Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.63
      1  1.63  jmcneill /*	$NetBSD: sdhc.c,v 1.63 2015/07/29 12:11:13 jmcneill Exp $	*/
      2   1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3   1.1    nonaka 
      4   1.1    nonaka /*
      5   1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6   1.1    nonaka  *
      7   1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10   1.1    nonaka  *
     11   1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    nonaka  */
     19   1.1    nonaka 
     20   1.1    nonaka /*
     21   1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22   1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23   1.1    nonaka  */
     24   1.1    nonaka 
     25   1.1    nonaka #include <sys/cdefs.h>
     26  1.63  jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.63 2015/07/29 12:11:13 jmcneill Exp $");
     27  1.10    nonaka 
     28  1.10    nonaka #ifdef _KERNEL_OPT
     29  1.10    nonaka #include "opt_sdmmc.h"
     30  1.10    nonaka #endif
     31   1.1    nonaka 
     32   1.1    nonaka #include <sys/param.h>
     33   1.1    nonaka #include <sys/device.h>
     34   1.1    nonaka #include <sys/kernel.h>
     35   1.1    nonaka #include <sys/malloc.h>
     36   1.1    nonaka #include <sys/systm.h>
     37   1.1    nonaka #include <sys/mutex.h>
     38   1.1    nonaka #include <sys/condvar.h>
     39   1.1    nonaka 
     40   1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     41   1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     42   1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     43   1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     44   1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     45   1.1    nonaka 
     46   1.1    nonaka #ifdef SDHC_DEBUG
     47   1.1    nonaka int sdhcdebug = 1;
     48   1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     49   1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     50   1.1    nonaka #else
     51   1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     52   1.1    nonaka #endif
     53   1.1    nonaka 
     54   1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     55   1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     56   1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     57  1.61  jmcneill #define SDHC_DMA_TIMEOUT	(hz*3)
     58   1.1    nonaka 
     59   1.1    nonaka struct sdhc_host {
     60   1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     61   1.1    nonaka 
     62   1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     63   1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     64  1.36  jakllsch 	bus_size_t ios;			/* host register space size */
     65   1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     66   1.1    nonaka 
     67   1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     68   1.1    nonaka 
     69   1.1    nonaka 	struct kmutex host_mtx;
     70   1.1    nonaka 
     71   1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72   1.1    nonaka 	int maxblklen;			/* maximum block length */
     73   1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74   1.1    nonaka 
     75   1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76   1.1    nonaka 
     77   1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78   1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79   1.1    nonaka 	struct kmutex intr_mtx;
     80   1.1    nonaka 	struct kcondvar intr_cv;
     81   1.1    nonaka 
     82  1.12    nonaka 	int specver;			/* spec. version */
     83  1.12    nonaka 
     84   1.1    nonaka 	uint32_t flags;			/* flags for this host */
     85   1.1    nonaka #define SHF_USE_DMA		0x0001
     86   1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     87  1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     88  1.55    bouyer #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     89  1.63  jmcneill #define SHF_USE_ADMA2_32	0x0010
     90  1.63  jmcneill #define SHF_USE_ADMA2_64	0x0020
     91  1.63  jmcneill #define SHF_USE_ADMA2_MASK	0x0030
     92  1.63  jmcneill 
     93  1.63  jmcneill 	bus_dmamap_t		adma_map;
     94  1.63  jmcneill 	bus_dma_segment_t	adma_segs[1];
     95  1.63  jmcneill 	void			*adma2;
     96   1.1    nonaka };
     97   1.1    nonaka 
     98   1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     99   1.1    nonaka 
    100  1.11      matt static uint8_t
    101  1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
    102  1.11      matt {
    103  1.12    nonaka 
    104  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    105  1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    106  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    107  1.11      matt }
    108  1.11      matt 
    109  1.11      matt static uint16_t
    110  1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    111  1.11      matt {
    112  1.12    nonaka 
    113  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    114  1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    115  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    116  1.11      matt }
    117  1.11      matt 
    118  1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    119  1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    120  1.11      matt #define HREAD4(hp, reg)		\
    121   1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    122  1.11      matt 
    123  1.11      matt 
    124  1.11      matt static void
    125  1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    126  1.11      matt {
    127  1.12    nonaka 
    128  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    129  1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    130  1.11      matt 	} else {
    131  1.11      matt 		const size_t shift = 8 * (o & 3);
    132  1.11      matt 		o &= -4;
    133  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    134  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    135  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    136  1.11      matt 	}
    137  1.11      matt }
    138  1.11      matt 
    139  1.11      matt static void
    140  1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    141  1.11      matt {
    142  1.12    nonaka 
    143  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    144  1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    145  1.11      matt 	} else {
    146  1.11      matt 		const size_t shift = 8 * (o & 2);
    147  1.11      matt 		o &= -4;
    148  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    149  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    150  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    151  1.11      matt 	}
    152  1.11      matt }
    153  1.11      matt 
    154  1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    155  1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    156   1.1    nonaka #define HWRITE4(hp, reg, val)						\
    157   1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    158  1.11      matt 
    159   1.1    nonaka #define HCLR1(hp, reg, bits)						\
    160  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    161   1.1    nonaka #define HCLR2(hp, reg, bits)						\
    162  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    163  1.11      matt #define HCLR4(hp, reg, bits)						\
    164  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    165   1.1    nonaka #define HSET1(hp, reg, bits)						\
    166  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    167   1.1    nonaka #define HSET2(hp, reg, bits)						\
    168  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    169  1.11      matt #define HSET4(hp, reg, bits)						\
    170  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    171   1.1    nonaka 
    172   1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    173   1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    174   1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    175   1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    176   1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    177   1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    178   1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    179   1.1    nonaka static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    180   1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    181   1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    182   1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    183   1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    184   1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    185   1.1    nonaka 		    struct sdmmc_command *);
    186   1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    187   1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    188   1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    189   1.1    nonaka static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    190   1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    191   1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    192   1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    193  1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    194  1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    195  1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    196  1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    197  1.11      matt 
    198   1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    199   1.1    nonaka 	/* host controller reset */
    200  1.60     skrll 	.host_reset = sdhc_host_reset,
    201   1.1    nonaka 
    202   1.1    nonaka 	/* host controller capabilities */
    203  1.60     skrll 	.host_ocr = sdhc_host_ocr,
    204  1.60     skrll 	.host_maxblklen = sdhc_host_maxblklen,
    205   1.1    nonaka 
    206   1.1    nonaka 	/* card detection */
    207  1.60     skrll 	.card_detect = sdhc_card_detect,
    208   1.1    nonaka 
    209   1.1    nonaka 	/* write protect */
    210  1.60     skrll 	.write_protect = sdhc_write_protect,
    211   1.1    nonaka 
    212  1.60     skrll 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    213  1.60     skrll 	.bus_power = sdhc_bus_power,
    214  1.60     skrll 	.bus_clock = sdhc_bus_clock,
    215  1.60     skrll 	.bus_width = sdhc_bus_width,
    216  1.60     skrll 	.bus_rod = sdhc_bus_rod,
    217   1.1    nonaka 
    218   1.1    nonaka 	/* command execution */
    219  1.60     skrll 	.exec_command = sdhc_exec_command,
    220   1.1    nonaka 
    221   1.1    nonaka 	/* card interrupt */
    222  1.60     skrll 	.card_enable_intr = sdhc_card_enable_intr,
    223  1.60     skrll 	.card_intr_ack = sdhc_card_intr_ack
    224   1.1    nonaka };
    225   1.1    nonaka 
    226  1.17  jakllsch static int
    227  1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    228  1.17  jakllsch {
    229  1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    230  1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    231  1.47     skrll 
