sdhc.c revision 1.73 1 1.73 jmcneill /* $NetBSD: sdhc.c,v 1.73 2015/08/03 00:19:27 jmcneill Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.73 jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.73 2015/08/03 00:19:27 jmcneill Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/malloc.h>
36 1.1 nonaka #include <sys/systm.h>
37 1.1 nonaka #include <sys/mutex.h>
38 1.1 nonaka #include <sys/condvar.h>
39 1.1 nonaka
40 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
41 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
42 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
45 1.1 nonaka
46 1.1 nonaka #ifdef SDHC_DEBUG
47 1.1 nonaka int sdhcdebug = 1;
48 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
50 1.1 nonaka #else
51 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
52 1.1 nonaka #endif
53 1.1 nonaka
54 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
55 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
56 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
57 1.61 jmcneill #define SDHC_DMA_TIMEOUT (hz*3)
58 1.1 nonaka
59 1.1 nonaka struct sdhc_host {
60 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
61 1.1 nonaka
62 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
63 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
64 1.36 jakllsch bus_size_t ios; /* host register space size */
65 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
66 1.1 nonaka
67 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
68 1.1 nonaka
69 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
70 1.1 nonaka int maxblklen; /* maximum block length */
71 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
72 1.1 nonaka
73 1.1 nonaka uint8_t regs[14]; /* host controller state */
74 1.1 nonaka
75 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
76 1.1 nonaka uint16_t intr_error_status; /* soft error status */
77 1.65 jmcneill kmutex_t intr_lock;
78 1.65 jmcneill kcondvar_t intr_cv;
79 1.1 nonaka
80 1.12 nonaka int specver; /* spec. version */
81 1.12 nonaka
82 1.1 nonaka uint32_t flags; /* flags for this host */
83 1.1 nonaka #define SHF_USE_DMA 0x0001
84 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
85 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
86 1.55 bouyer #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
87 1.63 jmcneill #define SHF_USE_ADMA2_32 0x0010
88 1.63 jmcneill #define SHF_USE_ADMA2_64 0x0020
89 1.63 jmcneill #define SHF_USE_ADMA2_MASK 0x0030
90 1.63 jmcneill
91 1.63 jmcneill bus_dmamap_t adma_map;
92 1.63 jmcneill bus_dma_segment_t adma_segs[1];
93 1.63 jmcneill void *adma2;
94 1.1 nonaka };
95 1.1 nonaka
96 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
97 1.1 nonaka
98 1.11 matt static uint8_t
99 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
100 1.11 matt {
101 1.12 nonaka
102 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
103 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
104 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
105 1.11 matt }
106 1.11 matt
107 1.11 matt static uint16_t
108 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
109 1.11 matt {
110 1.12 nonaka
111 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
112 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
113 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
114 1.11 matt }
115 1.11 matt
116 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
117 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
118 1.11 matt #define HREAD4(hp, reg) \
119 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
120 1.11 matt
121 1.11 matt
122 1.11 matt static void
123 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
124 1.11 matt {
125 1.12 nonaka
126 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
127 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
128 1.11 matt } else {
129 1.11 matt const size_t shift = 8 * (o & 3);
130 1.11 matt o &= -4;
131 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
132 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
133 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
134 1.11 matt }
135 1.11 matt }
136 1.11 matt
137 1.11 matt static void
138 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
139 1.11 matt {
140 1.12 nonaka
141 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
142 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
143 1.11 matt } else {
144 1.11 matt const size_t shift = 8 * (o & 2);
145 1.11 matt o &= -4;
146 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
147 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
148 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
149 1.11 matt }
150 1.11 matt }
151 1.11 matt
152 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
153 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
154 1.1 nonaka #define HWRITE4(hp, reg, val) \
155 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
156 1.11 matt
157 1.1 nonaka #define HCLR1(hp, reg, bits) \
158 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
159 1.1 nonaka #define HCLR2(hp, reg, bits) \
160 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
161 1.11 matt #define HCLR4(hp, reg, bits) \
162 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
163 1.1 nonaka #define HSET1(hp, reg, bits) \
164 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
165 1.1 nonaka #define HSET2(hp, reg, bits) \
166 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
167 1.11 matt #define HSET4(hp, reg, bits) \
168 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
169 1.1 nonaka
170 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
171 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
172 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
173 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
174 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
175 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
176 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
177 1.1 nonaka static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
178 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
179 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
180 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
181 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
182 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
183 1.1 nonaka struct sdmmc_command *);
184 1.71 jmcneill static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
185 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
186 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
187 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
188 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
189 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
190 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
191 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
192 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
193 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
194 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
195 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
196 1.11 matt
197 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
198 1.1 nonaka /* host controller reset */
199 1.60 skrll .host_reset = sdhc_host_reset,
200 1.1 nonaka
201 1.1 nonaka /* host controller capabilities */
202 1.60 skrll .host_ocr = sdhc_host_ocr,
203 1.60 skrll .host_maxblklen = sdhc_host_maxblklen,
204 1.1 nonaka
205 1.1 nonaka /* card detection */
206 1.60 skrll .card_detect = sdhc_card_detect,
207 1.1 nonaka
208 1.1 nonaka /* write protect */
209 1.60 skrll .write_protect = sdhc_write_protect,
210 1.1 nonaka
211 1.60 skrll /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
212 1.60 skrll .bus_power = sdhc_bus_power,
213 1.60 skrll .bus_clock = sdhc_bus_clock,
214 1.60 skrll .bus_width = sdhc_bus_width,
215 1.60 skrll .bus_rod = sdhc_bus_rod,
216 1.1 nonaka
217 1.1 nonaka /* command execution */
218 1.60 skrll .exec_command = sdhc_exec_command,
219 1.1 nonaka
220 1.1 nonaka /* card interrupt */
221 1.60 skrll .card_enable_intr = sdhc_card_enable_intr,
222 1.71 jmcneill .card_intr_ack = sdhc_card_intr_ack,
223 1.71 jmcneill
224 1.71 jmcneill /* UHS functions */
225 1.71 jmcneill .signal_voltage = sdhc_signal_voltage,
226 1.1 nonaka };
227 1.1 nonaka
228 1.17 jakllsch static int
229 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
230 1.17 jakllsch {
231 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
232 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
233 1.47 skrll
234 1.17 jakllsch if (pnp) {
235 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
236 1.17 jakllsch }
237 1.41 jakllsch for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
238 1.41 jakllsch if (hp->sc->sc_host[host] == hp) {
239 1.41 jakllsch aprint_normal(" slot %zu", host);
240 1.41 jakllsch }
241 1.41 jakllsch }
242 1.17 jakllsch
243 1.17 jakllsch return UNCONF;
244 1.17 jakllsch }
245 1.17 jakllsch
246 1.1 nonaka /*
247 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
248 1.1 nonaka * host controller standard register set. (1.3)
249 1.1 nonaka */
250 1.1 nonaka int
251 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
252 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
253 1.1 nonaka {
254 1.1 nonaka struct sdmmcbus_attach_args saa;
255 1.1 nonaka struct sdhc_host *hp;
256 1.71 jmcneill uint32_t caps, caps2;
257 1.1 nonaka uint16_t sdhcver;
258 1.63 jmcneill int error;
259 1.1 nonaka
260 1.33 riastrad /* Allocate one more host structure. */
261 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
262 1.33 riastrad if (hp == NULL) {
263 1.33 riastrad aprint_error_dev(sc->sc_dev,
264 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
265 1.33 riastrad goto err1;
266 1.33 riastrad }
267 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
268 1.33 riastrad
269 1.33 riastrad /* Fill in the new host structure. */
270 1.33 riastrad hp->sc = sc;
271 1.33 riastrad hp->iot = iot;
272 1.33 riastrad hp->ioh = ioh;
273 1.36 jakllsch hp->ios = iosize;
274 1.33 riastrad hp->dmat = sc->sc_dmat;
275 1.33 riastrad
276 1.65 jmcneill mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
277 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
278 1.33 riastrad
279 1.52 nonaka if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
280 1.52 nonaka sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
281 1.52 nonaka } else {
282 1.52 nonaka sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
283 1.52 nonaka }
284 1.58 jmcneill aprint_normal_dev(sc->sc_dev, "SDHC ");
285 1.33 riastrad hp->specver = SDHC_SPEC_VERSION(sdhcver);
286 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
287 1.12 nonaka case SDHC_SPEC_VERS_100:
288 1.12 nonaka aprint_normal("1.0");
289 1.12 nonaka break;
290 1.12 nonaka
291 1.12 nonaka case SDHC_SPEC_VERS_200:
292 1.12 nonaka aprint_normal("2.0");
293 1.1 nonaka break;
294 1.1 nonaka
295 1.12 nonaka case SDHC_SPEC_VERS_300:
296 1.12 nonaka aprint_normal("3.0");
297 1.9 matt break;
298 1.9 matt
299 1.56 jmcneill case SDHC_SPEC_VERS_400:
300 1.56 jmcneill aprint_normal("4.0");
301 1.56 jmcneill break;
302 1.56 jmcneill
303 1.1 nonaka default:
304 1.12 nonaka aprint_normal("unknown version(0x%x)",
305 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
306 1.1 nonaka break;
307 1.1 nonaka }
308 1.58 jmcneill aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
309 1.1 nonaka
310 1.1 nonaka /*
311 1.3 uebayasi * Reset the host controller and enable interrupts.
