sdhc.c revision 1.78 1 1.78 mlelstv /* $NetBSD: sdhc.c,v 1.78 2015/08/05 07:31:52 mlelstv Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.78 mlelstv __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.78 2015/08/05 07:31:52 mlelstv Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/malloc.h>
36 1.1 nonaka #include <sys/systm.h>
37 1.1 nonaka #include <sys/mutex.h>
38 1.1 nonaka #include <sys/condvar.h>
39 1.1 nonaka
40 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
41 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
42 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
45 1.1 nonaka
46 1.1 nonaka #ifdef SDHC_DEBUG
47 1.1 nonaka int sdhcdebug = 1;
48 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
50 1.1 nonaka #else
51 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
52 1.1 nonaka #endif
53 1.1 nonaka
54 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
55 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
56 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
57 1.61 jmcneill #define SDHC_DMA_TIMEOUT (hz*3)
58 1.1 nonaka
59 1.1 nonaka struct sdhc_host {
60 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
61 1.1 nonaka
62 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
63 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
64 1.36 jakllsch bus_size_t ios; /* host register space size */
65 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
66 1.1 nonaka
67 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
68 1.1 nonaka
69 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
70 1.1 nonaka int maxblklen; /* maximum block length */
71 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
72 1.1 nonaka
73 1.1 nonaka uint8_t regs[14]; /* host controller state */
74 1.1 nonaka
75 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
76 1.1 nonaka uint16_t intr_error_status; /* soft error status */
77 1.65 jmcneill kmutex_t intr_lock;
78 1.65 jmcneill kcondvar_t intr_cv;
79 1.1 nonaka
80 1.12 nonaka int specver; /* spec. version */
81 1.12 nonaka
82 1.1 nonaka uint32_t flags; /* flags for this host */
83 1.1 nonaka #define SHF_USE_DMA 0x0001
84 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
85 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
86 1.55 bouyer #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
87 1.63 jmcneill #define SHF_USE_ADMA2_32 0x0010
88 1.63 jmcneill #define SHF_USE_ADMA2_64 0x0020
89 1.63 jmcneill #define SHF_USE_ADMA2_MASK 0x0030
90 1.63 jmcneill
91 1.63 jmcneill bus_dmamap_t adma_map;
92 1.63 jmcneill bus_dma_segment_t adma_segs[1];
93 1.63 jmcneill void *adma2;
94 1.1 nonaka };
95 1.1 nonaka
96 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
97 1.1 nonaka
98 1.11 matt static uint8_t
99 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
100 1.11 matt {
101 1.12 nonaka
102 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
103 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
104 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
105 1.11 matt }
106 1.11 matt
107 1.11 matt static uint16_t
108 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
109 1.11 matt {
110 1.12 nonaka
111 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
112 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
113 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
114 1.11 matt }
115 1.11 matt
116 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
117 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
118 1.11 matt #define HREAD4(hp, reg) \
119 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
120 1.11 matt
121 1.11 matt
122 1.11 matt static void
123 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
124 1.11 matt {
125 1.12 nonaka
126 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
127 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
128 1.11 matt } else {
129 1.11 matt const size_t shift = 8 * (o & 3);
130 1.11 matt o &= -4;
131 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
132 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
133 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
134 1.11 matt }
135 1.11 matt }
136 1.11 matt
137 1.11 matt static void
138 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
139 1.11 matt {
140 1.12 nonaka
141 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
142 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
143 1.11 matt } else {
144 1.11 matt const size_t shift = 8 * (o & 2);
145 1.11 matt o &= -4;
146 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
147 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
148 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
149 1.11 matt }
150 1.11 matt }
151 1.11 matt
152 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
153 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
154 1.1 nonaka #define HWRITE4(hp, reg, val) \
155 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
156 1.11 matt
157 1.1 nonaka #define HCLR1(hp, reg, bits) \
158 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
159 1.1 nonaka #define HCLR2(hp, reg, bits) \
160 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
161 1.11 matt #define HCLR4(hp, reg, bits) \
162 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
163 1.1 nonaka #define HSET1(hp, reg, bits) \
164 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
165 1.1 nonaka #define HSET2(hp, reg, bits) \
166 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
167 1.11 matt #define HSET4(hp, reg, bits) \
168 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
169 1.1 nonaka
170 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
171 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
172 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
173 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
174 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
175 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
176 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
177 1.76 jmcneill static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
178 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
179 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
180 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
181 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
182 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
183 1.1 nonaka struct sdmmc_command *);
184 1.71 jmcneill static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
185 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
186 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
187 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
188 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
189 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
190 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
191 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
192 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
193 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
194 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
195 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
196 1.11 matt
197 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
198 1.1 nonaka /* host controller reset */
199 1.60 skrll .host_reset = sdhc_host_reset,
200 1.1 nonaka
201 1.1 nonaka /* host controller capabilities */
202 1.60 skrll .host_ocr = sdhc_host_ocr,
203 1.60 skrll .host_maxblklen = sdhc_host_maxblklen,
204 1.1 nonaka
205 1.1 nonaka /* card detection */
206 1.60 skrll .card_detect = sdhc_card_detect,
207 1.1 nonaka
208 1.1 nonaka /* write protect */
209 1.60 skrll .write_protect = sdhc_write_protect,
210 1.1 nonaka
211 1.60 skrll /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
212 1.60 skrll .bus_power = sdhc_bus_power,
213 1.76 jmcneill .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
214 1.60 skrll .bus_width = sdhc_bus_width,
215 1.60 skrll .bus_rod = sdhc_bus_rod,
216 1.1 nonaka
217 1.1 nonaka /* command execution */
218 1.60 skrll .exec_command = sdhc_exec_command,
219 1.1 nonaka
220 1.1 nonaka /* card interrupt */
221 1.60 skrll .card_enable_intr = sdhc_card_enable_intr,
222 1.71 jmcneill .card_intr_ack = sdhc_card_intr_ack,
223 1.71 jmcneill
224 1.71 jmcneill /* UHS functions */
225 1.71 jmcneill .signal_voltage = sdhc_signal_voltage,
226 1.76 jmcneill .bus_clock_ddr = sdhc_bus_clock_ddr,
227 1.1 nonaka };
228 1.1 nonaka
229 1.17 jakllsch static int
230 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
231 1.17 jakllsch {
232 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
233 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
234 1.47 skrll
235 1.17 jakllsch if (pnp) {
236 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
237 1.17 jakllsch }
238 1.41 jakllsch for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
239 1.41 jakllsch if (hp->sc->sc_host[host] == hp) {
240 1.41 jakllsch aprint_normal(" slot %zu", host);
241 1.41 jakllsch }
242 1.41 jakllsch }
243 1.17 jakllsch
244 1.17 jakllsch return UNCONF;
245 1.17 jakllsch }
246 1.17 jakllsch
247 1.1 nonaka /*
248 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
249 1.1 nonaka * host controller standard register set. (1.3)
250 1.1 nonaka */
251 1.1 nonaka int
252 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
253 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
254 1.1 nonaka {
255 1.1 nonaka struct sdmmcbus_attach_args saa;
256 1.1 nonaka struct sdhc_host *hp;
257 1.71 jmcneill uint32_t caps, caps2;
258 1.1 nonaka uint16_t sdhcver;
259 1.63 jmcneill int error;
260 1.1 nonaka
261 1.33 riastrad /* Allocate one more host structure. */
262 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
263 1.33 riastrad if (hp == NULL) {
264 1.33 riastrad aprint_error_dev(sc->sc_dev,
265 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
266 1.33 riastrad goto err1;
267 1.33 riastrad }
268 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
269 1.33 riastrad
270 1.33 riastrad /* Fill in the new host structure. */
271 1.33 riastrad hp->sc = sc;
272 1.33 riastrad hp->iot = iot;
273 1.33 riastrad hp->ioh = ioh;
274 1.36 jakllsch hp->ios = iosize;
275 1.33 riastrad hp->dmat = sc->sc_dmat;
276 1.33 riastrad
277 1.65 jmcneill mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
278 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
279 1.33 riastrad
280 1.52 nonaka if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
281 1.52 nonaka sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
282 1.52 nonaka } else {
283 1.52 nonaka sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
284 1.52 nonaka }
285 1.58 jmcneill aprint_normal_dev(sc->sc_dev, "SDHC ");
286 1.33 riastrad hp->specver = SDHC_SPEC_VERSION(sdhcver);
287 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
288 1.12 nonaka case SDHC_SPEC_VERS_100:
289 1.12 nonaka aprint_normal("1.0");
290 1.12 nonaka break;
291 1.12 nonaka
292 1.12 nonaka case SDHC_SPEC_VERS_200:
293 1.12 nonaka aprint_normal("2.0");
294 1.1 nonaka break;
295 1.1 nonaka
296 1.12 nonaka case SDHC_SPEC_VERS_300:
297 1.12 nonaka aprint_normal("3.0");
298 1.9 matt break;
299 1.9 matt
300 1.56 jmcneill case SDHC_SPEC_VERS_400:
301 1.56 jmcneill aprint_normal("4.0");
302 1.56 jmcneill break;
303 1.56 jmcneill
304 1.1 nonaka default:
305 1.12 nonaka aprint_normal("unknown version(0x%x)",
306 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
307 1.1 nonaka break;
308 1.1 nonaka }
309 1.58 jmcneill aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
310 1.1 nonaka
311 1.1 nonaka /*
312 1.3 uebayasi * Reset the host controller and enable interrupts.