    232  1.17  jakllsch 	if (pnp) {
    233  1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    234  1.17  jakllsch 	}
    235  1.41  jakllsch 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    236  1.41  jakllsch 		if (hp->sc->sc_host[host] == hp) {
    237  1.41  jakllsch 			aprint_normal(" slot %zu", host);
    238  1.41  jakllsch 		}
    239  1.41  jakllsch 	}
    240  1.17  jakllsch 
    241  1.17  jakllsch 	return UNCONF;
    242  1.17  jakllsch }
    243  1.17  jakllsch 
    244   1.1    nonaka /*
    245   1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    246   1.1    nonaka  * host controller standard register set. (1.3)
    247   1.1    nonaka  */
    248   1.1    nonaka int
    249   1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    250   1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    251   1.1    nonaka {
    252   1.1    nonaka 	struct sdmmcbus_attach_args saa;
    253   1.1    nonaka 	struct sdhc_host *hp;
    254   1.1    nonaka 	uint32_t caps;
    255   1.1    nonaka 	uint16_t sdhcver;
    256  1.63  jmcneill 	int error;
    257   1.1    nonaka 
    258  1.33  riastrad 	/* Allocate one more host structure. */
    259  1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    260  1.33  riastrad 	if (hp == NULL) {
    261  1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    262  1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    263  1.33  riastrad 		goto err1;
    264  1.33  riastrad 	}
    265  1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    266  1.33  riastrad 
    267  1.33  riastrad 	/* Fill in the new host structure. */
    268  1.33  riastrad 	hp->sc = sc;
    269  1.33  riastrad 	hp->iot = iot;
    270  1.33  riastrad 	hp->ioh = ioh;
    271  1.36  jakllsch 	hp->ios = iosize;
    272  1.33  riastrad 	hp->dmat = sc->sc_dmat;
    273  1.33  riastrad 
    274  1.33  riastrad 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    275  1.33  riastrad 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    276  1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    277  1.33  riastrad 
    278  1.52    nonaka 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    279  1.52    nonaka 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    280  1.52    nonaka 	} else {
    281  1.52    nonaka 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    282  1.52    nonaka 	}
    283  1.58  jmcneill 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    284  1.33  riastrad 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    285   1.1    nonaka 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    286  1.12    nonaka 	case SDHC_SPEC_VERS_100:
    287  1.12    nonaka 		aprint_normal("1.0");
    288  1.12    nonaka 		break;
    289  1.12    nonaka 
    290  1.12    nonaka 	case SDHC_SPEC_VERS_200:
    291  1.12    nonaka 		aprint_normal("2.0");
    292   1.1    nonaka 		break;
    293   1.1    nonaka 
    294  1.12    nonaka 	case SDHC_SPEC_VERS_300:
    295  1.12    nonaka 		aprint_normal("3.0");
    296   1.9      matt 		break;
    297   1.9      matt 
    298  1.56  jmcneill 	case SDHC_SPEC_VERS_400:
    299  1.56  jmcneill 		aprint_normal("4.0");
    300  1.56  jmcneill 		break;
    301  1.56  jmcneill 
    302   1.1    nonaka 	default:
    303  1.12    nonaka 		aprint_normal("unknown version(0x%x)",
    304  1.12    nonaka 		    SDHC_SPEC_VERSION(sdhcver));
    305   1.1    nonaka 		break;
    306   1.1    nonaka 	}
    307  1.58  jmcneill 	aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    308   1.1    nonaka 
    309   1.1    nonaka 	/*
    310   1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    311   1.1    nonaka 	 */
    312   1.1    nonaka 	(void)sdhc_host_reset(hp);
    313   1.1    nonaka 
    314   1.1    nonaka 	/* Determine host capabilities. */
    315  1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    316  1.24     skrll 		caps = sc->sc_caps;
    317  1.24     skrll 	} else {
    318  1.24     skrll 		mutex_enter(&hp->host_mtx);
    319  1.24     skrll 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    320  1.24     skrll 		mutex_exit(&hp->host_mtx);
    321  1.24     skrll 	}
    322   1.1    nonaka 
    323  1.55    bouyer 	/*
    324  1.55    bouyer 	 * Use DMA if the host system and the controller support it.
    325  1.55    bouyer 	 * Suports integrated or external DMA egine, with or without
    326  1.55    bouyer 	 * SDHC_DMA_ENABLE in the command.
    327  1.55    bouyer 	 */
    328  1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    329  1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    330  1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    331   1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    332  1.63  jmcneill 
    333  1.63  jmcneill 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    334  1.63  jmcneill 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    335  1.55    bouyer 			SET(hp->flags, SHF_MODE_DMAEN);
    336  1.63  jmcneill 			/*
    337  1.63  jmcneill 			 * 64-bit mode was present in the 2.00 spec, removed
    338  1.63  jmcneill 			 * from 3.00, and re-added in 4.00 with a different
    339  1.63  jmcneill 			 * descriptor layout. We only support 2.00 and 3.00
    340  1.63  jmcneill 			 * descriptors for now.
    341  1.63  jmcneill 			 */
    342  1.63  jmcneill 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    343  1.63  jmcneill 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    344  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_64);
    345  1.63  jmcneill 				aprint_normal(", 64-bit ADMA2");
    346  1.63  jmcneill 			} else {
    347  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_32);
    348  1.63  jmcneill 				aprint_normal(", 32-bit ADMA2");
    349  1.63  jmcneill 			}
    350  1.63  jmcneill 		} else {
    351  1.63  jmcneill 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    352  1.63  jmcneill 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    353  1.63  jmcneill 				SET(hp->flags, SHF_MODE_DMAEN);
    354  1.63  jmcneill 			aprint_normal(", SDMA");
    355  1.63  jmcneill 		}
    356  1.58  jmcneill 	} else {
    357  1.58  jmcneill 		aprint_normal(", PIO");
    358   1.1    nonaka 	}
    359   1.1    nonaka 
    360   1.1    nonaka 	/*
    361   1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    362   1.1    nonaka 	 */
    363  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    364  1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    365  1.30      matt 	} else {
    366  1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    367  1.30      matt 	}
    368  1.56  jmcneill 	if (hp->clkbase == 0 ||
    369  1.56  jmcneill 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    370   1.9      matt 		if (sc->sc_clkbase == 0) {
    371   1.9      matt 			/* The attachment driver must tell us. */
    372  1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    373  1.12    nonaka 			    "unknown base clock frequency\n");
    374   1.9      matt 			goto err;
    375   1.9      matt 		}
    376   1.9      matt 		hp->clkbase = sc->sc_clkbase;
    377   1.9      matt 	}
    378   1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    379   1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    380   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    381   1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    382   1.1    nonaka 		    hp->clkbase / 1000);
    383   1.1    nonaka 		goto err;
    384   1.1    nonaka 	}
    385  1.58  jmcneill 	aprint_normal(", %u kHz", hp->clkbase);
    386   1.1    nonaka 
    387   1.1    nonaka 	/*
    388   1.1    nonaka 	 * XXX Set the data timeout counter value according to
    389   1.1    nonaka 	 * capabilities. (2.2.15)
    390   1.1    nonaka 	 */
    391   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    392  1.29      matt #if 1
    393  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    394  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    395  1.11      matt #endif
    396   1.1    nonaka 
    397  1.58  jmcneill 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    398  1.58  jmcneill 		aprint_normal(", embedded slot");
    399  1.58  jmcneill 
    400   1.1    nonaka 	/*
    401   1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    402   1.1    nonaka 	 */
    403  1.58  jmcneill 	aprint_normal(",");
    404  1.48  jmcneill 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
    405  1.48  jmcneill 	    (hp->specver < SDHC_SPEC_VERS_300 ||
    406  1.48  jmcneill 	     ISSET(caps, SDHC_EMBEDDED_SLOT))) {
    407   1.1    nonaka 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    408  1.58  jmcneill 		aprint_normal(" 1.8V");
    409  1.11      matt 	}
    410  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    411   1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    412  1.58  jmcneill 		aprint_normal(" 3.0V");
    413  1.11      matt 	}
    414  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    415   1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    416  1.58  jmcneill 		aprint_normal(" 3.3V");
    417  1.11      matt 	}
    418   1.1    nonaka 
    419   1.1    nonaka 	/*
    420   1.1    nonaka 	 * Determine the maximum block length supported by the host
    421   1.1    nonaka 	 * controller. (2.2.24)
    422   1.1    nonaka 	 */
    423   1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    424   1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    425   1.1    nonaka 		hp->maxblklen = 512;
    426   1.1    nonaka 		break;
    427   1.1    nonaka 
    428   1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    429   1.1    nonaka 		hp->maxblklen = 1024;
    430   1.1    nonaka 		break;
    431   1.1    nonaka 
    432   1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    433   1.1    nonaka 		hp->maxblklen = 2048;
    434   1.1    nonaka 		break;
    435   1.1    nonaka 
    436   1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    437   1.9      matt 		hp->maxblklen = 4096;
    438   1.9      matt 		break;
    439   1.9      matt 
    440   1.1    nonaka 	default:
    441   1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    442   1.1    nonaka 		goto err;
    443   1.1    nonaka 	}
    444  1.58  jmcneill 	aprint_normal(", %u byte blocks", hp->maxblklen);
    445  1.58  jmcneill 	aprint_normal("\n");
    446   1.1    nonaka 
    447  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    448  1.63  jmcneill 		int rseg;
    449  1.63  jmcneill 
    450  1.63  jmcneill 		/* Allocate ADMA2 descriptor memory */
    451  1.63  jmcneill 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    452  1.63  jmcneill 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    453  1.63  jmcneill 		if (error) {
    454  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    455  1.63  jmcneill 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    456  1.63  jmcneill 			goto adma_done;
