Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.79
      1  1.79  jmcneill /*	$NetBSD: sdhc.c,v 1.79 2015/08/05 10:30:25 jmcneill Exp $	*/
      2   1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3   1.1    nonaka 
      4   1.1    nonaka /*
      5   1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6   1.1    nonaka  *
      7   1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10   1.1    nonaka  *
     11   1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    nonaka  */
     19   1.1    nonaka 
     20   1.1    nonaka /*
     21   1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22   1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23   1.1    nonaka  */
     24   1.1    nonaka 
     25   1.1    nonaka #include <sys/cdefs.h>
     26  1.79  jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.79 2015/08/05 10:30:25 jmcneill Exp $");
     27  1.10    nonaka 
     28  1.10    nonaka #ifdef _KERNEL_OPT
     29  1.10    nonaka #include "opt_sdmmc.h"
     30  1.10    nonaka #endif
     31   1.1    nonaka 
     32   1.1    nonaka #include <sys/param.h>
     33   1.1    nonaka #include <sys/device.h>
     34   1.1    nonaka #include <sys/kernel.h>
     35   1.1    nonaka #include <sys/malloc.h>
     36   1.1    nonaka #include <sys/systm.h>
     37   1.1    nonaka #include <sys/mutex.h>
     38   1.1    nonaka #include <sys/condvar.h>
     39   1.1    nonaka 
     40   1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     41   1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     42   1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     43   1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     44   1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     45   1.1    nonaka 
     46   1.1    nonaka #ifdef SDHC_DEBUG
     47   1.1    nonaka int sdhcdebug = 1;
     48   1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     49   1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     50   1.1    nonaka #else
     51   1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     52   1.1    nonaka #endif
     53   1.1    nonaka 
     54   1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     55   1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     56   1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     57  1.61  jmcneill #define SDHC_DMA_TIMEOUT	(hz*3)
     58  1.79  jmcneill #define SDHC_TUNING_TIMEOUT	hz
     59   1.1    nonaka 
     60   1.1    nonaka struct sdhc_host {
     61   1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     62   1.1    nonaka 
     63   1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     64   1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     65  1.36  jakllsch 	bus_size_t ios;			/* host register space size */
     66   1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     67   1.1    nonaka 
     68   1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     69   1.1    nonaka 
     70   1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     71   1.1    nonaka 	int maxblklen;			/* maximum block length */
     72   1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     73   1.1    nonaka 
     74   1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     75   1.1    nonaka 
     76   1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     77   1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     78  1.65  jmcneill 	kmutex_t intr_lock;
     79  1.65  jmcneill 	kcondvar_t intr_cv;
     80   1.1    nonaka 
     81  1.12    nonaka 	int specver;			/* spec. version */
     82  1.12    nonaka 
     83   1.1    nonaka 	uint32_t flags;			/* flags for this host */
     84   1.1    nonaka #define SHF_USE_DMA		0x0001
     85   1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     86  1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     87  1.55    bouyer #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     88  1.63  jmcneill #define SHF_USE_ADMA2_32	0x0010
     89  1.63  jmcneill #define SHF_USE_ADMA2_64	0x0020
     90  1.63  jmcneill #define SHF_USE_ADMA2_MASK	0x0030
     91  1.63  jmcneill 
     92  1.63  jmcneill 	bus_dmamap_t		adma_map;
     93  1.63  jmcneill 	bus_dma_segment_t	adma_segs[1];
     94  1.63  jmcneill 	void			*adma2;
     95   1.1    nonaka };
     96   1.1    nonaka 
     97   1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     98   1.1    nonaka 
     99  1.11      matt static uint8_t
    100  1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
    101  1.11      matt {
    102  1.12    nonaka 
    103  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    104  1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    105  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    106  1.11      matt }
    107  1.11      matt 
    108  1.11      matt static uint16_t
    109  1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    110  1.11      matt {
    111  1.12    nonaka 
    112  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    113  1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    114  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    115  1.11      matt }
    116  1.11      matt 
    117  1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    118  1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    119  1.11      matt #define HREAD4(hp, reg)		\
    120   1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    121  1.11      matt 
    122  1.11      matt 
    123  1.11      matt static void
    124  1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    125  1.11      matt {
    126  1.12    nonaka 
    127  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    128  1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    129  1.11      matt 	} else {
    130  1.11      matt 		const size_t shift = 8 * (o & 3);
    131  1.11      matt 		o &= -4;
    132  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    133  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    134  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    135  1.11      matt 	}
    136  1.11      matt }
    137  1.11      matt 
    138  1.11      matt static void
    139  1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    140  1.11      matt {
    141  1.12    nonaka 
    142  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    143  1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    144  1.11      matt 	} else {
    145  1.11      matt 		const size_t shift = 8 * (o & 2);
    146  1.11      matt 		o &= -4;
    147  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    148  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    149  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    150  1.11      matt 	}
    151  1.11      matt }
    152  1.11      matt 
    153  1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    154  1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    155   1.1    nonaka #define HWRITE4(hp, reg, val)						\
    156   1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    157  1.11      matt 
    158   1.1    nonaka #define HCLR1(hp, reg, bits)						\
    159  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    160   1.1    nonaka #define HCLR2(hp, reg, bits)						\
    161  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    162  1.11      matt #define HCLR4(hp, reg, bits)						\
    163  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    164   1.1    nonaka #define HSET1(hp, reg, bits)						\
    165  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    166   1.1    nonaka #define HSET2(hp, reg, bits)						\
    167  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    168  1.11      matt #define HSET4(hp, reg, bits)						\
    169  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    170   1.1    nonaka 
    171   1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    172   1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    173   1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    174   1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    175   1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    176   1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    177   1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    178  1.76  jmcneill static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    179   1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    180   1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    181   1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    182   1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    183   1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    184   1.1    nonaka 		    struct sdmmc_command *);
    185  1.71  jmcneill static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    186  1.79  jmcneill static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    187   1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    188   1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    189   1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    190   1.1    nonaka static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    191   1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    192   1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    193   1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    194  1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    195  1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    196  1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    197  1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    198  1.11      matt 
    199   1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    200   1.1    nonaka 	/* host controller reset */
    201  1.60     skrll 	.host_reset = sdhc_host_reset,
    202   1.1    nonaka 
    203   1.1    nonaka 	/* host controller capabilities */
    204  1.60     skrll 	.host_ocr = sdhc_host_ocr,
    205  1.60     skrll 	.host_maxblklen = sdhc_host_maxblklen,
    206   1.1    nonaka 
    207   1.1    nonaka 	/* card detection */
    208  1.60     skrll 	.card_detect = sdhc_card_detect,
    209   1.1    nonaka 
    210   1.1    nonaka 	/* write protect */
    211  1.60     skrll 	.write_protect = sdhc_write_protect,
    212   1.1    nonaka 
    213  1.60     skrll 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    214  1.60     skrll 	.bus_power = sdhc_bus_power,
    215  1.76  jmcneill 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    216  1.60     skrll 	.bus_width = sdhc_bus_width,
    217  1.60     skrll 	.bus_rod = sdhc_bus_rod,
    218   1.1    nonaka 
    219   1.1    nonaka 	/* command execution */
    220  1.60     skrll 	.exec_command = sdhc_exec_command,
    221   1.1    nonaka 
    222   1.1    nonaka 	/* card interrupt */
    223  1.60     skrll 	.card_enable_intr = sdhc_card_enable_intr,
    224  1.71  jmcneill 	.card_intr_ack = sdhc_card_intr_ack,
    225  1.71  jmcneill 
    226  1.71  jmcneill 	/* UHS functions */
    227  1.71  jmcneill 	.signal_voltage = sdhc_signal_voltage,
    228  1.76  jmcneill 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    229  1.79  jmcneill 	.execute_tuning = sdhc_execute_tuning,
    230   1.1    nonaka };
    231   1.1    nonaka 
    232  1.17  jakllsch static int
    233  1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    234  1.17  jakllsch {
    235  1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    236  1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    237  1.47     skrll 
    238  1.17  jakllsch 	if (pnp) {
    239  1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    240  1.17  jakllsch 	}
