 	}
   1266   1.1    nonaka 
   1267   1.7    nonaka 	/* Set DMA start address. */
   1268  1.55    bouyer 	if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1269  1.55    bouyer 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA))
   1270   1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1271   1.7    nonaka 
   1272   1.1    nonaka 	/*
   1273   1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1274   1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1275   1.1    nonaka 	 */
   1276  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1277  1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1278  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1279  1.11      matt 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1280  1.11      matt 	} else {
   1281  1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1282  1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1283  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1284  1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1285  1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1286  1.11      matt 	}
   1287   1.1    nonaka 
   1288   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1289   1.1    nonaka 
   1290   1.1    nonaka 	return 0;
   1291   1.1    nonaka }
   1292   1.1    nonaka 
   1293   1.1    nonaka static void
   1294   1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1295   1.1    nonaka {
   1296  1.51  jmcneill 	struct sdhc_softc *sc = hp->sc;
   1297   1.1    nonaka 	int error;
   1298   1.1    nonaka 
   1299   1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1300   1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1301   1.1    nonaka 
   1302   1.1    nonaka #ifdef SDHC_DEBUG
   1303   1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1304   1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1305   1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1306   1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1307   1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1308   1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1309   1.1    nonaka 	}
   1310   1.1    nonaka #endif
   1311   1.1    nonaka 
   1312  1.47     skrll 	if (cmd->c_dmamap != NULL) {
   1313  1.47     skrll 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1314  1.51  jmcneill 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1315  1.47     skrll 			if (error == 0 && !sdhc_wait_intr(hp,
   1316  1.47     skrll 			    SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) {
   1317  1.47     skrll 				error = ETIMEDOUT;
   1318  1.47     skrll 			}
   1319  1.47     skrll 		} else {
   1320  1.47     skrll 			error = sdhc_transfer_data_dma(hp, cmd);
   1321  1.47     skrll 		}
   1322  1.47     skrll 	} else
   1323   1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1324   1.1    nonaka 	if (error)
   1325   1.1    nonaka 		cmd->c_error = error;
   1326   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1327   1.1    nonaka 
   1328   1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1329   1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1330   1.1    nonaka }
   1331   1.1    nonaka 
   1332   1.1    nonaka static int
   1333   1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1334   1.7    nonaka {
   1335  1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1336  1.19  jakllsch 	bus_addr_t posaddr;
   1337  1.19  jakllsch 	bus_addr_t segaddr;
   1338  1.19  jakllsch 	bus_size_t seglen;
   1339  1.19  jakllsch 	u_int seg = 0;
   1340   1.7    nonaka 	int error = 0;
   1341  1.19  jakllsch 	int status;
   1342   1.7    nonaka 
   1343  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1344  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1345  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1346  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1347  1.11      matt 
   1348   1.7    nonaka 	for (;;) {
   1349  1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1350   1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1351  1.19  jakllsch 		    SDHC_DMA_TIMEOUT);
   1352  1.19  jakllsch 
   1353  1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1354  1.19  jakllsch 			break;
   1355  1.19  jakllsch 		}
   1356  1.19  jakllsch 		if (!status) {
   1357   1.7    nonaka 			error = ETIMEDOUT;
   1358   1.7    nonaka 			break;
   1359   1.7    nonaka 		}
   1360  1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1361  1.19  jakllsch 			continue;
   1362  1.19  jakllsch 		}
   1363  1.19  jakllsch 
   1364  1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1365   1.7    nonaka 
   1366  1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1367  1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1368  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1369  1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1370  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1371   1.7    nonaka 
   1372  1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1373  1.37  jakllsch 			continue;
   1374  1.19  jakllsch 		}