312 1.1 nonaka */
313 1.1 nonaka (void)sdhc_host_reset(hp);
314 1.1 nonaka
315 1.1 nonaka /* Determine host capabilities. */
316 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
317 1.24 skrll caps = sc->sc_caps;
318 1.72 jmcneill caps2 = sc->sc_caps2;
319 1.24 skrll } else {
320 1.24 skrll caps = HREAD4(hp, SDHC_CAPABILITIES);
321 1.72 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
322 1.72 jmcneill caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
323 1.72 jmcneill } else {
324 1.72 jmcneill caps2 = 0;
325 1.72 jmcneill }
326 1.71 jmcneill }
327 1.1 nonaka
328 1.55 bouyer /*
329 1.55 bouyer * Use DMA if the host system and the controller support it.
330 1.55 bouyer * Suports integrated or external DMA egine, with or without
331 1.55 bouyer * SDHC_DMA_ENABLE in the command.
332 1.55 bouyer */
333 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
334 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
335 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
336 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
337 1.63 jmcneill
338 1.63 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
339 1.63 jmcneill ISSET(caps, SDHC_ADMA2_SUPP)) {
340 1.55 bouyer SET(hp->flags, SHF_MODE_DMAEN);
341 1.63 jmcneill /*
342 1.63 jmcneill * 64-bit mode was present in the 2.00 spec, removed
343 1.63 jmcneill * from 3.00, and re-added in 4.00 with a different
344 1.63 jmcneill * descriptor layout. We only support 2.00 and 3.00
345 1.63 jmcneill * descriptors for now.
346 1.63 jmcneill */
347 1.63 jmcneill if (hp->specver == SDHC_SPEC_VERS_200 &&
348 1.63 jmcneill ISSET(caps, SDHC_64BIT_SYS_BUS)) {
349 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_64);
350 1.63 jmcneill aprint_normal(", 64-bit ADMA2");
351 1.63 jmcneill } else {
352 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_32);
353 1.63 jmcneill aprint_normal(", 32-bit ADMA2");
354 1.63 jmcneill }
355 1.63 jmcneill } else {
356 1.63 jmcneill if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
357 1.63 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
358 1.63 jmcneill SET(hp->flags, SHF_MODE_DMAEN);
359 1.64 jmcneill if (sc->sc_vendor_transfer_data_dma) {
360 1.64 jmcneill aprint_normal(", platform DMA");
361 1.64 jmcneill } else {
362 1.64 jmcneill aprint_normal(", SDMA");
363 1.64 jmcneill }
364 1.63 jmcneill }
365 1.58 jmcneill } else {
366 1.58 jmcneill aprint_normal(", PIO");
367 1.1 nonaka }
368 1.1 nonaka
369 1.1 nonaka /*
370 1.1 nonaka * Determine the base clock frequency. (2.2.24)
371 1.1 nonaka */
372 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
373 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
374 1.30 matt } else {
375 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
376 1.30 matt }
377 1.56 jmcneill if (hp->clkbase == 0 ||
378 1.56 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
379 1.9 matt if (sc->sc_clkbase == 0) {
380 1.9 matt /* The attachment driver must tell us. */
381 1.12 nonaka aprint_error_dev(sc->sc_dev,
382 1.12 nonaka "unknown base clock frequency\n");
383 1.9 matt goto err;
384 1.9 matt }
385 1.9 matt hp->clkbase = sc->sc_clkbase;
386 1.9 matt }
387 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
388 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
389 1.1 nonaka aprint_error_dev(sc->sc_dev,
390 1.1 nonaka "base clock frequency out of range: %u MHz\n",
391 1.1 nonaka hp->clkbase / 1000);
392 1.1 nonaka goto err;
393 1.1 nonaka }
394 1.58 jmcneill aprint_normal(", %u kHz", hp->clkbase);
395 1.1 nonaka
396 1.1 nonaka /*
397 1.1 nonaka * XXX Set the data timeout counter value according to
398 1.1 nonaka * capabilities. (2.2.15)
399 1.1 nonaka */
400 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
401 1.29 matt #if 1
402 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
403 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
404 1.11 matt #endif
405 1.1 nonaka
406 1.58 jmcneill if (ISSET(caps, SDHC_EMBEDDED_SLOT))
407 1.58 jmcneill aprint_normal(", embedded slot");
408 1.58 jmcneill
409 1.1 nonaka /*
410 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
411 1.1 nonaka */
412 1.58 jmcneill aprint_normal(",");
413 1.66 jmcneill if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
414 1.66 jmcneill SET(hp->ocr, MMC_OCR_HCS);
415 1.71 jmcneill aprint_normal(" HS");
416 1.71 jmcneill }
417 1.71 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP)) {
418 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
419 1.71 jmcneill aprint_normal(" SDR50");
420 1.71 jmcneill }
421 1.71 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP)) {
422 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
423 1.71 jmcneill aprint_normal(" SDR104");
424 1.71 jmcneill }
425 1.71 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP)) {
426 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
427 1.71 jmcneill aprint_normal(" DDR50");
428 1.66 jmcneill }
429 1.71 jmcneill if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
430 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
431 1.58 jmcneill aprint_normal(" 1.8V");
432 1.11 matt }
433 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
434 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
435 1.58 jmcneill aprint_normal(" 3.0V");
436 1.11 matt }
437 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
438 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
439 1.58 jmcneill aprint_normal(" 3.3V");
440 1.11 matt }
441 1.1 nonaka
442 1.1 nonaka /*
443 1.1 nonaka * Determine the maximum block length supported by the host
444 1.1 nonaka * controller. (2.2.24)
445 1.1 nonaka */
446 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
447 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
448 1.1 nonaka hp->maxblklen = 512;
449 1.1 nonaka break;
450 1.1 nonaka
451 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
452 1.1 nonaka hp->maxblklen = 1024;
453 1.1 nonaka break;
454 1.1 nonaka
455 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
456 1.1 nonaka hp->maxblklen = 2048;
457 1.1 nonaka break;
458 1.1 nonaka
459 1.9 matt case SDHC_MAX_BLK_LEN_4096:
460 1.9 matt hp->maxblklen = 4096;
461 1.9 matt break;
462 1.9 matt
463 1.1 nonaka default:
464 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
465 1.1 nonaka goto err;
466 1.1 nonaka }
467 1.58 jmcneill aprint_normal(", %u byte blocks", hp->maxblklen);
468 1.58 jmcneill aprint_normal("\n");
469 1.1 nonaka
470 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
471 1.63 jmcneill int rseg;
472 1.63 jmcneill
473 1.63 jmcneill /* Allocate ADMA2 descriptor memory */
474 1.63 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
475 1.63 jmcneill PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
476 1.63 jmcneill if (error) {
477 1.63 jmcneill aprint_error_dev(sc->sc_dev,
478 1.63 jmcneill "ADMA2 dmamem_alloc failed (%d)\n", error);
479 1.63 jmcneill goto adma_done;
480 1.63 jmcneill }
481 1.63 jmcneill error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
482 1.63 jmcneill PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
483 1.63 jmcneill if (error) {
484 1.63 jmcneill aprint_error_dev(sc->sc_dev,
485 1.63 jmcneill "ADMA2 dmamem_map failed (%d)\n", error);
486 1.63 jmcneill goto adma_done;
487 1.63 jmcneill }
488 1.63 jmcneill error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
489 1.63 jmcneill 0, BUS_DMA_WAITOK, &hp->adma_map);
490 1.63 jmcneill if (error) {
491 1.63 jmcneill aprint_error_dev(sc->sc_dev,
492 1.63 jmcneill "ADMA2 dmamap_create failed (%d)\n", error);
493 1.63 jmcneill goto adma_done;
494 1.63 jmcneill }
495 1.63 jmcneill error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
496 1.63 jmcneill hp->adma2, PAGE_SIZE, NULL,
497 1.63 jmcneill BUS_DMA_WAITOK|BUS_DMA_WRITE);
498 1.63 jmcneill if (error) {
499 1.63 jmcneill aprint_error_dev(sc->sc_dev,
500 1.63 jmcneill "ADMA2 dmamap_load failed (%d)\n", error);
501 1.63 jmcneill goto adma_done;
502 1.63 jmcneill }
503 1.63 jmcneill
504 1.63 jmcneill memset(hp->adma2, 0, PAGE_SIZE);
505 1.63 jmcneill
506 1.63 jmcneill adma_done:
507 1.63 jmcneill if (error)
508 1.63 jmcneill CLR(hp->flags, SHF_USE_ADMA2_MASK);
509 1.63 jmcneill }
510 1.63 jmcneill
511 1.1 nonaka /*
512 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
513 1.1 nonaka * not invoke any chipset functions before it is attached.)