    241  1.41  jakllsch 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    242  1.41  jakllsch 		if (hp->sc->sc_host[host] == hp) {
    243  1.41  jakllsch 			aprint_normal(" slot %zu", host);
    244  1.41  jakllsch 		}
    245  1.41  jakllsch 	}
    246  1.17  jakllsch 
    247  1.17  jakllsch 	return UNCONF;
    248  1.17  jakllsch }
    249  1.17  jakllsch 
    250   1.1    nonaka /*
    251   1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    252   1.1    nonaka  * host controller standard register set. (1.3)
    253   1.1    nonaka  */
    254   1.1    nonaka int
    255   1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    256   1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    257   1.1    nonaka {
    258   1.1    nonaka 	struct sdmmcbus_attach_args saa;
    259   1.1    nonaka 	struct sdhc_host *hp;
    260  1.71  jmcneill 	uint32_t caps, caps2;
    261   1.1    nonaka 	uint16_t sdhcver;
    262  1.63  jmcneill 	int error;
    263   1.1    nonaka 
    264  1.33  riastrad 	/* Allocate one more host structure. */
    265  1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    266  1.33  riastrad 	if (hp == NULL) {
    267  1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    268  1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    269  1.33  riastrad 		goto err1;
    270  1.33  riastrad 	}
    271  1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    272  1.33  riastrad 
    273  1.33  riastrad 	/* Fill in the new host structure. */
    274  1.33  riastrad 	hp->sc = sc;
    275  1.33  riastrad 	hp->iot = iot;
    276  1.33  riastrad 	hp->ioh = ioh;
    277  1.36  jakllsch 	hp->ios = iosize;
    278  1.33  riastrad 	hp->dmat = sc->sc_dmat;
    279  1.33  riastrad 
    280  1.65  jmcneill 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    281  1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    282  1.33  riastrad 
    283  1.52    nonaka 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    284  1.52    nonaka 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    285  1.52    nonaka 	} else {
    286  1.52    nonaka 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    287  1.52    nonaka 	}
    288  1.58  jmcneill 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    289  1.33  riastrad 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    290   1.1    nonaka 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    291  1.12    nonaka 	case SDHC_SPEC_VERS_100:
    292  1.12    nonaka 		aprint_normal("1.0");
    293  1.12    nonaka 		break;
    294  1.12    nonaka 
    295  1.12    nonaka 	case SDHC_SPEC_VERS_200:
    296  1.12    nonaka 		aprint_normal("2.0");
    297   1.1    nonaka 		break;
    298   1.1    nonaka 
    299  1.12    nonaka 	case SDHC_SPEC_VERS_300:
    300  1.12    nonaka 		aprint_normal("3.0");
    301   1.9      matt 		break;
    302   1.9      matt 
    303  1.56  jmcneill 	case SDHC_SPEC_VERS_400:
    304  1.56  jmcneill 		aprint_normal("4.0");
    305  1.56  jmcneill 		break;
    306  1.56  jmcneill 
    307   1.1    nonaka 	default:
    308  1.12    nonaka 		aprint_normal("unknown version(0x%x)",
    309  1.12    nonaka 		    SDHC_SPEC_VERSION(sdhcver));
    310   1.1    nonaka 		break;
    311   1.1    nonaka 	}
    312  1.58  jmcneill 	aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    313   1.1    nonaka 
    314   1.1    nonaka 	/*
    315   1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    316   1.1    nonaka 	 */
    317   1.1    nonaka 	(void)sdhc_host_reset(hp);
    318   1.1    nonaka 
    319   1.1    nonaka 	/* Determine host capabilities. */
    320  1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    321  1.24     skrll 		caps = sc->sc_caps;
    322  1.72  jmcneill 		caps2 = sc->sc_caps2;
    323  1.24     skrll 	} else {
    324  1.79  jmcneill 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    325  1.72  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    326  1.79  jmcneill 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    327  1.72  jmcneill 		} else {
    328  1.79  jmcneill 			caps2 = sc->sc_caps2 = 0;
    329  1.72  jmcneill 		}
    330  1.71  jmcneill 	}
    331   1.1    nonaka 
    332  1.55    bouyer 	/*
    333  1.55    bouyer 	 * Use DMA if the host system and the controller support it.
    334  1.55    bouyer 	 * Suports integrated or external DMA egine, with or without
    335  1.55    bouyer 	 * SDHC_DMA_ENABLE in the command.
    336  1.55    bouyer 	 */
    337  1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    338  1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    339  1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    340   1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    341  1.63  jmcneill 
    342  1.63  jmcneill 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    343  1.63  jmcneill 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    344  1.55    bouyer 			SET(hp->flags, SHF_MODE_DMAEN);
    345  1.63  jmcneill 			/*
    346  1.63  jmcneill 			 * 64-bit mode was present in the 2.00 spec, removed
    347  1.63  jmcneill 			 * from 3.00, and re-added in 4.00 with a different
    348  1.63  jmcneill 			 * descriptor layout. We only support 2.00 and 3.00
    349  1.63  jmcneill 			 * descriptors for now.
    350  1.63  jmcneill 			 */
    351  1.63  jmcneill 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    352  1.63  jmcneill 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    353  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_64);
    354  1.63  jmcneill 				aprint_normal(", 64-bit ADMA2");
    355  1.63  jmcneill 			} else {
    356  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_32);
    357  1.63  jmcneill 				aprint_normal(", 32-bit ADMA2");
    358  1.63  jmcneill 			}
    359  1.63  jmcneill 		} else {
    360  1.63  jmcneill 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    361  1.63  jmcneill 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    362  1.63  jmcneill 				SET(hp->flags, SHF_MODE_DMAEN);
    363  1.64  jmcneill 			if (sc->sc_vendor_transfer_data_dma) {
    364  1.64  jmcneill 				aprint_normal(", platform DMA");
    365  1.64  jmcneill 			} else {
    366  1.64  jmcneill 				aprint_normal(", SDMA");
    367  1.64  jmcneill 			}
    368  1.63  jmcneill 		}
    369  1.58  jmcneill 	} else {
    370  1.58  jmcneill 		aprint_normal(", PIO");
    371   1.1    nonaka 	}
    372   1.1    nonaka 
    373   1.1    nonaka 	/*
    374   1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    375   1.1    nonaka 	 */
    376  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    377  1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    378  1.30      matt 	} else {
    379  1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    380  1.30      matt 	}
    381  1.56  jmcneill 	if (hp->clkbase == 0 ||
    382  1.56  jmcneill 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    383   1.9      matt 		if (sc->sc_clkbase == 0) {
    384   1.9      matt 			/* The attachment driver must tell us. */
    385  1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    386  1.12    nonaka 			    "unknown base clock frequency\n");
    387   1.9      matt 			goto err;
    388   1.9      matt 		}
    389   1.9      matt 		hp->clkbase = sc->sc_clkbase;
    390   1.9      matt 	}
    391   1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    392   1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    393   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    394   1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    395   1.1    nonaka 		    hp->clkbase / 1000);
    396   1.1    nonaka 		goto err;
    397   1.1    nonaka 	}
    398  1.58  jmcneill 	aprint_normal(", %u kHz", hp->clkbase);
    399   1.1    nonaka 
    400   1.1    nonaka 	/*
    401   1.1    nonaka 	 * XXX Set the data timeout counter value according to
    402   1.1    nonaka 	 * capabilities. (2.2.15)
    403   1.1    nonaka 	 */
    404   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    405  1.29      matt #if 1
    406  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    407  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    408  1.11      matt #endif
    409   1.1    nonaka 
    410  1.58  jmcneill 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    411  1.58  jmcneill 		aprint_normal(", embedded slot");
    412  1.58  jmcneill 
    413   1.1    nonaka 	/*
    414   1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    415   1.1    nonaka 	 */
    416  1.58  jmcneill 	aprint_normal(",");
    417  1.66  jmcneill 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    418  1.66  jmcneill 		SET(hp->ocr, MMC_OCR_HCS);
    419  1.71  jmcneill 		aprint_normal(" HS");
    420  1.71  jmcneill 	}
    421  1.71  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    422  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    423  1.71  jmcneill 		aprint_normal(" SDR50");
    424  1.71  jmcneill 	}
    425  1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    426  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    427  1.76  jmcneill 		aprint_normal(" DDR50");
    428  1.71  jmcneill 	}
    429  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    430  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    431  1.76  jmcneill 		aprint_normal(" SDR104 HS200");
    432  1.66  jmcneill 	}
    433  1.71  jmcneill 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    434   1.1    nonaka 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    435  1.58  jmcneill 		aprint_normal(" 1.8V");
    436  1.11      matt 	}
    437  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    438   1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    439  1.58  jmcneill 		aprint_normal(" 3.0V");
    440  1.11      matt 	}
    441  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    442   1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    443  1.58  jmcneill 		aprint_normal(" 3.3V");
    444  1.11      matt 	}
    445   1.1    nonaka 
    446   1.1    nonaka 	/*
    447   1.1    nonaka 	 * Determine the maximum block length supported by the host
    448   1.1    nonaka 	 * controller. (2.2.24)
    449   1.1    nonaka 	 */
    450   1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    451   1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    452   1.1    nonaka 		hp->maxblklen = 512;
    453   1.1    nonaka 		break;
    454   1.1    nonaka 
    455   1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    456   1.1    nonaka 		hp->maxblklen = 1024;
    457   1.1    nonaka 		break;
    458   1.1    nonaka 
    459   1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    460   1.1    nonaka 		hp->maxblklen = 2048;
    461   1.1    nonaka 		break;
    462   1.1    nonaka 
    463   1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    464   1.9      matt 		hp->maxblklen = 4096;
    465   1.9      matt 		break;
    466   1.9      matt 
    467   1.1    nonaka 	default:
    468   1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    469   1.1    nonaka 		goto err;
    470   1.1    nonaka 	}
    471  1.58  jmcneill 	aprint_normal(", %u byte blocks", hp->maxblklen);
    472  1.58  jmcneill 	aprint_normal("\n");
    473   1.1    nonaka 
    474  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    475  1.63  jmcneill 		int rseg;
    476  1.63  jmcneill 
    477  1.63  jmcneill 		/* Allocate ADMA2 descriptor memory */
    478  1.63  jmcneill 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    479  1.63  jmcneill 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    480  1.63  jmcneill 		if (error) {
