sdhc.c revision 1.63 1 1.63 jmcneill /* $NetBSD: sdhc.c,v 1.63 2015/07/29 12:11:13 jmcneill Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.63 jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.63 2015/07/29 12:11:13 jmcneill Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/malloc.h>
36 1.1 nonaka #include <sys/systm.h>
37 1.1 nonaka #include <sys/mutex.h>
38 1.1 nonaka #include <sys/condvar.h>
39 1.1 nonaka
40 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
41 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
42 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
45 1.1 nonaka
46 1.1 nonaka #ifdef SDHC_DEBUG
47 1.1 nonaka int sdhcdebug = 1;
48 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
50 1.1 nonaka #else
51 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
52 1.1 nonaka #endif
53 1.1 nonaka
54 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
55 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
56 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
57 1.61 jmcneill #define SDHC_DMA_TIMEOUT (hz*3)
58 1.1 nonaka
59 1.1 nonaka struct sdhc_host {
60 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
61 1.1 nonaka
62 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
63 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
64 1.36 jakllsch bus_size_t ios; /* host register space size */
65 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
66 1.1 nonaka
67 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
68 1.1 nonaka
69 1.1 nonaka struct kmutex host_mtx;
70 1.1 nonaka
71 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
72 1.1 nonaka int maxblklen; /* maximum block length */
73 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
74 1.1 nonaka
75 1.1 nonaka uint8_t regs[14]; /* host controller state */
76 1.1 nonaka
77 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
78 1.1 nonaka uint16_t intr_error_status; /* soft error status */
79 1.1 nonaka struct kmutex intr_mtx;
80 1.1 nonaka struct kcondvar intr_cv;
81 1.1 nonaka
82 1.12 nonaka int specver; /* spec. version */
83 1.12 nonaka
84 1.1 nonaka uint32_t flags; /* flags for this host */
85 1.1 nonaka #define SHF_USE_DMA 0x0001
86 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
87 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
88 1.55 bouyer #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
89 1.63 jmcneill #define SHF_USE_ADMA2_32 0x0010
90 1.63 jmcneill #define SHF_USE_ADMA2_64 0x0020
91 1.63 jmcneill #define SHF_USE_ADMA2_MASK 0x0030
92 1.63 jmcneill
93 1.63 jmcneill bus_dmamap_t adma_map;
94 1.63 jmcneill bus_dma_segment_t adma_segs[1];
95 1.63 jmcneill void *adma2;
96 1.1 nonaka };
97 1.1 nonaka
98 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
99 1.1 nonaka
100 1.11 matt static uint8_t
101 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
102 1.11 matt {
103 1.12 nonaka
104 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
105 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
106 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
107 1.11 matt }
108 1.11 matt
109 1.11 matt static uint16_t
110 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
111 1.11 matt {
112 1.12 nonaka
113 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
114 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
115 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
116 1.11 matt }
117 1.11 matt
118 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
119 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
120 1.11 matt #define HREAD4(hp, reg) \
121 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
122 1.11 matt
123 1.11 matt
124 1.11 matt static void
125 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
126 1.11 matt {
127 1.12 nonaka
128 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
129 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
130 1.11 matt } else {
131 1.11 matt const size_t shift = 8 * (o & 3);
132 1.11 matt o &= -4;
133 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
134 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
135 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
136 1.11 matt }
137 1.11 matt }
138 1.11 matt
139 1.11 matt static void
140 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
141 1.11 matt {
142 1.12 nonaka
143 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
144 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
145 1.11 matt } else {
146 1.11 matt const size_t shift = 8 * (o & 2);
147 1.11 matt o &= -4;
148 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
149 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
150 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
151 1.11 matt }
152 1.11 matt }
153 1.11 matt
154 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
155 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
156 1.1 nonaka #define HWRITE4(hp, reg, val) \
157 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
158 1.11 matt
159 1.1 nonaka #define HCLR1(hp, reg, bits) \
160 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
161 1.1 nonaka #define HCLR2(hp, reg, bits) \
162 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
163 1.11 matt #define HCLR4(hp, reg, bits) \
164 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
165 1.1 nonaka #define HSET1(hp, reg, bits) \
166 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
167 1.1 nonaka #define HSET2(hp, reg, bits) \
168 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
169 1.11 matt #define HSET4(hp, reg, bits) \
170 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
171 1.1 nonaka
172 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
173 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
174 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
175 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
176 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
177 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
178 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
179 1.1 nonaka static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
180 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
181 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
182 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
183 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
184 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
185 1.1 nonaka struct sdmmc_command *);
186 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
187 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
188 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
189 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
190 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
191 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
192 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
193 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
194 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
195 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
196 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
197 1.11 matt
198 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
199 1.1 nonaka /* host controller reset */
200 1.60 skrll .host_reset = sdhc_host_reset,
201 1.1 nonaka
202 1.1 nonaka /* host controller capabilities */
203 1.60 skrll .host_ocr = sdhc_host_ocr,
204 1.60 skrll .host_maxblklen = sdhc_host_maxblklen,
205 1.1 nonaka
206 1.1 nonaka /* card detection */
207 1.60 skrll .card_detect = sdhc_card_detect,
208 1.1 nonaka
209 1.1 nonaka /* write protect */
210 1.60 skrll .write_protect = sdhc_write_protect,
211 1.1 nonaka
212 1.60 skrll /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
213 1.60 skrll .bus_power = sdhc_bus_power,
214 1.60 skrll .bus_clock = sdhc_bus_clock,
215 1.60 skrll .bus_width = sdhc_bus_width,
216 1.60 skrll .bus_rod = sdhc_bus_rod,
217 1.1 nonaka
218 1.1 nonaka /* command execution */
219 1.60 skrll .exec_command = sdhc_exec_command,
220 1.1 nonaka
221 1.1 nonaka /* card interrupt */
222 1.60 skrll .card_enable_intr = sdhc_card_enable_intr,
223 1.60 skrll .card_intr_ack = sdhc_card_intr_ack
224 1.1 nonaka };
225 1.1 nonaka
226 1.17 jakllsch static int
227 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
228 1.17 jakllsch {
229 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
230 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
231 1.47 skrll
232 1.17 jakllsch if (pnp) {
233 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
234 1.17 jakllsch }
235 1.41 jakllsch for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
236 1.41 jakllsch if (hp->sc->sc_host[host] == hp) {
237 1.41 jakllsch aprint_normal(" slot %zu", host);
238 1.41 jakllsch }
239 1.41 jakllsch }
240 1.17 jakllsch
241 1.17 jakllsch return UNCONF;
242 1.17 jakllsch }
243 1.17 jakllsch
244 1.1 nonaka /*
245 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
246 1.1 nonaka * host controller standard register set. (1.3)
247 1.1 nonaka */
248 1.1 nonaka int
249 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
250 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
251 1.1 nonaka {
252 1.1 nonaka struct sdmmcbus_attach_args saa;
253 1.1 nonaka struct sdhc_host *hp;
254 1.1 nonaka uint32_t caps;
255 1.1 nonaka uint16_t sdhcver;
256 1.63 jmcneill int error;
257 1.1 nonaka
258 1.33 riastrad /* Allocate one more host structure. */
259 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
260 1.33 riastrad if (hp == NULL) {
261 1.33 riastrad aprint_error_dev(sc->sc_dev,
262 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
263 1.33 riastrad goto err1;
264 1.33 riastrad }
265 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
266 1.33 riastrad
267 1.33 riastrad /* Fill in the new host structure. */
268 1.33 riastrad hp->sc = sc;
269 1.33 riastrad hp->iot = iot;
270 1.33 riastrad hp->ioh = ioh;
271 1.36 jakllsch hp->ios = iosize;
272 1.33 riastrad hp->dmat = sc->sc_dmat;
273 1.33 riastrad
274 1.33 riastrad mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
275 1.33 riastrad mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
276 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
277 1.33 riastrad
278 1.52 nonaka if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
279 1.52 nonaka sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
280 1.52 nonaka } else {
281 1.52 nonaka sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
282 1.52 nonaka }
283 1.58 jmcneill aprint_normal_dev(sc->sc_dev, "SDHC ");
284 1.33 riastrad hp->specver = SDHC_SPEC_VERSION(sdhcver);
285 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
286 1.12 nonaka case SDHC_SPEC_VERS_100:
287 1.12 nonaka aprint_normal("1.0");
288 1.12 nonaka break;
289 1.12 nonaka
290 1.12 nonaka case SDHC_SPEC_VERS_200:
291 1.12 nonaka aprint_normal("2.0");
292 1.1 nonaka break;
293 1.1 nonaka
294 1.12 nonaka case SDHC_SPEC_VERS_300:
295 1.12 nonaka aprint_normal("3.0");
296 1.9 matt break;
297 1.9 matt
298 1.56 jmcneill case SDHC_SPEC_VERS_400:
299 1.56 jmcneill aprint_normal("4.0");
300 1.56 jmcneill break;
301 1.56 jmcneill
302 1.1 nonaka default:
303 1.12 nonaka aprint_normal("unknown version(0x%x)",
304 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
305 1.1 nonaka break;
306 1.1 nonaka }
307 1.58 jmcneill aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
308 1.1 nonaka
309 1.1 nonaka /*
310 1.3 uebayasi * Reset the host controller and enable interrupts.