514 1.1 nonaka */
515 1.1 nonaka memset(&saa, 0, sizeof(saa));
516 1.1 nonaka saa.saa_busname = "sdmmc";
517 1.1 nonaka saa.saa_sct = &sdhc_functions;
518 1.1 nonaka saa.saa_sch = hp;
519 1.1 nonaka saa.saa_dmat = hp->dmat;
520 1.1 nonaka saa.saa_clkmax = hp->clkbase;
521 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
522 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
523 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
524 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
525 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
526 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
527 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
528 1.56 jmcneill else if (hp->specver >= SDHC_SPEC_VERS_300)
529 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
530 1.38 jakllsch else
531 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
532 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
533 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
534 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
535 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
536 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
537 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
538 1.54 nonaka saa.saa_caps |= SMC_CAPS_DMA;
539 1.54 nonaka if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
540 1.54 nonaka saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
541 1.26 matt }
542 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
543 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
544 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
545 1.1 nonaka
546 1.1 nonaka return 0;
547 1.1 nonaka
548 1.1 nonaka err:
549 1.1 nonaka cv_destroy(&hp->intr_cv);
550 1.65 jmcneill mutex_destroy(&hp->intr_lock);
551 1.1 nonaka free(hp, M_DEVBUF);
552 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
553 1.1 nonaka err1:
554 1.1 nonaka return 1;
555 1.1 nonaka }
556 1.1 nonaka
557 1.7 nonaka int
558 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
559 1.7 nonaka {
560 1.36 jakllsch struct sdhc_host *hp;
561 1.7 nonaka int rv = 0;
562 1.7 nonaka
563 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
564 1.36 jakllsch hp = sc->sc_host[n];
565 1.36 jakllsch if (hp == NULL)
566 1.36 jakllsch continue;
567 1.36 jakllsch if (hp->sdmmc != NULL) {
568 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
569 1.36 jakllsch if (rv)
570 1.36 jakllsch break;
571 1.36 jakllsch hp->sdmmc = NULL;
572 1.36 jakllsch }
573 1.36 jakllsch /* disable interrupts */
574 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
575 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
576 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
577 1.36 jakllsch } else {
578 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
579 1.36 jakllsch }
580 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
581 1.36 jakllsch }
582 1.36 jakllsch cv_destroy(&hp->intr_cv);
583 1.65 jmcneill mutex_destroy(&hp->intr_lock);
584 1.36 jakllsch if (hp->ios > 0) {
585 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
586 1.36 jakllsch hp->ios = 0;
587 1.36 jakllsch }
588 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
589 1.63 jmcneill bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
590 1.63 jmcneill bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
591 1.63 jmcneill bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
592 1.63 jmcneill bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
593 1.63 jmcneill }
594 1.36 jakllsch free(hp, M_DEVBUF);
595 1.36 jakllsch sc->sc_host[n] = NULL;
596 1.36 jakllsch }
597 1.7 nonaka
598 1.7 nonaka return rv;
599 1.7 nonaka }
600 1.7 nonaka
601 1.1 nonaka bool
602 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
603 1.1 nonaka {
604 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
605 1.1 nonaka struct sdhc_host *hp;
606 1.12 nonaka size_t i;
607 1.1 nonaka
608 1.1 nonaka /* XXX poll for command completion or suspend command
609 1.1 nonaka * in progress */
610 1.1 nonaka
611 1.1 nonaka /* Save the host controller state. */
612 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
613 1.1 nonaka hp = sc->sc_host[n];
614 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
615 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
616 1.11 matt uint32_t v = HREAD4(hp, i);
617 1.12 nonaka hp->regs[i + 0] = (v >> 0);
618 1.12 nonaka hp->regs[i + 1] = (v >> 8);
619 1.13 bouyer if (i + 3 < sizeof hp->regs) {
620 1.13 bouyer hp->regs[i + 2] = (v >> 16);
621 1.13 bouyer hp->regs[i + 3] = (v >> 24);
622 1.13 bouyer }
623 1.11 matt }
624 1.11 matt } else {
625 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
626 1.11 matt hp->regs[i] = HREAD1(hp, i);
627 1.11 matt }
628 1.11 matt }
629 1.1 nonaka }
630 1.1 nonaka return true;
631 1.1 nonaka }
632 1.1 nonaka
633 1.1 nonaka bool
634 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
635 1.1 nonaka {
636 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
637 1.1 nonaka struct sdhc_host *hp;
638 1.12 nonaka size_t i;
639 1.1 nonaka
640 1.1 nonaka /* Restore the host controller state. */
641 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
642 1.1 nonaka hp = sc->sc_host[n];
643 1.1 nonaka (void)sdhc_host_reset(hp);
644 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
645 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
646 1.13 bouyer if (i + 3 < sizeof hp->regs) {
647 1.13 bouyer HWRITE4(hp, i,
648 1.13 bouyer (hp->regs[i + 0] << 0)
649 1.13 bouyer | (hp->regs[i + 1] << 8)
650 1.13 bouyer | (hp->regs[i + 2] << 16)
651 1.13 bouyer | (hp->regs[i + 3] << 24));
652 1.13 bouyer } else {
653 1.13 bouyer HWRITE4(hp, i,
654 1.13 bouyer (hp->regs[i + 0] << 0)
655 1.13 bouyer | (hp->regs[i + 1] << 8));
656 1.13 bouyer }
657 1.11 matt }
658 1.11 matt } else {
659 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
660 1.11 matt HWRITE1(hp, i, hp->regs[i]);
661 1.11 matt }
662 1.11 matt }
663 1.1 nonaka }
664 1.1 nonaka return true;
665 1.1 nonaka }
666 1.1 nonaka
667 1.1 nonaka bool
668 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
669 1.1 nonaka {
670 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
671 1.1 nonaka struct sdhc_host *hp;
672 1.1 nonaka
673 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
674 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
675 1.1 nonaka hp = sc->sc_host[i];
676 1.1 nonaka (void)sdhc_host_reset(hp);
677 1.1 nonaka }
678 1.1 nonaka return true;
679 1.1 nonaka }
680 1.1 nonaka
681 1.1 nonaka /*
682 1.1 nonaka * Reset the host controller. Called during initialization, when
683 1.1 nonaka * cards are removed, upon resume, and during error recovery.
684 1.1 nonaka */
685 1.1 nonaka static int
686 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
687 1.1 nonaka {
688 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
689 1.11 matt uint32_t sdhcimask;
690 1.1 nonaka int error;
691 1.1 nonaka
692 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
693 1.1 nonaka
694 1.1 nonaka /* Disable all interrupts. */
695 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
696 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
697 1.11 matt } else {
698 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
699 1.11 matt }
700 1.1 nonaka
701 1.1 nonaka /*
702 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
703 1.1 nonaka * the controller to clear the reset bit.