    481  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    482  1.63  jmcneill 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    483  1.63  jmcneill 			goto adma_done;
    484  1.63  jmcneill 		}
    485  1.63  jmcneill 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    486  1.63  jmcneill 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    487  1.63  jmcneill 		if (error) {
    488  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    489  1.63  jmcneill 			    "ADMA2 dmamem_map failed (%d)\n", error);
    490  1.63  jmcneill 			goto adma_done;
    491  1.63  jmcneill 		}
    492  1.63  jmcneill 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    493  1.63  jmcneill 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    494  1.63  jmcneill 		if (error) {
    495  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    496  1.63  jmcneill 			    "ADMA2 dmamap_create failed (%d)\n", error);
    497  1.63  jmcneill 			goto adma_done;
    498  1.63  jmcneill 		}
    499  1.63  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    500  1.63  jmcneill 		    hp->adma2, PAGE_SIZE, NULL,
    501  1.63  jmcneill 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    502  1.63  jmcneill 		if (error) {
    503  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    504  1.63  jmcneill 			    "ADMA2 dmamap_load failed (%d)\n", error);
    505  1.63  jmcneill 			goto adma_done;
    506  1.63  jmcneill 		}
    507  1.63  jmcneill 
    508  1.63  jmcneill 		memset(hp->adma2, 0, PAGE_SIZE);
    509  1.63  jmcneill 
    510  1.63  jmcneill adma_done:
    511  1.63  jmcneill 		if (error)
    512  1.63  jmcneill 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    513  1.63  jmcneill 	}
    514  1.63  jmcneill 
    515   1.1    nonaka 	/*
    516   1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    517   1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    518   1.1    nonaka 	 */
    519   1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    520   1.1    nonaka 	saa.saa_busname = "sdmmc";
    521   1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    522   1.1    nonaka 	saa.saa_sch = hp;
    523   1.1    nonaka 	saa.saa_dmat = hp->dmat;
    524   1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    525  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    526  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    527  1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    528  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    529  1.38  jakllsch 	else if (hp->sc->sc_clkmsk != 0)
    530  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    531  1.38  jakllsch 		    (ffs(hp->sc->sc_clkmsk) - 1));
    532  1.56  jmcneill 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    533  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    534  1.38  jakllsch 	else
    535  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256;
    536   1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    537  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    538  1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    539  1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    540  1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    541  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    542  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    543  1.76  jmcneill 				SMC_CAPS_UHS_SDR50 |
    544  1.76  jmcneill 				SMC_CAPS_MMC_HS200;
    545  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    546  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    547  1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    548  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    549  1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    550  1.54    nonaka 		saa.saa_caps |= SMC_CAPS_DMA;
    551  1.54    nonaka 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    552  1.54    nonaka 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    553  1.26      matt 	}
    554  1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    555  1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    556  1.77  jmcneill 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    557  1.77  jmcneill 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    558  1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    559   1.1    nonaka 
    560   1.1    nonaka 	return 0;
    561   1.1    nonaka 
    562   1.1    nonaka err:
    563   1.1    nonaka 	cv_destroy(&hp->intr_cv);
    564  1.65  jmcneill 	mutex_destroy(&hp->intr_lock);
    565   1.1    nonaka 	free(hp, M_DEVBUF);
    566   1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    567   1.1    nonaka err1:
    568   1.1    nonaka 	return 1;
    569   1.1    nonaka }
    570   1.1    nonaka 
    571   1.7    nonaka int
    572  1.36  jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
    573   1.7    nonaka {
    574  1.36  jakllsch 	struct sdhc_host *hp;
    575   1.7    nonaka 	int rv = 0;
    576   1.7    nonaka 
    577  1.36  jakllsch 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    578  1.36  jakllsch 		hp = sc->sc_host[n];
    579  1.36  jakllsch 		if (hp == NULL)
    580  1.36  jakllsch 			continue;
    581  1.36  jakllsch 		if (hp->sdmmc != NULL) {
    582  1.36  jakllsch 			rv = config_detach(hp->sdmmc, flags);
    583  1.36  jakllsch 			if (rv)
    584  1.36  jakllsch 				break;
    585  1.36  jakllsch 			hp->sdmmc = NULL;
    586  1.36  jakllsch 		}
    587  1.36  jakllsch 		/* disable interrupts */
    588  1.36  jakllsch 		if ((flags & DETACH_FORCE) == 0) {
    589  1.78   mlelstv 			mutex_enter(&hp->intr_lock);
    590  1.36  jakllsch 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    591  1.36  jakllsch 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    592  1.36  jakllsch 			} else {
    593  1.36  jakllsch 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    594  1.36  jakllsch 			}
    595  1.36  jakllsch 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    596  1.78   mlelstv 			mutex_exit(&hp->intr_lock);
    597  1.36  jakllsch 		}
    598  1.36  jakllsch 		cv_destroy(&hp->intr_cv);
    599  1.65  jmcneill 		mutex_destroy(&hp->intr_lock);
    600  1.36  jakllsch 		if (hp->ios > 0) {
    601  1.36  jakllsch 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    602  1.36  jakllsch 			hp->ios = 0;
    603  1.36  jakllsch 		}
    604  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    605  1.63  jmcneill 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    606  1.63  jmcneill 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    607  1.63  jmcneill 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    608  1.63  jmcneill 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    609  1.63  jmcneill 		}
    610  1.36  jakllsch 		free(hp, M_DEVBUF);
    611  1.36  jakllsch 		sc->sc_host[n] = NULL;
    612  1.36  jakllsch 	}
    613   1.7    nonaka 
    614   1.7    nonaka 	return rv;
    615   1.7    nonaka }
    616   1.7    nonaka 
    617   1.1    nonaka bool
    618   1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    619   1.1    nonaka {
    620   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    621   1.1    nonaka 	struct sdhc_host *hp;
    622  1.12    nonaka 	size_t i;
    623   1.1    nonaka 
    624   1.1    nonaka 	/* XXX poll for command completion or suspend command
    625   1.1    nonaka 	 * in progress */
    626   1.1    nonaka 
    627   1.1    nonaka 	/* Save the host controller state. */
    628  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    629   1.1    nonaka 		hp = sc->sc_host[n];
    630  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    631  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    632  1.11      matt 				uint32_t v = HREAD4(hp, i);
    633  1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    634  1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    635  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    636  1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    637  1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    638  1.13    bouyer 				}
    639  1.11      matt 			}
    640  1.11      matt 		} else {
    641  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    642  1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    643  1.11      matt 			}
    644  1.11      matt 		}
    645   1.1    nonaka 	}
    646   1.1    nonaka 	return true;
    647   1.1    nonaka }
    648   1.1    nonaka 
    649   1.1    nonaka bool
    650   1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    651   1.1    nonaka {
    652   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    653   1.1    nonaka 	struct sdhc_host *hp;
    654  1.12    nonaka 	size_t i;
    655   1.1    nonaka 
    656   1.1    nonaka 	/* Restore the host controller state. */
    657  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    658   1.1    nonaka 		hp = sc->sc_host[n];
    659   1.1    nonaka 		(void)sdhc_host_reset(hp);
    660  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    661  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    662  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    663  1.13    bouyer 					HWRITE4(hp, i,
    664  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    665  1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    666  1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    667  1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    668  1.13    bouyer 				} else {
    669  1.13    bouyer 					HWRITE4(hp, i,
    670  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    671  1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    672  1.13    bouyer 				}
    673  1.11      matt 			}
    674  1.11      matt 		} else {
    675  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    676  1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    677  1.11      matt 			}
    678  1.11      matt 		}
    679   1.1    nonaka 	}
    680   1.1    nonaka 	return true;
    681   1.1    nonaka }
    682   1.1    nonaka 
    683   1.1    nonaka bool
    684   1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    685   1.1    nonaka {
    686   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    687   1.1    nonaka 	struct sdhc_host *hp;
    688   1.1    nonaka 
    689   1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    690  1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    691   1.1    nonaka 		hp = sc->sc_host[i];
    692   1.1    nonaka 		(void)sdhc_host_reset(hp);
    693   1.1    nonaka 	}
    694   1.1    nonaka 	return true;
    695   1.1    nonaka }
    696   1.1    nonaka 
    697   1.1    nonaka /*
    698   1.1    nonaka  * Reset the host controller.  Called during initialization, when
    699   1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    700   1.1    nonaka  */
    701   1.1    nonaka static int
    702   1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    703   1.1    nonaka {
    704   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    705  1.11      matt 	uint32_t sdhcimask;
    706   1.1    nonaka 	int error;
    707   1.1    nonaka 
    708  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
    709   1.1    nonaka 
    710   1.1    nonaka 	/* Disable all interrupts. */
    711  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    712  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    713  1.11      matt 	} else {
    714  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    715  1.11      matt 	}
    716   1.1    nonaka 
    717   1.1    nonaka 	/*
    718   1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    719   1.1    nonaka 	 * the controller to clear the reset bit.