313 1.1 nonaka */
314 1.1 nonaka (void)sdhc_host_reset(hp);
315 1.1 nonaka
316 1.1 nonaka /* Determine host capabilities. */
317 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
318 1.24 skrll caps = sc->sc_caps;
319 1.72 jmcneill caps2 = sc->sc_caps2;
320 1.24 skrll } else {
321 1.24 skrll caps = HREAD4(hp, SDHC_CAPABILITIES);
322 1.72 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
323 1.72 jmcneill caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
324 1.72 jmcneill } else {
325 1.72 jmcneill caps2 = 0;
326 1.72 jmcneill }
327 1.71 jmcneill }
328 1.1 nonaka
329 1.55 bouyer /*
330 1.55 bouyer * Use DMA if the host system and the controller support it.
331 1.55 bouyer * Suports integrated or external DMA egine, with or without
332 1.55 bouyer * SDHC_DMA_ENABLE in the command.
333 1.55 bouyer */
334 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
335 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
336 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
337 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
338 1.63 jmcneill
339 1.63 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
340 1.63 jmcneill ISSET(caps, SDHC_ADMA2_SUPP)) {
341 1.55 bouyer SET(hp->flags, SHF_MODE_DMAEN);
342 1.63 jmcneill /*
343 1.63 jmcneill * 64-bit mode was present in the 2.00 spec, removed
344 1.63 jmcneill * from 3.00, and re-added in 4.00 with a different
345 1.63 jmcneill * descriptor layout. We only support 2.00 and 3.00
346 1.63 jmcneill * descriptors for now.
347 1.63 jmcneill */
348 1.63 jmcneill if (hp->specver == SDHC_SPEC_VERS_200 &&
349 1.63 jmcneill ISSET(caps, SDHC_64BIT_SYS_BUS)) {
350 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_64);
351 1.63 jmcneill aprint_normal(", 64-bit ADMA2");
352 1.63 jmcneill } else {
353 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_32);
354 1.63 jmcneill aprint_normal(", 32-bit ADMA2");
355 1.63 jmcneill }
356 1.63 jmcneill } else {
357 1.63 jmcneill if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
358 1.63 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
359 1.63 jmcneill SET(hp->flags, SHF_MODE_DMAEN);
360 1.64 jmcneill if (sc->sc_vendor_transfer_data_dma) {
361 1.64 jmcneill aprint_normal(", platform DMA");
362 1.64 jmcneill } else {
363 1.64 jmcneill aprint_normal(", SDMA");
364 1.64 jmcneill }
365 1.63 jmcneill }
366 1.58 jmcneill } else {
367 1.58 jmcneill aprint_normal(", PIO");
368 1.1 nonaka }
369 1.1 nonaka
370 1.1 nonaka /*
371 1.1 nonaka * Determine the base clock frequency. (2.2.24)
372 1.1 nonaka */
373 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
374 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
375 1.30 matt } else {
376 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
377 1.30 matt }
378 1.56 jmcneill if (hp->clkbase == 0 ||
379 1.56 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
380 1.9 matt if (sc->sc_clkbase == 0) {
381 1.9 matt /* The attachment driver must tell us. */
382 1.12 nonaka aprint_error_dev(sc->sc_dev,
383 1.12 nonaka "unknown base clock frequency\n");
384 1.9 matt goto err;
385 1.9 matt }
386 1.9 matt hp->clkbase = sc->sc_clkbase;
387 1.9 matt }
388 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
389 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
390 1.1 nonaka aprint_error_dev(sc->sc_dev,
391 1.1 nonaka "base clock frequency out of range: %u MHz\n",
392 1.1 nonaka hp->clkbase / 1000);
393 1.1 nonaka goto err;
394 1.1 nonaka }
395 1.58 jmcneill aprint_normal(", %u kHz", hp->clkbase);
396 1.1 nonaka
397 1.1 nonaka /*
398 1.1 nonaka * XXX Set the data timeout counter value according to
399 1.1 nonaka * capabilities. (2.2.15)
400 1.1 nonaka */
401 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
402 1.29 matt #if 1
403 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
404 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
405 1.11 matt #endif
406 1.1 nonaka
407 1.58 jmcneill if (ISSET(caps, SDHC_EMBEDDED_SLOT))
408 1.58 jmcneill aprint_normal(", embedded slot");
409 1.58 jmcneill
410 1.1 nonaka /*
411 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
412 1.1 nonaka */
413 1.58 jmcneill aprint_normal(",");
414 1.66 jmcneill if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
415 1.66 jmcneill SET(hp->ocr, MMC_OCR_HCS);
416 1.71 jmcneill aprint_normal(" HS");
417 1.71 jmcneill }
418 1.71 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP)) {
419 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
420 1.71 jmcneill aprint_normal(" SDR50");
421 1.71 jmcneill }
422 1.76 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP)) {
423 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
424 1.76 jmcneill aprint_normal(" DDR50");
425 1.71 jmcneill }
426 1.76 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP)) {
427 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
428 1.76 jmcneill aprint_normal(" SDR104 HS200");
429 1.66 jmcneill }
430 1.71 jmcneill if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
431 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
432 1.58 jmcneill aprint_normal(" 1.8V");
433 1.11 matt }
434 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
435 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
436 1.58 jmcneill aprint_normal(" 3.0V");
437 1.11 matt }
438 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
439 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
440 1.58 jmcneill aprint_normal(" 3.3V");
441 1.11 matt }
442 1.1 nonaka
443 1.1 nonaka /*
444 1.1 nonaka * Determine the maximum block length supported by the host
445 1.1 nonaka * controller. (2.2.24)
446 1.1 nonaka */
447 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
448 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
449 1.1 nonaka hp->maxblklen = 512;
450 1.1 nonaka break;
451 1.1 nonaka
452 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
453 1.1 nonaka hp->maxblklen = 1024;
454 1.1 nonaka break;
455 1.1 nonaka
456 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
457 1.1 nonaka hp->maxblklen = 2048;
458 1.1 nonaka break;
459 1.1 nonaka
460 1.9 matt case SDHC_MAX_BLK_LEN_4096:
461 1.9 matt hp->maxblklen = 4096;
462 1.9 matt break;
463 1.9 matt
464 1.1 nonaka default:
465 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
466 1.1 nonaka goto err;
467 1.1 nonaka }
468 1.58 jmcneill aprint_normal(", %u byte blocks", hp->maxblklen);
469 1.58 jmcneill aprint_normal("\n");
470 1.1 nonaka
471 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
472 1.63 jmcneill int rseg;
473 1.63 jmcneill
474 1.63 jmcneill /* Allocate ADMA2 descriptor memory */
475 1.63 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
476 1.63 jmcneill PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
477 1.63 jmcneill if (error) {
478 1.63 jmcneill aprint_error_dev(sc->sc_dev,
479 1.63 jmcneill "ADMA2 dmamem_alloc failed (%d)\n", error);
480 1.63 jmcneill goto adma_done;
481 1.63 jmcneill }
482 1.63 jmcneill error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
483 1.63 jmcneill PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
484 1.63 jmcneill if (error) {
485 1.63 jmcneill aprint_error_dev(sc->sc_dev,
486 1.63 jmcneill "ADMA2 dmamem_map failed (%d)\n", error);
487 1.63 jmcneill goto adma_done;
488 1.63 jmcneill }
489 1.63 jmcneill error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
490 1.63 jmcneill 0, BUS_DMA_WAITOK, &hp->adma_map);
491 1.63 jmcneill if (error) {
492 1.63 jmcneill aprint_error_dev(sc->sc_dev,
493 1.63 jmcneill "ADMA2 dmamap_create failed (%d)\n", error);
494 1.63 jmcneill goto adma_done;
495 1.63 jmcneill }
496 1.63 jmcneill error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
497 1.63 jmcneill hp->adma2, PAGE_SIZE, NULL,
498 1.63 jmcneill BUS_DMA_WAITOK|BUS_DMA_WRITE);
499 1.63 jmcneill if (error) {
500 1.63 jmcneill aprint_error_dev(sc->sc_dev,
501 1.63 jmcneill "ADMA2 dmamap_load failed (%d)\n", error);
502 1.63 jmcneill goto adma_done;
503 1.63 jmcneill }
504 1.63 jmcneill
505 1.63 jmcneill memset(hp->adma2, 0, PAGE_SIZE);
506 1.63 jmcneill
507 1.63 jmcneill adma_done:
508 1.63 jmcneill if (error)
509 1.63 jmcneill CLR(hp->flags, SHF_USE_ADMA2_MASK);
510 1.63 jmcneill }
511 1.63 jmcneill
512 1.1 nonaka /*
513 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
514 1.1 nonaka * not invoke any chipset functions before it is attached.)