   1375  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1376  1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1377  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1378  1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1379  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1380  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1381  1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1382   1.7    nonaka 	}
   1383   1.7    nonaka 
   1384   1.7    nonaka 	return error;
   1385   1.7    nonaka }
   1386   1.7    nonaka 
   1387   1.7    nonaka static int
   1388   1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1389   1.1    nonaka {
   1390   1.1    nonaka 	uint8_t *data = cmd->c_data;
   1391  1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1392  1.11      matt 	u_int len, datalen;
   1393  1.11      matt 	u_int imask;
   1394  1.11      matt 	u_int pmask;
   1395   1.1    nonaka 	int error = 0;
   1396   1.1    nonaka 
   1397  1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1398  1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1399  1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1400  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1401  1.11      matt 			pio_func = esdhc_read_data_pio;
   1402  1.11      matt 		} else {
   1403  1.11      matt 			pio_func = sdhc_read_data_pio;
   1404  1.11      matt 		}
   1405  1.11      matt 	} else {
   1406  1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1407  1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1408  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1409  1.11      matt 			pio_func = esdhc_write_data_pio;
   1410  1.11      matt 		} else {
   1411  1.11      matt 			pio_func = sdhc_write_data_pio;
   1412  1.11      matt 		}
   1413  1.11      matt 	}
   1414   1.1    nonaka 	datalen = cmd->c_datalen;
   1415   1.1    nonaka 
   1416  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1417  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1418  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1419  1.11      matt 
   1420   1.1    nonaka 	while (datalen > 0) {
   1421  1.11      matt 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1422  1.29      matt 			mutex_enter(&hp->intr_mtx);
   1423  1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1424  1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1425  1.11      matt 			} else {
   1426  1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1427  1.11      matt 			}
   1428  1.29      matt 			mutex_exit(&hp->intr_mtx);
   1429  1.11      matt 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1430  1.11      matt 				error = ETIMEDOUT;
   1431  1.11      matt 				break;
   1432  1.11      matt 			}
   1433  1.11      matt 
   1434  1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1435  1.11      matt 			if (error)
   1436  1.11      matt 				break;
   1437   1.1    nonaka 		}
   1438   1.1    nonaka 
   1439   1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1440  1.11      matt 		(*pio_func)(hp, data, len);
   1441  1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1442  1.11      matt 		    HDEVNAME(hp), len, data));
   1443   1.1    nonaka 
   1444   1.1    nonaka 		data += len;
   1445   1.1    nonaka 		datalen -= len;
   1446   1.1    nonaka 	}
   1447   1.1    nonaka 
   1448   1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1449   1.1    nonaka 	    SDHC_TRANSFER_TIMEOUT))
   1450   1.1    nonaka 		error = ETIMEDOUT;
   1451   1.1    nonaka 
   1452   1.1    nonaka 	return error;
   1453   1.1    nonaka }
   1454   1.1    nonaka 
   1455   1.1    nonaka static void
   1456  1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1457   1.1    nonaka {
   1458   1.1    nonaka 
   1459   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1460   1.1    nonaka 		while (datalen > 3) {
   1461  1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1462   1.1    nonaka 			data += 4;
   1463   1.1    nonaka 			datalen -= 4;
   1464   1.1    nonaka 		}
   1465   1.1    nonaka 		if (datalen > 1) {
   1466  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1467   1.1    nonaka 			data += 2;
   1468   1.1    nonaka 			datalen -= 2;
   1469   1.1    nonaka 		}
   1470   1.1    nonaka 		if (datalen > 0) {
   1471   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1472   1.1    nonaka 			data += 1;
   1473   1.1    nonaka 			datalen -= 1;
   1474   1.1    nonaka 		}
   1475   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1476   1.1    nonaka 		while (datalen > 1) {
   1477  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1478   1.1    nonaka 			data += 2;
   1479   1.1    nonaka 			datalen -= 2;
   1480   1.1    nonaka 		}
   1481   1.1    nonaka 		if (datalen > 0) {
   1482   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1483   1.1    nonaka 			data += 1;
   1484   1.1    nonaka 			datalen -= 1;
   1485   1.1    nonaka 		}
   1486   1.1    nonaka 	} else {
   1487   1.1    nonaka 		while (datalen > 0) {
   1488   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1489   1.1    nonaka 			data += 1;
   1490   1.1    nonaka 			datalen -= 1;
   1491   1.1    nonaka 		}
   1492   1.1    nonaka 	}
   1493   1.1    nonaka }
   1494   1.1    nonaka 
   1495   1.1    nonaka static void