    720   1.1    nonaka 	 */
    721   1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    722   1.1    nonaka 	if (error)
    723   1.1    nonaka 		goto out;
    724   1.1    nonaka 
    725   1.1    nonaka 	/* Set data timeout counter value to max for now. */
    726   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    727  1.29      matt #if 1
    728  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    729  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    730  1.11      matt #endif
    731   1.1    nonaka 
    732   1.1    nonaka 	/* Enable interrupts. */
    733   1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    734   1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    735   1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    736   1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    737  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    738  1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    739  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    740  1.11      matt 		sdhcimask ^=
    741  1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    742  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    743  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    744  1.11      matt 	} else {
    745  1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    746  1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    747  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    748  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    749  1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    750  1.11      matt 	}
    751   1.1    nonaka 
    752   1.1    nonaka out:
    753   1.1    nonaka 	return error;
    754   1.1    nonaka }
    755   1.1    nonaka 
    756   1.1    nonaka static int
    757   1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    758   1.1    nonaka {
    759   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    760   1.1    nonaka 	int error;
    761   1.1    nonaka 
    762  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    763   1.1    nonaka 	error = sdhc_host_reset1(sch);
    764  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    765   1.1    nonaka 
    766   1.1    nonaka 	return error;
    767   1.1    nonaka }
    768   1.1    nonaka 
    769   1.1    nonaka static uint32_t
    770   1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    771   1.1    nonaka {
    772   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    773   1.1    nonaka 
    774   1.1    nonaka 	return hp->ocr;
    775   1.1    nonaka }
    776   1.1    nonaka 
    777   1.1    nonaka static int
    778   1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    779   1.1    nonaka {
    780   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    781   1.1    nonaka 
    782   1.1    nonaka 	return hp->maxblklen;
    783   1.1    nonaka }
    784   1.1    nonaka 
    785   1.1    nonaka /*
    786   1.1    nonaka  * Return non-zero if the card is currently inserted.
    787   1.1    nonaka  */
    788   1.1    nonaka static int
    789   1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    790   1.1    nonaka {
    791   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    792   1.1    nonaka 	int r;
    793   1.1    nonaka 
    794  1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    795  1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    796  1.32  kiyohara 
    797   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    798   1.1    nonaka 
    799  1.11      matt 	return r ? 1 : 0;
    800   1.1    nonaka }
    801   1.1    nonaka 
    802   1.1    nonaka /*
    803   1.1    nonaka  * Return non-zero if the card is currently write-protected.
    804   1.1    nonaka  */
    805   1.1    nonaka static int
    806   1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    807   1.1    nonaka {
    808   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    809   1.1    nonaka 	int r;
    810   1.1    nonaka 
    811  1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    812  1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    813  1.32  kiyohara 
    814   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    815   1.1    nonaka 
    816  1.12    nonaka 	return r ? 0 : 1;
    817   1.1    nonaka }
    818   1.1    nonaka 
    819   1.1    nonaka /*
    820   1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    821   1.1    nonaka  * Return zero on success.
    822   1.1    nonaka  */
    823   1.1    nonaka static int
    824   1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    825   1.1    nonaka {
    826   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    827   1.1    nonaka 	uint8_t vdd;
    828   1.1    nonaka 	int error = 0;
    829  1.32  kiyohara 	const uint32_t pcmask =
    830  1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    831   1.1    nonaka 
    832  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    833   1.1    nonaka 
    834   1.1    nonaka 	/*
    835   1.1    nonaka 	 * Disable bus power before voltage change.
    836   1.1    nonaka 	 */
    837  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    838  1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    839   1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    840   1.1    nonaka 
    841   1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    842   1.1    nonaka 	if (ocr == 0) {
    843   1.1    nonaka 		(void)sdhc_host_reset1(hp);
    844   1.1    nonaka 		goto out;
    845   1.1    nonaka 	}
    846   1.1    nonaka 
    847   1.1    nonaka 	/*
    848   1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    849   1.1    nonaka 	 */
    850   1.1    nonaka 	ocr &= hp->ocr;
    851  1.73  jmcneill 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    852   1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    853  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    854   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    855  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    856   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    857  1.11      matt 	} else {
    858   1.1    nonaka 		/* Unsupported voltage level requested. */
    859   1.1    nonaka 		error = EINVAL;
    860   1.1    nonaka 		goto out;
    861   1.1    nonaka 	}
    862   1.1    nonaka 
    863  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    864  1.11      matt 		/*
    865  1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    866  1.11      matt 		 * voltage ramp until power rises.
    867  1.11      matt 		 */
    868  1.57  jmcneill 
    869  1.57  jmcneill 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    870  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    871  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    872  1.57  jmcneill 		} else {
    873  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    874  1.57  jmcneill 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    875  1.57  jmcneill 			sdmmc_delay(1);
    876  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    877  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT));
    878  1.57  jmcneill 			sdmmc_delay(1);
    879  1.57  jmcneill 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    880  1.57  jmcneill 			sdmmc_delay(10000);
    881  1.57  jmcneill 		}
    882   1.1    nonaka 
    883  1.11      matt 		/*
    884  1.11      matt 		 * The host system may not power the bus due to battery low,
    885  1.11      matt 		 * etc.  In that case, the host controller should clear the
    886  1.11      matt 		 * bus power bit.
    887  1.11      matt 		 */
    888  1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    889  1.11      matt 			error = ENXIO;
    890  1.11      matt 			goto out;
    891  1.11      matt 		}
    892   1.1    nonaka 	}
    893   1.1    nonaka 
    894   1.1    nonaka out:
    895  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    896   1.1    nonaka 
    897   1.1    nonaka 	return error;
    898   1.1    nonaka }
    899   1.1    nonaka 
    900   1.1    nonaka /*
    901   1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    902   1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    903   1.1    nonaka  */
    904  1.11      matt static bool
    905  1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    906   1.1    nonaka {
    907  1.11      matt 	u_int div;
    908   1.1    nonaka 
    909  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    910  1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    911  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    912  1.11      matt 				*divp = SDHC_SDCLK_CGM
    913  1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    914  1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    915  1.18  jakllsch 				//freq = hp->clkbase / div;
    916  1.11      matt 				return true;
    917  1.11      matt 			}
    918  1.11      matt 		}
    919  1.11      matt 		/* No divisor found. */
    920  1.11      matt 		return false;
    921  1.11      matt 	}
    922  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    923  1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    924  1.11      matt 		u_int roundup = dvs & 1;
    925  1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    926  1.11      matt 			if (dvs + roundup <= 16) {
    927  1.11      matt 				dvs += roundup - 1;
    928  1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    929  1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    930  1.11      matt 				DPRINTF(2,
    931  1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    932  1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    933  1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    934  1.11      matt 				return true;
    935   1.9      matt 			}
    936  1.11      matt 			/*
    937  1.11      matt 			 * If we drop bits, we need to round up the divisor.
    938  1.11      matt 			 */
    939  1.11      matt 			roundup |= dvs & 1;
    940   1.9      matt 		}
    941  1.18  jakllsch 		/* No divisor found. */
    942  1.18  jakllsch 		return false;
    943  1.38  jakllsch 	}
    944  1.38  jakllsch 	if (hp->sc->sc_clkmsk != 0) {
    945  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    946  1.38  jakllsch 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    947  1.38  jakllsch 			return false;
    948  1.38  jakllsch 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    949  1.38  jakllsch 		//freq = hp->clkbase / div;
    950  1.38  jakllsch 		return true;
    951  1.38  jakllsch 	}
    952  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    953  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    954  1.50   mlelstv 		div = div > 1 ? howmany(div, 2) : 0;
    955  1.38  jakllsch 		if (div > 0x3ff)
    956  1.38  jakllsch 			return false;
    957  1.38  jakllsch 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    958  1.38  jakllsch 			 << SDHC_SDCLK_XDIV_SHIFT) |
    959  1.38  jakllsch 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    960  1.38  jakllsch 			 << SDHC_SDCLK_DIV_SHIFT);
    961  1.67   mlelstv 		//freq = hp->clkbase / (div ? div * 2 : 1);
    962  1.38  jakllsch 		return true;
    963   1.9      matt 	} else {
    964  1.38  jakllsch 		for (div = 1; div <= 256; div *= 2) {
    965  1.38  jakllsch 			if ((hp->clkbase / div) <= freq) {
    966  1.38  jakllsch 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    967  1.38  jakllsch 				//freq = hp->clkbase / div;
    968  1.38  jakllsch 				return true;
    969  1.38  jakllsch 			}
    970  1.38  jakllsch 		}
    971  1.38  jakllsch 		/* No divisor found. */
    972  1.38  jakllsch 		return false;
    973   1.9      matt 	}
    974   1.1    nonaka 	/* No divisor found. */
    975  1.11      matt 	return false;
    976   1.1    nonaka }
    977   1.1    nonaka 
    978   1.1    nonaka /*
    979   1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
    980   1.1    nonaka  * Return zero on success.