515 1.1 nonaka */
516 1.1 nonaka memset(&saa, 0, sizeof(saa));
517 1.1 nonaka saa.saa_busname = "sdmmc";
518 1.1 nonaka saa.saa_sct = &sdhc_functions;
519 1.1 nonaka saa.saa_sch = hp;
520 1.1 nonaka saa.saa_dmat = hp->dmat;
521 1.1 nonaka saa.saa_clkmax = hp->clkbase;
522 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
523 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
524 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
525 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
526 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
527 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
528 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
529 1.56 jmcneill else if (hp->specver >= SDHC_SPEC_VERS_300)
530 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
531 1.38 jakllsch else
532 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
533 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
534 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
535 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
536 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
537 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
538 1.76 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP))
539 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
540 1.76 jmcneill SMC_CAPS_UHS_SDR50 |
541 1.76 jmcneill SMC_CAPS_MMC_HS200;
542 1.76 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP))
543 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR50;
544 1.76 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP))
545 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_DDR50;
546 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
547 1.54 nonaka saa.saa_caps |= SMC_CAPS_DMA;
548 1.54 nonaka if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
549 1.54 nonaka saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
550 1.26 matt }
551 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
552 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
553 1.77 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
554 1.77 jmcneill saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
555 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
556 1.1 nonaka
557 1.1 nonaka return 0;
558 1.1 nonaka
559 1.1 nonaka err:
560 1.1 nonaka cv_destroy(&hp->intr_cv);
561 1.65 jmcneill mutex_destroy(&hp->intr_lock);
562 1.1 nonaka free(hp, M_DEVBUF);
563 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
564 1.1 nonaka err1:
565 1.1 nonaka return 1;
566 1.1 nonaka }
567 1.1 nonaka
568 1.7 nonaka int
569 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
570 1.7 nonaka {
571 1.36 jakllsch struct sdhc_host *hp;
572 1.7 nonaka int rv = 0;
573 1.7 nonaka
574 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
575 1.36 jakllsch hp = sc->sc_host[n];
576 1.36 jakllsch if (hp == NULL)
577 1.36 jakllsch continue;
578 1.36 jakllsch if (hp->sdmmc != NULL) {
579 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
580 1.36 jakllsch if (rv)
581 1.36 jakllsch break;
582 1.36 jakllsch hp->sdmmc = NULL;
583 1.36 jakllsch }
584 1.36 jakllsch /* disable interrupts */
585 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
586 1.78 mlelstv mutex_enter(&hp->intr_lock);
587 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
588 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
589 1.36 jakllsch } else {
590 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
591 1.36 jakllsch }
592 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
593 1.78 mlelstv mutex_exit(&hp->intr_lock);
594 1.36 jakllsch }
595 1.36 jakllsch cv_destroy(&hp->intr_cv);
596 1.65 jmcneill mutex_destroy(&hp->intr_lock);
597 1.36 jakllsch if (hp->ios > 0) {
598 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
599 1.36 jakllsch hp->ios = 0;
600 1.36 jakllsch }
601 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
602 1.63 jmcneill bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
603 1.63 jmcneill bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
604 1.63 jmcneill bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
605 1.63 jmcneill bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
606 1.63 jmcneill }
607 1.36 jakllsch free(hp, M_DEVBUF);
608 1.36 jakllsch sc->sc_host[n] = NULL;
609 1.36 jakllsch }
610 1.7 nonaka
611 1.7 nonaka return rv;
612 1.7 nonaka }
613 1.7 nonaka
614 1.1 nonaka bool
615 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
616 1.1 nonaka {
617 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
618 1.1 nonaka struct sdhc_host *hp;
619 1.12 nonaka size_t i;
620 1.1 nonaka
621 1.1 nonaka /* XXX poll for command completion or suspend command
622 1.1 nonaka * in progress */
623 1.1 nonaka
624 1.1 nonaka /* Save the host controller state. */
625 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
626 1.1 nonaka hp = sc->sc_host[n];
627 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
628 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
629 1.11 matt uint32_t v = HREAD4(hp, i);
630 1.12 nonaka hp->regs[i + 0] = (v >> 0);
631 1.12 nonaka hp->regs[i + 1] = (v >> 8);
632 1.13 bouyer if (i + 3 < sizeof hp->regs) {
633 1.13 bouyer hp->regs[i + 2] = (v >> 16);
634 1.13 bouyer hp->regs[i + 3] = (v >> 24);
635 1.13 bouyer }
636 1.11 matt }
637 1.11 matt } else {
638 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
639 1.11 matt hp->regs[i] = HREAD1(hp, i);
640 1.11 matt }
641 1.11 matt }
642 1.1 nonaka }
643 1.1 nonaka return true;
644 1.1 nonaka }
645 1.1 nonaka
646 1.1 nonaka bool
647 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
648 1.1 nonaka {
649 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
650 1.1 nonaka struct sdhc_host *hp;
651 1.12 nonaka size_t i;
652 1.1 nonaka
653 1.1 nonaka /* Restore the host controller state. */
654 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
655 1.1 nonaka hp = sc->sc_host[n];
656 1.1 nonaka (void)sdhc_host_reset(hp);
657 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
658 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
659 1.13 bouyer if (i + 3 < sizeof hp->regs) {
660 1.13 bouyer HWRITE4(hp, i,
661 1.13 bouyer (hp->regs[i + 0] << 0)
662 1.13 bouyer | (hp->regs[i + 1] << 8)
663 1.13 bouyer | (hp->regs[i + 2] << 16)
664 1.13 bouyer | (hp->regs[i + 3] << 24));
665 1.13 bouyer } else {
666 1.13 bouyer HWRITE4(hp, i,
667 1.13 bouyer (hp->regs[i + 0] << 0)
668 1.13 bouyer | (hp->regs[i + 1] << 8));
669 1.13 bouyer }
670 1.11 matt }
671 1.11 matt } else {
672 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
673 1.11 matt HWRITE1(hp, i, hp->regs[i]);
674 1.11 matt }
675 1.11 matt }
676 1.1 nonaka }
677 1.1 nonaka return true;
678 1.1 nonaka }
679 1.1 nonaka
680 1.1 nonaka bool
681 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
682 1.1 nonaka {
683 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
684 1.1 nonaka struct sdhc_host *hp;
685 1.1 nonaka
686 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
687 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
688 1.1 nonaka hp = sc->sc_host[i];
689 1.1 nonaka (void)sdhc_host_reset(hp);
690 1.1 nonaka }
691 1.1 nonaka return true;
692 1.1 nonaka }
693 1.1 nonaka
694 1.1 nonaka /*
695 1.1 nonaka * Reset the host controller. Called during initialization, when
696 1.1 nonaka * cards are removed, upon resume, and during error recovery.
697 1.1 nonaka */
698 1.1 nonaka static int
699 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
700 1.1 nonaka {
701 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
702 1.11 matt uint32_t sdhcimask;
703 1.1 nonaka int error;
704 1.1 nonaka
705 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
706 1.1 nonaka
707 1.1 nonaka /* Disable all interrupts. */
708 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
709 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
710 1.11 matt } else {
711 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
712 1.11 matt }
713 1.1 nonaka
714 1.1 nonaka /*
715 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
716 1.1 nonaka * the controller to clear the reset bit.