311 1.1 nonaka */
312 1.1 nonaka (void)sdhc_host_reset(hp);
313 1.1 nonaka
314 1.1 nonaka /* Determine host capabilities. */
315 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
316 1.24 skrll caps = sc->sc_caps;
317 1.24 skrll } else {
318 1.24 skrll mutex_enter(&hp->host_mtx);
319 1.24 skrll caps = HREAD4(hp, SDHC_CAPABILITIES);
320 1.24 skrll mutex_exit(&hp->host_mtx);
321 1.24 skrll }
322 1.1 nonaka
323 1.55 bouyer /*
324 1.55 bouyer * Use DMA if the host system and the controller support it.
325 1.55 bouyer * Suports integrated or external DMA egine, with or without
326 1.55 bouyer * SDHC_DMA_ENABLE in the command.
327 1.55 bouyer */
328 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
329 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
330 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
331 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
332 1.63 jmcneill
333 1.63 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
334 1.63 jmcneill ISSET(caps, SDHC_ADMA2_SUPP)) {
335 1.55 bouyer SET(hp->flags, SHF_MODE_DMAEN);
336 1.63 jmcneill /*
337 1.63 jmcneill * 64-bit mode was present in the 2.00 spec, removed
338 1.63 jmcneill * from 3.00, and re-added in 4.00 with a different
339 1.63 jmcneill * descriptor layout. We only support 2.00 and 3.00
340 1.63 jmcneill * descriptors for now.
341 1.63 jmcneill */
342 1.63 jmcneill if (hp->specver == SDHC_SPEC_VERS_200 &&
343 1.63 jmcneill ISSET(caps, SDHC_64BIT_SYS_BUS)) {
344 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_64);
345 1.63 jmcneill aprint_normal(", 64-bit ADMA2");
346 1.63 jmcneill } else {
347 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_32);
348 1.63 jmcneill aprint_normal(", 32-bit ADMA2");
349 1.63 jmcneill }
350 1.63 jmcneill } else {
351 1.63 jmcneill if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
352 1.63 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
353 1.63 jmcneill SET(hp->flags, SHF_MODE_DMAEN);
354 1.63 jmcneill aprint_normal(", SDMA");
355 1.63 jmcneill }
356 1.58 jmcneill } else {
357 1.58 jmcneill aprint_normal(", PIO");
358 1.1 nonaka }
359 1.1 nonaka
360 1.1 nonaka /*
361 1.1 nonaka * Determine the base clock frequency. (2.2.24)
362 1.1 nonaka */
363 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
364 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
365 1.30 matt } else {
366 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
367 1.30 matt }
368 1.56 jmcneill if (hp->clkbase == 0 ||
369 1.56 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
370 1.9 matt if (sc->sc_clkbase == 0) {
371 1.9 matt /* The attachment driver must tell us. */
372 1.12 nonaka aprint_error_dev(sc->sc_dev,
373 1.12 nonaka "unknown base clock frequency\n");
374 1.9 matt goto err;
375 1.9 matt }
376 1.9 matt hp->clkbase = sc->sc_clkbase;
377 1.9 matt }
378 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
379 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
380 1.1 nonaka aprint_error_dev(sc->sc_dev,
381 1.1 nonaka "base clock frequency out of range: %u MHz\n",
382 1.1 nonaka hp->clkbase / 1000);
383 1.1 nonaka goto err;
384 1.1 nonaka }
385 1.58 jmcneill aprint_normal(", %u kHz", hp->clkbase);
386 1.1 nonaka
387 1.1 nonaka /*
388 1.1 nonaka * XXX Set the data timeout counter value according to
389 1.1 nonaka * capabilities. (2.2.15)
390 1.1 nonaka */
391 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
392 1.29 matt #if 1
393 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
394 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
395 1.11 matt #endif
396 1.1 nonaka
397 1.58 jmcneill if (ISSET(caps, SDHC_EMBEDDED_SLOT))
398 1.58 jmcneill aprint_normal(", embedded slot");
399 1.58 jmcneill
400 1.1 nonaka /*
401 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
402 1.1 nonaka */
403 1.58 jmcneill aprint_normal(",");
404 1.48 jmcneill if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
405 1.48 jmcneill (hp->specver < SDHC_SPEC_VERS_300 ||
406 1.48 jmcneill ISSET(caps, SDHC_EMBEDDED_SLOT))) {
407 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
408 1.58 jmcneill aprint_normal(" 1.8V");
409 1.11 matt }
410 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
411 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
412 1.58 jmcneill aprint_normal(" 3.0V");
413 1.11 matt }
414 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
415 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
416 1.58 jmcneill aprint_normal(" 3.3V");
417 1.11 matt }
418 1.1 nonaka
419 1.1 nonaka /*
420 1.1 nonaka * Determine the maximum block length supported by the host
421 1.1 nonaka * controller. (2.2.24)
422 1.1 nonaka */
423 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
424 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
425 1.1 nonaka hp->maxblklen = 512;
426 1.1 nonaka break;
427 1.1 nonaka
428 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
429 1.1 nonaka hp->maxblklen = 1024;
430 1.1 nonaka break;
431 1.1 nonaka
432 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
433 1.1 nonaka hp->maxblklen = 2048;
434 1.1 nonaka break;
435 1.1 nonaka
436 1.9 matt case SDHC_MAX_BLK_LEN_4096:
437 1.9 matt hp->maxblklen = 4096;
438 1.9 matt break;
439 1.9 matt
440 1.1 nonaka default:
441 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
442 1.1 nonaka goto err;
443 1.1 nonaka }
444 1.58 jmcneill aprint_normal(", %u byte blocks", hp->maxblklen);
445 1.58 jmcneill aprint_normal("\n");
446 1.1 nonaka
447 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
448 1.63 jmcneill int rseg;
449 1.63 jmcneill
450 1.63 jmcneill /* Allocate ADMA2 descriptor memory */
451 1.63 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
452 1.63 jmcneill PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
453 1.63 jmcneill if (error) {
454 1.63 jmcneill aprint_error_dev(sc->sc_dev,
455 1.63 jmcneill "ADMA2 dmamem_alloc failed (%d)\n", error);
456 1.63 jmcneill goto adma_done;
457 1.63 jmcneill }
458 1.63 jmcneill error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
459 1.63 jmcneill PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
460 1.63 jmcneill if (error) {
461 1.63 jmcneill aprint_error_dev(sc->sc_dev,
462 1.63 jmcneill "ADMA2 dmamem_map failed (%d)\n", error);
463 1.63 jmcneill goto adma_done;
464 1.63 jmcneill }
465 1.63 jmcneill error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
466 1.63 jmcneill 0, BUS_DMA_WAITOK, &hp->adma_map);
467 1.63 jmcneill if (error) {
468 1.63 jmcneill aprint_error_dev(sc->sc_dev,
469 1.63 jmcneill "ADMA2 dmamap_create failed (%d)\n", error);
470 1.63 jmcneill goto adma_done;
471 1.63 jmcneill }
472 1.63 jmcneill error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
473 1.63 jmcneill hp->adma2, PAGE_SIZE, NULL,
474 1.63 jmcneill BUS_DMA_WAITOK|BUS_DMA_WRITE);
475 1.63 jmcneill if (error) {
476 1.63 jmcneill aprint_error_dev(sc->sc_dev,
477 1.63 jmcneill "ADMA2 dmamap_load failed (%d)\n", error);
478 1.63 jmcneill goto adma_done;
479 1.63 jmcneill }
480 1.63 jmcneill
481 1.63 jmcneill memset(hp->adma2, 0, PAGE_SIZE);
482 1.63 jmcneill
483 1.63 jmcneill adma_done:
484 1.63 jmcneill if (error)
485 1.63 jmcneill CLR(hp->flags, SHF_USE_ADMA2_MASK);
486 1.63 jmcneill }
487 1.63 jmcneill
488 1.1 nonaka /*
489 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
490 1.1 nonaka * not invoke any chipset functions before it is attached.)