    457  1.63  jmcneill 		}
    458  1.63  jmcneill 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    459  1.63  jmcneill 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    460  1.63  jmcneill 		if (error) {
    461  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    462  1.63  jmcneill 			    "ADMA2 dmamem_map failed (%d)\n", error);
    463  1.63  jmcneill 			goto adma_done;
    464  1.63  jmcneill 		}
    465  1.63  jmcneill 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    466  1.63  jmcneill 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    467  1.63  jmcneill 		if (error) {
    468  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    469  1.63  jmcneill 			    "ADMA2 dmamap_create failed (%d)\n", error);
    470  1.63  jmcneill 			goto adma_done;
    471  1.63  jmcneill 		}
    472  1.63  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    473  1.63  jmcneill 		    hp->adma2, PAGE_SIZE, NULL,
    474  1.63  jmcneill 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    475  1.63  jmcneill 		if (error) {
    476  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    477  1.63  jmcneill 			    "ADMA2 dmamap_load failed (%d)\n", error);
    478  1.63  jmcneill 			goto adma_done;
    479  1.63  jmcneill 		}
    480  1.63  jmcneill 
    481  1.63  jmcneill 		memset(hp->adma2, 0, PAGE_SIZE);
    482  1.63  jmcneill 
    483  1.63  jmcneill adma_done:
    484  1.63  jmcneill 		if (error)
    485  1.63  jmcneill 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    486  1.63  jmcneill 	}
    487  1.63  jmcneill 
    488   1.1    nonaka 	/*
    489   1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    490   1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    491   1.1    nonaka 	 */
    492   1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    493   1.1    nonaka 	saa.saa_busname = "sdmmc";
    494   1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    495   1.1    nonaka 	saa.saa_sch = hp;
    496   1.1    nonaka 	saa.saa_dmat = hp->dmat;
    497   1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    498  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    499  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    500  1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    501  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    502  1.38  jakllsch 	else if (hp->sc->sc_clkmsk != 0)
    503  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    504  1.38  jakllsch 		    (ffs(hp->sc->sc_clkmsk) - 1));
    505  1.56  jmcneill 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    506  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    507  1.38  jakllsch 	else
    508  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256;
    509   1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    510  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    511  1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    512  1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    513  1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    514  1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    515  1.54    nonaka 		saa.saa_caps |= SMC_CAPS_DMA;
    516  1.54    nonaka 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    517  1.54    nonaka 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    518  1.26      matt 	}
    519  1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    520  1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    521  1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    522   1.1    nonaka 
    523   1.1    nonaka 	return 0;
    524   1.1    nonaka 
    525   1.1    nonaka err:
    526   1.1    nonaka 	cv_destroy(&hp->intr_cv);
    527   1.1    nonaka 	mutex_destroy(&hp->intr_mtx);
    528   1.1    nonaka 	mutex_destroy(&hp->host_mtx);
    529   1.1    nonaka 	free(hp, M_DEVBUF);
    530   1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    531   1.1    nonaka err1:
    532   1.1    nonaka 	return 1;
    533   1.1    nonaka }
    534   1.1    nonaka 
    535   1.7    nonaka int
    536  1.36  jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
    537   1.7    nonaka {
    538  1.36  jakllsch 	struct sdhc_host *hp;
    539   1.7    nonaka 	int rv = 0;
    540   1.7    nonaka 
    541  1.36  jakllsch 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    542  1.36  jakllsch 		hp = sc->sc_host[n];
    543  1.36  jakllsch 		if (hp == NULL)
    544  1.36  jakllsch 			continue;
    545  1.36  jakllsch 		if (hp->sdmmc != NULL) {
    546  1.36  jakllsch 			rv = config_detach(hp->sdmmc, flags);
    547  1.36  jakllsch 			if (rv)
    548  1.36  jakllsch 				break;
    549  1.36  jakllsch 			hp->sdmmc = NULL;
    550  1.36  jakllsch 		}
    551  1.36  jakllsch 		/* disable interrupts */
    552  1.36  jakllsch 		if ((flags & DETACH_FORCE) == 0) {
    553  1.36  jakllsch 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    554  1.36  jakllsch 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    555  1.36  jakllsch 			} else {
    556  1.36  jakllsch 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    557  1.36  jakllsch 			}
    558  1.36  jakllsch 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    559  1.36  jakllsch 		}
    560  1.36  jakllsch 		cv_destroy(&hp->intr_cv);
    561  1.36  jakllsch 		mutex_destroy(&hp->intr_mtx);
    562  1.36  jakllsch 		mutex_destroy(&hp->host_mtx);
    563  1.36  jakllsch 		if (hp->ios > 0) {
    564  1.36  jakllsch 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    565  1.36  jakllsch 			hp->ios = 0;
    566  1.36  jakllsch 		}
    567  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    568  1.63  jmcneill 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    569  1.63  jmcneill 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    570  1.63  jmcneill 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    571  1.63  jmcneill 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    572  1.63  jmcneill 		}
    573  1.36  jakllsch 		free(hp, M_DEVBUF);
    574  1.36  jakllsch 		sc->sc_host[n] = NULL;
    575  1.36  jakllsch 	}
    576   1.7    nonaka 
    577   1.7    nonaka 	return rv;
    578   1.7    nonaka }
    579   1.7    nonaka 
    580   1.1    nonaka bool
    581   1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    582   1.1    nonaka {
    583   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    584   1.1    nonaka 	struct sdhc_host *hp;
    585  1.12    nonaka 	size_t i;
    586   1.1    nonaka 
    587   1.1    nonaka 	/* XXX poll for command completion or suspend command
    588   1.1    nonaka 	 * in progress */
    589   1.1    nonaka 
    590   1.1    nonaka 	/* Save the host controller state. */
    591  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    592   1.1    nonaka 		hp = sc->sc_host[n];
    593  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    594  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    595  1.11      matt 				uint32_t v = HREAD4(hp, i);
    596  1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    597  1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    598  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    599  1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    600  1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    601  1.13    bouyer 				}
    602  1.11      matt 			}
    603  1.11      matt 		} else {
    604  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    605  1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    606  1.11      matt 			}
    607  1.11      matt 		}
    608   1.1    nonaka 	}
    609   1.1    nonaka 	return true;
    610   1.1    nonaka }
    611   1.1    nonaka 
    612   1.1    nonaka bool
    613   1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    614   1.1    nonaka {
    615   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    616   1.1    nonaka 	struct sdhc_host *hp;
    617  1.12    nonaka 	size_t i;
    618   1.1    nonaka 
    619   1.1    nonaka 	/* Restore the host controller state. */
    620  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    621   1.1    nonaka 		hp = sc->sc_host[n];
    622   1.1    nonaka 		(void)sdhc_host_reset(hp);
    623  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    624  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    625  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    626  1.13    bouyer 					HWRITE4(hp, i,
    627  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    628  1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    629  1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    630  1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    631  1.13    bouyer 				} else {
    632  1.13    bouyer 					HWRITE4(hp, i,
    633  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    634  1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    635  1.13    bouyer 				}
    636  1.11      matt 			}
    637  1.11      matt 		} else {
    638  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    639  1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    640  1.11      matt 			}
    641  1.11      matt 		}
    642   1.1    nonaka 	}
    643   1.1    nonaka 	return true;
    644   1.1    nonaka }
    645   1.1    nonaka 
    646   1.1    nonaka bool
    647   1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    648   1.1    nonaka {
    649   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    650   1.1    nonaka 	struct sdhc_host *hp;
    651   1.1    nonaka 
    652   1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    653  1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    654   1.1    nonaka 		hp = sc->sc_host[i];
    655   1.1    nonaka 		(void)sdhc_host_reset(hp);
    656   1.1    nonaka 	}
    657   1.1    nonaka 	return true;
    658   1.1    nonaka }
    659   1.1    nonaka 
    660   1.1    nonaka /*
    661   1.1    nonaka  * Reset the host controller.  Called during initialization, when
    662   1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    663   1.1    nonaka  */
    664   1.1    nonaka static int
    665   1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    666   1.1    nonaka {
    667   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    668  1.11      matt 	uint32_t sdhcimask;
    669   1.1    nonaka 	int error;
    670   1.1    nonaka 
    671   1.1    nonaka 	/* Don't lock. */
    672   1.1    nonaka 
    673   1.1    nonaka 	/* Disable all interrupts. */
    674  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    675  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    676  1.11      matt 	} else {
    677  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    678  1.11      matt 	}
    679   1.1    nonaka 
    680   1.1    nonaka 	/*
    681   1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    682   1.1    nonaka 	 * the controller to clear the reset bit.