717 1.1 nonaka */
718 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
719 1.1 nonaka if (error)
720 1.1 nonaka goto out;
721 1.1 nonaka
722 1.1 nonaka /* Set data timeout counter value to max for now. */
723 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
724 1.29 matt #if 1
725 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
726 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
727 1.11 matt #endif
728 1.1 nonaka
729 1.1 nonaka /* Enable interrupts. */
730 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
731 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
732 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
733 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
734 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
735 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
736 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
737 1.11 matt sdhcimask ^=
738 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
739 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
740 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
741 1.11 matt } else {
742 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
743 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
744 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
745 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
746 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
747 1.11 matt }
748 1.1 nonaka
749 1.1 nonaka out:
750 1.1 nonaka return error;
751 1.1 nonaka }
752 1.1 nonaka
753 1.1 nonaka static int
754 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
755 1.1 nonaka {
756 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
757 1.1 nonaka int error;
758 1.1 nonaka
759 1.65 jmcneill mutex_enter(&hp->intr_lock);
760 1.1 nonaka error = sdhc_host_reset1(sch);
761 1.65 jmcneill mutex_exit(&hp->intr_lock);
762 1.1 nonaka
763 1.1 nonaka return error;
764 1.1 nonaka }
765 1.1 nonaka
766 1.1 nonaka static uint32_t
767 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
768 1.1 nonaka {
769 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
770 1.1 nonaka
771 1.1 nonaka return hp->ocr;
772 1.1 nonaka }
773 1.1 nonaka
774 1.1 nonaka static int
775 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
776 1.1 nonaka {
777 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
778 1.1 nonaka
779 1.1 nonaka return hp->maxblklen;
780 1.1 nonaka }
781 1.1 nonaka
782 1.1 nonaka /*
783 1.1 nonaka * Return non-zero if the card is currently inserted.
784 1.1 nonaka */
785 1.1 nonaka static int
786 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
787 1.1 nonaka {
788 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
789 1.1 nonaka int r;
790 1.1 nonaka
791 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
792 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
793 1.32 kiyohara
794 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
795 1.1 nonaka
796 1.11 matt return r ? 1 : 0;
797 1.1 nonaka }
798 1.1 nonaka
799 1.1 nonaka /*
800 1.1 nonaka * Return non-zero if the card is currently write-protected.
801 1.1 nonaka */
802 1.1 nonaka static int
803 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
804 1.1 nonaka {
805 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
806 1.1 nonaka int r;
807 1.1 nonaka
808 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
809 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
810 1.32 kiyohara
811 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
812 1.1 nonaka
813 1.12 nonaka return r ? 0 : 1;
814 1.1 nonaka }
815 1.1 nonaka
816 1.1 nonaka /*
817 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
818 1.1 nonaka * Return zero on success.
819 1.1 nonaka */
820 1.1 nonaka static int
821 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
822 1.1 nonaka {
823 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
824 1.1 nonaka uint8_t vdd;
825 1.1 nonaka int error = 0;
826 1.32 kiyohara const uint32_t pcmask =
827 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
828 1.1 nonaka
829 1.65 jmcneill mutex_enter(&hp->intr_lock);
830 1.1 nonaka
831 1.1 nonaka /*
832 1.1 nonaka * Disable bus power before voltage change.
833 1.1 nonaka */
834 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
835 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
836 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
837 1.1 nonaka
838 1.1 nonaka /* If power is disabled, reset the host and return now. */
839 1.1 nonaka if (ocr == 0) {
840 1.1 nonaka (void)sdhc_host_reset1(hp);
841 1.1 nonaka goto out;
842 1.1 nonaka }
843 1.1 nonaka
844 1.1 nonaka /*
845 1.1 nonaka * Select the lowest voltage according to capabilities.
846 1.1 nonaka */
847 1.1 nonaka ocr &= hp->ocr;
848 1.73 jmcneill if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
849 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
850 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
851 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
852 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
853 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
854 1.11 matt } else {
855 1.1 nonaka /* Unsupported voltage level requested. */
856 1.1 nonaka error = EINVAL;
857 1.1 nonaka goto out;
858 1.1 nonaka }
859 1.1 nonaka
860 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
861 1.11 matt /*
862 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
863 1.11 matt * voltage ramp until power rises.
864 1.11 matt */
865 1.57 jmcneill
866 1.57 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
867 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
868 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
869 1.57 jmcneill } else {
870 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
871 1.57 jmcneill HREAD1(hp, SDHC_POWER_CTL) & pcmask);
872 1.57 jmcneill sdmmc_delay(1);
873 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
874 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT));
875 1.57 jmcneill sdmmc_delay(1);
876 1.57 jmcneill HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
877 1.57 jmcneill sdmmc_delay(10000);
878 1.57 jmcneill }
879 1.1 nonaka
880 1.11 matt /*
881 1.11 matt * The host system may not power the bus due to battery low,
882 1.11 matt * etc. In that case, the host controller should clear the
883 1.11 matt * bus power bit.
884 1.11 matt */
885 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
886 1.11 matt error = ENXIO;
887 1.11 matt goto out;
888 1.11 matt }
889 1.1 nonaka }
890 1.1 nonaka
891 1.1 nonaka out:
892 1.65 jmcneill mutex_exit(&hp->intr_lock);
893 1.1 nonaka
894 1.1 nonaka return error;
895 1.1 nonaka }
896 1.1 nonaka
897 1.1 nonaka /*
898 1.1 nonaka * Return the smallest possible base clock frequency divisor value
899 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
900 1.1 nonaka */
901 1.11 matt static bool
902 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
903 1.1 nonaka {
904 1.11 matt u_int div;
905 1.1 nonaka
906 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
907 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
908 1.11 matt if ((hp->clkbase / div) <= freq) {
909 1.11 matt *divp = SDHC_SDCLK_CGM
910 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
911 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
912 1.18 jakllsch //freq = hp->clkbase / div;
913 1.11 matt return true;
914 1.11 matt }
915 1.11 matt }
916 1.11 matt /* No divisor found. */
917 1.11 matt return false;
918 1.11 matt }
919 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
920 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
921 1.11 matt u_int roundup = dvs & 1;
922 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
923 1.11 matt if (dvs + roundup <= 16) {
924 1.11 matt dvs += roundup - 1;
925 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
926 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
927 1.11 matt DPRINTF(2,
928 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
929 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
930 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
931 1.11 matt return true;
932 1.9 matt }
933 1.11 matt /*
934 1.11 matt * If we drop bits, we need to round up the divisor.
935 1.11 matt */
936 1.11 matt roundup |= dvs & 1;
937 1.9 matt }
938 1.18 jakllsch /* No divisor found. */
939 1.18 jakllsch return false;
940 1.38 jakllsch }
941 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
942 1.38 jakllsch div = howmany(hp->clkbase, freq);
943 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
944 1.38 jakllsch return false;
945 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
946 1.38 jakllsch //freq = hp->clkbase / div;
947 1.38 jakllsch return true;
948 1.38 jakllsch }
949 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
950 1.38 jakllsch div = howmany(hp->clkbase, freq);
951 1.50 mlelstv div = div > 1 ? howmany(div, 2) : 0;
952 1.38 jakllsch if (div > 0x3ff)
953 1.38 jakllsch return false;
954 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
955 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
956 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
957 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
958 1.67 mlelstv //freq = hp->clkbase / (div ? div * 2 : 1);
959 1.38 jakllsch return true;
960 1.9 matt } else {
961 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
962 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
963 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
964 1.38 jakllsch //freq = hp->clkbase / div;
965 1.38 jakllsch return true;
966 1.38 jakllsch }
967 1.38 jakllsch }
968 1.38 jakllsch /* No divisor found. */
969 1.38 jakllsch return false;
970 1.9 matt }
971 1.1 nonaka /* No divisor found. */
972 1.11 matt return false;
973 1.1 nonaka }
974 1.1 nonaka
975 1.1 nonaka /*
976 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
977 1.1 nonaka * Return zero on success.
978 1.1 nonaka */
979 1.1 nonaka static int
980 1.76 jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
981 1.1 nonaka {
982 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
983 1.11 matt u_int div;
984 1.11 matt u_int timo;
985 1.32 kiyohara int16_t reg;
986 1.1 nonaka int error = 0;
987 1.65 jmcneill bool present __diagused;
988 1.65 jmcneill
989 1.65 jmcneill mutex_enter(&hp->intr_lock);
990 1.65 jmcneill
991 1.2 cegger #ifdef DIAGNOSTIC
992 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
993 1.1 nonaka
994 1.1 nonaka /* Must not stop the clock if commands are in progress. */
995 1.12 nonaka if (present && sdhc_card_detect(hp)) {
996 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
997 1.26 matt "%s: command in progress\n", __func__);
998 1.12 nonaka }
999 1.1 nonaka #endif
1000 1.1 nonaka
1001 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
1002 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1003 1.34 matt if (error != 0)
1004 1.34 matt goto out;
1005 1.34 matt }
1006 1.34 matt
1007 1.1 nonaka /*
1008 1.1 nonaka * Stop SD clock before changing the frequency.