491 1.1 nonaka */
492 1.1 nonaka memset(&saa, 0, sizeof(saa));
493 1.1 nonaka saa.saa_busname = "sdmmc";
494 1.1 nonaka saa.saa_sct = &sdhc_functions;
495 1.1 nonaka saa.saa_sch = hp;
496 1.1 nonaka saa.saa_dmat = hp->dmat;
497 1.1 nonaka saa.saa_clkmax = hp->clkbase;
498 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
499 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
500 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
501 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
502 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
503 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
504 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
505 1.56 jmcneill else if (hp->specver >= SDHC_SPEC_VERS_300)
506 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
507 1.38 jakllsch else
508 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
509 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
510 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
511 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
512 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
513 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
514 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
515 1.54 nonaka saa.saa_caps |= SMC_CAPS_DMA;
516 1.54 nonaka if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
517 1.54 nonaka saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
518 1.26 matt }
519 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
520 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
521 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
522 1.1 nonaka
523 1.1 nonaka return 0;
524 1.1 nonaka
525 1.1 nonaka err:
526 1.1 nonaka cv_destroy(&hp->intr_cv);
527 1.1 nonaka mutex_destroy(&hp->intr_mtx);
528 1.1 nonaka mutex_destroy(&hp->host_mtx);
529 1.1 nonaka free(hp, M_DEVBUF);
530 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
531 1.1 nonaka err1:
532 1.1 nonaka return 1;
533 1.1 nonaka }
534 1.1 nonaka
535 1.7 nonaka int
536 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
537 1.7 nonaka {
538 1.36 jakllsch struct sdhc_host *hp;
539 1.7 nonaka int rv = 0;
540 1.7 nonaka
541 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
542 1.36 jakllsch hp = sc->sc_host[n];
543 1.36 jakllsch if (hp == NULL)
544 1.36 jakllsch continue;
545 1.36 jakllsch if (hp->sdmmc != NULL) {
546 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
547 1.36 jakllsch if (rv)
548 1.36 jakllsch break;
549 1.36 jakllsch hp->sdmmc = NULL;
550 1.36 jakllsch }
551 1.36 jakllsch /* disable interrupts */
552 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
553 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
554 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
555 1.36 jakllsch } else {
556 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
557 1.36 jakllsch }
558 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
559 1.36 jakllsch }
560 1.36 jakllsch cv_destroy(&hp->intr_cv);
561 1.36 jakllsch mutex_destroy(&hp->intr_mtx);
562 1.36 jakllsch mutex_destroy(&hp->host_mtx);
563 1.36 jakllsch if (hp->ios > 0) {
564 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
565 1.36 jakllsch hp->ios = 0;
566 1.36 jakllsch }
567 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
568 1.63 jmcneill bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
569 1.63 jmcneill bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
570 1.63 jmcneill bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
571 1.63 jmcneill bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
572 1.63 jmcneill }
573 1.36 jakllsch free(hp, M_DEVBUF);
574 1.36 jakllsch sc->sc_host[n] = NULL;
575 1.36 jakllsch }
576 1.7 nonaka
577 1.7 nonaka return rv;
578 1.7 nonaka }
579 1.7 nonaka
580 1.1 nonaka bool
581 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
582 1.1 nonaka {
583 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
584 1.1 nonaka struct sdhc_host *hp;
585 1.12 nonaka size_t i;
586 1.1 nonaka
587 1.1 nonaka /* XXX poll for command completion or suspend command
588 1.1 nonaka * in progress */
589 1.1 nonaka
590 1.1 nonaka /* Save the host controller state. */
591 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
592 1.1 nonaka hp = sc->sc_host[n];
593 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
594 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
595 1.11 matt uint32_t v = HREAD4(hp, i);
596 1.12 nonaka hp->regs[i + 0] = (v >> 0);
597 1.12 nonaka hp->regs[i + 1] = (v >> 8);
598 1.13 bouyer if (i + 3 < sizeof hp->regs) {
599 1.13 bouyer hp->regs[i + 2] = (v >> 16);
600 1.13 bouyer hp->regs[i + 3] = (v >> 24);
601 1.13 bouyer }
602 1.11 matt }
603 1.11 matt } else {
604 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
605 1.11 matt hp->regs[i] = HREAD1(hp, i);
606 1.11 matt }
607 1.11 matt }
608 1.1 nonaka }
609 1.1 nonaka return true;
610 1.1 nonaka }
611 1.1 nonaka
612 1.1 nonaka bool
613 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
614 1.1 nonaka {
615 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
616 1.1 nonaka struct sdhc_host *hp;
617 1.12 nonaka size_t i;
618 1.1 nonaka
619 1.1 nonaka /* Restore the host controller state. */
620 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
621 1.1 nonaka hp = sc->sc_host[n];
622 1.1 nonaka (void)sdhc_host_reset(hp);
623 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
624 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
625 1.13 bouyer if (i + 3 < sizeof hp->regs) {
626 1.13 bouyer HWRITE4(hp, i,
627 1.13 bouyer (hp->regs[i + 0] << 0)
628 1.13 bouyer | (hp->regs[i + 1] << 8)
629 1.13 bouyer | (hp->regs[i + 2] << 16)
630 1.13 bouyer | (hp->regs[i + 3] << 24));
631 1.13 bouyer } else {
632 1.13 bouyer HWRITE4(hp, i,
633 1.13 bouyer (hp->regs[i + 0] << 0)
634 1.13 bouyer | (hp->regs[i + 1] << 8));
635 1.13 bouyer }
636 1.11 matt }
637 1.11 matt } else {
638 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
639 1.11 matt HWRITE1(hp, i, hp->regs[i]);
640 1.11 matt }
641 1.11 matt }
642 1.1 nonaka }
643 1.1 nonaka return true;
644 1.1 nonaka }
645 1.1 nonaka
646 1.1 nonaka bool
647 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
648 1.1 nonaka {
649 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
650 1.1 nonaka struct sdhc_host *hp;
651 1.1 nonaka
652 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
653 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
654 1.1 nonaka hp = sc->sc_host[i];
655 1.1 nonaka (void)sdhc_host_reset(hp);
656 1.1 nonaka }
657 1.1 nonaka return true;
658 1.1 nonaka }
659 1.1 nonaka
660 1.1 nonaka /*
661 1.1 nonaka * Reset the host controller. Called during initialization, when
662 1.1 nonaka * cards are removed, upon resume, and during error recovery.
663 1.1 nonaka */
664 1.1 nonaka static int
665 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
666 1.1 nonaka {
667 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
668 1.11 matt uint32_t sdhcimask;
669 1.1 nonaka int error;
670 1.1 nonaka
671 1.1 nonaka /* Don't lock. */
672 1.1 nonaka
673 1.1 nonaka /* Disable all interrupts. */
674 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
675 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
676 1.11 matt } else {
677 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
678 1.11 matt }
679 1.1 nonaka
680 1.1 nonaka /*
681 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
682 1.1 nonaka * the controller to clear the reset bit.