    683   1.1    nonaka 	 */
    684   1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    685   1.1    nonaka 	if (error)
    686   1.1    nonaka 		goto out;
    687   1.1    nonaka 
    688   1.1    nonaka 	/* Set data timeout counter value to max for now. */
    689   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    690  1.29      matt #if 1
    691  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    692  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    693  1.11      matt #endif
    694   1.1    nonaka 
    695   1.1    nonaka 	/* Enable interrupts. */
    696  1.29      matt 	mutex_enter(&hp->intr_mtx);
    697   1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    698   1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    699   1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    700   1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    701  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    702  1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    703  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    704  1.11      matt 		sdhcimask ^=
    705  1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    706  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    707  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    708  1.11      matt 	} else {
    709  1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    710  1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    711  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    712  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    713  1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    714  1.11      matt 	}
    715  1.29      matt 	mutex_exit(&hp->intr_mtx);
    716   1.1    nonaka 
    717   1.1    nonaka out:
    718   1.1    nonaka 	return error;
    719   1.1    nonaka }
    720   1.1    nonaka 
    721   1.1    nonaka static int
    722   1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    723   1.1    nonaka {
    724   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    725   1.1    nonaka 	int error;
    726   1.1    nonaka 
    727   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    728   1.1    nonaka 	error = sdhc_host_reset1(sch);
    729   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    730   1.1    nonaka 
    731   1.1    nonaka 	return error;
    732   1.1    nonaka }
    733   1.1    nonaka 
    734   1.1    nonaka static uint32_t
    735   1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    736   1.1    nonaka {
    737   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    738   1.1    nonaka 
    739   1.1    nonaka 	return hp->ocr;
    740   1.1    nonaka }
    741   1.1    nonaka 
    742   1.1    nonaka static int
    743   1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    744   1.1    nonaka {
    745   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    746   1.1    nonaka 
    747   1.1    nonaka 	return hp->maxblklen;
    748   1.1    nonaka }
    749   1.1    nonaka 
    750   1.1    nonaka /*
    751   1.1    nonaka  * Return non-zero if the card is currently inserted.
    752   1.1    nonaka  */
    753   1.1    nonaka static int
    754   1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    755   1.1    nonaka {
    756   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    757   1.1    nonaka 	int r;
    758   1.1    nonaka 
    759  1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    760  1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    761  1.32  kiyohara 
    762   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    763   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    764   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    765   1.1    nonaka 
    766  1.11      matt 	return r ? 1 : 0;
    767   1.1    nonaka }
    768   1.1    nonaka 
    769   1.1    nonaka /*
    770   1.1    nonaka  * Return non-zero if the card is currently write-protected.
    771   1.1    nonaka  */
    772   1.1    nonaka static int
    773   1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    774   1.1    nonaka {
    775   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    776   1.1    nonaka 	int r;
    777   1.1    nonaka 
    778  1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    779  1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    780  1.32  kiyohara 
    781   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    782   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    783   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    784   1.1    nonaka 
    785  1.12    nonaka 	return r ? 0 : 1;
    786   1.1    nonaka }
    787   1.1    nonaka 
    788   1.1    nonaka /*
    789   1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    790   1.1    nonaka  * Return zero on success.
    791   1.1    nonaka  */
    792   1.1    nonaka static int
    793   1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    794   1.1    nonaka {
    795   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    796   1.1    nonaka 	uint8_t vdd;
    797   1.1    nonaka 	int error = 0;
    798  1.32  kiyohara 	const uint32_t pcmask =
    799  1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    800   1.1    nonaka 
    801   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    802   1.1    nonaka 
    803   1.1    nonaka 	/*
    804   1.1    nonaka 	 * Disable bus power before voltage change.
    805   1.1    nonaka 	 */
    806  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    807  1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    808   1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    809   1.1    nonaka 
    810   1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    811   1.1    nonaka 	if (ocr == 0) {
    812   1.1    nonaka 		(void)sdhc_host_reset1(hp);
    813   1.1    nonaka 		goto out;
    814   1.1    nonaka 	}
    815   1.1    nonaka 
    816   1.1    nonaka 	/*
    817   1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    818   1.1    nonaka 	 */
    819   1.1    nonaka 	ocr &= hp->ocr;
    820  1.11      matt 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    821   1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    822  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    823   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    824  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    825   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    826  1.11      matt 	} else {
    827   1.1    nonaka 		/* Unsupported voltage level requested. */
    828   1.1    nonaka 		error = EINVAL;
    829   1.1    nonaka 		goto out;
    830   1.1    nonaka 	}
    831   1.1    nonaka 
    832  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    833  1.11      matt 		/*
    834  1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    835  1.11      matt 		 * voltage ramp until power rises.
    836  1.11      matt 		 */
    837  1.57  jmcneill 
    838  1.57  jmcneill 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    839  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    840  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    841  1.57  jmcneill 		} else {
    842  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    843  1.57  jmcneill 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    844  1.57  jmcneill 			sdmmc_delay(1);
    845  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    846  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT));
    847  1.57  jmcneill 			sdmmc_delay(1);
    848  1.57  jmcneill 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    849  1.57  jmcneill 			sdmmc_delay(10000);
    850  1.57  jmcneill 		}
    851   1.1    nonaka 
    852  1.11      matt 		/*
    853  1.11      matt 		 * The host system may not power the bus due to battery low,
    854  1.11      matt 		 * etc.  In that case, the host controller should clear the
    855  1.11      matt 		 * bus power bit.
    856  1.11      matt 		 */
    857  1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    858  1.11      matt 			error = ENXIO;
    859  1.11      matt 			goto out;
    860  1.11      matt 		}
    861   1.1    nonaka 	}
    862   1.1    nonaka 
    863   1.1    nonaka out:
    864   1.1    nonaka 	mutex_exit(&hp->host_mtx);
    865   1.1    nonaka 
    866   1.1    nonaka 	return error;
    867   1.1    nonaka }
    868   1.1    nonaka 
    869   1.1    nonaka /*
    870   1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    871   1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    872   1.1    nonaka  */
    873  1.11      matt static bool
    874  1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    875   1.1    nonaka {
    876  1.11      matt 	u_int div;
    877   1.1    nonaka 
    878  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    879  1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    880  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    881  1.11      matt 				*divp = SDHC_SDCLK_CGM
    882  1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    883  1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    884  1.18  jakllsch 				//freq = hp->clkbase / div;
    885  1.11      matt 				return true;
    886  1.11      matt 			}
    887  1.11      matt 		}
    888  1.11      matt 		/* No divisor found. */
    889  1.11      matt 		return false;
    890  1.11      matt 	}
    891  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    892  1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    893  1.11      matt 		u_int roundup = dvs & 1;
    894  1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    895  1.11      matt 			if (dvs + roundup <= 16) {
    896  1.11      matt 				dvs += roundup - 1;
    897  1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    898  1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    899  1.11      matt 				DPRINTF(2,
    900  1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    901  1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    902  1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    903  1.11      matt 				return true;
    904   1.9      matt 			}
    905  1.11      matt 			/*
    906  1.11      matt 			 * If we drop bits, we need to round up the divisor.
    907  1.11      matt 			 */
    908  1.11      matt 			roundup |= dvs & 1;
    909   1.9      matt 		}
    910  1.18  jakllsch 		/* No divisor found. */
    911  1.18  jakllsch 		return false;
    912  1.38  jakllsch 	}
    913  1.38  jakllsch 	if (hp->sc->sc_clkmsk != 0) {
    914  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    915  1.38  jakllsch 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    916  1.38  jakllsch 			return false;
    917  1.38  jakllsch 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    918  1.38  jakllsch 		//freq = hp->clkbase / div;
    919  1.38  jakllsch 		return true;
    920  1.38  jakllsch 	}
    921  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    922  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    923  1.50   mlelstv 		div = div > 1 ? howmany(div, 2) : 0;
    924  1.38  jakllsch 		if (div > 0x3ff)
    925  1.38  jakllsch 			return false;
    926  1.38  jakllsch 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    927  1.38  jakllsch 			 << SDHC_SDCLK_XDIV_SHIFT) |
    928  1.38  jakllsch 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    929  1.38  jakllsch 			 << SDHC_SDCLK_DIV_SHIFT);
    930  1.38  jakllsch 		//freq = hp->clkbase / div;
    931  1.38  jakllsch 		return true;
    932   1.9      matt 	} else {
    933  1.38  jakllsch 		for (div = 1; div <= 256; div *= 2) {
    934  1.38  jakllsch 			if ((hp->clkbase / div) <= freq) {
    935  1.38  jakllsch 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    936  1.38  jakllsch 				//freq = hp->clkbase / div;
    937  1.38  jakllsch 				return true;
    938  1.38  jakllsch 			}
    939  1.38  jakllsch 		}
    940  1.38  jakllsch 		/* No divisor found. */
    941  1.38  jakllsch 		return false;
    942   1.9      matt 	}
    943   1.1    nonaka 	/* No divisor found. */
    944  1.11      matt 	return false;
    945   1.1    nonaka }
    946   1.1    nonaka 
    947   1.1    nonaka /*
    948   1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
    949   1.1    nonaka  * Return zero on success.
    950   1.1    nonaka  */
    951   1.1    nonaka static int
    952   1.1    nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    953   1.1    nonaka {
    954   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    955  1.11      matt 	u_int div;
    956  1.11      matt 	u_int timo;
    957  1.32  kiyohara 	int16_t reg;
    958   1.1    nonaka 	int error = 0;
    959   1.2    cegger #ifdef DIAGNOSTIC
    960  1.12    nonaka 	bool present;
    961   1.1    nonaka 
    962   1.1    nonaka 	mutex_enter(&hp->host_mtx);
    963  1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    964   1.2    cegger 	mutex_exit(&hp->host_mtx);
    965   1.1    nonaka 
    966   1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
    967  1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
    968  1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
    969  1.26      matt 		    "%s: command in progress\n", __func__);
    970  1.12    nonaka 	}
    971   1.1    nonaka #endif
    972   1.1    nonaka 
    973   1.2    cegger 	mutex_enter(&hp->host_mtx);
    974   1.2    cegger 
    975  1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
    976  1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
    977  1.34      matt 		if (error != 0)
    978  1.34      matt 			goto out;
    979  1.34      matt 	}
    980  1.34      matt 
    981   1.1    nonaka 	/*
    982   1.1    nonaka 	 * Stop SD clock before changing the frequency.