1009 1.1 nonaka */
1010 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1011 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1012 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
1013 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1014 1.11 matt goto out;
1015 1.11 matt }
1016 1.11 matt } else {
1017 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1018 1.11 matt if (freq == SDMMC_SDCLK_OFF)
1019 1.11 matt goto out;
1020 1.11 matt }
1021 1.1 nonaka
1022 1.71 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1023 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1024 1.71 jmcneill if (freq > 100000) {
1025 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1026 1.71 jmcneill } else if (freq > 50000) {
1027 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
1028 1.71 jmcneill } else if (freq > 25000) {
1029 1.76 jmcneill if (ddr) {
1030 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1031 1.76 jmcneill SDHC_UHS_MODE_SELECT_DDR50);
1032 1.76 jmcneill } else {
1033 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1034 1.76 jmcneill SDHC_UHS_MODE_SELECT_SDR25);
1035 1.76 jmcneill }
1036 1.74 jmcneill } else if (freq > 400) {
1037 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1038 1.71 jmcneill }
1039 1.71 jmcneill }
1040 1.71 jmcneill
1041 1.1 nonaka /*
1042 1.1 nonaka * Set the minimum base clock frequency divisor.
1043 1.1 nonaka */
1044 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
1045 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
1046 1.68 mlelstv aprint_error_dev(hp->sc->sc_dev,
1047 1.68 mlelstv "Invalid bus clock %d kHz\n", freq);
1048 1.1 nonaka error = EINVAL;
1049 1.1 nonaka goto out;
1050 1.1 nonaka }
1051 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1052 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
1053 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
1054 1.11 matt } else {
1055 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
1056 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1057 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1058 1.11 matt }
1059 1.1 nonaka
1060 1.1 nonaka /*
1061 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
1062 1.1 nonaka */
1063 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1064 1.11 matt sdmmc_delay(10000);
1065 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
1066 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1067 1.11 matt } else {
1068 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1069 1.11 matt for (timo = 1000; timo > 0; timo--) {
1070 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1071 1.12 nonaka SDHC_INTCLK_STABLE))
1072 1.11 matt break;
1073 1.11 matt sdmmc_delay(10);
1074 1.11 matt }
1075 1.11 matt if (timo == 0) {
1076 1.11 matt error = ETIMEDOUT;
1077 1.11 matt goto out;
1078 1.11 matt }
1079 1.1 nonaka }
1080 1.1 nonaka
1081 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1082 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1083 1.11 matt /*
1084 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
1085 1.11 matt * So delay for that time + slop and then
1086 1.11 matt * check a few times for completion.
1087 1.11 matt */
1088 1.11 matt sdmmc_delay(210);
1089 1.11 matt for (timo = 10; timo > 0; timo--) {
1090 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1091 1.11 matt SDHC_INIT_ACTIVE))
1092 1.11 matt break;
1093 1.11 matt sdmmc_delay(10);
1094 1.11 matt }
1095 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1096 1.12 nonaka
1097 1.11 matt /*
1098 1.11 matt * Enable SD clock.
1099 1.11 matt */
1100 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1101 1.11 matt } else {
1102 1.11 matt /*
1103 1.11 matt * Enable SD clock.
1104 1.11 matt */
1105 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1106 1.1 nonaka
1107 1.43 jmcneill if (freq > 25000 &&
1108 1.43 jmcneill !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1109 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1110 1.11 matt else
1111 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1112 1.11 matt }
1113 1.8 kiyohara
1114 1.1 nonaka out:
1115 1.65 jmcneill mutex_exit(&hp->intr_lock);
1116 1.1 nonaka
1117 1.1 nonaka return error;
1118 1.1 nonaka }
1119 1.1 nonaka
1120 1.1 nonaka static int
1121 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1122 1.1 nonaka {
1123 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1124 1.1 nonaka int reg;
1125 1.1 nonaka
1126 1.1 nonaka switch (width) {
1127 1.1 nonaka case 1:
1128 1.1 nonaka case 4:
1129 1.1 nonaka break;
1130 1.1 nonaka
1131 1.11 matt case 8:
1132 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1133 1.11 matt break;
1134 1.11 matt /* FALLTHROUGH */
1135 1.1 nonaka default:
1136 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
1137 1.1 nonaka HDEVNAME(hp), width));
1138 1.1 nonaka return 1;
1139 1.1 nonaka }
1140 1.1 nonaka
1141 1.65 jmcneill mutex_enter(&hp->intr_lock);
1142 1.65 jmcneill
1143 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
1144 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1145 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1146 1.11 matt if (width == 4)
1147 1.11 matt reg |= SDHC_4BIT_MODE;
1148 1.11 matt else if (width == 8)
1149 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
1150 1.11 matt } else {
1151 1.11 matt reg &= ~SDHC_4BIT_MODE;
1152 1.59 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1153 1.59 jmcneill reg &= ~SDHC_8BIT_MODE;
1154 1.59 jmcneill }
1155 1.59 jmcneill if (width == 4) {
1156 1.11 matt reg |= SDHC_4BIT_MODE;
1157 1.59 jmcneill } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1158 1.59 jmcneill reg |= SDHC_8BIT_MODE;
1159 1.59 jmcneill }
1160 1.11 matt }
1161 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
1162 1.65 jmcneill
1163 1.65 jmcneill mutex_exit(&hp->intr_lock);
1164 1.1 nonaka
1165 1.1 nonaka return 0;
1166 1.1 nonaka }
1167 1.1 nonaka
1168 1.8 kiyohara static int
1169 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1170 1.8 kiyohara {
1171 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1172 1.32 kiyohara
1173 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1174 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1175 1.8 kiyohara
1176 1.8 kiyohara return 0;
1177 1.8 kiyohara }
1178 1.8 kiyohara
1179 1.1 nonaka static void
1180 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1181 1.1 nonaka {
1182 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1183 1.1 nonaka
1184 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1185 1.65 jmcneill mutex_enter(&hp->intr_lock);
1186 1.11 matt if (enable) {
1187 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1188 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1189 1.11 matt } else {
1190 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1191 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1192 1.11 matt }
1193 1.65 jmcneill mutex_exit(&hp->intr_lock);
1194 1.1 nonaka }
1195 1.1 nonaka }
1196 1.1 nonaka
1197 1.47 skrll static void
1198 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1199 1.1 nonaka {
1200 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1201 1.1 nonaka
1202 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1203 1.65 jmcneill mutex_enter(&hp->intr_lock);
1204 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1205 1.65 jmcneill mutex_exit(&hp->intr_lock);
1206 1.11 matt }
1207 1.1 nonaka }
1208 1.1 nonaka
1209 1.1 nonaka static int
1210 1.71 jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1211 1.71 jmcneill {
1212 1.71 jmcneill struct sdhc_host *hp = (struct sdhc_host *)sch;
1213 1.71 jmcneill
1214 1.78 mlelstv mutex_enter(&hp->intr_lock);
1215 1.71 jmcneill switch (signal_voltage) {
1216 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_180:
1217 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1218 1.71 jmcneill break;
1219 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_330:
1220 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1221 1.71 jmcneill break;
1222 1.71 jmcneill default:
1223 1.71 jmcneill return EINVAL;
1224 1.71 jmcneill }
1225 1.78 mlelstv mutex_exit(&hp->intr_lock);
1226 1.71 jmcneill
1227 1.71 jmcneill return 0;
1228 1.71 jmcneill }
1229 1.71 jmcneill
1230 1.71 jmcneill static int
1231 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1232 1.1 nonaka {
1233 1.1 nonaka uint32_t state;
1234 1.1 nonaka int timeout;
1235 1.1 nonaka
1236 1.65 jmcneill for (timeout = 10000; timeout > 0; timeout--) {
1237 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1238 1.1 nonaka return 0;
1239 1.65 jmcneill sdmmc_delay(10);
1240 1.1 nonaka }
1241 1.75 mlelstv aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1242 1.75 mlelstv mask, value, state);
1243 1.1 nonaka return ETIMEDOUT;
1244 1.1 nonaka }
1245 1.1 nonaka
1246 1.1 nonaka static void
1247 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1248 1.1 nonaka {
1249 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1250 1.1 nonaka int error;
1251 1.1 nonaka
1252 1.65 jmcneill mutex_enter(&hp->intr_lock);
1253 1.65 jmcneill
1254 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1255 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1256 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1257 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1258 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1259 1.11 matt } else {
1260 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1261 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1262 1.47 skrll }
1263 1.11 matt }
1264 1.11 matt
1265 1.61 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1266 1.61 jmcneill const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1267 1.61 jmcneill if (cmd->c_data != NULL) {
1268 1.61 jmcneill HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1269 1.61 jmcneill HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1270 1.61 jmcneill } else {
1271 1.61 jmcneill HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1272 1.61 jmcneill HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1273 1.61 jmcneill }
1274 1.61 jmcneill }
1275 1.61 jmcneill
1276 1.1 nonaka /*
1277 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1278 1.1 nonaka */
1279 1.1 nonaka error = sdhc_start_command(hp, cmd);
1280 1.1 nonaka if (error) {
1281 1.1 nonaka cmd->c_error = error;
1282 1.1 nonaka goto out;
1283 1.1 nonaka }
1284 1.1 nonaka
1285 1.1 nonaka /*
1286 1.1 nonaka * Wait until the command phase is done, or until the command
1287 1.1 nonaka * is marked done for any other reason.