683 1.1 nonaka */
684 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
685 1.1 nonaka if (error)
686 1.1 nonaka goto out;
687 1.1 nonaka
688 1.1 nonaka /* Set data timeout counter value to max for now. */
689 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
690 1.29 matt #if 1
691 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
692 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
693 1.11 matt #endif
694 1.1 nonaka
695 1.1 nonaka /* Enable interrupts. */
696 1.29 matt mutex_enter(&hp->intr_mtx);
697 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
698 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
699 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
700 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
701 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
702 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
703 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
704 1.11 matt sdhcimask ^=
705 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
706 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
707 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
708 1.11 matt } else {
709 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
710 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
711 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
712 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
713 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
714 1.11 matt }
715 1.29 matt mutex_exit(&hp->intr_mtx);
716 1.1 nonaka
717 1.1 nonaka out:
718 1.1 nonaka return error;
719 1.1 nonaka }
720 1.1 nonaka
721 1.1 nonaka static int
722 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
723 1.1 nonaka {
724 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
725 1.1 nonaka int error;
726 1.1 nonaka
727 1.1 nonaka mutex_enter(&hp->host_mtx);
728 1.1 nonaka error = sdhc_host_reset1(sch);
729 1.1 nonaka mutex_exit(&hp->host_mtx);
730 1.1 nonaka
731 1.1 nonaka return error;
732 1.1 nonaka }
733 1.1 nonaka
734 1.1 nonaka static uint32_t
735 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
736 1.1 nonaka {
737 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
738 1.1 nonaka
739 1.1 nonaka return hp->ocr;
740 1.1 nonaka }
741 1.1 nonaka
742 1.1 nonaka static int
743 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
744 1.1 nonaka {
745 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
746 1.1 nonaka
747 1.1 nonaka return hp->maxblklen;
748 1.1 nonaka }
749 1.1 nonaka
750 1.1 nonaka /*
751 1.1 nonaka * Return non-zero if the card is currently inserted.
752 1.1 nonaka */
753 1.1 nonaka static int
754 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
755 1.1 nonaka {
756 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
757 1.1 nonaka int r;
758 1.1 nonaka
759 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
760 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
761 1.32 kiyohara
762 1.1 nonaka mutex_enter(&hp->host_mtx);
763 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
764 1.1 nonaka mutex_exit(&hp->host_mtx);
765 1.1 nonaka
766 1.11 matt return r ? 1 : 0;
767 1.1 nonaka }
768 1.1 nonaka
769 1.1 nonaka /*
770 1.1 nonaka * Return non-zero if the card is currently write-protected.
771 1.1 nonaka */
772 1.1 nonaka static int
773 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
774 1.1 nonaka {
775 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
776 1.1 nonaka int r;
777 1.1 nonaka
778 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
779 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
780 1.32 kiyohara
781 1.1 nonaka mutex_enter(&hp->host_mtx);
782 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
783 1.1 nonaka mutex_exit(&hp->host_mtx);
784 1.1 nonaka
785 1.12 nonaka return r ? 0 : 1;
786 1.1 nonaka }
787 1.1 nonaka
788 1.1 nonaka /*
789 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
790 1.1 nonaka * Return zero on success.
791 1.1 nonaka */
792 1.1 nonaka static int
793 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
794 1.1 nonaka {
795 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
796 1.1 nonaka uint8_t vdd;
797 1.1 nonaka int error = 0;
798 1.32 kiyohara const uint32_t pcmask =
799 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
800 1.1 nonaka
801 1.1 nonaka mutex_enter(&hp->host_mtx);
802 1.1 nonaka
803 1.1 nonaka /*
804 1.1 nonaka * Disable bus power before voltage change.
805 1.1 nonaka */
806 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
807 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
808 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
809 1.1 nonaka
810 1.1 nonaka /* If power is disabled, reset the host and return now. */
811 1.1 nonaka if (ocr == 0) {
812 1.1 nonaka (void)sdhc_host_reset1(hp);
813 1.1 nonaka goto out;
814 1.1 nonaka }
815 1.1 nonaka
816 1.1 nonaka /*
817 1.1 nonaka * Select the lowest voltage according to capabilities.
818 1.1 nonaka */
819 1.1 nonaka ocr &= hp->ocr;
820 1.11 matt if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
821 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
822 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
823 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
824 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
825 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
826 1.11 matt } else {
827 1.1 nonaka /* Unsupported voltage level requested. */
828 1.1 nonaka error = EINVAL;
829 1.1 nonaka goto out;
830 1.1 nonaka }
831 1.1 nonaka
832 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
833 1.11 matt /*
834 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
835 1.11 matt * voltage ramp until power rises.
836 1.11 matt */
837 1.57 jmcneill
838 1.57 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
839 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
840 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
841 1.57 jmcneill } else {
842 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
843 1.57 jmcneill HREAD1(hp, SDHC_POWER_CTL) & pcmask);
844 1.57 jmcneill sdmmc_delay(1);
845 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
846 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT));
847 1.57 jmcneill sdmmc_delay(1);
848 1.57 jmcneill HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
849 1.57 jmcneill sdmmc_delay(10000);
850 1.57 jmcneill }
851 1.1 nonaka
852 1.11 matt /*
853 1.11 matt * The host system may not power the bus due to battery low,
854 1.11 matt * etc. In that case, the host controller should clear the
855 1.11 matt * bus power bit.
856 1.11 matt */
857 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
858 1.11 matt error = ENXIO;
859 1.11 matt goto out;
860 1.11 matt }
861 1.1 nonaka }
862 1.1 nonaka
863 1.1 nonaka out:
864 1.1 nonaka mutex_exit(&hp->host_mtx);
865 1.1 nonaka
866 1.1 nonaka return error;
867 1.1 nonaka }
868 1.1 nonaka
869 1.1 nonaka /*
870 1.1 nonaka * Return the smallest possible base clock frequency divisor value
871 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
872 1.1 nonaka */
873 1.11 matt static bool
874 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
875 1.1 nonaka {
876 1.11 matt u_int div;
877 1.1 nonaka
878 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
879 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
880 1.11 matt if ((hp->clkbase / div) <= freq) {
881 1.11 matt *divp = SDHC_SDCLK_CGM
882 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
883 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
884 1.18 jakllsch //freq = hp->clkbase / div;
885 1.11 matt return true;
886 1.11 matt }
887 1.11 matt }
888 1.11 matt /* No divisor found. */
889 1.11 matt return false;
890 1.11 matt }
891 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
892 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
893 1.11 matt u_int roundup = dvs & 1;
894 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
895 1.11 matt if (dvs + roundup <= 16) {
896 1.11 matt dvs += roundup - 1;
897 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
898 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
899 1.11 matt DPRINTF(2,
900 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
901 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
902 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
903 1.11 matt return true;
904 1.9 matt }
905 1.11 matt /*
906 1.11 matt * If we drop bits, we need to round up the divisor.
907 1.11 matt */
908 1.11 matt roundup |= dvs & 1;
909 1.9 matt }
910 1.18 jakllsch /* No divisor found. */
911 1.18 jakllsch return false;
912 1.38 jakllsch }
913 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
914 1.38 jakllsch div = howmany(hp->clkbase, freq);
915 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
916 1.38 jakllsch return false;
917 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
918 1.38 jakllsch //freq = hp->clkbase / div;
919 1.38 jakllsch return true;
920 1.38 jakllsch }
921 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
922 1.38 jakllsch div = howmany(hp->clkbase, freq);
923 1.50 mlelstv div = div > 1 ? howmany(div, 2) : 0;
924 1.38 jakllsch if (div > 0x3ff)
925 1.38 jakllsch return false;
926 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
927 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
928 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
929 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
930 1.38 jakllsch //freq = hp->clkbase / div;
931 1.38 jakllsch return true;
932 1.9 matt } else {
933 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
934 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
935 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
936 1.38 jakllsch //freq = hp->clkbase / div;
937 1.38 jakllsch return true;
938 1.38 jakllsch }
939 1.38 jakllsch }
940 1.38 jakllsch /* No divisor found. */
941 1.38 jakllsch return false;
942 1.9 matt }
943 1.1 nonaka /* No divisor found. */
944 1.11 matt return false;
945 1.1 nonaka }
946 1.1 nonaka
947 1.1 nonaka /*
948 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
949 1.1 nonaka * Return zero on success.
950 1.1 nonaka */
951 1.1 nonaka static int
952 1.1 nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
953 1.1 nonaka {
954 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
955 1.11 matt u_int div;
956 1.11 matt u_int timo;
957 1.32 kiyohara int16_t reg;
958 1.1 nonaka int error = 0;
959 1.2 cegger #ifdef DIAGNOSTIC
960 1.12 nonaka bool present;
961 1.1 nonaka
962 1.1 nonaka mutex_enter(&hp->host_mtx);
963 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
964 1.2 cegger mutex_exit(&hp->host_mtx);
965 1.1 nonaka
966 1.1 nonaka /* Must not stop the clock if commands are in progress. */
967 1.12 nonaka if (present && sdhc_card_detect(hp)) {
968 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
969 1.26 matt "%s: command in progress\n", __func__);
970 1.12 nonaka }
971 1.1 nonaka #endif
972 1.1 nonaka
973 1.2 cegger mutex_enter(&hp->host_mtx);
974 1.2 cegger
975 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
976 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
977 1.34 matt if (error != 0)
978 1.34 matt goto out;
979 1.34 matt }
980 1.34 matt
981 1.1 nonaka /*
982 1.1 nonaka * Stop SD clock before changing the frequency.