    981   1.1    nonaka  */
    982   1.1    nonaka static int
    983  1.76  jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
    984   1.1    nonaka {
    985   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    986  1.11      matt 	u_int div;
    987  1.11      matt 	u_int timo;
    988  1.32  kiyohara 	int16_t reg;
    989   1.1    nonaka 	int error = 0;
    990  1.65  jmcneill 	bool present __diagused;
    991  1.65  jmcneill 
    992  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    993  1.65  jmcneill 
    994   1.2    cegger #ifdef DIAGNOSTIC
    995  1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    996   1.1    nonaka 
    997   1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
    998  1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
    999  1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
   1000  1.26      matt 		    "%s: command in progress\n", __func__);
   1001  1.12    nonaka 	}
   1002   1.1    nonaka #endif
   1003   1.1    nonaka 
   1004  1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
   1005  1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1006  1.34      matt 		if (error != 0)
   1007  1.34      matt 			goto out;
   1008  1.34      matt 	}
   1009  1.34      matt 
   1010   1.1    nonaka 	/*
   1011   1.1    nonaka 	 * Stop SD clock before changing the frequency.
   1012   1.1    nonaka 	 */
   1013  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1014  1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1015  1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
   1016  1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1017  1.11      matt 			goto out;
   1018  1.11      matt 		}
   1019  1.11      matt 	} else {
   1020  1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1021  1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
   1022  1.11      matt 			goto out;
   1023  1.11      matt 	}
   1024   1.1    nonaka 
   1025  1.71  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1026  1.71  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1027  1.71  jmcneill 		if (freq > 100000) {
   1028  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1029  1.71  jmcneill 		} else if (freq > 50000) {
   1030  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
   1031  1.71  jmcneill 		} else if (freq > 25000) {
   1032  1.76  jmcneill 			if (ddr) {
   1033  1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1034  1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_DDR50);
   1035  1.76  jmcneill 			} else {
   1036  1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1037  1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_SDR25);
   1038  1.76  jmcneill 			}
   1039  1.74  jmcneill 		} else if (freq > 400) {
   1040  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1041  1.71  jmcneill 		}
   1042  1.71  jmcneill 	}
   1043  1.71  jmcneill 
   1044   1.1    nonaka 	/*
   1045   1.1    nonaka 	 * Set the minimum base clock frequency divisor.
   1046   1.1    nonaka 	 */
   1047  1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1048   1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
   1049  1.68   mlelstv 		aprint_error_dev(hp->sc->sc_dev,
   1050  1.68   mlelstv 			"Invalid bus clock %d kHz\n", freq);
   1051   1.1    nonaka 		error = EINVAL;
   1052   1.1    nonaka 		goto out;
   1053   1.1    nonaka 	}
   1054  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1055  1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1056  1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
   1057  1.11      matt 	} else {
   1058  1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1059  1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1060  1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1061  1.11      matt 	}
   1062   1.1    nonaka 
   1063   1.1    nonaka 	/*
   1064   1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
   1065   1.1    nonaka 	 */
   1066  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1067  1.11      matt 		sdmmc_delay(10000);
   1068  1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
   1069  1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1070  1.11      matt 	} else {
   1071  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1072  1.11      matt 		for (timo = 1000; timo > 0; timo--) {
   1073  1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1074  1.12    nonaka 			    SDHC_INTCLK_STABLE))
   1075  1.11      matt 				break;
   1076  1.11      matt 			sdmmc_delay(10);
   1077  1.11      matt 		}
   1078  1.11      matt 		if (timo == 0) {
   1079  1.11      matt 			error = ETIMEDOUT;
   1080  1.11      matt 			goto out;
   1081  1.11      matt 		}
   1082   1.1    nonaka 	}
   1083   1.1    nonaka 
   1084  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1085  1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1086  1.11      matt 		/*
   1087  1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
   1088  1.11      matt 		 * So delay for that time + slop and then
   1089  1.11      matt 		 * check a few times for completion.
   1090  1.11      matt 		 */
   1091  1.11      matt 		sdmmc_delay(210);
   1092  1.11      matt 		for (timo = 10; timo > 0; timo--) {
   1093  1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1094  1.11      matt 			    SDHC_INIT_ACTIVE))
   1095  1.11      matt 				break;
   1096  1.11      matt 			sdmmc_delay(10);
   1097  1.11      matt 		}
   1098  1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1099  1.12    nonaka 
   1100  1.11      matt 		/*
   1101  1.11      matt 		 * Enable SD clock.
   1102  1.11      matt 		 */
   1103  1.11      matt 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1104  1.11      matt 	} else {
   1105  1.11      matt 		/*
   1106  1.11      matt 		 * Enable SD clock.
   1107  1.11      matt 		 */
   1108  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1109   1.1    nonaka 
   1110  1.43  jmcneill 		if (freq > 25000 &&
   1111  1.43  jmcneill 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1112  1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1113  1.11      matt 		else
   1114  1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1115  1.11      matt 	}
   1116   1.8  kiyohara 
   1117   1.1    nonaka out:
   1118  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1119   1.1    nonaka 
   1120   1.1    nonaka 	return error;
   1121   1.1    nonaka }
   1122   1.1    nonaka 
   1123   1.1    nonaka static int
   1124   1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1125   1.1    nonaka {
   1126   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1127   1.1    nonaka 	int reg;
   1128   1.1    nonaka 
   1129   1.1    nonaka 	switch (width) {
   1130   1.1    nonaka 	case 1:
   1131   1.1    nonaka 	case 4:
   1132   1.1    nonaka 		break;
   1133   1.1    nonaka 
   1134  1.11      matt 	case 8:
   1135  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1136  1.11      matt 			break;
   1137  1.11      matt 		/* FALLTHROUGH */
   1138   1.1    nonaka 	default:
   1139   1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1140   1.1    nonaka 		    HDEVNAME(hp), width));
   1141   1.1    nonaka 		return 1;
   1142   1.1    nonaka 	}
   1143   1.1    nonaka 
   1144  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1145  1.65  jmcneill 
   1146   1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1147  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1148  1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1149  1.11      matt 		if (width == 4)
   1150  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1151  1.11      matt 		else if (width == 8)
   1152  1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
   1153  1.11      matt 	} else {
   1154  1.11      matt 		reg &= ~SDHC_4BIT_MODE;
   1155  1.59  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1156  1.59  jmcneill 			reg &= ~SDHC_8BIT_MODE;
   1157  1.59  jmcneill 		}
   1158  1.59  jmcneill 		if (width == 4) {
   1159  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1160  1.59  jmcneill 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1161  1.59  jmcneill 			reg |= SDHC_8BIT_MODE;
   1162  1.59  jmcneill 		}
   1163  1.11      matt 	}
   1164   1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1165  1.65  jmcneill 
   1166  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1167   1.1    nonaka 
   1168   1.1    nonaka 	return 0;
   1169   1.1    nonaka }
   1170   1.1    nonaka 
   1171   1.8  kiyohara static int
   1172   1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1173   1.8  kiyohara {
   1174  1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1175  1.32  kiyohara 
   1176  1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
   1177  1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1178   1.8  kiyohara 
   1179   1.8  kiyohara 	return 0;
   1180   1.8  kiyohara }
   1181   1.8  kiyohara 
   1182   1.1    nonaka static void
   1183   1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1184   1.1    nonaka {
   1185   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1186   1.1    nonaka 
   1187  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1188  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1189  1.11      matt 		if (enable) {
   1190  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1191  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1192  1.11      matt 		} else {
   1193  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1194  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1195  1.11      matt 		}
   1196  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1197   1.1    nonaka 	}
   1198   1.1    nonaka }
   1199   1.1    nonaka 
   1200  1.47     skrll static void
   1201   1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1202   1.1    nonaka {
   1203   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1204   1.1    nonaka 