1288 1.1 nonaka */
1289 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1290 1.1 nonaka cmd->c_error = ETIMEDOUT;
1291 1.1 nonaka goto out;
1292 1.1 nonaka }
1293 1.1 nonaka
1294 1.1 nonaka /*
1295 1.1 nonaka * The host controller removes bits [0:7] from the response
1296 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1297 1.1 nonaka * driver (without padding).
1298 1.1 nonaka */
1299 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1300 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1301 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1302 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1303 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1304 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1305 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1306 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1307 1.32 kiyohara (cmd->c_resp[1] << 24);
1308 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1309 1.32 kiyohara (cmd->c_resp[2] << 24);
1310 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1311 1.32 kiyohara (cmd->c_resp[3] << 24);
1312 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1313 1.32 kiyohara }
1314 1.1 nonaka }
1315 1.1 nonaka }
1316 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1317 1.1 nonaka
1318 1.1 nonaka /*
1319 1.1 nonaka * If the command has data to transfer in any direction,
1320 1.1 nonaka * execute the transfer now.
1321 1.1 nonaka */
1322 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1323 1.1 nonaka sdhc_transfer_data(hp, cmd);
1324 1.42 jakllsch else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1325 1.42 jakllsch if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1326 1.42 jakllsch cmd->c_error = ETIMEDOUT;
1327 1.42 jakllsch goto out;
1328 1.42 jakllsch }
1329 1.42 jakllsch }
1330 1.1 nonaka
1331 1.1 nonaka out:
1332 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1333 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1334 1.11 matt /* Turn off the LED. */
1335 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1336 1.11 matt }
1337 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1338 1.1 nonaka
1339 1.65 jmcneill mutex_exit(&hp->intr_lock);
1340 1.65 jmcneill
1341 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1342 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1343 1.1 nonaka cmd->c_flags, cmd->c_error));
1344 1.1 nonaka }
1345 1.1 nonaka
1346 1.1 nonaka static int
1347 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1348 1.1 nonaka {
1349 1.11 matt struct sdhc_softc * const sc = hp->sc;
1350 1.1 nonaka uint16_t blksize = 0;
1351 1.1 nonaka uint16_t blkcount = 0;
1352 1.1 nonaka uint16_t mode;
1353 1.1 nonaka uint16_t command;
1354 1.1 nonaka int error;
1355 1.1 nonaka
1356 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1357 1.65 jmcneill
1358 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1359 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1360 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1361 1.1 nonaka
1362 1.1 nonaka /*
1363 1.1 nonaka * The maximum block length for commands should be the minimum
1364 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1365 1.1 nonaka */
1366 1.1 nonaka
1367 1.1 nonaka /* Fragment the data into proper blocks. */
1368 1.1 nonaka if (cmd->c_datalen > 0) {
1369 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1370 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1371 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1372 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1373 1.11 matt aprint_error_dev(sc->sc_dev,
1374 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1375 1.1 nonaka return EINVAL;
1376 1.1 nonaka }
1377 1.1 nonaka }
1378 1.1 nonaka
1379 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1380 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1381 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1382 1.1 nonaka return EINVAL;
1383 1.1 nonaka }
1384 1.1 nonaka
1385 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1386 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1387 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1388 1.1 nonaka mode |= SDHC_READ_MODE;
1389 1.15 jakllsch if (blkcount > 1) {
1390 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1391 1.15 jakllsch /* XXX only for memory commands? */
1392 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1393 1.1 nonaka }
1394 1.45 jakllsch if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1395 1.55 bouyer ISSET(hp->flags, SHF_MODE_DMAEN)) {
1396 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1397 1.7 nonaka }
1398 1.1 nonaka
1399 1.1 nonaka /*
1400 1.1 nonaka * Prepare command register value. (2.2.6)
1401 1.1 nonaka */
1402 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1403 1.1 nonaka
1404 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1405 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1406 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1407 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1408 1.1 nonaka if (cmd->c_data != NULL)
1409 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1410 1.1 nonaka
1411 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1412 1.1 nonaka command |= SDHC_NO_RESPONSE;
1413 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1414 1.1 nonaka command |= SDHC_RESP_LEN_136;
1415 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1416 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1417 1.1 nonaka else
1418 1.1 nonaka command |= SDHC_RESP_LEN_48;
1419 1.1 nonaka
1420 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1421 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1422 1.68 mlelstv if (error) {
1423 1.68 mlelstv aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
1424 1.1 nonaka return error;
1425 1.68 mlelstv }
1426 1.1 nonaka
1427 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1428 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1429 1.1 nonaka
1430 1.44 hkenken if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1431 1.44 hkenken blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1432 1.44 hkenken SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1433 1.44 hkenken }
1434 1.19 jakllsch
1435 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1436 1.11 matt /* Alert the user not to remove the card. */
1437 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1438 1.11 matt }
1439 1.1 nonaka
1440 1.7 nonaka /* Set DMA start address. */
1441 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
1442 1.63 jmcneill for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1443 1.69 jmcneill bus_addr_t paddr =
1444 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_addr;
1445 1.63 jmcneill uint16_t len =
1446 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1447 1.63 jmcneill 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1448 1.63 jmcneill uint16_t attr =
1449 1.63 jmcneill SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1450 1.63 jmcneill if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1451 1.63 jmcneill attr |= SDHC_ADMA2_END;
1452 1.63 jmcneill }
1453 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1454 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc =
1455 1.63 jmcneill hp->adma2;
1456 1.63 jmcneill desc[seg].attribute = htole16(attr);
1457 1.63 jmcneill desc[seg].length = htole16(len);
1458 1.63 jmcneill desc[seg].address = htole32(paddr);
1459 1.63 jmcneill } else {
1460 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc =
1461 1.63 jmcneill hp->adma2;
1462 1.63 jmcneill desc[seg].attribute = htole16(attr);
1463 1.63 jmcneill desc[seg].length = htole16(len);
1464 1.63 jmcneill desc[seg].address = htole32(paddr & 0xffffffff);
1465 1.63 jmcneill desc[seg].address_hi = htole32(
1466 1.63 jmcneill (uint64_t)paddr >> 32);
1467 1.63 jmcneill }
1468 1.63 jmcneill }
1469 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1470 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1471 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1472 1.63 jmcneill } else {
1473 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1474 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1475 1.63 jmcneill }
1476 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1477 1.63 jmcneill BUS_DMASYNC_PREWRITE);
1478 1.63 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1479 1.63 jmcneill HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1480 1.63 jmcneill
1481 1.70 jmcneill const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1482 1.63 jmcneill
1483 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1484 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1485 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1486 1.63 jmcneill (uint64_t)desc_addr >> 32);
1487 1.63 jmcneill }
1488 1.63 jmcneill } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1489 1.63 jmcneill !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1490 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1491 1.63 jmcneill }
1492 1.7 nonaka
1493 1.1 nonaka /*
1494 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1495 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1496 1.1 nonaka */
1497 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1498 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1499 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1500 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1501 1.11 matt } else {
1502 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1503 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1504 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1505 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1506 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1507 1.11 matt }
1508 1.1 nonaka
1509 1.1 nonaka return 0;
1510 1.1 nonaka }
1511 1.1 nonaka