   1496  1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1497   1.1    nonaka {
   1498   1.1    nonaka 
   1499   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1500   1.1    nonaka 		while (datalen > 3) {
   1501  1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1502   1.1    nonaka 			data += 4;
   1503   1.1    nonaka 			datalen -= 4;
   1504   1.1    nonaka 		}
   1505   1.1    nonaka 		if (datalen > 1) {
   1506  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1507   1.1    nonaka 			data += 2;
   1508   1.1    nonaka 			datalen -= 2;
   1509   1.1    nonaka 		}
   1510   1.1    nonaka 		if (datalen > 0) {
   1511   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1512   1.1    nonaka 			data += 1;
   1513   1.1    nonaka 			datalen -= 1;
   1514   1.1    nonaka 		}
   1515   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1516   1.1    nonaka 		while (datalen > 1) {
   1517  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1518   1.1    nonaka 			data += 2;
   1519   1.1    nonaka 			datalen -= 2;
   1520   1.1    nonaka 		}
   1521   1.1    nonaka 		if (datalen > 0) {
   1522   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1523   1.1    nonaka 			data += 1;
   1524   1.1    nonaka 			datalen -= 1;
   1525   1.1    nonaka 		}
   1526   1.1    nonaka 	} else {
   1527   1.1    nonaka 		while (datalen > 0) {
   1528   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1529   1.1    nonaka 			data += 1;
   1530   1.1    nonaka 			datalen -= 1;
   1531   1.1    nonaka 		}
   1532   1.1    nonaka 	}
   1533   1.1    nonaka }
   1534   1.1    nonaka 
   1535  1.11      matt static void
   1536  1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1537  1.11      matt {
   1538  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1539  1.12    nonaka 	uint32_t v;
   1540  1.12    nonaka 
   1541  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1542  1.23      matt 	size_t count = 0;
   1543  1.23      matt 
   1544  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1545  1.23      matt 		if (count == 0) {
   1546  1.23      matt 			/*
   1547  1.23      matt 			 * If we've drained "watermark" words, we need to wait
   1548  1.23      matt 			 * a little bit so the read FIFO can refill.
   1549  1.23      matt 			 */
   1550  1.23      matt 			sdmmc_delay(10);
   1551  1.23      matt 			count = watermark;
   1552  1.23      matt 		}
   1553  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1554  1.11      matt 		v = le32toh(v);
   1555  1.11      matt 		*(uint32_t *)data = v;
   1556  1.11      matt 		data += 4;
   1557  1.11      matt 		datalen -= 4;
   1558  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1559  1.23      matt 		count--;
   1560  1.11      matt 	}
   1561  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1562  1.23      matt 		if (count == 0) {
   1563  1.23      matt 			sdmmc_delay(10);
   1564  1.23      matt 		}
   1565  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1566  1.11      matt 		v = le32toh(v);
   1567  1.11      matt 		do {
   1568  1.11      matt 			*data++ = v;
   1569  1.11      matt 			v >>= 8;
   1570  1.11      matt 		} while (--datalen > 0);
   1571  1.11      matt 	}
   1572  1.11      matt }
   1573  1.11      matt 
   1574  1.11      matt static void
   1575  1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1576  1.11      matt {
   1577  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1578  1.12    nonaka 	uint32_t v;
   1579  1.12    nonaka 
   1580  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1581  1.23      matt 	size_t count = watermark;
   1582  1.23      matt 
   1583  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1584  1.23      matt 		if (count == 0) {
   1585  1.23      matt 			sdmmc_delay(10);
   1586  1.23      matt 			count = watermark;
   1587  1.23      matt 		}
   1588  1.12    nonaka 		v = *(uint32_t *)data;
   1589  1.11      matt 		v = htole32(v);
   1590  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1591  1.11      matt 		data += 4;
   1592  1.11      matt 		datalen -= 4;
   1593  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1594  1.23      matt 		count--;
   1595  1.11      matt 	}
   1596  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1597  1.23      matt 		if (count == 0) {
   1598  1.23      matt 			sdmmc_delay(10);
   1599  1.23      matt 		}
   1600  1.12    nonaka 		v = *(uint32_t *)data;
   1601  1.11      matt 		v = htole32(v);
   1602  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1603  1.11      matt 	}
   1604  1.11      matt }
   1605  1.11      matt 
   1606   1.1    nonaka /* Prepare for another command. */
   1607   1.1    nonaka static int
   1608   1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1609   1.1    nonaka {
   1610   1.1    nonaka 	int timo;
   1611   1.1    nonaka 
   1612   1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1613   1.1    nonaka 
   1614  1.35  riastrad 	/* Request the reset.  */
   1615   1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1616  1.35  riastrad 
   1617  1.35  riastrad 	/*
   1618  1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   1619  1.35  riastrad 	 * acknowledge the reset.