704 1.1 nonaka */
705 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
706 1.1 nonaka if (error)
707 1.1 nonaka goto out;
708 1.1 nonaka
709 1.1 nonaka /* Set data timeout counter value to max for now. */
710 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
711 1.29 matt #if 1
712 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
713 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
714 1.11 matt #endif
715 1.1 nonaka
716 1.1 nonaka /* Enable interrupts. */
717 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
718 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
719 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
720 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
721 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
722 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
723 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
724 1.11 matt sdhcimask ^=
725 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
726 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
727 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
728 1.11 matt } else {
729 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
730 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
731 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
732 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
733 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
734 1.11 matt }
735 1.1 nonaka
736 1.1 nonaka out:
737 1.1 nonaka return error;
738 1.1 nonaka }
739 1.1 nonaka
740 1.1 nonaka static int
741 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
742 1.1 nonaka {
743 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
744 1.1 nonaka int error;
745 1.1 nonaka
746 1.65 jmcneill mutex_enter(&hp->intr_lock);
747 1.1 nonaka error = sdhc_host_reset1(sch);
748 1.65 jmcneill mutex_exit(&hp->intr_lock);
749 1.1 nonaka
750 1.1 nonaka return error;
751 1.1 nonaka }
752 1.1 nonaka
753 1.1 nonaka static uint32_t
754 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
755 1.1 nonaka {
756 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
757 1.1 nonaka
758 1.1 nonaka return hp->ocr;
759 1.1 nonaka }
760 1.1 nonaka
761 1.1 nonaka static int
762 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
763 1.1 nonaka {
764 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
765 1.1 nonaka
766 1.1 nonaka return hp->maxblklen;
767 1.1 nonaka }
768 1.1 nonaka
769 1.1 nonaka /*
770 1.1 nonaka * Return non-zero if the card is currently inserted.
771 1.1 nonaka */
772 1.1 nonaka static int
773 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
774 1.1 nonaka {
775 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
776 1.1 nonaka int r;
777 1.1 nonaka
778 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
779 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
780 1.32 kiyohara
781 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
782 1.1 nonaka
783 1.11 matt return r ? 1 : 0;
784 1.1 nonaka }
785 1.1 nonaka
786 1.1 nonaka /*
787 1.1 nonaka * Return non-zero if the card is currently write-protected.
788 1.1 nonaka */
789 1.1 nonaka static int
790 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
791 1.1 nonaka {
792 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
793 1.1 nonaka int r;
794 1.1 nonaka
795 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
796 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
797 1.32 kiyohara
798 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
799 1.1 nonaka
800 1.12 nonaka return r ? 0 : 1;
801 1.1 nonaka }
802 1.1 nonaka
803 1.1 nonaka /*
804 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
805 1.1 nonaka * Return zero on success.
806 1.1 nonaka */
807 1.1 nonaka static int
808 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
809 1.1 nonaka {
810 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
811 1.1 nonaka uint8_t vdd;
812 1.1 nonaka int error = 0;
813 1.32 kiyohara const uint32_t pcmask =
814 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
815 1.1 nonaka
816 1.65 jmcneill mutex_enter(&hp->intr_lock);
817 1.1 nonaka
818 1.1 nonaka /*
819 1.1 nonaka * Disable bus power before voltage change.
820 1.1 nonaka */
821 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
822 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
823 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
824 1.1 nonaka
825 1.1 nonaka /* If power is disabled, reset the host and return now. */
826 1.1 nonaka if (ocr == 0) {
827 1.1 nonaka (void)sdhc_host_reset1(hp);
828 1.1 nonaka goto out;
829 1.1 nonaka }
830 1.1 nonaka
831 1.1 nonaka /*
832 1.1 nonaka * Select the lowest voltage according to capabilities.
833 1.1 nonaka */
834 1.1 nonaka ocr &= hp->ocr;
835 1.73 jmcneill if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
836 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
837 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
838 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
839 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
840 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
841 1.11 matt } else {
842 1.1 nonaka /* Unsupported voltage level requested. */
843 1.1 nonaka error = EINVAL;
844 1.1 nonaka goto out;
845 1.1 nonaka }
846 1.1 nonaka
847 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
848 1.11 matt /*
849 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
850 1.11 matt * voltage ramp until power rises.
851 1.11 matt */
852 1.57 jmcneill
853 1.57 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
854 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
855 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
856 1.57 jmcneill } else {
857 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
858 1.57 jmcneill HREAD1(hp, SDHC_POWER_CTL) & pcmask);
859 1.57 jmcneill sdmmc_delay(1);
860 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
861 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT));
862 1.57 jmcneill sdmmc_delay(1);
863 1.57 jmcneill HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
864 1.57 jmcneill sdmmc_delay(10000);
865 1.57 jmcneill }
866 1.1 nonaka
867 1.11 matt /*
868 1.11 matt * The host system may not power the bus due to battery low,
869 1.11 matt * etc. In that case, the host controller should clear the
870 1.11 matt * bus power bit.
871 1.11 matt */
872 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
873 1.11 matt error = ENXIO;
874 1.11 matt goto out;
875 1.11 matt }
876 1.1 nonaka }
877 1.1 nonaka
878 1.1 nonaka out:
879 1.65 jmcneill mutex_exit(&hp->intr_lock);
880 1.1 nonaka
881 1.1 nonaka return error;
882 1.1 nonaka }
883 1.1 nonaka
884 1.1 nonaka /*
885 1.1 nonaka * Return the smallest possible base clock frequency divisor value
886 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
887 1.1 nonaka */
888 1.11 matt static bool
889 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
890 1.1 nonaka {
891 1.11 matt u_int div;
892 1.1 nonaka
893 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
894 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
895 1.11 matt if ((hp->clkbase / div) <= freq) {
896 1.11 matt *divp = SDHC_SDCLK_CGM
897 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
898 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
899 1.18 jakllsch //freq = hp->clkbase / div;
900 1.11 matt return true;
901 1.11 matt }
902 1.11 matt }
903 1.11 matt /* No divisor found. */
904 1.11 matt return false;
905 1.11 matt }
906 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
907 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
908 1.11 matt u_int roundup = dvs & 1;
909 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
910 1.11 matt if (dvs + roundup <= 16) {
911 1.11 matt dvs += roundup - 1;
912 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
913 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
914 1.11 matt DPRINTF(2,
915 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
916 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
917 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
918 1.11 matt return true;
919 1.9 matt }
920 1.11 matt /*
921 1.11 matt * If we drop bits, we need to round up the divisor.
922 1.11 matt */
923 1.11 matt roundup |= dvs & 1;
924 1.9 matt }
925 1.18 jakllsch /* No divisor found. */
926 1.18 jakllsch return false;
927 1.38 jakllsch }
928 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
929 1.38 jakllsch div = howmany(hp->clkbase, freq);
930 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
931 1.38 jakllsch return false;
932 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
933 1.38 jakllsch //freq = hp->clkbase / div;
934 1.38 jakllsch return true;
935 1.38 jakllsch }
936 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
937 1.38 jakllsch div = howmany(hp->clkbase, freq);
938 1.50 mlelstv div = div > 1 ? howmany(div, 2) : 0;
939 1.38 jakllsch if (div > 0x3ff)
940 1.38 jakllsch return false;
941 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
942 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
943 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
944 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
945 1.67 mlelstv //freq = hp->clkbase / (div ? div * 2 : 1);
946 1.38 jakllsch return true;
947 1.9 matt } else {
948 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
949 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
950 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
951 1.38 jakllsch //freq = hp->clkbase / div;
952 1.38 jakllsch return true;
953 1.38 jakllsch }
954 1.38 jakllsch }
955 1.38 jakllsch /* No divisor found. */
956 1.38 jakllsch return false;
957 1.9 matt }
958 1.1 nonaka /* No divisor found. */
959 1.11 matt return false;
960 1.1 nonaka }
961 1.1 nonaka
962 1.1 nonaka /*
963 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
964 1.1 nonaka * Return zero on success.
965 1.1 nonaka */
966 1.1 nonaka static int
967 1.1 nonaka sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
968 1.1 nonaka {
969 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
970 1.11 matt u_int div;
971 1.11 matt u_int timo;
972 1.32 kiyohara int16_t reg;
973 1.1 nonaka int error = 0;
974 1.65 jmcneill bool present __diagused;
975 1.65 jmcneill
976 1.65 jmcneill mutex_enter(&hp->intr_lock);
977 1.65 jmcneill
978 1.2 cegger #ifdef DIAGNOSTIC
979 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
980 1.1 nonaka
981 1.1 nonaka /* Must not stop the clock if commands are in progress. */
982 1.12 nonaka if (present && sdhc_card_detect(hp)) {
983 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
984 1.26 matt "%s: command in progress\n", __func__);
985 1.12 nonaka }
986 1.1 nonaka #endif
987 1.1 nonaka
988 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
989 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
990 1.34 matt if (error != 0)
991 1.34 matt goto out;
992 1.34 matt }
993 1.34 matt
994 1.1 nonaka /*
995 1.1 nonaka * Stop SD clock before changing the frequency.