983 1.1 nonaka */
984 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
985 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
986 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
987 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
988 1.11 matt goto out;
989 1.11 matt }
990 1.11 matt } else {
991 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
992 1.11 matt if (freq == SDMMC_SDCLK_OFF)
993 1.11 matt goto out;
994 1.11 matt }
995 1.1 nonaka
996 1.1 nonaka /*
997 1.1 nonaka * Set the minimum base clock frequency divisor.
998 1.1 nonaka */
999 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
1000 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
1001 1.1 nonaka error = EINVAL;
1002 1.1 nonaka goto out;
1003 1.1 nonaka }
1004 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1005 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
1006 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
1007 1.11 matt } else {
1008 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
1009 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1010 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1011 1.11 matt }
1012 1.1 nonaka
1013 1.1 nonaka /*
1014 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
1015 1.1 nonaka */
1016 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1017 1.11 matt sdmmc_delay(10000);
1018 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
1019 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1020 1.11 matt } else {
1021 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1022 1.11 matt for (timo = 1000; timo > 0; timo--) {
1023 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1024 1.12 nonaka SDHC_INTCLK_STABLE))
1025 1.11 matt break;
1026 1.11 matt sdmmc_delay(10);
1027 1.11 matt }
1028 1.11 matt if (timo == 0) {
1029 1.11 matt error = ETIMEDOUT;
1030 1.11 matt goto out;
1031 1.11 matt }
1032 1.1 nonaka }
1033 1.1 nonaka
1034 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1035 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1036 1.11 matt /*
1037 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
1038 1.11 matt * So delay for that time + slop and then
1039 1.11 matt * check a few times for completion.
1040 1.11 matt */
1041 1.11 matt sdmmc_delay(210);
1042 1.11 matt for (timo = 10; timo > 0; timo--) {
1043 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1044 1.11 matt SDHC_INIT_ACTIVE))
1045 1.11 matt break;
1046 1.11 matt sdmmc_delay(10);
1047 1.11 matt }
1048 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1049 1.12 nonaka
1050 1.11 matt /*
1051 1.11 matt * Enable SD clock.
1052 1.11 matt */
1053 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1054 1.11 matt } else {
1055 1.11 matt /*
1056 1.11 matt * Enable SD clock.
1057 1.11 matt */
1058 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1059 1.1 nonaka
1060 1.43 jmcneill if (freq > 25000 &&
1061 1.43 jmcneill !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1062 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1063 1.11 matt else
1064 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1065 1.11 matt }
1066 1.8 kiyohara
1067 1.1 nonaka out:
1068 1.1 nonaka mutex_exit(&hp->host_mtx);
1069 1.1 nonaka
1070 1.1 nonaka return error;
1071 1.1 nonaka }
1072 1.1 nonaka
1073 1.1 nonaka static int
1074 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1075 1.1 nonaka {
1076 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1077 1.1 nonaka int reg;
1078 1.1 nonaka
1079 1.1 nonaka switch (width) {
1080 1.1 nonaka case 1:
1081 1.1 nonaka case 4:
1082 1.1 nonaka break;
1083 1.1 nonaka
1084 1.11 matt case 8:
1085 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1086 1.11 matt break;
1087 1.11 matt /* FALLTHROUGH */
1088 1.1 nonaka default:
1089 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
1090 1.1 nonaka HDEVNAME(hp), width));
1091 1.1 nonaka return 1;
1092 1.1 nonaka }
1093 1.1 nonaka
1094 1.1 nonaka mutex_enter(&hp->host_mtx);
1095 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
1096 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1097 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1098 1.11 matt if (width == 4)
1099 1.11 matt reg |= SDHC_4BIT_MODE;
1100 1.11 matt else if (width == 8)
1101 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
1102 1.11 matt } else {
1103 1.11 matt reg &= ~SDHC_4BIT_MODE;
1104 1.59 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1105 1.59 jmcneill reg &= ~SDHC_8BIT_MODE;
1106 1.59 jmcneill }
1107 1.59 jmcneill if (width == 4) {
1108 1.11 matt reg |= SDHC_4BIT_MODE;
1109 1.59 jmcneill } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1110 1.59 jmcneill reg |= SDHC_8BIT_MODE;
1111 1.59 jmcneill }
1112 1.11 matt }
1113 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
1114 1.1 nonaka mutex_exit(&hp->host_mtx);
1115 1.1 nonaka
1116 1.1 nonaka return 0;
1117 1.1 nonaka }
1118 1.1 nonaka
1119 1.8 kiyohara static int
1120 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1121 1.8 kiyohara {
1122 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1123 1.32 kiyohara
1124 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1125 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1126 1.8 kiyohara
1127 1.8 kiyohara return 0;
1128 1.8 kiyohara }
1129 1.8 kiyohara
1130 1.1 nonaka static void
1131 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1132 1.1 nonaka {
1133 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1134 1.1 nonaka
1135 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1136 1.29 matt mutex_enter(&hp->intr_mtx);
1137 1.11 matt if (enable) {
1138 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1139 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1140 1.11 matt } else {
1141 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1142 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1143 1.11 matt }
1144 1.29 matt mutex_exit(&hp->intr_mtx);
1145 1.1 nonaka }
1146 1.1 nonaka }
1147 1.1 nonaka
1148 1.47 skrll static void
1149 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1150 1.1 nonaka {
1151 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1152 1.1 nonaka
1153 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1154 1.29 matt mutex_enter(&hp->intr_mtx);
1155 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1156 1.29 matt mutex_exit(&hp->intr_mtx);
1157 1.11 matt }
1158 1.1 nonaka }
1159 1.1 nonaka
1160 1.1 nonaka static int
1161 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1162 1.1 nonaka {
1163 1.1 nonaka uint32_t state;
1164 1.1 nonaka int timeout;
1165 1.1 nonaka
1166 1.1 nonaka for (timeout = 10; timeout > 0; timeout--) {
1167 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1168 1.1 nonaka return 0;
1169 1.1 nonaka sdmmc_delay(10000);
1170 1.1 nonaka }
1171 1.1 nonaka DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1172 1.1 nonaka value, state));
1173 1.1 nonaka return ETIMEDOUT;
1174 1.1 nonaka }
1175 1.1 nonaka
1176 1.1 nonaka static void
1177 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1178 1.1 nonaka {
1179 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1180 1.1 nonaka int error;
1181 1.1 nonaka
1182 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1183 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1184 1.29 matt mutex_enter(&hp->intr_mtx);
1185 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1186 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1187 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1188 1.11 matt } else {
1189 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1190 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1191 1.47 skrll }
1192 1.29 matt mutex_exit(&hp->intr_mtx);
1193 1.11 matt }
1194 1.11 matt
1195 1.61 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1196 1.61 jmcneill const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1197 1.61 jmcneill if (cmd->c_data != NULL) {
1198 1.61 jmcneill HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1199 1.61 jmcneill HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1200 1.61 jmcneill } else {
1201 1.61 jmcneill HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1202 1.61 jmcneill HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1203 1.61 jmcneill }
1204 1.61 jmcneill }
1205 1.61 jmcneill
1206 1.1 nonaka /*
1207 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1208 1.1 nonaka */
1209 1.1 nonaka error = sdhc_start_command(hp, cmd);
1210 1.1 nonaka if (error) {
1211 1.1 nonaka cmd->c_error = error;
1212 1.1 nonaka goto out;
1213 1.1 nonaka }
1214 1.1 nonaka
1215 1.1 nonaka /*
1216 1.1 nonaka * Wait until the command phase is done, or until the command
1217 1.1 nonaka * is marked done for any other reason.
1218 1.1 nonaka */
1219 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1220 1.1 nonaka cmd->c_error = ETIMEDOUT;
1221 1.1 nonaka goto out;
1222 1.1 nonaka }
1223 1.1 nonaka
1224 1.1 nonaka /*
1225 1.1 nonaka * The host controller removes bits [0:7] from the response
1226 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1227 1.1 nonaka * driver (without padding).