   1205  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1206  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1207  1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1208  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1209  1.11      matt 	}
   1210   1.1    nonaka }
   1211   1.1    nonaka 
   1212   1.1    nonaka static int
   1213  1.71  jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1214  1.71  jmcneill {
   1215  1.71  jmcneill 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1216  1.71  jmcneill 
   1217  1.78   mlelstv 	mutex_enter(&hp->intr_lock);
   1218  1.71  jmcneill 	switch (signal_voltage) {
   1219  1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_180:
   1220  1.71  jmcneill 		HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1221  1.71  jmcneill 		break;
   1222  1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_330:
   1223  1.71  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1224  1.71  jmcneill 		break;
   1225  1.71  jmcneill 	default:
   1226  1.71  jmcneill 		return EINVAL;
   1227  1.71  jmcneill 	}
   1228  1.78   mlelstv 	mutex_exit(&hp->intr_lock);
   1229  1.71  jmcneill 
   1230  1.71  jmcneill 	return 0;
   1231  1.71  jmcneill }
   1232  1.71  jmcneill 
   1233  1.79  jmcneill /*
   1234  1.79  jmcneill  * Sampling clock tuning procedure (UHS)
   1235  1.79  jmcneill  */
   1236  1.79  jmcneill static int
   1237  1.79  jmcneill sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1238  1.79  jmcneill {
   1239  1.79  jmcneill 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1240  1.79  jmcneill 	struct sdmmc_command cmd;
   1241  1.79  jmcneill 	uint8_t hostctl;
   1242  1.79  jmcneill 	int opcode, error, retry = 40;
   1243  1.79  jmcneill 
   1244  1.79  jmcneill 	switch (timing) {
   1245  1.79  jmcneill 	case SDMMC_TIMING_MMC_HS200:
   1246  1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1247  1.79  jmcneill 		break;
   1248  1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR50:
   1249  1.79  jmcneill 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1250  1.79  jmcneill 			return 0;
   1251  1.79  jmcneill 		/* FALLTHROUGH */
   1252  1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR104:
   1253  1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK;
   1254  1.79  jmcneill 		break;
   1255  1.79  jmcneill 	default:
   1256  1.79  jmcneill 		return EINVAL;
   1257  1.79  jmcneill 	}
   1258  1.79  jmcneill 
   1259  1.79  jmcneill 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1260  1.79  jmcneill 
   1261  1.79  jmcneill 	/* enable buffer read ready interrupt */
   1262  1.79  jmcneill 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1263  1.79  jmcneill 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1264  1.79  jmcneill 
   1265  1.79  jmcneill 	/* disable DMA */
   1266  1.79  jmcneill 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1267  1.79  jmcneill 
   1268  1.79  jmcneill 	/* reset tuning circuit */
   1269  1.79  jmcneill 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1270  1.79  jmcneill 
   1271  1.79  jmcneill 	/* start of tuning */
   1272  1.79  jmcneill 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1273  1.79  jmcneill 
   1274  1.79  jmcneill 	mutex_enter(&hp->intr_lock);
   1275  1.79  jmcneill 	do {
   1276  1.79  jmcneill 		memset(&cmd, 0, sizeof(cmd));
   1277  1.79  jmcneill 		cmd.c_opcode = opcode;
   1278  1.79  jmcneill 		cmd.c_arg = 0;
   1279  1.79  jmcneill 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1280  1.79  jmcneill 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1281  1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 128;
   1282  1.79  jmcneill 		} else {
   1283  1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 64;
   1284  1.79  jmcneill 		}
   1285  1.79  jmcneill 
   1286  1.79  jmcneill 		error = sdhc_start_command(hp, &cmd);
   1287  1.79  jmcneill 		if (error)
   1288  1.79  jmcneill 			break;
   1289  1.79  jmcneill 
   1290  1.79  jmcneill 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1291  1.79  jmcneill 		    SDHC_TUNING_TIMEOUT)) {
   1292  1.79  jmcneill 			break;
   1293  1.79  jmcneill 		}
   1294  1.79  jmcneill 
   1295  1.79  jmcneill 		delay(1000);
   1296  1.79  jmcneill 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1297  1.79  jmcneill 	mutex_exit(&hp->intr_lock);
   1298  1.79  jmcneill 
   1299  1.79  jmcneill 	/* disable buffer read ready interrupt */
   1300  1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1301  1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1302  1.79  jmcneill 
   1303  1.79  jmcneill 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1304  1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1305  1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1306  1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1307  1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1308  1.79  jmcneill 		    "tuning did not complete, using fixed sampling clock\n");
   1309  1.79  jmcneill 		return EIO;		/* tuning did not complete */
   1310  1.79  jmcneill 	}
   1311  1.79  jmcneill 
   1312  1.79  jmcneill 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1313  1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1314  1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1315  1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1316  1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1317  1.79  jmcneill 		    "tuning failed, using fixed sampling clock\n");
   1318  1.79  jmcneill 		return EIO;		/* tuning failed */
   1319  1.79  jmcneill 	}
   1320  1.79  jmcneill 
   1321  1.79  jmcneill 	return 0;		/* tuning completed */
   1322  1.79  jmcneill }
   1323  1.79  jmcneill 
   1324  1.71  jmcneill static int
   1325   1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1326   1.1    nonaka {
   1327   1.1    nonaka 	uint32_t state;
   1328   1.1    nonaka 	int timeout;
   1329   1.1    nonaka 
   1330  1.65  jmcneill 	for (timeout = 10000; timeout > 0; timeout--) {
   1331   1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1332   1.1    nonaka 			return 0;
   1333  1.65  jmcneill 		sdmmc_delay(10);
   1334   1.1    nonaka 	}
   1335  1.75   mlelstv 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1336  1.75   mlelstv 	    mask, value, state);
   1337   1.1    nonaka 	return ETIMEDOUT;
   1338   1.1    nonaka }
   1339   1.1    nonaka 
   1340   1.1    nonaka static void
   1341   1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1342   1.1    nonaka {
   1343   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1344   1.1    nonaka 	int error;
   1345   1.1    nonaka 
   1346  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1347  1.65  jmcneill 
   1348  1.26      matt 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1349  1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1350  1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1351  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1352  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1353  1.11      matt 		} else {
   1354  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1355  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1356  1.47     skrll 		}
   1357  1.11      matt 	}
   1358  1.11      matt 
   1359  1.61  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1360  1.61  jmcneill 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1361  1.61  jmcneill 		if (cmd->c_data != NULL) {
   1362  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1363  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1364  1.61  jmcneill 		} else {
   1365  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1366  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1367  1.61  jmcneill 		}
   1368  1.61  jmcneill 	}
   1369  1.61  jmcneill 
   1370   1.1    nonaka 	/*
   1371   1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1372   1.1    nonaka 	 */
   1373   1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1374   1.1    nonaka 	if (error) {
   1375   1.1    nonaka 		cmd->c_error = error;
   1376   1.1    nonaka 		goto out;
   1377   1.1    nonaka 	}
   1378   1.1    nonaka 
   1379   1.1    nonaka 	/*
   1380   1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1381   1.1    nonaka 	 * is marked done for any other reason.
   1382   1.1    nonaka 	 */
   1383   1.1    nonaka 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1384   1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1385   1.1    nonaka 		goto out;
   1386   1.1    nonaka 	}
   1387   1.1    nonaka 
   1388   1.1    nonaka 	/*
   1389   1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1390   1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1391   1.1    nonaka 	 * driver (without padding).
   1392   1.1    nonaka 	 */
   1393   1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1394  1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1395  1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1396  1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1397  1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1398  1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1399  1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1400  1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1401  1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1402  1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1403  1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1404  1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1405  1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1406  1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1407  1.32  kiyohara 			}
   1408   1.1    nonaka 		}
   1409   1.1    nonaka 	}
   1410  1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1411   1.1    nonaka 
   1412   1.1    nonaka 	/*
   1413   1.1    nonaka 	 * If the command has data to transfer in any direction,
   1414   1.1    nonaka 	 * execute the transfer now.