996 1.1 nonaka */
997 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
998 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
999 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
1000 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1001 1.11 matt goto out;
1002 1.11 matt }
1003 1.11 matt } else {
1004 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1005 1.11 matt if (freq == SDMMC_SDCLK_OFF)
1006 1.11 matt goto out;
1007 1.11 matt }
1008 1.1 nonaka
1009 1.71 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1010 1.71 jmcneill /* XXX DDR */
1011 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1012 1.71 jmcneill if (freq > 100000) {
1013 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1014 1.71 jmcneill } else if (freq > 50000) {
1015 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
1016 1.71 jmcneill } else if (freq > 25000) {
1017 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR25);
1018 1.71 jmcneill } else {
1019 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1020 1.71 jmcneill }
1021 1.71 jmcneill }
1022 1.71 jmcneill
1023 1.1 nonaka /*
1024 1.1 nonaka * Set the minimum base clock frequency divisor.
1025 1.1 nonaka */
1026 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
1027 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
1028 1.68 mlelstv aprint_error_dev(hp->sc->sc_dev,
1029 1.68 mlelstv "Invalid bus clock %d kHz\n", freq);
1030 1.1 nonaka error = EINVAL;
1031 1.1 nonaka goto out;
1032 1.1 nonaka }
1033 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1034 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
1035 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
1036 1.11 matt } else {
1037 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
1038 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1039 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1040 1.11 matt }
1041 1.1 nonaka
1042 1.1 nonaka /*
1043 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
1044 1.1 nonaka */
1045 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1046 1.11 matt sdmmc_delay(10000);
1047 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
1048 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1049 1.11 matt } else {
1050 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1051 1.11 matt for (timo = 1000; timo > 0; timo--) {
1052 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1053 1.12 nonaka SDHC_INTCLK_STABLE))
1054 1.11 matt break;
1055 1.11 matt sdmmc_delay(10);
1056 1.11 matt }
1057 1.11 matt if (timo == 0) {
1058 1.11 matt error = ETIMEDOUT;
1059 1.11 matt goto out;
1060 1.11 matt }
1061 1.1 nonaka }
1062 1.1 nonaka
1063 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1064 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1065 1.11 matt /*
1066 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
1067 1.11 matt * So delay for that time + slop and then
1068 1.11 matt * check a few times for completion.
1069 1.11 matt */
1070 1.11 matt sdmmc_delay(210);
1071 1.11 matt for (timo = 10; timo > 0; timo--) {
1072 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1073 1.11 matt SDHC_INIT_ACTIVE))
1074 1.11 matt break;
1075 1.11 matt sdmmc_delay(10);
1076 1.11 matt }
1077 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1078 1.12 nonaka
1079 1.11 matt /*
1080 1.11 matt * Enable SD clock.
1081 1.11 matt */
1082 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1083 1.11 matt } else {
1084 1.11 matt /*
1085 1.11 matt * Enable SD clock.
1086 1.11 matt */
1087 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1088 1.1 nonaka
1089 1.43 jmcneill if (freq > 25000 &&
1090 1.43 jmcneill !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1091 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1092 1.11 matt else
1093 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1094 1.11 matt }
1095 1.8 kiyohara
1096 1.1 nonaka out:
1097 1.65 jmcneill mutex_exit(&hp->intr_lock);
1098 1.1 nonaka
1099 1.1 nonaka return error;
1100 1.1 nonaka }
1101 1.1 nonaka
1102 1.1 nonaka static int
1103 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1104 1.1 nonaka {
1105 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1106 1.1 nonaka int reg;
1107 1.1 nonaka
1108 1.1 nonaka switch (width) {
1109 1.1 nonaka case 1:
1110 1.1 nonaka case 4:
1111 1.1 nonaka break;
1112 1.1 nonaka
1113 1.11 matt case 8:
1114 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1115 1.11 matt break;
1116 1.11 matt /* FALLTHROUGH */
1117 1.1 nonaka default:
1118 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
1119 1.1 nonaka HDEVNAME(hp), width));
1120 1.1 nonaka return 1;
1121 1.1 nonaka }
1122 1.1 nonaka
1123 1.65 jmcneill mutex_enter(&hp->intr_lock);
1124 1.65 jmcneill
1125 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
1126 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1127 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1128 1.11 matt if (width == 4)
1129 1.11 matt reg |= SDHC_4BIT_MODE;
1130 1.11 matt else if (width == 8)
1131 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
1132 1.11 matt } else {
1133 1.11 matt reg &= ~SDHC_4BIT_MODE;
1134 1.59 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1135 1.59 jmcneill reg &= ~SDHC_8BIT_MODE;
1136 1.59 jmcneill }
1137 1.59 jmcneill if (width == 4) {
1138 1.11 matt reg |= SDHC_4BIT_MODE;
1139 1.59 jmcneill } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1140 1.59 jmcneill reg |= SDHC_8BIT_MODE;
1141 1.59 jmcneill }
1142 1.11 matt }
1143 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
1144 1.65 jmcneill
1145 1.65 jmcneill mutex_exit(&hp->intr_lock);
1146 1.1 nonaka
1147 1.1 nonaka return 0;
1148 1.1 nonaka }
1149 1.1 nonaka
1150 1.8 kiyohara static int
1151 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1152 1.8 kiyohara {
1153 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1154 1.32 kiyohara
1155 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1156 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1157 1.8 kiyohara
1158 1.8 kiyohara return 0;
1159 1.8 kiyohara }
1160 1.8 kiyohara
1161 1.1 nonaka static void
1162 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1163 1.1 nonaka {
1164 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1165 1.1 nonaka
1166 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1167 1.65 jmcneill mutex_enter(&hp->intr_lock);
1168 1.11 matt if (enable) {
1169 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1170 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1171 1.11 matt } else {
1172 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1173 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1174 1.11 matt }
1175 1.65 jmcneill mutex_exit(&hp->intr_lock);
1176 1.1 nonaka }
1177 1.1 nonaka }
1178 1.1 nonaka
1179 1.47 skrll static void
1180 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1181 1.1 nonaka {
1182 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1183 1.1 nonaka
1184 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1185 1.65 jmcneill mutex_enter(&hp->intr_lock);
1186 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1187 1.65 jmcneill mutex_exit(&hp->intr_lock);
1188 1.11 matt }
1189 1.1 nonaka }
1190 1.1 nonaka
1191 1.1 nonaka static int
1192 1.71 jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1193 1.71 jmcneill {
1194 1.71 jmcneill struct sdhc_host *hp = (struct sdhc_host *)sch;
1195 1.71 jmcneill
1196 1.71 jmcneill switch (signal_voltage) {
1197 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_180:
1198 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1199 1.71 jmcneill break;
1200 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_330:
1201 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1202 1.71 jmcneill break;
1203 1.71 jmcneill default:
1204 1.71 jmcneill return EINVAL;
1205 1.71 jmcneill }
1206 1.71 jmcneill
1207 1.71 jmcneill return 0;
1208 1.71 jmcneill }
1209 1.71 jmcneill
1210 1.71 jmcneill static int
1211 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1212 1.1 nonaka {
1213 1.1 nonaka uint32_t state;
1214 1.1 nonaka int timeout;
1215 1.1 nonaka
1216 1.65 jmcneill for (timeout = 10000; timeout > 0; timeout--) {
1217 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1218 1.1 nonaka return 0;
1219 1.65 jmcneill sdmmc_delay(10);
1220 1.1 nonaka }
1221 1.68 mlelstv aprint_error_dev(hp->sc->sc_dev, "timeout waiting for %x (state=%x)\n",
1222 1.68 mlelstv value, state);
1223 1.1 nonaka return ETIMEDOUT;
1224 1.1 nonaka }
1225 1.1 nonaka
1226 1.1 nonaka static void
1227 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1228 1.1 nonaka {
1229 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1230 1.1 nonaka int error;
1231 1.1 nonaka
1232 1.65 jmcneill mutex_enter(&hp->intr_lock);
1233 1.65 jmcneill
1234 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1235 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1236 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1237 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1238 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1239 1.11 matt } else {
1240 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1241 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1242 1.47 skrll }
1243 1.11 matt }
1244 1.11 matt
1245 1.61 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1246 1.61 jmcneill const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1247 1.61 jmcneill if (cmd->c_data != NULL) {
1248 1.61 jmcneill HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1249 1.61 jmcneill HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1250 1.61 jmcneill } else {
1251 1.61 jmcneill HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1252 1.61 jmcneill HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1253 1.61 jmcneill }
1254 1.61 jmcneill }
1255 1.61 jmcneill
1256 1.1 nonaka /*
1257 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1258 1.1 nonaka */
1259 1.1 nonaka error = sdhc_start_command(hp, cmd);
1260 1.1 nonaka if (error) {
1261 1.1 nonaka cmd->c_error = error;
1262 1.1 nonaka goto out;
1263 1.1 nonaka }
1264 1.1 nonaka
1265 1.1 nonaka /*
1266 1.1 nonaka * Wait until the command phase is done, or until the command
1267 1.1 nonaka * is marked done for any other reason.