1228 1.1 nonaka */
1229 1.1 nonaka mutex_enter(&hp->host_mtx);
1230 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1231 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1232 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1233 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1234 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1235 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1236 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1237 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1238 1.32 kiyohara (cmd->c_resp[1] << 24);
1239 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1240 1.32 kiyohara (cmd->c_resp[2] << 24);
1241 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1242 1.32 kiyohara (cmd->c_resp[3] << 24);
1243 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1244 1.32 kiyohara }
1245 1.1 nonaka }
1246 1.1 nonaka }
1247 1.1 nonaka mutex_exit(&hp->host_mtx);
1248 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1249 1.1 nonaka
1250 1.1 nonaka /*
1251 1.1 nonaka * If the command has data to transfer in any direction,
1252 1.1 nonaka * execute the transfer now.
1253 1.1 nonaka */
1254 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1255 1.1 nonaka sdhc_transfer_data(hp, cmd);
1256 1.42 jakllsch else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1257 1.42 jakllsch if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1258 1.42 jakllsch cmd->c_error = ETIMEDOUT;
1259 1.42 jakllsch goto out;
1260 1.42 jakllsch }
1261 1.42 jakllsch }
1262 1.1 nonaka
1263 1.1 nonaka out:
1264 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1265 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1266 1.11 matt mutex_enter(&hp->host_mtx);
1267 1.11 matt /* Turn off the LED. */
1268 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1269 1.11 matt mutex_exit(&hp->host_mtx);
1270 1.11 matt }
1271 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1272 1.1 nonaka
1273 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1274 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1275 1.1 nonaka cmd->c_flags, cmd->c_error));
1276 1.1 nonaka }
1277 1.1 nonaka
1278 1.1 nonaka static int
1279 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1280 1.1 nonaka {
1281 1.11 matt struct sdhc_softc * const sc = hp->sc;
1282 1.1 nonaka uint16_t blksize = 0;
1283 1.1 nonaka uint16_t blkcount = 0;
1284 1.1 nonaka uint16_t mode;
1285 1.1 nonaka uint16_t command;
1286 1.1 nonaka int error;
1287 1.1 nonaka
1288 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1289 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1290 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1291 1.1 nonaka
1292 1.1 nonaka /*
1293 1.1 nonaka * The maximum block length for commands should be the minimum
1294 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1295 1.1 nonaka */
1296 1.1 nonaka
1297 1.1 nonaka /* Fragment the data into proper blocks. */
1298 1.1 nonaka if (cmd->c_datalen > 0) {
1299 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1300 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1301 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1302 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1303 1.11 matt aprint_error_dev(sc->sc_dev,
1304 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1305 1.1 nonaka return EINVAL;
1306 1.1 nonaka }
1307 1.1 nonaka }
1308 1.1 nonaka
1309 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1310 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1311 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1312 1.1 nonaka return EINVAL;
1313 1.1 nonaka }
1314 1.1 nonaka
1315 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1316 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1317 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1318 1.1 nonaka mode |= SDHC_READ_MODE;
1319 1.15 jakllsch if (blkcount > 1) {
1320 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1321 1.15 jakllsch /* XXX only for memory commands? */
1322 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1323 1.1 nonaka }
1324 1.45 jakllsch if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1325 1.55 bouyer ISSET(hp->flags, SHF_MODE_DMAEN)) {
1326 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1327 1.7 nonaka }
1328 1.1 nonaka
1329 1.1 nonaka /*
1330 1.1 nonaka * Prepare command register value. (2.2.6)
1331 1.1 nonaka */
1332 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1333 1.1 nonaka
1334 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1335 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1336 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1337 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1338 1.1 nonaka if (cmd->c_data != NULL)
1339 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1340 1.1 nonaka
1341 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1342 1.1 nonaka command |= SDHC_NO_RESPONSE;
1343 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1344 1.1 nonaka command |= SDHC_RESP_LEN_136;
1345 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1346 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1347 1.1 nonaka else
1348 1.1 nonaka command |= SDHC_RESP_LEN_48;
1349 1.1 nonaka
1350 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1351 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1352 1.1 nonaka if (error)
1353 1.1 nonaka return error;
1354 1.1 nonaka
1355 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1356 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1357 1.1 nonaka
1358 1.44 hkenken if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1359 1.44 hkenken blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1360 1.44 hkenken SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1361 1.44 hkenken }
1362 1.19 jakllsch
1363 1.1 nonaka mutex_enter(&hp->host_mtx);
1364 1.1 nonaka
1365 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1366 1.11 matt /* Alert the user not to remove the card. */
1367 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1368 1.11 matt }
1369 1.1 nonaka
1370 1.7 nonaka /* Set DMA start address. */
1371 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
1372 1.63 jmcneill for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1373 1.63 jmcneill paddr_t paddr =
1374 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_addr;
1375 1.63 jmcneill uint16_t len =
1376 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1377 1.63 jmcneill 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1378 1.63 jmcneill uint16_t attr =
1379 1.63 jmcneill SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1380 1.63 jmcneill if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1381 1.63 jmcneill attr |= SDHC_ADMA2_END;
1382 1.63 jmcneill }
1383 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1384 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc =
1385 1.63 jmcneill hp->adma2;
1386 1.63 jmcneill desc[seg].attribute = htole16(attr);
1387 1.63 jmcneill desc[seg].length = htole16(len);
1388 1.63 jmcneill desc[seg].address = htole32(paddr);
1389 1.63 jmcneill } else {
1390 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc =
1391 1.63 jmcneill hp->adma2;
1392 1.63 jmcneill desc[seg].attribute = htole16(attr);
1393 1.63 jmcneill desc[seg].length = htole16(len);
1394 1.63 jmcneill desc[seg].address = htole32(paddr & 0xffffffff);
1395 1.63 jmcneill desc[seg].address_hi = htole32(
1396 1.63 jmcneill (uint64_t)paddr >> 32);
1397 1.63 jmcneill }
1398 1.63 jmcneill }
1399 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1400 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1401 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1402 1.63 jmcneill } else {
1403 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1404 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1405 1.63 jmcneill }
1406 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1407 1.63 jmcneill BUS_DMASYNC_PREWRITE);
1408 1.63 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1409 1.63 jmcneill HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1410 1.63 jmcneill
1411 1.63 jmcneill const paddr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1412 1.63 jmcneill
1413 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1414 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1415 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1416 1.63 jmcneill (uint64_t)desc_addr >> 32);
1417 1.63 jmcneill }
1418 1.63 jmcneill } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1419 1.63 jmcneill !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1420 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1421 1.63 jmcneill }
1422 1.7 nonaka
1423 1.1 nonaka /*
1424 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1425 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1426 1.1 nonaka */
1427 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1428 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1429 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1430 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1431 1.11 matt } else {
1432 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1433 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1434 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1435 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1436 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1437 1.11 matt }
1438 1.1 nonaka
1439 1.1 nonaka mutex_exit(&hp->host_mtx);
1440 1.1 nonaka
1441 1.1 nonaka return 0;
1442 1.1 nonaka }
1443 1.1 nonaka
1444 1.1 nonaka static void
1445 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1446 1.1 nonaka {
1447 1.51 jmcneill struct sdhc_softc *sc = hp->sc;