   1415   1.1    nonaka 	 */
   1416   1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1417   1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1418  1.42  jakllsch 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1419  1.42  jakllsch 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
   1420  1.42  jakllsch 			cmd->c_error = ETIMEDOUT;
   1421  1.42  jakllsch 			goto out;
   1422  1.42  jakllsch 		}
   1423  1.42  jakllsch 	}
   1424   1.1    nonaka 
   1425   1.1    nonaka out:
   1426  1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1427  1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1428  1.11      matt 		/* Turn off the LED. */
   1429  1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1430  1.11      matt 	}
   1431   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1432   1.1    nonaka 
   1433  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1434  1.65  jmcneill 
   1435   1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1436   1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1437   1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1438   1.1    nonaka }
   1439   1.1    nonaka 
   1440   1.1    nonaka static int
   1441   1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1442   1.1    nonaka {
   1443  1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1444   1.1    nonaka 	uint16_t blksize = 0;
   1445   1.1    nonaka 	uint16_t blkcount = 0;
   1446   1.1    nonaka 	uint16_t mode;
   1447   1.1    nonaka 	uint16_t command;
   1448   1.1    nonaka 	int error;
   1449   1.1    nonaka 
   1450  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1451  1.65  jmcneill 
   1452  1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1453   1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1454  1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1455   1.1    nonaka 
   1456   1.1    nonaka 	/*
   1457   1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1458   1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1459   1.1    nonaka 	 */
   1460   1.1    nonaka 
   1461   1.1    nonaka 	/* Fragment the data into proper blocks. */
   1462   1.1    nonaka 	if (cmd->c_datalen > 0) {
   1463   1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1464   1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1465   1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1466   1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1467  1.11      matt 			aprint_error_dev(sc->sc_dev,
   1468   1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1469   1.1    nonaka 			return EINVAL;
   1470   1.1    nonaka 		}
   1471   1.1    nonaka 	}
   1472   1.1    nonaka 
   1473   1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1474   1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1475  1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1476   1.1    nonaka 		return EINVAL;
   1477   1.1    nonaka 	}
   1478   1.1    nonaka 
   1479   1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1480  1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1481   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1482   1.1    nonaka 		mode |= SDHC_READ_MODE;
   1483  1.15  jakllsch 	if (blkcount > 1) {
   1484  1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1485  1.15  jakllsch 		/* XXX only for memory commands? */
   1486  1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1487   1.1    nonaka 	}
   1488  1.45  jakllsch 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1489  1.55    bouyer 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1490  1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1491   1.7    nonaka 	}
   1492   1.1    nonaka 
   1493   1.1    nonaka 	/*
   1494   1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1495   1.1    nonaka 	 */
   1496  1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1497   1.1    nonaka 
   1498   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1499   1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1500   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1501   1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1502  1.79  jmcneill 	if (cmd->c_datalen > 0)
   1503   1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1504   1.1    nonaka 
   1505   1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1506   1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1507   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1508   1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1509   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1510   1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1511   1.1    nonaka 	else
   1512   1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1513   1.1    nonaka 
   1514   1.1    nonaka 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1515   1.1    nonaka 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1516  1.68   mlelstv 	if (error) {
   1517  1.68   mlelstv 		aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
   1518   1.1    nonaka 		return error;
   1519  1.68   mlelstv 	}
   1520   1.1    nonaka 
   1521   1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1522   1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1523   1.1    nonaka 
   1524  1.44   hkenken 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1525  1.44   hkenken 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1526  1.44   hkenken 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1527  1.44   hkenken 	}
   1528  1.19  jakllsch 
   1529  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1530  1.11      matt 		/* Alert the user not to remove the card. */
   1531  1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1532  1.11      matt 	}
   1533   1.1    nonaka 
   1534   1.7    nonaka 	/* Set DMA start address. */
   1535  1.79  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1536  1.63  jmcneill 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1537  1.69  jmcneill 			bus_addr_t paddr =
   1538  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1539  1.63  jmcneill 			uint16_t len =
   1540  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1541  1.63  jmcneill 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1542  1.63  jmcneill 			uint16_t attr =
   1543  1.63  jmcneill 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1544  1.63  jmcneill 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1545  1.63  jmcneill 				attr |= SDHC_ADMA2_END;
   1546  1.63  jmcneill 			}
   1547  1.63  jmcneill 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1548  1.63  jmcneill 				struct sdhc_adma2_descriptor32 *desc =
   1549  1.63  jmcneill 				    hp->adma2;
   1550  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1551  1.63  jmcneill 				desc[seg].length = htole16(len);
   1552  1.63  jmcneill 				desc[seg].address = htole32(paddr);
   1553  1.63  jmcneill 			} else {
   1554  1.63  jmcneill 				struct sdhc_adma2_descriptor64 *desc =
   1555  1.63  jmcneill 				    hp->adma2;
   1556  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1557  1.63  jmcneill 				desc[seg].length = htole16(len);
   1558  1.63  jmcneill 				desc[seg].address = htole32(paddr & 0xffffffff);
   1559  1.63  jmcneill 				desc[seg].address_hi = htole32(
   1560  1.63  jmcneill 				    (uint64_t)paddr >> 32);
   1561  1.63  jmcneill 			}
   1562  1.63  jmcneill 		}
   1563  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1564  1.63  jmcneill 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1565  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1566  1.63  jmcneill 		} else {
   1567  1.63  jmcneill 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1568  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1569  1.63  jmcneill 		}
   1570  1.63  jmcneill 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1571  1.63  jmcneill 		    BUS_DMASYNC_PREWRITE);
   1572  1.63  jmcneill 		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1573  1.63  jmcneill 		HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1574  1.63  jmcneill 
   1575  1.70  jmcneill 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1576  1.63  jmcneill 
   1577  1.63  jmcneill 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1578  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1579  1.63  jmcneill 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1580  1.63  jmcneill 			    (uint64_t)desc_addr >> 32);
   1581  1.63  jmcneill 		}
   1582  1.63  jmcneill 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1583  1.63  jmcneill 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1584   1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1585  1.63  jmcneill 	}
   1586   1.7    nonaka 
   1587   1.1    nonaka 	/*
   1588   1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1589   1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1590   1.1    nonaka 	 */
   1591  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1592  1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1593  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1594  1.11      matt 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1595  1.11      matt 	} else {
   1596  1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1597  1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1598  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1599  1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1600  1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1601  1.11      matt 	}
   1602   1.1    nonaka 
   1603   1.1    nonaka 	return 0;
   1604   1.1    nonaka }
   1605   1.1    nonaka 
   1606   1.1    nonaka static void
   1607   1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1608   1.1    nonaka {
   1609  1.51  jmcneill 	struct sdhc_softc *sc = hp->sc;
   1610   1.1    nonaka 	int error;
   1611   1.1    nonaka 
   1612  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1613  1.65  jmcneill 
   1614   1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1615   1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1616   1.1    nonaka 
   1617   1.1    nonaka #ifdef SDHC_DEBUG
   1618   1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1619   1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1620   1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1621   1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1622   1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1623   1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1624   1.1    nonaka 	}
   1625   1.1    nonaka #endif
   1626   1.1    nonaka 
   1627  1.47     skrll 	if (cmd->c_dmamap != NULL) {
   1628  1.47     skrll 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1629  1.51  jmcneill 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1630  1.47     skrll 			if (error == 0 && !sdhc_wait_intr(hp,
   1631  1.61  jmcneill 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
   1632  1.47     skrll 				error = ETIMEDOUT;
   1633  1.47     skrll 			}
   1634  1.47     skrll 		} else {
   1635  1.47     skrll 			error = sdhc_transfer_data_dma(hp, cmd);
   1636  1.47     skrll 		}
   1637  1.47     skrll 	} else
   1638   1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1639   1.1    nonaka 	if (error)
   1640   1.1    nonaka 		cmd->c_error = error;
   1641   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1642   1.1    nonaka 
   1643   1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1644   1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1645   1.1    nonaka }
   1646   1.1    nonaka 
   1647   1.1    nonaka static int
   1648   1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1649   1.7    nonaka {
   1650  1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1651  1.19  jakllsch 	bus_addr_t posaddr;
   1652  1.19  jakllsch 	bus_addr_t segaddr;
   1653  1.19  jakllsch 	bus_size_t seglen;
   1654  1.19  jakllsch 	u_int seg = 0;
   1655   1.7    nonaka 	int error = 0;
   1656  1.19  jakllsch 	int status;
   1657   1.7    nonaka 
   1658  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1659  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1660  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1661  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1662  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1663  1.11      matt 
   1664   1.7    nonaka 	for (;;) {
   1665  1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1666   1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1667  1.19  jakllsch 		    SDHC_DMA_TIMEOUT);
   1668  1.19  jakllsch 
   1669  1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1670  1.19  jakllsch 			break;