1268 1.1 nonaka */
1269 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1270 1.1 nonaka cmd->c_error = ETIMEDOUT;
1271 1.1 nonaka goto out;
1272 1.1 nonaka }
1273 1.1 nonaka
1274 1.1 nonaka /*
1275 1.1 nonaka * The host controller removes bits [0:7] from the response
1276 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1277 1.1 nonaka * driver (without padding).
1278 1.1 nonaka */
1279 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1280 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1281 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1282 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1283 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1284 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1285 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1286 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1287 1.32 kiyohara (cmd->c_resp[1] << 24);
1288 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1289 1.32 kiyohara (cmd->c_resp[2] << 24);
1290 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1291 1.32 kiyohara (cmd->c_resp[3] << 24);
1292 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1293 1.32 kiyohara }
1294 1.1 nonaka }
1295 1.1 nonaka }
1296 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1297 1.1 nonaka
1298 1.1 nonaka /*
1299 1.1 nonaka * If the command has data to transfer in any direction,
1300 1.1 nonaka * execute the transfer now.
1301 1.1 nonaka */
1302 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1303 1.1 nonaka sdhc_transfer_data(hp, cmd);
1304 1.42 jakllsch else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1305 1.42 jakllsch if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1306 1.42 jakllsch cmd->c_error = ETIMEDOUT;
1307 1.42 jakllsch goto out;
1308 1.42 jakllsch }
1309 1.42 jakllsch }
1310 1.1 nonaka
1311 1.1 nonaka out:
1312 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1313 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1314 1.11 matt /* Turn off the LED. */
1315 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1316 1.11 matt }
1317 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1318 1.1 nonaka
1319 1.65 jmcneill mutex_exit(&hp->intr_lock);
1320 1.65 jmcneill
1321 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1322 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1323 1.1 nonaka cmd->c_flags, cmd->c_error));
1324 1.1 nonaka }
1325 1.1 nonaka
1326 1.1 nonaka static int
1327 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1328 1.1 nonaka {
1329 1.11 matt struct sdhc_softc * const sc = hp->sc;
1330 1.1 nonaka uint16_t blksize = 0;
1331 1.1 nonaka uint16_t blkcount = 0;
1332 1.1 nonaka uint16_t mode;
1333 1.1 nonaka uint16_t command;
1334 1.1 nonaka int error;
1335 1.1 nonaka
1336 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1337 1.65 jmcneill
1338 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1339 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1340 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1341 1.1 nonaka
1342 1.1 nonaka /*
1343 1.1 nonaka * The maximum block length for commands should be the minimum
1344 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1345 1.1 nonaka */
1346 1.1 nonaka
1347 1.1 nonaka /* Fragment the data into proper blocks. */
1348 1.1 nonaka if (cmd->c_datalen > 0) {
1349 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1350 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1351 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1352 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1353 1.11 matt aprint_error_dev(sc->sc_dev,
1354 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1355 1.1 nonaka return EINVAL;
1356 1.1 nonaka }
1357 1.1 nonaka }
1358 1.1 nonaka
1359 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1360 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1361 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1362 1.1 nonaka return EINVAL;
1363 1.1 nonaka }
1364 1.1 nonaka
1365 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1366 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1367 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1368 1.1 nonaka mode |= SDHC_READ_MODE;
1369 1.15 jakllsch if (blkcount > 1) {
1370 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1371 1.15 jakllsch /* XXX only for memory commands? */
1372 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1373 1.1 nonaka }
1374 1.45 jakllsch if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1375 1.55 bouyer ISSET(hp->flags, SHF_MODE_DMAEN)) {
1376 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1377 1.7 nonaka }
1378 1.1 nonaka
1379 1.1 nonaka /*
1380 1.1 nonaka * Prepare command register value. (2.2.6)
1381 1.1 nonaka */
1382 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1383 1.1 nonaka
1384 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1385 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1386 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1387 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1388 1.1 nonaka if (cmd->c_data != NULL)
1389 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1390 1.1 nonaka
1391 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1392 1.1 nonaka command |= SDHC_NO_RESPONSE;
1393 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1394 1.1 nonaka command |= SDHC_RESP_LEN_136;
1395 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1396 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1397 1.1 nonaka else
1398 1.1 nonaka command |= SDHC_RESP_LEN_48;
1399 1.1 nonaka
1400 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1401 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1402 1.68 mlelstv if (error) {
1403 1.68 mlelstv aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
1404 1.1 nonaka return error;
1405 1.68 mlelstv }
1406 1.1 nonaka
1407 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1408 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1409 1.1 nonaka
1410 1.44 hkenken if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1411 1.44 hkenken blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1412 1.44 hkenken SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1413 1.44 hkenken }
1414 1.19 jakllsch
1415 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1416 1.11 matt /* Alert the user not to remove the card. */
1417 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1418 1.11 matt }
1419 1.1 nonaka
1420 1.7 nonaka /* Set DMA start address. */
1421 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
1422 1.63 jmcneill for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1423 1.69 jmcneill bus_addr_t paddr =
1424 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_addr;
1425 1.63 jmcneill uint16_t len =
1426 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1427 1.63 jmcneill 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1428 1.63 jmcneill uint16_t attr =
1429 1.63 jmcneill SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1430 1.63 jmcneill if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1431 1.63 jmcneill attr |= SDHC_ADMA2_END;
1432 1.63 jmcneill }
1433 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1434 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc =
1435 1.63 jmcneill hp->adma2;
1436 1.63 jmcneill desc[seg].attribute = htole16(attr);
1437 1.63 jmcneill desc[seg].length = htole16(len);
1438 1.63 jmcneill desc[seg].address = htole32(paddr);
1439 1.63 jmcneill } else {
1440 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc =
1441 1.63 jmcneill hp->adma2;
1442 1.63 jmcneill desc[seg].attribute = htole16(attr);
1443 1.63 jmcneill desc[seg].length = htole16(len);
1444 1.63 jmcneill desc[seg].address = htole32(paddr & 0xffffffff);
1445 1.63 jmcneill desc[seg].address_hi = htole32(
1446 1.63 jmcneill (uint64_t)paddr >> 32);
1447 1.63 jmcneill }
1448 1.63 jmcneill }
1449 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1450 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1451 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1452 1.63 jmcneill } else {
1453 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1454 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1455 1.63 jmcneill }
1456 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1457 1.63 jmcneill BUS_DMASYNC_PREWRITE);
1458 1.63 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1459 1.63 jmcneill HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1460 1.63 jmcneill
1461 1.70 jmcneill const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1462 1.63 jmcneill
1463 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1464 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1465 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1466 1.63 jmcneill (uint64_t)desc_addr >> 32);
1467 1.63 jmcneill }
1468 1.63 jmcneill } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1469 1.63 jmcneill !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1470 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1471 1.63 jmcneill }
1472 1.7 nonaka
1473 1.1 nonaka /*
1474 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1475 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1476 1.1 nonaka */
1477 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1478 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1479 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1480 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1481 1.11 matt } else {
1482 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1483 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1484 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1485 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1486 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1487 1.11 matt }
1488 1.1 nonaka
1489 1.1 nonaka return 0;