1448 1.1 nonaka int error;
1449 1.1 nonaka
1450 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1451 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1452 1.1 nonaka
1453 1.1 nonaka #ifdef SDHC_DEBUG
1454 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1455 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1456 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1457 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1458 1.1 nonaka "CMD52/53 error response flags %#x\n",
1459 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1460 1.1 nonaka }
1461 1.1 nonaka #endif
1462 1.1 nonaka
1463 1.47 skrll if (cmd->c_dmamap != NULL) {
1464 1.47 skrll if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1465 1.51 jmcneill error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1466 1.47 skrll if (error == 0 && !sdhc_wait_intr(hp,
1467 1.61 jmcneill SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1468 1.47 skrll error = ETIMEDOUT;
1469 1.47 skrll }
1470 1.47 skrll } else {
1471 1.47 skrll error = sdhc_transfer_data_dma(hp, cmd);
1472 1.47 skrll }
1473 1.47 skrll } else
1474 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1475 1.1 nonaka if (error)
1476 1.1 nonaka cmd->c_error = error;
1477 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1478 1.1 nonaka
1479 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1480 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1481 1.1 nonaka }
1482 1.1 nonaka
1483 1.1 nonaka static int
1484 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1485 1.7 nonaka {
1486 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1487 1.19 jakllsch bus_addr_t posaddr;
1488 1.19 jakllsch bus_addr_t segaddr;
1489 1.19 jakllsch bus_size_t seglen;
1490 1.19 jakllsch u_int seg = 0;
1491 1.7 nonaka int error = 0;
1492 1.19 jakllsch int status;
1493 1.7 nonaka
1494 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1495 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1496 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1497 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1498 1.11 matt
1499 1.7 nonaka for (;;) {
1500 1.19 jakllsch status = sdhc_wait_intr(hp,
1501 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1502 1.19 jakllsch SDHC_DMA_TIMEOUT);
1503 1.19 jakllsch
1504 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1505 1.19 jakllsch break;
1506 1.19 jakllsch }
1507 1.19 jakllsch if (!status) {
1508 1.7 nonaka error = ETIMEDOUT;
1509 1.7 nonaka break;
1510 1.7 nonaka }
1511 1.63 jmcneill
1512 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1513 1.63 jmcneill continue;
1514 1.63 jmcneill }
1515 1.63 jmcneill
1516 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1517 1.19 jakllsch continue;
1518 1.19 jakllsch }
1519 1.19 jakllsch
1520 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1521 1.7 nonaka
1522 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1523 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1524 1.19 jakllsch mutex_enter(&hp->host_mtx);
1525 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1526 1.19 jakllsch mutex_exit(&hp->host_mtx);
1527 1.7 nonaka
1528 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1529 1.37 jakllsch continue;
1530 1.19 jakllsch }
1531 1.19 jakllsch mutex_enter(&hp->host_mtx);
1532 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1533 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1534 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1535 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1536 1.19 jakllsch mutex_exit(&hp->host_mtx);
1537 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1538 1.7 nonaka }
1539 1.7 nonaka
1540 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1541 1.63 jmcneill bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1542 1.63 jmcneill PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1543 1.63 jmcneill }
1544 1.63 jmcneill
1545 1.7 nonaka return error;
1546 1.7 nonaka }
1547 1.7 nonaka
1548 1.7 nonaka static int
1549 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1550 1.1 nonaka {
1551 1.1 nonaka uint8_t *data = cmd->c_data;
1552 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1553 1.11 matt u_int len, datalen;
1554 1.11 matt u_int imask;
1555 1.11 matt u_int pmask;
1556 1.1 nonaka int error = 0;
1557 1.1 nonaka
1558 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1559 1.11 matt imask = SDHC_BUFFER_READ_READY;
1560 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1561 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1562 1.11 matt pio_func = esdhc_read_data_pio;
1563 1.11 matt } else {
1564 1.11 matt pio_func = sdhc_read_data_pio;
1565 1.11 matt }
1566 1.11 matt } else {
1567 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1568 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1569 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1570 1.11 matt pio_func = esdhc_write_data_pio;
1571 1.11 matt } else {
1572 1.11 matt pio_func = sdhc_write_data_pio;
1573 1.11 matt }
1574 1.11 matt }
1575 1.1 nonaka datalen = cmd->c_datalen;
1576 1.1 nonaka
1577 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1578 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1579 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1580 1.11 matt
1581 1.1 nonaka while (datalen > 0) {
1582 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1583 1.29 matt mutex_enter(&hp->intr_mtx);
1584 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1585 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1586 1.11 matt } else {
1587 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1588 1.11 matt }
1589 1.29 matt mutex_exit(&hp->intr_mtx);
1590 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1591 1.11 matt error = ETIMEDOUT;
1592 1.11 matt break;
1593 1.11 matt }
1594 1.11 matt
1595 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1596 1.11 matt if (error)
1597 1.11 matt break;
1598 1.1 nonaka }
1599 1.1 nonaka
1600 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1601 1.11 matt (*pio_func)(hp, data, len);
1602 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1603 1.11 matt HDEVNAME(hp), len, data));
1604 1.1 nonaka
1605 1.1 nonaka data += len;
1606 1.1 nonaka datalen -= len;
1607 1.1 nonaka }
1608 1.1 nonaka
1609 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1610 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1611 1.1 nonaka error = ETIMEDOUT;
1612 1.1 nonaka
1613 1.1 nonaka return error;
1614 1.1 nonaka }
1615 1.1 nonaka
1616 1.1 nonaka static void
1617 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1618 1.1 nonaka {
1619 1.1 nonaka
1620 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1621 1.1 nonaka while (datalen > 3) {
1622 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1623 1.1 nonaka data += 4;
1624 1.1 nonaka datalen -= 4;
1625 1.1 nonaka }
1626 1.1 nonaka if (datalen > 1) {
1627 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1628 1.1 nonaka data += 2;
1629 1.1 nonaka datalen -= 2;
1630 1.1 nonaka }
1631 1.1 nonaka if (datalen > 0) {
1632 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1633 1.1 nonaka data += 1;
1634 1.1 nonaka datalen -= 1;
1635 1.1 nonaka }
1636 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1637 1.1 nonaka while (datalen > 1) {
1638 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1639 1.1 nonaka data += 2;
1640 1.1 nonaka datalen -= 2;
1641 1.1 nonaka }
1642 1.1 nonaka if (datalen > 0) {
1643 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1644 1.1 nonaka data += 1;
1645 1.1 nonaka datalen -= 1;
1646 1.1 nonaka }
1647 1.1 nonaka } else {
1648 1.1 nonaka while (datalen > 0) {
1649 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1650 1.1 nonaka data += 1;
1651 1.1 nonaka datalen -= 1;
1652 1.1 nonaka }
1653 1.1 nonaka }
1654 1.1 nonaka }
1655 1.1 nonaka
1656 1.1 nonaka static void
1657 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1658 1.1 nonaka {
1659 1.1 nonaka
1660 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1661 1.1 nonaka while (datalen > 3) {
1662 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1663 1.1 nonaka data += 4;
1664 1.1 nonaka datalen -= 4;
1665 1.1 nonaka }
1666 1.1 nonaka if (datalen > 1) {
1667 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1668 1.1 nonaka data += 2;
1669 1.1 nonaka datalen -= 2;
1670 1.1 nonaka }
1671 1.1 nonaka if (datalen > 0) {
1672 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1673 1.1 nonaka data += 1;
1674 1.1 nonaka datalen -= 1;
1675 1.1 nonaka }
1676 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1677 1.1 nonaka while (datalen > 1) {
1678 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1679 1.1 nonaka data += 2;
1680 1.1 nonaka datalen -= 2;
1681 1.1 nonaka }
1682 1.1 nonaka if (datalen > 0) {
1683 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1684 1.1 nonaka data += 1;
1685 1.1 nonaka datalen -= 1;
1686 1.1 nonaka }
1687 1.1 nonaka } else {
1688 1.1 nonaka while (datalen > 0) {
1689 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1690 1.1 nonaka data += 1;
1691 1.1 nonaka datalen -= 1;
1692 1.1 nonaka }
1693 1.1 nonaka }
1694 1.1 nonaka }
1695 1.1 nonaka
1696 1.11 matt static void
1697 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1698 1.11 matt {
1699 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1700 1.12 nonaka uint32_t v;
1701 1.12 nonaka
1702 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1703 1.23 matt size_t count = 0;
1704 1.23 matt
1705 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1706 1.23 matt if (count == 0) {
1707 1.23 matt /*
1708 1.23 matt * If we've drained "watermark" words, we need to wait
1709 1.23 matt * a little bit so the read FIFO can refill.