1512 1.1 nonaka static void
1513 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1514 1.1 nonaka {
1515 1.51 jmcneill struct sdhc_softc *sc = hp->sc;
1516 1.1 nonaka int error;
1517 1.1 nonaka
1518 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1519 1.65 jmcneill
1520 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1521 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1522 1.1 nonaka
1523 1.1 nonaka #ifdef SDHC_DEBUG
1524 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1525 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1526 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1527 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1528 1.1 nonaka "CMD52/53 error response flags %#x\n",
1529 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1530 1.1 nonaka }
1531 1.1 nonaka #endif
1532 1.1 nonaka
1533 1.47 skrll if (cmd->c_dmamap != NULL) {
1534 1.47 skrll if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1535 1.51 jmcneill error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1536 1.47 skrll if (error == 0 && !sdhc_wait_intr(hp,
1537 1.61 jmcneill SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1538 1.47 skrll error = ETIMEDOUT;
1539 1.47 skrll }
1540 1.47 skrll } else {
1541 1.47 skrll error = sdhc_transfer_data_dma(hp, cmd);
1542 1.47 skrll }
1543 1.47 skrll } else
1544 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1545 1.1 nonaka if (error)
1546 1.1 nonaka cmd->c_error = error;
1547 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1548 1.1 nonaka
1549 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1550 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1551 1.1 nonaka }
1552 1.1 nonaka
1553 1.1 nonaka static int
1554 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1555 1.7 nonaka {
1556 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1557 1.19 jakllsch bus_addr_t posaddr;
1558 1.19 jakllsch bus_addr_t segaddr;
1559 1.19 jakllsch bus_size_t seglen;
1560 1.19 jakllsch u_int seg = 0;
1561 1.7 nonaka int error = 0;
1562 1.19 jakllsch int status;
1563 1.7 nonaka
1564 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1565 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1566 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1567 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1568 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1569 1.11 matt
1570 1.7 nonaka for (;;) {
1571 1.19 jakllsch status = sdhc_wait_intr(hp,
1572 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1573 1.19 jakllsch SDHC_DMA_TIMEOUT);
1574 1.19 jakllsch
1575 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1576 1.19 jakllsch break;
1577 1.19 jakllsch }
1578 1.19 jakllsch if (!status) {
1579 1.7 nonaka error = ETIMEDOUT;
1580 1.7 nonaka break;
1581 1.7 nonaka }
1582 1.63 jmcneill
1583 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1584 1.63 jmcneill continue;
1585 1.63 jmcneill }
1586 1.63 jmcneill
1587 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1588 1.19 jakllsch continue;
1589 1.19 jakllsch }
1590 1.19 jakllsch
1591 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1592 1.7 nonaka
1593 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1594 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1595 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1596 1.7 nonaka
1597 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1598 1.37 jakllsch continue;
1599 1.19 jakllsch }
1600 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1601 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1602 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1603 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1604 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1605 1.7 nonaka }
1606 1.7 nonaka
1607 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1608 1.63 jmcneill bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1609 1.63 jmcneill PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1610 1.63 jmcneill }
1611 1.63 jmcneill
1612 1.7 nonaka return error;
1613 1.7 nonaka }
1614 1.7 nonaka
1615 1.7 nonaka static int
1616 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1617 1.1 nonaka {
1618 1.1 nonaka uint8_t *data = cmd->c_data;
1619 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1620 1.11 matt u_int len, datalen;
1621 1.11 matt u_int imask;
1622 1.11 matt u_int pmask;
1623 1.1 nonaka int error = 0;
1624 1.1 nonaka
1625 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
1626 1.78 mlelstv
1627 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1628 1.11 matt imask = SDHC_BUFFER_READ_READY;
1629 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1630 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1631 1.11 matt pio_func = esdhc_read_data_pio;
1632 1.11 matt } else {
1633 1.11 matt pio_func = sdhc_read_data_pio;
1634 1.11 matt }
1635 1.11 matt } else {
1636 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1637 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1638 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1639 1.11 matt pio_func = esdhc_write_data_pio;
1640 1.11 matt } else {
1641 1.11 matt pio_func = sdhc_write_data_pio;
1642 1.11 matt }
1643 1.11 matt }
1644 1.1 nonaka datalen = cmd->c_datalen;
1645 1.1 nonaka
1646 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1647 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1648 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1649 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1650 1.11 matt
1651 1.1 nonaka while (datalen > 0) {
1652 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1653 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1654 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1655 1.11 matt } else {
1656 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1657 1.11 matt }
1658 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1659 1.11 matt error = ETIMEDOUT;
1660 1.11 matt break;
1661 1.11 matt }
1662 1.11 matt
1663 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1664 1.11 matt if (error)
1665 1.11 matt break;
1666 1.1 nonaka }
1667 1.1 nonaka
1668 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1669 1.11 matt (*pio_func)(hp, data, len);
1670 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1671 1.11 matt HDEVNAME(hp), len, data));
1672 1.1 nonaka
1673 1.1 nonaka data += len;
1674 1.1 nonaka datalen -= len;
1675 1.1 nonaka }
1676 1.1 nonaka
1677 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1678 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1679 1.1 nonaka error = ETIMEDOUT;
1680 1.1 nonaka
1681 1.1 nonaka return error;
1682 1.1 nonaka }
1683 1.1 nonaka
1684 1.1 nonaka static void
1685 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1686 1.1 nonaka {
1687 1.1 nonaka
1688 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1689 1.1 nonaka while (datalen > 3) {
1690 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1691 1.1 nonaka data += 4;
1692 1.1 nonaka datalen -= 4;
1693 1.1 nonaka }
1694 1.1 nonaka if (datalen > 1) {
1695 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1696 1.1 nonaka data += 2;
1697 1.1 nonaka datalen -= 2;
1698 1.1 nonaka }
1699 1.1 nonaka if (datalen > 0) {
1700 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1701 1.1 nonaka data += 1;
1702 1.1 nonaka datalen -= 1;
1703 1.1 nonaka }
1704 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1705 1.1 nonaka while (datalen > 1) {
1706 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1707 1.1 nonaka data += 2;
1708 1.1 nonaka datalen -= 2;
1709 1.1 nonaka }
1710 1.1 nonaka if (datalen > 0) {
1711 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1712 1.1 nonaka data += 1;
1713 1.1 nonaka datalen -= 1;
1714 1.1 nonaka }
1715 1.1 nonaka } else {
1716 1.1 nonaka while (datalen > 0) {
1717 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1718 1.1 nonaka data += 1;
1719 1.1 nonaka datalen -= 1;
1720 1.1 nonaka }
1721 1.1 nonaka }
1722 1.1 nonaka }
1723 1.1 nonaka
1724 1.1 nonaka static void
1725 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1726 1.1 nonaka {
1727 1.1 nonaka
1728 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1729 1.1 nonaka while (datalen > 3) {
1730 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1731 1.1 nonaka data += 4;
1732 1.1 nonaka datalen -= 4;
1733 1.1 nonaka }
1734 1.1 nonaka if (datalen > 1) {
1735 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1736 1.1 nonaka data += 2;
1737 1.1 nonaka datalen -= 2;
1738 1.1 nonaka }
1739 1.1 nonaka if (datalen > 0) {
1740 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1741 1.1 nonaka data += 1;
1742 1.1 nonaka datalen -= 1;
1743 1.1 nonaka }
1744 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1745 1.1 nonaka while (datalen > 1) {
1746 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1747 1.1 nonaka data += 2;
1748 1.1 nonaka datalen -= 2;
1749 1.1 nonaka }
1750 1.1 nonaka if (datalen > 0) {
1751 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1752 1.1 nonaka data += 1;
1753 1.1 nonaka datalen -= 1;
1754 1.1 nonaka }
1755 1.1 nonaka } else {
1756 1.1 nonaka while (datalen > 0) {
1757 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1758 1.1 nonaka data += 1;
1759 1.1 nonaka datalen -= 1;
1760 1.1 nonaka }
1761 1.1 nonaka }
1762 1.1 nonaka }
1763 1.1 nonaka
1764 1.11 matt static void
1765 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1766 1.11 matt {
1767 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1768 1.12 nonaka uint32_t v;
1769 1.12 nonaka
1770 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1771 1.23 matt size_t count = 0;
1772 1.23 matt
1773 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1774 1.23 matt if (count == 0) {
1775 1.23 matt /*
1776 1.23 matt * If we've drained "watermark" words, we need to wait
1777 1.23 matt * a little bit so the read FIFO can refill.