   1620  1.35  riastrad 	 */
   1621  1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1622  1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1623  1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   1624  1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1625  1.35  riastrad 				break;
   1626  1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   1627  1.35  riastrad 			sdmmc_delay(1);
   1628  1.35  riastrad 		}
   1629  1.35  riastrad 		if (timo == 0)
   1630  1.35  riastrad 			return ETIMEDOUT;
   1631  1.35  riastrad 	}
   1632  1.35  riastrad 
   1633  1.35  riastrad 	/*
   1634  1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   1635  1.35  riastrad 	 * the reset has completed.
   1636  1.35  riastrad 	 */
   1637   1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   1638   1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1639   1.1    nonaka 			break;
   1640   1.1    nonaka 		sdmmc_delay(10000);
   1641   1.1    nonaka 	}
   1642   1.1    nonaka 	if (timo == 0) {
   1643   1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1644   1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1645   1.1    nonaka 		return ETIMEDOUT;
   1646   1.1    nonaka 	}
   1647   1.1    nonaka 
   1648  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1649  1.53    nonaka 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1650  1.11      matt 	}
   1651  1.11      matt 
   1652   1.1    nonaka 	return 0;
   1653   1.1    nonaka }
   1654   1.1    nonaka 
   1655   1.1    nonaka static int
   1656   1.1    nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1657   1.1    nonaka {
   1658   1.1    nonaka 	int status;
   1659   1.1    nonaka 
   1660   1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   1661   1.1    nonaka 
   1662   1.1    nonaka 	mutex_enter(&hp->intr_mtx);
   1663   1.1    nonaka 	status = hp->intr_status & mask;
   1664   1.1    nonaka 	while (status == 0) {
   1665   1.1    nonaka 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1666   1.1    nonaka 		    == EWOULDBLOCK) {
   1667   1.1    nonaka 			status |= SDHC_ERROR_INTERRUPT;
   1668   1.1    nonaka 			break;
   1669   1.1    nonaka 		}
   1670   1.1    nonaka 		status = hp->intr_status & mask;
   1671   1.1    nonaka 	}
   1672   1.1    nonaka 	hp->intr_status &= ~status;
   1673   1.1    nonaka 
   1674   1.1    nonaka 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1675   1.1    nonaka 	    hp->intr_error_status));
   1676  1.47     skrll 
   1677   1.1    nonaka 	/* Command timeout has higher priority than command complete. */
   1678  1.11      matt 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1679   1.1    nonaka 		hp->intr_error_status = 0;
   1680  1.11      matt 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1681  1.11      matt 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1682  1.11      matt 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1683  1.11      matt 		}
   1684   1.1    nonaka 		status = 0;
   1685   1.1    nonaka 	}
   1686   1.1    nonaka 	mutex_exit(&hp->intr_mtx);
   1687   1.1    nonaka 
   1688   1.1    nonaka 	return status;
   1689   1.1    nonaka }
   1690   1.1    nonaka 
   1691   1.1    nonaka /*
   1692   1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1693   1.1    nonaka  */
   1694   1.1    nonaka int
   1695   1.1    nonaka sdhc_intr(void *arg)
   1696   1.1    nonaka {
   1697   1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1698   1.1    nonaka 	struct sdhc_host *hp;
   1699   1.1    nonaka 	int done = 0;
   1700   1.1    nonaka 	uint16_t status;
   1701   1.1    nonaka 	uint16_t error;
   1702   1.1    nonaka 
   1703   1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   1704  1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1705   1.1    nonaka 		hp = sc->sc_host[host];
   1706   1.1    nonaka 		if (hp == NULL)
   1707   1.1    nonaka 			continue;
   1708   1.1    nonaka 
   1709  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1710  1.11      matt 			/* Find out which interrupts are pending. */
   1711  1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1712  1.11      matt 			status = xstatus;
   1713  1.11      matt 			error = xstatus >> 16;
   1714  1.22      matt 			if (error)
   1715  1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   1716  1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1717  1.11      matt 				continue; /* no interrupt for us */
   1718  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1719  1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1720  1.11      matt 		} else {
   1721  1.11      matt 			/* Find out which interrupts are pending. */
   1722  1.11      matt 			error = 0;
   1723  1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1724  1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1725  1.11      matt 				continue; /* no interrupt for us */