1710 1.23 matt */
1711 1.23 matt sdmmc_delay(10);
1712 1.23 matt count = watermark;
1713 1.23 matt }
1714 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1715 1.11 matt v = le32toh(v);
1716 1.11 matt *(uint32_t *)data = v;
1717 1.11 matt data += 4;
1718 1.11 matt datalen -= 4;
1719 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1720 1.23 matt count--;
1721 1.11 matt }
1722 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1723 1.23 matt if (count == 0) {
1724 1.23 matt sdmmc_delay(10);
1725 1.23 matt }
1726 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1727 1.11 matt v = le32toh(v);
1728 1.11 matt do {
1729 1.11 matt *data++ = v;
1730 1.11 matt v >>= 8;
1731 1.11 matt } while (--datalen > 0);
1732 1.11 matt }
1733 1.11 matt }
1734 1.11 matt
1735 1.11 matt static void
1736 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1737 1.11 matt {
1738 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1739 1.12 nonaka uint32_t v;
1740 1.12 nonaka
1741 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1742 1.23 matt size_t count = watermark;
1743 1.23 matt
1744 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1745 1.23 matt if (count == 0) {
1746 1.23 matt sdmmc_delay(10);
1747 1.23 matt count = watermark;
1748 1.23 matt }
1749 1.12 nonaka v = *(uint32_t *)data;
1750 1.11 matt v = htole32(v);
1751 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1752 1.11 matt data += 4;
1753 1.11 matt datalen -= 4;
1754 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1755 1.23 matt count--;
1756 1.11 matt }
1757 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1758 1.23 matt if (count == 0) {
1759 1.23 matt sdmmc_delay(10);
1760 1.23 matt }
1761 1.12 nonaka v = *(uint32_t *)data;
1762 1.11 matt v = htole32(v);
1763 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1764 1.11 matt }
1765 1.11 matt }
1766 1.11 matt
1767 1.1 nonaka /* Prepare for another command. */
1768 1.1 nonaka static int
1769 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1770 1.1 nonaka {
1771 1.1 nonaka int timo;
1772 1.1 nonaka
1773 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1774 1.1 nonaka
1775 1.35 riastrad /* Request the reset. */
1776 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1777 1.35 riastrad
1778 1.35 riastrad /*
1779 1.35 riastrad * If necessary, wait for the controller to set the bits to
1780 1.35 riastrad * acknowledge the reset.
1781 1.35 riastrad */
1782 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1783 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1784 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
1785 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1786 1.35 riastrad break;
1787 1.35 riastrad /* Short delay because I worry we may miss it... */
1788 1.35 riastrad sdmmc_delay(1);
1789 1.35 riastrad }
1790 1.35 riastrad if (timo == 0)
1791 1.35 riastrad return ETIMEDOUT;
1792 1.35 riastrad }
1793 1.35 riastrad
1794 1.35 riastrad /*
1795 1.35 riastrad * Wait for the controller to clear the bits to indicate that
1796 1.35 riastrad * the reset has completed.
1797 1.35 riastrad */
1798 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1799 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1800 1.1 nonaka break;
1801 1.1 nonaka sdmmc_delay(10000);
1802 1.1 nonaka }
1803 1.1 nonaka if (timo == 0) {
1804 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1805 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1806 1.1 nonaka return ETIMEDOUT;
1807 1.1 nonaka }
1808 1.1 nonaka
1809 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1810 1.53 nonaka HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1811 1.11 matt }
1812 1.11 matt
1813 1.1 nonaka return 0;
1814 1.1 nonaka }
1815 1.1 nonaka
1816 1.1 nonaka static int
1817 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1818 1.1 nonaka {
1819 1.1 nonaka int status;
1820 1.1 nonaka
1821 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1822 1.1 nonaka
1823 1.1 nonaka mutex_enter(&hp->intr_mtx);
1824 1.1 nonaka status = hp->intr_status & mask;
1825 1.1 nonaka while (status == 0) {
1826 1.1 nonaka if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1827 1.1 nonaka == EWOULDBLOCK) {
1828 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1829 1.1 nonaka break;
1830 1.1 nonaka }
1831 1.1 nonaka status = hp->intr_status & mask;
1832 1.1 nonaka }
1833 1.1 nonaka hp->intr_status &= ~status;
1834 1.1 nonaka
1835 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1836 1.1 nonaka hp->intr_error_status));
1837 1.47 skrll
1838 1.1 nonaka /* Command timeout has higher priority than command complete. */
1839 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1840 1.1 nonaka hp->intr_error_status = 0;
1841 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1842 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1843 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1844 1.11 matt }
1845 1.1 nonaka status = 0;
1846 1.1 nonaka }
1847 1.1 nonaka mutex_exit(&hp->intr_mtx);
1848 1.1 nonaka
1849 1.1 nonaka return status;
1850 1.1 nonaka }
1851 1.1 nonaka
1852 1.1 nonaka /*
1853 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
1854 1.1 nonaka */
1855 1.1 nonaka int
1856 1.1 nonaka sdhc_intr(void *arg)
1857 1.1 nonaka {
1858 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1859 1.1 nonaka struct sdhc_host *hp;
1860 1.1 nonaka int done = 0;
1861 1.1 nonaka uint16_t status;
1862 1.1 nonaka uint16_t error;
1863 1.1 nonaka
1864 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
1865 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
1866 1.1 nonaka hp = sc->sc_host[host];
1867 1.1 nonaka if (hp == NULL)
1868 1.1 nonaka continue;
1869 1.1 nonaka
1870 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1871 1.11 matt /* Find out which interrupts are pending. */
1872 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1873 1.11 matt status = xstatus;
1874 1.11 matt error = xstatus >> 16;
1875 1.22 matt if (error)
1876 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
1877 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1878 1.11 matt continue; /* no interrupt for us */
1879 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1880 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1881 1.11 matt } else {
1882 1.11 matt /* Find out which interrupts are pending. */
1883 1.11 matt error = 0;
1884 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1885 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1886 1.11 matt continue; /* no interrupt for us */
1887 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1888 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
1889 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1890 1.11 matt /* Acknowledge error interrupts. */
1891 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
1892 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
1893 1.11 matt }
1894 1.11 matt }
1895 1.47 skrll
1896 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1897 1.11 matt status, error));
1898 1.1 nonaka
1899 1.29 matt mutex_enter(&hp->intr_mtx);
1900 1.29 matt
1901 1.1 nonaka /* Claim this interrupt. */
1902 1.1 nonaka done = 1;
1903 1.1 nonaka
1904 1.63 jmcneill if (ISSET(error, SDHC_ADMA_ERROR)) {
1905 1.63 jmcneill uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
1906 1.63 jmcneill printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
1907 1.63 jmcneill adma_err);
1908 1.63 jmcneill }
1909 1.63 jmcneill
1910 1.1 nonaka /*
1911 1.1 nonaka * Service error interrupts.
1912 1.1 nonaka */
1913 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1914 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
1915 1.11 matt hp->intr_error_status |= error;
1916 1.11 matt hp->intr_status |= status;
1917 1.11 matt cv_broadcast(&hp->intr_cv);
1918 1.1 nonaka }
1919 1.1 nonaka
1920 1.1 nonaka /*
1921 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
1922 1.1 nonaka */
1923 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1924 1.46 jakllsch if (hp->sdmmc != NULL) {
1925 1.46 jakllsch sdmmc_needs_discover(hp->sdmmc);
1926 1.46 jakllsch }
1927 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1928 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
1929 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1930 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1931 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1932 1.11 matt }
1933 1.9 matt }
1934 1.1 nonaka
1935 1.1 nonaka /*
1936 1.1 nonaka * Wake up the blocking process to service command
1937 1.1 nonaka * related interrupt(s).
1938 1.1 nonaka */
1939 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
1940 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1941 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1942 1.1 nonaka hp->intr_status |= status;
1943 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1944 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1945 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1946 1.11 matt }
1947 1.1 nonaka cv_broadcast(&hp->intr_cv);
1948 1.1 nonaka }
1949 1.1 nonaka
1950 1.1 nonaka /*
1951 1.1 nonaka * Service SD card interrupts.
1952 1.1 nonaka */
1953 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1954 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
1955 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1956 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1957 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
1958 1.1 nonaka }
1959 1.29 matt mutex_exit(&hp->intr_mtx);
1960 1.1 nonaka }
1961 1.1 nonaka
1962 1.1 nonaka return done;
1963 1.1 nonaka }
1964 1.1 nonaka
1965 1.1 nonaka #ifdef SDHC_DEBUG
1966 1.1 nonaka void
1967 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
1968 1.1 nonaka {
1969 1.1 nonaka
1970 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1971 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
1972 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1973 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1974 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
1975 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1976 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
1977 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1978 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
1979 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1980 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
1981 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1982 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
1983 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1984 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1985 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1986 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1987 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1988 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
1989 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1990 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
1991 1.1 nonaka }
1992 1.1 nonaka #endif
1993