1490 1.1 nonaka }
1491 1.1 nonaka
1492 1.1 nonaka static void
1493 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1494 1.1 nonaka {
1495 1.51 jmcneill struct sdhc_softc *sc = hp->sc;
1496 1.1 nonaka int error;
1497 1.1 nonaka
1498 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1499 1.65 jmcneill
1500 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1501 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1502 1.1 nonaka
1503 1.1 nonaka #ifdef SDHC_DEBUG
1504 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1505 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1506 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1507 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1508 1.1 nonaka "CMD52/53 error response flags %#x\n",
1509 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1510 1.1 nonaka }
1511 1.1 nonaka #endif
1512 1.1 nonaka
1513 1.47 skrll if (cmd->c_dmamap != NULL) {
1514 1.47 skrll if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1515 1.51 jmcneill error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1516 1.47 skrll if (error == 0 && !sdhc_wait_intr(hp,
1517 1.61 jmcneill SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1518 1.47 skrll error = ETIMEDOUT;
1519 1.47 skrll }
1520 1.47 skrll } else {
1521 1.47 skrll error = sdhc_transfer_data_dma(hp, cmd);
1522 1.47 skrll }
1523 1.47 skrll } else
1524 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1525 1.1 nonaka if (error)
1526 1.1 nonaka cmd->c_error = error;
1527 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1528 1.1 nonaka
1529 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1530 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1531 1.1 nonaka }
1532 1.1 nonaka
1533 1.1 nonaka static int
1534 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1535 1.7 nonaka {
1536 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1537 1.19 jakllsch bus_addr_t posaddr;
1538 1.19 jakllsch bus_addr_t segaddr;
1539 1.19 jakllsch bus_size_t seglen;
1540 1.19 jakllsch u_int seg = 0;
1541 1.7 nonaka int error = 0;
1542 1.19 jakllsch int status;
1543 1.7 nonaka
1544 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1545 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1546 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1547 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1548 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1549 1.11 matt
1550 1.7 nonaka for (;;) {
1551 1.19 jakllsch status = sdhc_wait_intr(hp,
1552 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1553 1.19 jakllsch SDHC_DMA_TIMEOUT);
1554 1.19 jakllsch
1555 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1556 1.19 jakllsch break;
1557 1.19 jakllsch }
1558 1.19 jakllsch if (!status) {
1559 1.7 nonaka error = ETIMEDOUT;
1560 1.7 nonaka break;
1561 1.7 nonaka }
1562 1.63 jmcneill
1563 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1564 1.63 jmcneill continue;
1565 1.63 jmcneill }
1566 1.63 jmcneill
1567 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1568 1.19 jakllsch continue;
1569 1.19 jakllsch }
1570 1.19 jakllsch
1571 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1572 1.7 nonaka
1573 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1574 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1575 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1576 1.7 nonaka
1577 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1578 1.37 jakllsch continue;
1579 1.19 jakllsch }
1580 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1581 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1582 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1583 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1584 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1585 1.7 nonaka }
1586 1.7 nonaka
1587 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1588 1.63 jmcneill bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1589 1.63 jmcneill PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1590 1.63 jmcneill }
1591 1.63 jmcneill
1592 1.7 nonaka return error;
1593 1.7 nonaka }
1594 1.7 nonaka
1595 1.7 nonaka static int
1596 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1597 1.1 nonaka {
1598 1.1 nonaka uint8_t *data = cmd->c_data;
1599 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1600 1.11 matt u_int len, datalen;
1601 1.11 matt u_int imask;
1602 1.11 matt u_int pmask;
1603 1.1 nonaka int error = 0;
1604 1.1 nonaka
1605 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1606 1.11 matt imask = SDHC_BUFFER_READ_READY;
1607 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1608 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1609 1.11 matt pio_func = esdhc_read_data_pio;
1610 1.11 matt } else {
1611 1.11 matt pio_func = sdhc_read_data_pio;
1612 1.11 matt }
1613 1.11 matt } else {
1614 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1615 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1616 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1617 1.11 matt pio_func = esdhc_write_data_pio;
1618 1.11 matt } else {
1619 1.11 matt pio_func = sdhc_write_data_pio;
1620 1.11 matt }
1621 1.11 matt }
1622 1.1 nonaka datalen = cmd->c_datalen;
1623 1.1 nonaka
1624 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1625 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1626 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1627 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1628 1.11 matt
1629 1.1 nonaka while (datalen > 0) {
1630 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1631 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1632 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1633 1.11 matt } else {
1634 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1635 1.11 matt }
1636 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1637 1.11 matt error = ETIMEDOUT;
1638 1.11 matt break;
1639 1.11 matt }
1640 1.11 matt
1641 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1642 1.11 matt if (error)
1643 1.11 matt break;
1644 1.1 nonaka }
1645 1.1 nonaka
1646 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1647 1.11 matt (*pio_func)(hp, data, len);
1648 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1649 1.11 matt HDEVNAME(hp), len, data));
1650 1.1 nonaka
1651 1.1 nonaka data += len;
1652 1.1 nonaka datalen -= len;
1653 1.1 nonaka }
1654 1.1 nonaka
1655 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1656 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1657 1.1 nonaka error = ETIMEDOUT;
1658 1.1 nonaka
1659 1.1 nonaka return error;
1660 1.1 nonaka }
1661 1.1 nonaka
1662 1.1 nonaka static void
1663 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1664 1.1 nonaka {
1665 1.1 nonaka
1666 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1667 1.1 nonaka while (datalen > 3) {
1668 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1669 1.1 nonaka data += 4;
1670 1.1 nonaka datalen -= 4;
1671 1.1 nonaka }
1672 1.1 nonaka if (datalen > 1) {
1673 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1674 1.1 nonaka data += 2;
1675 1.1 nonaka datalen -= 2;
1676 1.1 nonaka }
1677 1.1 nonaka if (datalen > 0) {
1678 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1679 1.1 nonaka data += 1;
1680 1.1 nonaka datalen -= 1;
1681 1.1 nonaka }
1682 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1683 1.1 nonaka while (datalen > 1) {
1684 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1685 1.1 nonaka data += 2;
1686 1.1 nonaka datalen -= 2;
1687 1.1 nonaka }
1688 1.1 nonaka if (datalen > 0) {
1689 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1690 1.1 nonaka data += 1;
1691 1.1 nonaka datalen -= 1;
1692 1.1 nonaka }
1693 1.1 nonaka } else {
1694 1.1 nonaka while (datalen > 0) {
1695 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1696 1.1 nonaka data += 1;
1697 1.1 nonaka datalen -= 1;
1698 1.1 nonaka }
1699 1.1 nonaka }
1700 1.1 nonaka }
1701 1.1 nonaka
1702 1.1 nonaka static void
1703 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1704 1.1 nonaka {
1705 1.1 nonaka
1706 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1707 1.1 nonaka while (datalen > 3) {
1708 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1709 1.1 nonaka data += 4;
1710 1.1 nonaka datalen -= 4;
1711 1.1 nonaka }
1712 1.1 nonaka if (datalen > 1) {
1713 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1714 1.1 nonaka data += 2;
1715 1.1 nonaka datalen -= 2;
1716 1.1 nonaka }
1717 1.1 nonaka if (datalen > 0) {
1718 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1719 1.1 nonaka data += 1;
1720 1.1 nonaka datalen -= 1;
1721 1.1 nonaka }
1722 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1723 1.1 nonaka while (datalen > 1) {
1724 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1725 1.1 nonaka data += 2;
1726 1.1 nonaka datalen -= 2;
1727 1.1 nonaka }
1728 1.1 nonaka if (datalen > 0) {
1729 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1730 1.1 nonaka data += 1;
1731 1.1 nonaka datalen -= 1;
1732 1.1 nonaka }
1733 1.1 nonaka } else {
1734 1.1 nonaka while (datalen > 0) {
1735 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1736 1.1 nonaka data += 1;
1737 1.1 nonaka datalen -= 1;
1738 1.1 nonaka }
1739 1.1 nonaka }
1740 1.1 nonaka }
1741 1.1 nonaka
1742 1.11 matt static void
1743 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1744 1.11 matt {
1745 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1746 1.12 nonaka uint32_t v;
1747 1.12 nonaka
1748 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1749 1.23 matt size_t count = 0;
1750 1.23 matt
1751 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1752 1.23 matt if (count == 0) {
1753 1.23 matt /*
1754 1.23 matt * If we've drained "watermark" words, we need to wait
1755 1.23 matt * a little bit so the read FIFO can refill.