   1726  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1727  1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1728  1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1729  1.11      matt 				/* Acknowledge error interrupts. */
   1730  1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1731  1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1732  1.11      matt 			}
   1733  1.11      matt 		}
   1734  1.47     skrll 
   1735  1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1736  1.11      matt 		    status, error));
   1737   1.1    nonaka 
   1738  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1739  1.29      matt 
   1740   1.1    nonaka 		/* Claim this interrupt. */
   1741   1.1    nonaka 		done = 1;
   1742   1.1    nonaka 
   1743   1.1    nonaka 		/*
   1744   1.1    nonaka 		 * Service error interrupts.
   1745   1.1    nonaka 		 */
   1746  1.11      matt 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1747  1.11      matt 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1748  1.11      matt 			hp->intr_error_status |= error;
   1749  1.11      matt 			hp->intr_status |= status;
   1750  1.11      matt 			cv_broadcast(&hp->intr_cv);
   1751   1.1    nonaka 		}
   1752   1.1    nonaka 
   1753   1.1    nonaka 		/*
   1754   1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   1755   1.1    nonaka 		 */
   1756   1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1757  1.46  jakllsch 			if (hp->sdmmc != NULL) {
   1758  1.46  jakllsch 				sdmmc_needs_discover(hp->sdmmc);
   1759  1.46  jakllsch 			}
   1760  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1761  1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1762  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1763  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1764  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1765  1.11      matt 			}
   1766   1.9      matt 		}
   1767   1.1    nonaka 
   1768   1.1    nonaka 		/*
   1769   1.1    nonaka 		 * Wake up the blocking process to service command
   1770   1.1    nonaka 		 * related interrupt(s).
   1771   1.1    nonaka 		 */
   1772  1.11      matt 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1773  1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1774   1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1775   1.1    nonaka 			hp->intr_status |= status;
   1776  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1777  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1778  1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1779  1.11      matt 			}
   1780   1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   1781   1.1    nonaka 		}
   1782   1.1    nonaka 
   1783   1.1    nonaka 		/*
   1784   1.1    nonaka 		 * Service SD card interrupts.
   1785   1.1    nonaka 		 */
   1786  1.11      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1787  1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1788   1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1789   1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1790   1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   1791   1.1    nonaka 		}
   1792  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1793   1.1    nonaka 	}
   1794   1.1    nonaka 
   1795   1.1    nonaka 	return done;
   1796   1.1    nonaka }
   1797   1.1    nonaka 
   1798   1.1    nonaka #ifdef SDHC_DEBUG
   1799   1.1    nonaka void
   1800   1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   1801   1.1    nonaka {
   1802   1.1    nonaka 
   1803   1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1804   1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1805  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1806  1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1807  1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   1808   1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1809   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1810   1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1811   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1812   1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1813   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1814   1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1815   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1816   1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1817   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1818   1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1819   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1820   1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1821   1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   1822   1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1823   1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1824   1.1    nonaka }
   1825   1.1    nonaka #endif
   1826