    983   1.1    nonaka 	 */
    984  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    985  1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    986  1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
    987  1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    988  1.11      matt 			goto out;
    989  1.11      matt 		}
    990  1.11      matt 	} else {
    991  1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    992  1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
    993  1.11      matt 			goto out;
    994  1.11      matt 	}
    995   1.1    nonaka 
    996   1.1    nonaka 	/*
    997   1.1    nonaka 	 * Set the minimum base clock frequency divisor.
    998   1.1    nonaka 	 */
    999  1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1000   1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
   1001   1.1    nonaka 		error = EINVAL;
   1002   1.1    nonaka 		goto out;
   1003   1.1    nonaka 	}
   1004  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1005  1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1006  1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
   1007  1.11      matt 	} else {
   1008  1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1009  1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1010  1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1011  1.11      matt 	}
   1012   1.1    nonaka 
   1013   1.1    nonaka 	/*
   1014   1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
   1015   1.1    nonaka 	 */
   1016  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1017  1.11      matt 		sdmmc_delay(10000);
   1018  1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
   1019  1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1020  1.11      matt 	} else {
   1021  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1022  1.11      matt 		for (timo = 1000; timo > 0; timo--) {
   1023  1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1024  1.12    nonaka 			    SDHC_INTCLK_STABLE))
   1025  1.11      matt 				break;
   1026  1.11      matt 			sdmmc_delay(10);
   1027  1.11      matt 		}
   1028  1.11      matt 		if (timo == 0) {
   1029  1.11      matt 			error = ETIMEDOUT;
   1030  1.11      matt 			goto out;
   1031  1.11      matt 		}
   1032   1.1    nonaka 	}
   1033   1.1    nonaka 
   1034  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1035  1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1036  1.11      matt 		/*
   1037  1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
   1038  1.11      matt 		 * So delay for that time + slop and then
   1039  1.11      matt 		 * check a few times for completion.
   1040  1.11      matt 		 */
   1041  1.11      matt 		sdmmc_delay(210);
   1042  1.11      matt 		for (timo = 10; timo > 0; timo--) {
   1043  1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1044  1.11      matt 			    SDHC_INIT_ACTIVE))
   1045  1.11      matt 				break;
   1046  1.11      matt 			sdmmc_delay(10);
   1047  1.11      matt 		}
   1048  1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1049  1.12    nonaka 
   1050  1.11      matt 		/*
   1051  1.11      matt 		 * Enable SD clock.
   1052  1.11      matt 		 */
   1053  1.11      matt 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1054  1.11      matt 	} else {
   1055  1.11      matt 		/*
   1056  1.11      matt 		 * Enable SD clock.
   1057  1.11      matt 		 */
   1058  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1059   1.1    nonaka 
   1060  1.43  jmcneill 		if (freq > 25000 &&
   1061  1.43  jmcneill 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1062  1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1063  1.11      matt 		else
   1064  1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1065  1.11      matt 	}
   1066   1.8  kiyohara 
   1067   1.1    nonaka out:
   1068   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1069   1.1    nonaka 
   1070   1.1    nonaka 	return error;
   1071   1.1    nonaka }
   1072   1.1    nonaka 
   1073   1.1    nonaka static int
   1074   1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1075   1.1    nonaka {
   1076   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1077   1.1    nonaka 	int reg;
   1078   1.1    nonaka 
   1079   1.1    nonaka 	switch (width) {
   1080   1.1    nonaka 	case 1:
   1081   1.1    nonaka 	case 4:
   1082   1.1    nonaka 		break;
   1083   1.1    nonaka 
   1084  1.11      matt 	case 8:
   1085  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1086  1.11      matt 			break;
   1087  1.11      matt 		/* FALLTHROUGH */
   1088   1.1    nonaka 	default:
   1089   1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1090   1.1    nonaka 		    HDEVNAME(hp), width));
   1091   1.1    nonaka 		return 1;
   1092   1.1    nonaka 	}
   1093   1.1    nonaka 
   1094   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1095   1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1096  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1097  1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1098  1.11      matt 		if (width == 4)
   1099  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1100  1.11      matt 		else if (width == 8)
   1101  1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
   1102  1.11      matt 	} else {
   1103  1.11      matt 		reg &= ~SDHC_4BIT_MODE;
   1104  1.59  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1105  1.59  jmcneill 			reg &= ~SDHC_8BIT_MODE;
   1106  1.59  jmcneill 		}
   1107  1.59  jmcneill 		if (width == 4) {
   1108  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1109  1.59  jmcneill 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1110  1.59  jmcneill 			reg |= SDHC_8BIT_MODE;
   1111  1.59  jmcneill 		}
   1112  1.11      matt 	}
   1113   1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1114   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1115   1.1    nonaka 
   1116   1.1    nonaka 	return 0;
   1117   1.1    nonaka }
   1118   1.1    nonaka 
   1119   1.8  kiyohara static int
   1120   1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1121   1.8  kiyohara {
   1122  1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1123  1.32  kiyohara 
   1124  1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
   1125  1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1126   1.8  kiyohara 
   1127   1.8  kiyohara 	return 0;
   1128   1.8  kiyohara }
   1129   1.8  kiyohara 
   1130   1.1    nonaka static void
   1131   1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1132   1.1    nonaka {
   1133   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1134   1.1    nonaka 
   1135  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1136  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1137  1.11      matt 		if (enable) {
   1138  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1139  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1140  1.11      matt 		} else {
   1141  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1142  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1143  1.11      matt 		}
   1144  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1145   1.1    nonaka 	}
   1146   1.1    nonaka }
   1147   1.1    nonaka 
   1148  1.47     skrll static void
   1149   1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1150   1.1    nonaka {
   1151   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1152   1.1    nonaka 
   1153  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1154  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1155  1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1156  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1157  1.11      matt 	}
   1158   1.1    nonaka }
   1159   1.1    nonaka 
   1160   1.1    nonaka static int
   1161   1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1162   1.1    nonaka {
   1163   1.1    nonaka 	uint32_t state;
   1164   1.1    nonaka 	int timeout;
   1165   1.1    nonaka 
   1166   1.1    nonaka 	for (timeout = 10; timeout > 0; timeout--) {
   1167   1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1168   1.1    nonaka 			return 0;
   1169   1.1    nonaka 		sdmmc_delay(10000);
   1170   1.1    nonaka 	}
   1171   1.1    nonaka 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
   1172   1.1    nonaka 	    value, state));
   1173   1.1    nonaka 	return ETIMEDOUT;
   1174   1.1    nonaka }
   1175   1.1    nonaka 
   1176   1.1    nonaka static void
   1177   1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1178   1.1    nonaka {
   1179   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1180   1.1    nonaka 	int error;
   1181   1.1    nonaka 
   1182  1.26      matt 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1183  1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1184  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1185  1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1186  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1187  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1188  1.11      matt 		} else {
   1189  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1190  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1191  1.47     skrll 		}
   1192  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1193  1.11      matt 	}
   1194  1.11      matt 
   1195  1.61  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1196  1.61  jmcneill 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1197  1.61  jmcneill 		if (cmd->c_data != NULL) {
   1198  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1199  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1200  1.61  jmcneill 		} else {
   1201  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1202  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1203  1.61  jmcneill 		}
   1204  1.61  jmcneill 	}
   1205  1.61  jmcneill 
   1206   1.1    nonaka 	/*
   1207   1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1208   1.1    nonaka 	 */
   1209   1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1210   1.1    nonaka 	if (error) {
   1211   1.1    nonaka 		cmd->c_error = error;
   1212   1.1    nonaka 		goto out;
   1213   1.1    nonaka 	}
   1214   1.1    nonaka 
   1215   1.1    nonaka 	/*
   1216   1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1217   1.1    nonaka 	 * is marked done for any other reason.
   1218   1.1    nonaka 	 */
   1219   1.1    nonaka 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1220   1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1221   1.1    nonaka 		goto out;
   1222   1.1    nonaka 	}
   1223   1.1    nonaka 
   1224   1.1    nonaka 	/*
   1225   1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1226   1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1227   1.1    nonaka 	 * driver (without padding).
   1228   1.1    nonaka 	 */
   1229   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1230   1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1231  1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1232  1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1233  1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1234  1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1235  1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1236  1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1237  1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1238  1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1239  1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1240  1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1241  1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1242  1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1243  1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1244  1.32  kiyohara 			}
   1245   1.1    nonaka 		}
   1246   1.1    nonaka 	}
   1247   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1248  1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1249   1.1    nonaka 
   1250   1.1    nonaka 	/*
   1251   1.1    nonaka 	 * If the command has data to transfer in any direction,
   1252   1.1    nonaka 	 * execute the transfer now.