1756 1.23 matt */
1757 1.23 matt sdmmc_delay(10);
1758 1.23 matt count = watermark;
1759 1.23 matt }
1760 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1761 1.11 matt v = le32toh(v);
1762 1.11 matt *(uint32_t *)data = v;
1763 1.11 matt data += 4;
1764 1.11 matt datalen -= 4;
1765 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1766 1.23 matt count--;
1767 1.11 matt }
1768 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1769 1.23 matt if (count == 0) {
1770 1.23 matt sdmmc_delay(10);
1771 1.23 matt }
1772 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1773 1.11 matt v = le32toh(v);
1774 1.11 matt do {
1775 1.11 matt *data++ = v;
1776 1.11 matt v >>= 8;
1777 1.11 matt } while (--datalen > 0);
1778 1.11 matt }
1779 1.11 matt }
1780 1.11 matt
1781 1.11 matt static void
1782 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1783 1.11 matt {
1784 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1785 1.12 nonaka uint32_t v;
1786 1.12 nonaka
1787 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1788 1.23 matt size_t count = watermark;
1789 1.23 matt
1790 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1791 1.23 matt if (count == 0) {
1792 1.23 matt sdmmc_delay(10);
1793 1.23 matt count = watermark;
1794 1.23 matt }
1795 1.12 nonaka v = *(uint32_t *)data;
1796 1.11 matt v = htole32(v);
1797 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1798 1.11 matt data += 4;
1799 1.11 matt datalen -= 4;
1800 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1801 1.23 matt count--;
1802 1.11 matt }
1803 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1804 1.23 matt if (count == 0) {
1805 1.23 matt sdmmc_delay(10);
1806 1.23 matt }
1807 1.12 nonaka v = *(uint32_t *)data;
1808 1.11 matt v = htole32(v);
1809 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1810 1.11 matt }
1811 1.11 matt }
1812 1.11 matt
1813 1.1 nonaka /* Prepare for another command. */
1814 1.1 nonaka static int
1815 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1816 1.1 nonaka {
1817 1.1 nonaka int timo;
1818 1.1 nonaka
1819 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1820 1.1 nonaka
1821 1.35 riastrad /* Request the reset. */
1822 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1823 1.35 riastrad
1824 1.35 riastrad /*
1825 1.35 riastrad * If necessary, wait for the controller to set the bits to
1826 1.35 riastrad * acknowledge the reset.
1827 1.35 riastrad */
1828 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1829 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1830 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
1831 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1832 1.35 riastrad break;
1833 1.35 riastrad /* Short delay because I worry we may miss it... */
1834 1.35 riastrad sdmmc_delay(1);
1835 1.35 riastrad }
1836 1.35 riastrad if (timo == 0)
1837 1.35 riastrad return ETIMEDOUT;
1838 1.35 riastrad }
1839 1.35 riastrad
1840 1.35 riastrad /*
1841 1.35 riastrad * Wait for the controller to clear the bits to indicate that
1842 1.35 riastrad * the reset has completed.
1843 1.35 riastrad */
1844 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1845 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1846 1.1 nonaka break;
1847 1.1 nonaka sdmmc_delay(10000);
1848 1.1 nonaka }
1849 1.1 nonaka if (timo == 0) {
1850 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1851 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1852 1.1 nonaka return ETIMEDOUT;
1853 1.1 nonaka }
1854 1.1 nonaka
1855 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1856 1.53 nonaka HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1857 1.11 matt }
1858 1.11 matt
1859 1.1 nonaka return 0;
1860 1.1 nonaka }
1861 1.1 nonaka
1862 1.1 nonaka static int
1863 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1864 1.1 nonaka {
1865 1.1 nonaka int status;
1866 1.1 nonaka
1867 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1868 1.65 jmcneill
1869 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1870 1.1 nonaka
1871 1.1 nonaka status = hp->intr_status & mask;
1872 1.1 nonaka while (status == 0) {
1873 1.65 jmcneill if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
1874 1.1 nonaka == EWOULDBLOCK) {
1875 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1876 1.1 nonaka break;
1877 1.1 nonaka }
1878 1.1 nonaka status = hp->intr_status & mask;
1879 1.1 nonaka }
1880 1.1 nonaka hp->intr_status &= ~status;
1881 1.1 nonaka
1882 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1883 1.1 nonaka hp->intr_error_status));
1884 1.47 skrll
1885 1.1 nonaka /* Command timeout has higher priority than command complete. */
1886 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1887 1.1 nonaka hp->intr_error_status = 0;
1888 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1889 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1890 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1891 1.11 matt }
1892 1.1 nonaka status = 0;
1893 1.1 nonaka }
1894 1.1 nonaka
1895 1.1 nonaka return status;
1896 1.1 nonaka }
1897 1.1 nonaka
1898 1.1 nonaka /*
1899 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
1900 1.1 nonaka */
1901 1.1 nonaka int
1902 1.1 nonaka sdhc_intr(void *arg)
1903 1.1 nonaka {
1904 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1905 1.1 nonaka struct sdhc_host *hp;
1906 1.1 nonaka int done = 0;
1907 1.1 nonaka uint16_t status;
1908 1.1 nonaka uint16_t error;
1909 1.1 nonaka
1910 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
1911 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
1912 1.1 nonaka hp = sc->sc_host[host];
1913 1.1 nonaka if (hp == NULL)
1914 1.1 nonaka continue;
1915 1.1 nonaka
1916 1.65 jmcneill mutex_enter(&hp->intr_lock);
1917 1.65 jmcneill
1918 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1919 1.11 matt /* Find out which interrupts are pending. */
1920 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1921 1.11 matt status = xstatus;
1922 1.11 matt error = xstatus >> 16;
1923 1.22 matt if (error)
1924 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
1925 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1926 1.65 jmcneill goto next_port; /* no interrupt for us */
1927 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1928 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1929 1.11 matt } else {
1930 1.11 matt /* Find out which interrupts are pending. */
1931 1.11 matt error = 0;
1932 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1933 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1934 1.65 jmcneill goto next_port; /* no interrupt for us */
1935 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1936 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
1937 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1938 1.11 matt /* Acknowledge error interrupts. */
1939 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
1940 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
1941 1.11 matt }
1942 1.11 matt }
1943 1.47 skrll
1944 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1945 1.11 matt status, error));
1946 1.1 nonaka
1947 1.1 nonaka /* Claim this interrupt. */
1948 1.1 nonaka done = 1;
1949 1.1 nonaka
1950 1.63 jmcneill if (ISSET(error, SDHC_ADMA_ERROR)) {
1951 1.63 jmcneill uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
1952 1.63 jmcneill printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
1953 1.63 jmcneill adma_err);
1954 1.63 jmcneill }
1955 1.63 jmcneill
1956 1.1 nonaka /*
1957 1.1 nonaka * Service error interrupts.
1958 1.1 nonaka */
1959 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1960 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
1961 1.11 matt hp->intr_error_status |= error;
1962 1.11 matt hp->intr_status |= status;
1963 1.11 matt cv_broadcast(&hp->intr_cv);
1964 1.1 nonaka }
1965 1.1 nonaka
1966 1.1 nonaka /*
1967 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
1968 1.1 nonaka */
1969 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1970 1.46 jakllsch if (hp->sdmmc != NULL) {
1971 1.46 jakllsch sdmmc_needs_discover(hp->sdmmc);
1972 1.46 jakllsch }
1973 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1974 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
1975 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1976 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1977 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1978 1.11 matt }
1979 1.9 matt }
1980 1.1 nonaka
1981 1.1 nonaka /*
1982 1.1 nonaka * Wake up the blocking process to service command
1983 1.1 nonaka * related interrupt(s).
1984 1.1 nonaka */
1985 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
1986 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1987 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1988 1.1 nonaka hp->intr_status |= status;
1989 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1990 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1991 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1992 1.11 matt }
1993 1.1 nonaka cv_broadcast(&hp->intr_cv);
1994 1.1 nonaka }
1995 1.1 nonaka
1996 1.1 nonaka /*
1997 1.1 nonaka * Service SD card interrupts.
1998 1.1 nonaka */
1999 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
2000 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
2001 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2002 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2003 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
2004 1.1 nonaka }
2005 1.65 jmcneill next_port:
2006 1.65 jmcneill mutex_exit(&hp->intr_lock);
2007 1.1 nonaka }
2008 1.1 nonaka
2009 1.1 nonaka return done;
2010 1.1 nonaka }
2011 1.1 nonaka
2012 1.65 jmcneill kmutex_t *
2013 1.65 jmcneill sdhc_host_lock(struct sdhc_host *hp)
2014 1.65 jmcneill {
2015 1.65 jmcneill return &hp->intr_lock;
2016 1.65 jmcneill }
2017 1.65 jmcneill
2018 1.1 nonaka #ifdef SDHC_DEBUG
2019 1.1 nonaka void
2020 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
2021 1.1 nonaka {
2022 1.1 nonaka
2023 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2024 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
2025 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2026 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2027 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
2028 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2029 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
2030 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2031 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
2032 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2033 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
2034 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2035 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
2036 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2037 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2038 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2039 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2040 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2041 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
2042 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2043 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
2044 1.1 nonaka }
2045 1.1 nonaka #endif
2046