1778 1.23 matt */
1779 1.23 matt sdmmc_delay(10);
1780 1.23 matt count = watermark;
1781 1.23 matt }
1782 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1783 1.11 matt v = le32toh(v);
1784 1.11 matt *(uint32_t *)data = v;
1785 1.11 matt data += 4;
1786 1.11 matt datalen -= 4;
1787 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1788 1.23 matt count--;
1789 1.11 matt }
1790 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1791 1.23 matt if (count == 0) {
1792 1.23 matt sdmmc_delay(10);
1793 1.23 matt }
1794 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1795 1.11 matt v = le32toh(v);
1796 1.11 matt do {
1797 1.11 matt *data++ = v;
1798 1.11 matt v >>= 8;
1799 1.11 matt } while (--datalen > 0);
1800 1.11 matt }
1801 1.11 matt }
1802 1.11 matt
1803 1.11 matt static void
1804 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1805 1.11 matt {
1806 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1807 1.12 nonaka uint32_t v;
1808 1.12 nonaka
1809 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1810 1.23 matt size_t count = watermark;
1811 1.23 matt
1812 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1813 1.23 matt if (count == 0) {
1814 1.23 matt sdmmc_delay(10);
1815 1.23 matt count = watermark;
1816 1.23 matt }
1817 1.12 nonaka v = *(uint32_t *)data;
1818 1.11 matt v = htole32(v);
1819 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1820 1.11 matt data += 4;
1821 1.11 matt datalen -= 4;
1822 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1823 1.23 matt count--;
1824 1.11 matt }
1825 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1826 1.23 matt if (count == 0) {
1827 1.23 matt sdmmc_delay(10);
1828 1.23 matt }
1829 1.12 nonaka v = *(uint32_t *)data;
1830 1.11 matt v = htole32(v);
1831 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1832 1.11 matt }
1833 1.11 matt }
1834 1.11 matt
1835 1.1 nonaka /* Prepare for another command. */
1836 1.1 nonaka static int
1837 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1838 1.1 nonaka {
1839 1.1 nonaka int timo;
1840 1.1 nonaka
1841 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
1842 1.78 mlelstv
1843 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1844 1.1 nonaka
1845 1.35 riastrad /* Request the reset. */
1846 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1847 1.35 riastrad
1848 1.35 riastrad /*
1849 1.35 riastrad * If necessary, wait for the controller to set the bits to
1850 1.35 riastrad * acknowledge the reset.
1851 1.35 riastrad */
1852 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1853 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1854 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
1855 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1856 1.35 riastrad break;
1857 1.35 riastrad /* Short delay because I worry we may miss it... */
1858 1.35 riastrad sdmmc_delay(1);
1859 1.35 riastrad }
1860 1.35 riastrad if (timo == 0)
1861 1.35 riastrad return ETIMEDOUT;
1862 1.35 riastrad }
1863 1.35 riastrad
1864 1.35 riastrad /*
1865 1.35 riastrad * Wait for the controller to clear the bits to indicate that
1866 1.35 riastrad * the reset has completed.
1867 1.35 riastrad */
1868 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1869 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1870 1.1 nonaka break;
1871 1.1 nonaka sdmmc_delay(10000);
1872 1.1 nonaka }
1873 1.1 nonaka if (timo == 0) {
1874 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1875 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1876 1.1 nonaka return ETIMEDOUT;
1877 1.1 nonaka }
1878 1.1 nonaka
1879 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1880 1.53 nonaka HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1881 1.11 matt }
1882 1.11 matt
1883 1.1 nonaka return 0;
1884 1.1 nonaka }
1885 1.1 nonaka
1886 1.1 nonaka static int
1887 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1888 1.1 nonaka {
1889 1.1 nonaka int status;
1890 1.1 nonaka
1891 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1892 1.65 jmcneill
1893 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1894 1.1 nonaka
1895 1.1 nonaka status = hp->intr_status & mask;
1896 1.1 nonaka while (status == 0) {
1897 1.65 jmcneill if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
1898 1.1 nonaka == EWOULDBLOCK) {
1899 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1900 1.1 nonaka break;
1901 1.1 nonaka }
1902 1.1 nonaka status = hp->intr_status & mask;
1903 1.1 nonaka }
1904 1.1 nonaka hp->intr_status &= ~status;
1905 1.1 nonaka
1906 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1907 1.1 nonaka hp->intr_error_status));
1908 1.47 skrll
1909 1.1 nonaka /* Command timeout has higher priority than command complete. */
1910 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1911 1.1 nonaka hp->intr_error_status = 0;
1912 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1913 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1914 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1915 1.11 matt }
1916 1.1 nonaka status = 0;
1917 1.1 nonaka }
1918 1.1 nonaka
1919 1.1 nonaka return status;
1920 1.1 nonaka }
1921 1.1 nonaka
1922 1.1 nonaka /*
1923 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
1924 1.1 nonaka */
1925 1.1 nonaka int
1926 1.1 nonaka sdhc_intr(void *arg)
1927 1.1 nonaka {
1928 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1929 1.1 nonaka struct sdhc_host *hp;
1930 1.1 nonaka int done = 0;
1931 1.1 nonaka uint16_t status;
1932 1.1 nonaka uint16_t error;
1933 1.1 nonaka
1934 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
1935 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
1936 1.1 nonaka hp = sc->sc_host[host];
1937 1.1 nonaka if (hp == NULL)
1938 1.1 nonaka continue;
1939 1.1 nonaka
1940 1.65 jmcneill mutex_enter(&hp->intr_lock);
1941 1.65 jmcneill
1942 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1943 1.11 matt /* Find out which interrupts are pending. */
1944 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1945 1.11 matt status = xstatus;
1946 1.11 matt error = xstatus >> 16;
1947 1.22 matt if (error)
1948 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
1949 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1950 1.65 jmcneill goto next_port; /* no interrupt for us */
1951 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1952 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1953 1.11 matt } else {
1954 1.11 matt /* Find out which interrupts are pending. */
1955 1.11 matt error = 0;
1956 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1957 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1958 1.65 jmcneill goto next_port; /* no interrupt for us */
1959 1.11 matt /* Acknowledge the interrupts we are about to handle. */
1960 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
1961 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1962 1.11 matt /* Acknowledge error interrupts. */
1963 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
1964 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
1965 1.11 matt }
1966 1.11 matt }
1967 1.47 skrll
1968 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1969 1.11 matt status, error));
1970 1.1 nonaka
1971 1.1 nonaka /* Claim this interrupt. */
1972 1.1 nonaka done = 1;
1973 1.1 nonaka
1974 1.63 jmcneill if (ISSET(error, SDHC_ADMA_ERROR)) {
1975 1.63 jmcneill uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
1976 1.63 jmcneill printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
1977 1.63 jmcneill adma_err);
1978 1.63 jmcneill }
1979 1.63 jmcneill
1980 1.1 nonaka /*
1981 1.1 nonaka * Service error interrupts.
1982 1.1 nonaka */
1983 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1984 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
1985 1.11 matt hp->intr_error_status |= error;
1986 1.11 matt hp->intr_status |= status;
1987 1.11 matt cv_broadcast(&hp->intr_cv);
1988 1.1 nonaka }
1989 1.1 nonaka
1990 1.1 nonaka /*
1991 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
1992 1.1 nonaka */
1993 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1994 1.46 jakllsch if (hp->sdmmc != NULL) {
1995 1.46 jakllsch sdmmc_needs_discover(hp->sdmmc);
1996 1.46 jakllsch }
1997 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1998 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
1999 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2000 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2001 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2002 1.11 matt }
2003 1.9 matt }
2004 1.1 nonaka
2005 1.1 nonaka /*
2006 1.1 nonaka * Wake up the blocking process to service command
2007 1.1 nonaka * related interrupt(s).
2008 1.1 nonaka */
2009 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
2010 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2011 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2012 1.1 nonaka hp->intr_status |= status;
2013 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2014 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2015 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2016 1.11 matt }
2017 1.1 nonaka cv_broadcast(&hp->intr_cv);
2018 1.1 nonaka }
2019 1.1 nonaka
2020 1.1 nonaka /*
2021 1.1 nonaka * Service SD card interrupts.
2022 1.1 nonaka */
2023 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
2024 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
2025 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2026 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2027 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
2028 1.1 nonaka }
2029 1.65 jmcneill next_port:
2030 1.65 jmcneill mutex_exit(&hp->intr_lock);
2031 1.1 nonaka }
2032 1.1 nonaka
2033 1.1 nonaka return done;
2034 1.1 nonaka }
2035 1.1 nonaka
2036 1.65 jmcneill kmutex_t *
2037 1.65 jmcneill sdhc_host_lock(struct sdhc_host *hp)
2038 1.65 jmcneill {
2039 1.65 jmcneill return &hp->intr_lock;
2040 1.65 jmcneill }
2041 1.65 jmcneill
2042 1.1 nonaka #ifdef SDHC_DEBUG
2043 1.1 nonaka void
2044 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
2045 1.1 nonaka {
2046 1.1 nonaka
2047 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2048 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
2049 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2050 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2051 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
2052 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2053 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
2054 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2055 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
2056 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2057 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
2058 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2059 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
2060 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2061 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2062 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2063 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2064 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2065 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
2066 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2067 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
2068 1.1 nonaka }
2069 1.1 nonaka #endif
2070