   1253   1.1    nonaka 	 */
   1254   1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1255   1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1256  1.42  jakllsch 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1257  1.42  jakllsch 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
   1258  1.42  jakllsch 			cmd->c_error = ETIMEDOUT;
   1259  1.42  jakllsch 			goto out;
   1260  1.42  jakllsch 		}
   1261  1.42  jakllsch 	}
   1262   1.1    nonaka 
   1263   1.1    nonaka out:
   1264  1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1265  1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1266  1.11      matt 		mutex_enter(&hp->host_mtx);
   1267  1.11      matt 		/* Turn off the LED. */
   1268  1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1269  1.11      matt 		mutex_exit(&hp->host_mtx);
   1270  1.11      matt 	}
   1271   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1272   1.1    nonaka 
   1273   1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1274   1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1275   1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1276   1.1    nonaka }
   1277   1.1    nonaka 
   1278   1.1    nonaka static int
   1279   1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1280   1.1    nonaka {
   1281  1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1282   1.1    nonaka 	uint16_t blksize = 0;
   1283   1.1    nonaka 	uint16_t blkcount = 0;
   1284   1.1    nonaka 	uint16_t mode;
   1285   1.1    nonaka 	uint16_t command;
   1286   1.1    nonaka 	int error;
   1287   1.1    nonaka 
   1288  1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1289   1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1290  1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1291   1.1    nonaka 
   1292   1.1    nonaka 	/*
   1293   1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1294   1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1295   1.1    nonaka 	 */
   1296   1.1    nonaka 
   1297   1.1    nonaka 	/* Fragment the data into proper blocks. */
   1298   1.1    nonaka 	if (cmd->c_datalen > 0) {
   1299   1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1300   1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1301   1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1302   1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1303  1.11      matt 			aprint_error_dev(sc->sc_dev,
   1304   1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1305   1.1    nonaka 			return EINVAL;
   1306   1.1    nonaka 		}
   1307   1.1    nonaka 	}
   1308   1.1    nonaka 
   1309   1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1310   1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1311  1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1312   1.1    nonaka 		return EINVAL;
   1313   1.1    nonaka 	}
   1314   1.1    nonaka 
   1315   1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1316  1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1317   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1318   1.1    nonaka 		mode |= SDHC_READ_MODE;
   1319  1.15  jakllsch 	if (blkcount > 1) {
   1320  1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1321  1.15  jakllsch 		/* XXX only for memory commands? */
   1322  1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1323   1.1    nonaka 	}
   1324  1.45  jakllsch 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1325  1.55    bouyer 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1326  1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1327   1.7    nonaka 	}
   1328   1.1    nonaka 
   1329   1.1    nonaka 	/*
   1330   1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1331   1.1    nonaka 	 */
   1332  1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1333   1.1    nonaka 
   1334   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1335   1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1336   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1337   1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1338   1.1    nonaka 	if (cmd->c_data != NULL)
   1339   1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1340   1.1    nonaka 
   1341   1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1342   1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1343   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1344   1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1345   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1346   1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1347   1.1    nonaka 	else
   1348   1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1349   1.1    nonaka 
   1350   1.1    nonaka 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1351   1.1    nonaka 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1352   1.1    nonaka 	if (error)
   1353   1.1    nonaka 		return error;
   1354   1.1    nonaka 
   1355   1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1356   1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1357   1.1    nonaka 
   1358  1.44   hkenken 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1359  1.44   hkenken 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1360  1.44   hkenken 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1361  1.44   hkenken 	}
   1362  1.19  jakllsch 
   1363   1.1    nonaka 	mutex_enter(&hp->host_mtx);
   1364   1.1    nonaka 
   1365  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1366  1.11      matt 		/* Alert the user not to remove the card. */
   1367  1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1368  1.11      matt 	}
   1369   1.1    nonaka 
   1370   1.7    nonaka 	/* Set DMA start address. */
   1371  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
   1372  1.63  jmcneill 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1373  1.63  jmcneill 			paddr_t paddr =
   1374  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1375  1.63  jmcneill 			uint16_t len =
   1376  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1377  1.63  jmcneill 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1378  1.63  jmcneill 			uint16_t attr =
   1379  1.63  jmcneill 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1380  1.63  jmcneill 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1381  1.63  jmcneill 				attr |= SDHC_ADMA2_END;
   1382  1.63  jmcneill 			}
   1383  1.63  jmcneill 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1384  1.63  jmcneill 				struct sdhc_adma2_descriptor32 *desc =
   1385  1.63  jmcneill 				    hp->adma2;
   1386  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1387  1.63  jmcneill 				desc[seg].length = htole16(len);
   1388  1.63  jmcneill 				desc[seg].address = htole32(paddr);
   1389  1.63  jmcneill 			} else {
   1390  1.63  jmcneill 				struct sdhc_adma2_descriptor64 *desc =
   1391  1.63  jmcneill 				    hp->adma2;
   1392  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1393  1.63  jmcneill 				desc[seg].length = htole16(len);
   1394  1.63  jmcneill 				desc[seg].address = htole32(paddr & 0xffffffff);
   1395  1.63  jmcneill 				desc[seg].address_hi = htole32(
   1396  1.63  jmcneill 				    (uint64_t)paddr >> 32);
   1397  1.63  jmcneill 			}
   1398  1.63  jmcneill 		}
   1399  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1400  1.63  jmcneill 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1401  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1402  1.63  jmcneill 		} else {
   1403  1.63  jmcneill 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1404  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1405  1.63  jmcneill 		}
   1406  1.63  jmcneill 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1407  1.63  jmcneill 		    BUS_DMASYNC_PREWRITE);
   1408  1.63  jmcneill 		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1409  1.63  jmcneill 		HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1410  1.63  jmcneill 
   1411  1.63  jmcneill 		const paddr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1412  1.63  jmcneill 
   1413  1.63  jmcneill 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1414  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1415  1.63  jmcneill 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1416  1.63  jmcneill 			    (uint64_t)desc_addr >> 32);
   1417  1.63  jmcneill 		}
   1418  1.63  jmcneill 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1419  1.63  jmcneill 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1420   1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1421  1.63  jmcneill 	}
   1422   1.7    nonaka 
   1423   1.1    nonaka 	/*
   1424   1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1425   1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1426   1.1    nonaka 	 */
   1427  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1428  1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1429  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1430  1.11      matt 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1431  1.11      matt 	} else {
   1432  1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1433  1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1434  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1435  1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1436  1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1437  1.11      matt 	}
   1438   1.1    nonaka 
   1439   1.1    nonaka 	mutex_exit(&hp->host_mtx);
   1440   1.1    nonaka 
   1441   1.1    nonaka 	return 0;
   1442   1.1    nonaka }
   1443   1.1    nonaka 
   1444   1.1    nonaka static void
   1445   1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1446   1.1    nonaka {
   1447  1.51  jmcneill 	struct sdhc_softc *sc = hp->sc;
   1448   1.1    nonaka 	int error;
   1449   1.1    nonaka 
   1450   1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1451   1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1452   1.1    nonaka 
   1453   1.1    nonaka #ifdef SDHC_DEBUG
   1454   1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1455   1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1456   1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1457   1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1458   1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1459   1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1460   1.1    nonaka 	}
   1461   1.1    nonaka #endif
   1462   1.1    nonaka 
   1463  1.47     skrll 	if (cmd->c_dmamap != NULL) {
   1464  1.47     skrll 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1465  1.51  jmcneill 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1466  1.47     skrll 			if (error == 0 && !sdhc_wait_intr(hp,
   1467  1.61  jmcneill 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
   1468  1.47     skrll 				error = ETIMEDOUT;
   1469  1.47     skrll 			}
   1470  1.47     skrll 		} else {
   1471  1.47     skrll 			error = sdhc_transfer_data_dma(hp, cmd);
   1472  1.47     skrll 		}
   1473  1.47     skrll 	} else
   1474   1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1475   1.1    nonaka 	if (error)
   1476   1.1    nonaka 		cmd->c_error = error;
   1477   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1478   1.1    nonaka 
   1479   1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1480   1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1481   1.1    nonaka }
   1482   1.1    nonaka 
   1483   1.1    nonaka static int
   1484   1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1485   1.7    nonaka {
   1486  1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1487  1.19  jakllsch 	bus_addr_t posaddr;
   1488  1.19  jakllsch 	bus_addr_t segaddr;
   1489  1.19  jakllsch 	bus_size_t seglen;
   1490  1.19  jakllsch 	u_int seg = 0;
   1491   1.7    nonaka 	int error = 0;
   1492  1.19  jakllsch 	int status;
   1493   1.7    nonaka 
   1494  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1495  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1496  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1497  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1498  1.11      matt 
   1499   1.7    nonaka 	for (;;) {
   1500  1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1501   1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1502  1.19  jakllsch 		    SDHC_DMA_TIMEOUT);
   1503  1.19  jakllsch 
   1504  1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1505  1.19  jakllsch 			break;
   1506  1.19  jakllsch 		}
   1507  1.19  jakllsch 		if (!status) {
   1508   1.7    nonaka 			error = ETIMEDOUT;
   1509   1.7    nonaka 			break;
   1510   1.7    nonaka 		}
   1511  1.63  jmcneill 
   1512  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1513  1.63  jmcneill 			continue;
   1514  1.63  jmcneill 		}
   1515  1.63  jmcneill 
   1516  1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1517  1.19  jakllsch 			continue;
   1518  1.19  jakllsch 		}
   1519  1.19  jakllsch 
   1520  1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1521   1.7    nonaka 
   1522  1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1523  1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1524  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1525  1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1526  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1527   1.7    nonaka 
   1528  1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1529  1.37  jakllsch 			continue;
   1530  1.19  jakllsch 		}
   1531  1.19  jakllsch 		mutex_enter(&hp->host_mtx);
   1532  1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1533  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1534  1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1535  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1536  1.19  jakllsch 		mutex_exit(&hp->host_mtx);
   1537  1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1538   1.7    nonaka 	}
   1539   1.7    nonaka 
   1540  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1541  1.63  jmcneill 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1542  1.63  jmcneill 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1543  1.63  jmcneill 	}
   1544  1.63  jmcneill 
   1545   1.7    nonaka 	return error;
   1546   1.7    nonaka }
   1547   1.7    nonaka 
   1548   1.7    nonaka static int
   1549   1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1550   1.1    nonaka {
   1551   1.1    nonaka 	uint8_t *data = cmd->c_data;
   1552  1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1553  1.11      matt 	u_int len, datalen;
   1554  1.11      matt 	u_int imask;
   1555  1.11      matt 	u_int pmask;
   1556   1.1    nonaka 	int error = 0;
   1557   1.1    nonaka 
   1558  1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1559  1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1560  1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1561  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1562  1.11      matt 			pio_func = esdhc_read_data_pio;
   1563  1.11      matt 		} else {
   1564  1.11      matt 			pio_func = sdhc_read_data_pio;
   1565  1.11      matt 		}
   1566  1.11      matt 	} else {
   1567  1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1568  1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1569  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1570  1.11      matt 			pio_func = esdhc_write_data_pio;
   1571  1.11      matt 		} else {
   1572  1.11      matt 			pio_func = sdhc_write_data_pio;
   1573  1.11      matt 		}
   1574  1.11      matt 	}
   1575   1.1    nonaka 	datalen = cmd->c_datalen;
   1576   1.1    nonaka 
   1577  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1578  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1579  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1580  1.11      matt 
   1581   1.1    nonaka 	while (datalen > 0) {
   1582  1.11      matt 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1583  1.29      matt 			mutex_enter(&hp->intr_mtx);
   1584  1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1585  1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1586  1.11      matt 			} else {
   1587  1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1588  1.11      matt 			}
   1589  1.29      matt 			mutex_exit(&hp->intr_mtx);
   1590  1.11      matt 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1591  1.11      matt 				error = ETIMEDOUT;
   1592  1.11      matt 				break;
   1593  1.11      matt 			}
   1594  1.11      matt 
   1595  1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1596  1.11      matt 			if (error)
   1597  1.11      matt 				break;
   1598   1.1    nonaka 		}
   1599   1.1    nonaka 
   1600   1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1601  1.11      matt 		(*pio_func)(hp, data, len);
   1602  1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1603  1.11      matt 		    HDEVNAME(hp), len, data));
   1604   1.1    nonaka 
   1605   1.1    nonaka 		data += len;
   1606   1.1    nonaka 		datalen -= len;
   1607   1.1    nonaka 	}
   1608   1.1    nonaka 
   1609   1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1610   1.1    nonaka 	    SDHC_TRANSFER_TIMEOUT))
   1611   1.1    nonaka 		error = ETIMEDOUT;
   1612   1.1    nonaka 
   1613   1.1    nonaka 	return error;
   1614   1.1    nonaka }
   1615   1.1    nonaka 
   1616   1.1    nonaka static void
   1617  1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1618   1.1    nonaka {
   1619   1.1    nonaka 
   1620   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1621   1.1    nonaka 		while (datalen > 3) {
   1622  1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1623   1.1    nonaka 			data += 4;
   1624   1.1    nonaka 			datalen -= 4;
   1625   1.1    nonaka 		}
   1626   1.1    nonaka 		if (datalen > 1) {
   1627  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1628   1.1    nonaka 			data += 2;
   1629   1.1    nonaka 			datalen -= 2;
   1630   1.1    nonaka 		}
   1631   1.1    nonaka 		if (datalen > 0) {
   1632   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1633   1.1    nonaka 			data += 1;
   1634   1.1    nonaka 			datalen -= 1;
   1635   1.1    nonaka 		}
   1636   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1637   1.1    nonaka 		while (datalen > 1) {
   1638  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1639   1.1    nonaka 			data += 2;
   1640   1.1    nonaka 			datalen -= 2;
   1641   1.1    nonaka 		}
   1642   1.1    nonaka 		if (datalen > 0) {
   1643   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1644   1.1    nonaka 			data += 1;
   1645   1.1    nonaka 			datalen -= 1;
   1646   1.1    nonaka 		}
   1647   1.1    nonaka 	} else {
   1648   1.1    nonaka 		while (datalen > 0) {
   1649   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1650   1.1    nonaka 			data += 1;
   1651   1.1    nonaka 			datalen -= 1;
   1652   1.1    nonaka 		}
   1653   1.1    nonaka 	}
   1654   1.1    nonaka }
   1655   1.1    nonaka 
   1656   1.1    nonaka static void
   1657  1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1658   1.1    nonaka {
   1659   1.1    nonaka 
   1660   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1661   1.1    nonaka 		while (datalen > 3) {
   1662  1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1663   1.1    nonaka 			data += 4;
   1664   1.1    nonaka 			datalen -= 4;
   1665   1.1    nonaka 		}
   1666   1.1    nonaka 		if (datalen > 1) {
   1667  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1668   1.1    nonaka 			data += 2;
   1669   1.1    nonaka 			datalen -= 2;
   1670   1.1    nonaka 		}
   1671   1.1    nonaka 		if (datalen > 0) {
   1672   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1673   1.1    nonaka 			data += 1;
   1674   1.1    nonaka 			datalen -= 1;
   1675   1.1    nonaka 		}
   1676   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1677   1.1    nonaka 		while (datalen > 1) {
   1678  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1679   1.1    nonaka 			data += 2;
   1680   1.1    nonaka 			datalen -= 2;
   1681   1.1    nonaka 		}
   1682   1.1    nonaka 		if (datalen > 0) {
   1683   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1684   1.1    nonaka 			data += 1;
   1685   1.1    nonaka 			datalen -= 1;
   1686   1.1    nonaka 		}
   1687   1.1    nonaka 	} else {
   1688   1.1    nonaka 		while (datalen > 0) {
   1689   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1690   1.1    nonaka 			data += 1;
   1691   1.1    nonaka 			datalen -= 1;
   1692   1.1    nonaka 		}
   1693   1.1    nonaka 	}
   1694   1.1    nonaka }
   1695   1.1    nonaka 
   1696  1.11      matt static void
   1697  1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1698  1.11      matt {
   1699  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1700  1.12    nonaka 	uint32_t v;
   1701  1.12    nonaka 
   1702  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1703  1.23      matt 	size_t count = 0;
   1704  1.23      matt 
   1705  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1706  1.23      matt 		if (count == 0) {
   1707  1.23      matt 			/*
   1708  1.23      matt 			 * If we've drained "watermark" words, we need to wait
   1709  1.23      matt 			 * a little bit so the read FIFO can refill.
   1710  1.23      matt 			 */
   1711  1.23      matt 			sdmmc_delay(10);
   1712  1.23      matt 			count = watermark;
   1713  1.23      matt 		}
   1714  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1715  1.11      matt 		v = le32toh(v);
   1716  1.11      matt 		*(uint32_t *)data = v;
   1717  1.11      matt 		data += 4;
   1718  1.11      matt 		datalen -= 4;
   1719  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1720  1.23      matt 		count--;
   1721  1.11      matt 	}
   1722  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1723  1.23      matt 		if (count == 0) {
   1724  1.23      matt 			sdmmc_delay(10);
   1725  1.23      matt 		}
   1726  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1727  1.11      matt 		v = le32toh(v);
   1728  1.11      matt 		do {
   1729  1.11      matt 			*data++ = v;
   1730  1.11      matt 			v >>= 8;
   1731  1.11      matt 		} while (--datalen > 0);
   1732  1.11      matt 	}
   1733  1.11      matt }
   1734  1.11      matt 
   1735  1.11      matt static void
   1736  1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1737  1.11      matt {
   1738  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1739  1.12    nonaka 	uint32_t v;
   1740  1.12    nonaka 
   1741  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1742  1.23      matt 	size_t count = watermark;
   1743  1.23      matt 
   1744  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1745  1.23      matt 		if (count == 0) {
   1746  1.23      matt 			sdmmc_delay(10);
   1747  1.23      matt 			count = watermark;
   1748  1.23      matt 		}
   1749  1.12    nonaka 		v = *(uint32_t *)data;
   1750  1.11      matt 		v = htole32(v);
   1751  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1752  1.11      matt 		data += 4;
   1753  1.11      matt 		datalen -= 4;
   1754  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1755  1.23      matt 		count--;
   1756  1.11      matt 	}
   1757  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1758  1.23      matt 		if (count == 0) {
   1759  1.23      matt 			sdmmc_delay(10);
   1760  1.23      matt 		}
   1761  1.12    nonaka 		v = *(uint32_t *)data;
   1762  1.11      matt 		v = htole32(v);
   1763  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1764  1.11      matt 	}
   1765  1.11      matt }
   1766  1.11      matt 
   1767   1.1    nonaka /* Prepare for another command. */
   1768   1.1    nonaka static int
   1769   1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1770   1.1    nonaka {
   1771   1.1    nonaka 	int timo;
   1772   1.1    nonaka 
   1773   1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1774   1.1    nonaka 
   1775  1.35  riastrad 	/* Request the reset.  */
   1776   1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1777  1.35  riastrad 
   1778  1.35  riastrad 	/*
   1779  1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   1780  1.35  riastrad 	 * acknowledge the reset.
   1781  1.35  riastrad 	 */
   1782  1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1783  1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1784  1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   1785  1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1786  1.35  riastrad 				break;
   1787  1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   1788  1.35  riastrad 			sdmmc_delay(1);
   1789  1.35  riastrad 		}
   1790  1.35  riastrad 		if (timo == 0)
   1791  1.35  riastrad 			return ETIMEDOUT;
   1792  1.35  riastrad 	}
   1793  1.35  riastrad 
   1794  1.35  riastrad 	/*
   1795  1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   1796  1.35  riastrad 	 * the reset has completed.
   1797  1.35  riastrad 	 */
   1798   1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   1799   1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1800   1.1    nonaka 			break;
   1801   1.1    nonaka 		sdmmc_delay(10000);
   1802   1.1    nonaka 	}
   1803   1.1    nonaka 	if (timo == 0) {
   1804   1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1805   1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1806   1.1    nonaka 		return ETIMEDOUT;
   1807   1.1    nonaka 	}
   1808   1.1    nonaka 
   1809  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1810  1.53    nonaka 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1811  1.11      matt 	}
   1812  1.11      matt 
   1813   1.1    nonaka 	return 0;
   1814   1.1    nonaka }
   1815   1.1    nonaka 
   1816   1.1    nonaka static int
   1817   1.1    nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1818   1.1    nonaka {
   1819   1.1    nonaka 	int status;
   1820   1.1    nonaka 
   1821   1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   1822   1.1    nonaka 
   1823   1.1    nonaka 	mutex_enter(&hp->intr_mtx);
   1824   1.1    nonaka 	status = hp->intr_status & mask;
   1825   1.1    nonaka 	while (status == 0) {
   1826   1.1    nonaka 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1827   1.1    nonaka 		    == EWOULDBLOCK) {
   1828   1.1    nonaka 			status |= SDHC_ERROR_INTERRUPT;
   1829   1.1    nonaka 			break;
   1830   1.1    nonaka 		}
   1831   1.1    nonaka 		status = hp->intr_status & mask;
   1832   1.1    nonaka 	}
   1833   1.1    nonaka 	hp->intr_status &= ~status;
   1834   1.1    nonaka 
   1835   1.1    nonaka 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1836   1.1    nonaka 	    hp->intr_error_status));
   1837  1.47     skrll 
   1838   1.1    nonaka 	/* Command timeout has higher priority than command complete. */
   1839  1.11      matt 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1840   1.1    nonaka 		hp->intr_error_status = 0;
   1841  1.11      matt 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1842  1.11      matt 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1843  1.11      matt 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1844  1.11      matt 		}
   1845   1.1    nonaka 		status = 0;
   1846   1.1    nonaka 	}
   1847   1.1    nonaka 	mutex_exit(&hp->intr_mtx);
   1848   1.1    nonaka 
   1849   1.1    nonaka 	return status;
   1850   1.1    nonaka }
   1851   1.1    nonaka 
   1852   1.1    nonaka /*
   1853   1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1854   1.1    nonaka  */
   1855   1.1    nonaka int
   1856   1.1    nonaka sdhc_intr(void *arg)
   1857   1.1    nonaka {
   1858   1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1859   1.1    nonaka 	struct sdhc_host *hp;
   1860   1.1    nonaka 	int done = 0;
   1861   1.1    nonaka 	uint16_t status;
   1862   1.1    nonaka 	uint16_t error;
   1863   1.1    nonaka 
   1864   1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   1865  1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1866   1.1    nonaka 		hp = sc->sc_host[host];
   1867   1.1    nonaka 		if (hp == NULL)
   1868   1.1    nonaka 			continue;
   1869   1.1    nonaka 
   1870  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1871  1.11      matt 			/* Find out which interrupts are pending. */
   1872  1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1873  1.11      matt 			status = xstatus;
   1874  1.11      matt 			error = xstatus >> 16;
   1875  1.22      matt 			if (error)
   1876  1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   1877  1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1878  1.11      matt 				continue; /* no interrupt for us */
   1879  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1880  1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1881  1.11      matt 		} else {
   1882  1.11      matt 			/* Find out which interrupts are pending. */
   1883  1.11      matt 			error = 0;
   1884  1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1885  1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1886  1.11      matt 				continue; /* no interrupt for us */
   1887  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   1888  1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1889  1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1890  1.11      matt 				/* Acknowledge error interrupts. */
   1891  1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1892  1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1893  1.11      matt 			}
   1894  1.11      matt 		}
   1895  1.47     skrll 
   1896  1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1897  1.11      matt 		    status, error));
   1898   1.1    nonaka 
   1899  1.29      matt 		mutex_enter(&hp->intr_mtx);
   1900  1.29      matt 
   1901   1.1    nonaka 		/* Claim this interrupt. */
   1902   1.1    nonaka 		done = 1;
   1903   1.1    nonaka 
   1904  1.63  jmcneill 		if (ISSET(error, SDHC_ADMA_ERROR)) {
   1905  1.63  jmcneill 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   1906  1.63  jmcneill 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   1907  1.63  jmcneill 			    adma_err);
   1908  1.63  jmcneill 		}
   1909  1.63  jmcneill 
   1910   1.1    nonaka 		/*
   1911   1.1    nonaka 		 * Service error interrupts.
   1912   1.1    nonaka 		 */
   1913  1.11      matt 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1914  1.11      matt 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1915  1.11      matt 			hp->intr_error_status |= error;
   1916  1.11      matt 			hp->intr_status |= status;
   1917  1.11      matt 			cv_broadcast(&hp->intr_cv);
   1918   1.1    nonaka 		}
   1919   1.1    nonaka 
   1920   1.1    nonaka 		/*
   1921   1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   1922   1.1    nonaka 		 */
   1923   1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1924  1.46  jakllsch 			if (hp->sdmmc != NULL) {
   1925  1.46  jakllsch 				sdmmc_needs_discover(hp->sdmmc);
   1926  1.46  jakllsch 			}
   1927  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1928  1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1929  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1930  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1931  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1932  1.11      matt 			}
   1933   1.9      matt 		}
   1934   1.1    nonaka 
   1935   1.1    nonaka 		/*
   1936   1.1    nonaka 		 * Wake up the blocking process to service command
   1937   1.1    nonaka 		 * related interrupt(s).
   1938   1.1    nonaka 		 */
   1939  1.11      matt 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1940  1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1941   1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1942   1.1    nonaka 			hp->intr_status |= status;
   1943  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1944  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1945  1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1946  1.11      matt 			}
   1947   1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   1948   1.1    nonaka 		}
   1949   1.1    nonaka 
   1950   1.1    nonaka 		/*
   1951   1.1    nonaka 		 * Service SD card interrupts.
   1952   1.1    nonaka 		 */
   1953  1.11      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1954  1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1955   1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1956   1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1957   1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   1958   1.1    nonaka 		}
   1959  1.29      matt 		mutex_exit(&hp->intr_mtx);
   1960   1.1    nonaka 	}
   1961   1.1    nonaka 
   1962   1.1    nonaka 	return done;
   1963   1.1    nonaka }
   1964   1.1    nonaka 
   1965   1.1    nonaka #ifdef SDHC_DEBUG
   1966   1.1    nonaka void
   1967   1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   1968   1.1    nonaka {
   1969   1.1    nonaka 
   1970   1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1971   1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1972  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1973  1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1974  1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   1975   1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1976   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1977   1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1978   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1979   1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1980   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1981   1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1982   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1983   1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1984   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1985   1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1986   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1987   1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1988   1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   1989   1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1990   1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1991   1.1    nonaka }
   1992   1.1    nonaka #endif
   1993