   1671  1.19  jakllsch 		}
   1672  1.19  jakllsch 		if (!status) {
   1673   1.7    nonaka 			error = ETIMEDOUT;
   1674   1.7    nonaka 			break;
   1675   1.7    nonaka 		}
   1676  1.63  jmcneill 
   1677  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1678  1.63  jmcneill 			continue;
   1679  1.63  jmcneill 		}
   1680  1.63  jmcneill 
   1681  1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1682  1.19  jakllsch 			continue;
   1683  1.19  jakllsch 		}
   1684  1.19  jakllsch 
   1685  1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1686   1.7    nonaka 
   1687  1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1688  1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1689  1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1690   1.7    nonaka 
   1691  1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1692  1.37  jakllsch 			continue;
   1693  1.19  jakllsch 		}
   1694  1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1695  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1696  1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1697  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1698  1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1699   1.7    nonaka 	}
   1700   1.7    nonaka 
   1701  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1702  1.63  jmcneill 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1703  1.63  jmcneill 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1704  1.63  jmcneill 	}
   1705  1.63  jmcneill 
   1706   1.7    nonaka 	return error;
   1707   1.7    nonaka }
   1708   1.7    nonaka 
   1709   1.7    nonaka static int
   1710   1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1711   1.1    nonaka {
   1712   1.1    nonaka 	uint8_t *data = cmd->c_data;
   1713  1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1714  1.11      matt 	u_int len, datalen;
   1715  1.11      matt 	u_int imask;
   1716  1.11      matt 	u_int pmask;
   1717   1.1    nonaka 	int error = 0;
   1718   1.1    nonaka 
   1719  1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1720  1.78   mlelstv 
   1721  1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1722  1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1723  1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1724  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1725  1.11      matt 			pio_func = esdhc_read_data_pio;
   1726  1.11      matt 		} else {
   1727  1.11      matt 			pio_func = sdhc_read_data_pio;
   1728  1.11      matt 		}
   1729  1.11      matt 	} else {
   1730  1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1731  1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1732  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1733  1.11      matt 			pio_func = esdhc_write_data_pio;
   1734  1.11      matt 		} else {
   1735  1.11      matt 			pio_func = sdhc_write_data_pio;
   1736  1.11      matt 		}
   1737  1.11      matt 	}
   1738   1.1    nonaka 	datalen = cmd->c_datalen;
   1739   1.1    nonaka 
   1740  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1741  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1742  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1743  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1744  1.11      matt 
   1745   1.1    nonaka 	while (datalen > 0) {
   1746  1.11      matt 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1747  1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1748  1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1749  1.11      matt 			} else {
   1750  1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1751  1.11      matt 			}
   1752  1.11      matt 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1753  1.11      matt 				error = ETIMEDOUT;
   1754  1.11      matt 				break;
   1755  1.11      matt 			}
   1756  1.11      matt 
   1757  1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1758  1.11      matt 			if (error)
   1759  1.11      matt 				break;
   1760   1.1    nonaka 		}
   1761   1.1    nonaka 
   1762   1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1763  1.11      matt 		(*pio_func)(hp, data, len);
   1764  1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1765  1.11      matt 		    HDEVNAME(hp), len, data));
   1766   1.1    nonaka 
   1767   1.1    nonaka 		data += len;
   1768   1.1    nonaka 		datalen -= len;
   1769   1.1    nonaka 	}
   1770   1.1    nonaka 
   1771   1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1772   1.1    nonaka 	    SDHC_TRANSFER_TIMEOUT))
   1773   1.1    nonaka 		error = ETIMEDOUT;
   1774   1.1    nonaka 
   1775   1.1    nonaka 	return error;
   1776   1.1    nonaka }
   1777   1.1    nonaka 
   1778   1.1    nonaka static void
   1779  1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1780   1.1    nonaka {
   1781   1.1    nonaka 
   1782   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1783   1.1    nonaka 		while (datalen > 3) {
   1784  1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1785   1.1    nonaka 			data += 4;
   1786   1.1    nonaka 			datalen -= 4;
   1787   1.1    nonaka 		}
   1788   1.1    nonaka 		if (datalen > 1) {
   1789  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1790   1.1    nonaka 			data += 2;
   1791   1.1    nonaka 			datalen -= 2;
   1792   1.1    nonaka 		}
   1793   1.1    nonaka 		if (datalen > 0) {
   1794   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1795   1.1    nonaka 			data += 1;
   1796   1.1    nonaka 			datalen -= 1;
   1797   1.1    nonaka 		}
   1798   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1799   1.1    nonaka 		while (datalen > 1) {
   1800  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1801   1.1    nonaka 			data += 2;
   1802   1.1    nonaka 			datalen -= 2;
   1803   1.1    nonaka 		}
   1804   1.1    nonaka 		if (datalen > 0) {
   1805   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1806   1.1    nonaka 			data += 1;
   1807   1.1    nonaka 			datalen -= 1;
   1808   1.1    nonaka 		}
   1809   1.1    nonaka 	} else {
   1810   1.1    nonaka 		while (datalen > 0) {
   1811   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1812   1.1    nonaka 			data += 1;
   1813   1.1    nonaka 			datalen -= 1;
   1814   1.1    nonaka 		}
   1815   1.1    nonaka 	}
   1816   1.1    nonaka }
   1817   1.1    nonaka 
   1818   1.1    nonaka static void
   1819  1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1820   1.1    nonaka {
   1821   1.1    nonaka 
   1822   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1823   1.1    nonaka 		while (datalen > 3) {
   1824  1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1825   1.1    nonaka 			data += 4;
   1826   1.1    nonaka 			datalen -= 4;
   1827   1.1    nonaka 		}
   1828   1.1    nonaka 		if (datalen > 1) {
   1829  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1830   1.1    nonaka 			data += 2;
   1831   1.1    nonaka 			datalen -= 2;
   1832   1.1    nonaka 		}
   1833   1.1    nonaka 		if (datalen > 0) {
   1834   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1835   1.1    nonaka 			data += 1;
   1836   1.1    nonaka 			datalen -= 1;
   1837   1.1    nonaka 		}
   1838   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1839   1.1    nonaka 		while (datalen > 1) {
   1840  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1841   1.1    nonaka 			data += 2;
   1842   1.1    nonaka 			datalen -= 2;
   1843   1.1    nonaka 		}
   1844   1.1    nonaka 		if (datalen > 0) {
   1845   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1846   1.1    nonaka 			data += 1;
   1847   1.1    nonaka 			datalen -= 1;
   1848   1.1    nonaka 		}
   1849   1.1    nonaka 	} else {
   1850   1.1    nonaka 		while (datalen > 0) {
   1851   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1852   1.1    nonaka 			data += 1;
   1853   1.1    nonaka 			datalen -= 1;
   1854   1.1    nonaka 		}
   1855   1.1    nonaka 	}
   1856   1.1    nonaka }
   1857   1.1    nonaka 
   1858  1.11      matt static void
   1859  1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1860  1.11      matt {
   1861  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1862  1.12    nonaka 	uint32_t v;
   1863  1.12    nonaka 
   1864  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1865  1.23      matt 	size_t count = 0;
   1866  1.23      matt 
   1867  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1868  1.23      matt 		if (count == 0) {
   1869  1.23      matt 			/*
   1870  1.23      matt 			 * If we've drained "watermark" words, we need to wait
   1871  1.23      matt 			 * a little bit so the read FIFO can refill.
   1872  1.23      matt 			 */
   1873  1.23      matt 			sdmmc_delay(10);
   1874  1.23      matt 			count = watermark;
   1875  1.23      matt 		}
   1876  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1877  1.11      matt 		v = le32toh(v);
   1878  1.11      matt 		*(uint32_t *)data = v;
   1879  1.11      matt 		data += 4;
   1880  1.11      matt 		datalen -= 4;
   1881  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1882  1.23      matt 		count--;
   1883  1.11      matt 	}
   1884  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1885  1.23      matt 		if (count == 0) {
   1886  1.23      matt 			sdmmc_delay(10);
   1887  1.23      matt 		}
   1888  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1889  1.11      matt 		v = le32toh(v);
   1890  1.11      matt 		do {
   1891  1.11      matt 			*data++ = v;
   1892  1.11      matt 			v >>= 8;
   1893  1.11      matt 		} while (--datalen > 0);
   1894  1.11      matt 	}
   1895  1.11      matt }
   1896  1.11      matt 
   1897  1.11      matt static void
   1898  1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1899  1.11      matt {
   1900  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1901  1.12    nonaka 	uint32_t v;
   1902  1.12    nonaka 
   1903  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1904  1.23      matt 	size_t count = watermark;
   1905  1.23      matt 
   1906  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1907  1.23      matt 		if (count == 0) {
   1908  1.23      matt 			sdmmc_delay(10);
   1909  1.23      matt 			count = watermark;
   1910  1.23      matt 		}
   1911  1.12    nonaka 		v = *(uint32_t *)data;
   1912  1.11      matt 		v = htole32(v);
   1913  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1914  1.11      matt 		data += 4;
   1915  1.11      matt 		datalen -= 4;
   1916  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1917  1.23      matt 		count--;
   1918  1.11      matt 	}
   1919  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1920  1.23      matt 		if (count == 0) {
   1921  1.23      matt 			sdmmc_delay(10);
   1922  1.23      matt 		}
   1923  1.12    nonaka 		v = *(uint32_t *)data;
   1924  1.11      matt 		v = htole32(v);
   1925  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1926  1.11      matt 	}
   1927  1.11      matt }
   1928  1.11      matt 
   1929   1.1    nonaka /* Prepare for another command. */
   1930   1.1    nonaka static int
   1931   1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1932   1.1    nonaka {
   1933   1.1    nonaka 	int timo;
   1934   1.1    nonaka 
   1935  1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1936  1.78   mlelstv 
   1937   1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1938   1.1    nonaka 
   1939  1.35  riastrad 	/* Request the reset.  */
   1940   1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1941  1.35  riastrad 
   1942  1.35  riastrad 	/*
   1943  1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   1944  1.35  riastrad 	 * acknowledge the reset.
   1945  1.35  riastrad 	 */
   1946  1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1947  1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1948  1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   1949  1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1950  1.35  riastrad 				break;
   1951  1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   1952  1.35  riastrad 			sdmmc_delay(1);
   1953  1.35  riastrad 		}
   1954  1.35  riastrad 		if (timo == 0)
   1955  1.35  riastrad 			return ETIMEDOUT;
   1956  1.35  riastrad 	}
   1957  1.35  riastrad 
   1958  1.35  riastrad 	/*
   1959  1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   1960  1.35  riastrad 	 * the reset has completed.
   1961  1.35  riastrad 	 */
   1962   1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   1963   1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1964   1.1    nonaka 			break;
   1965   1.1    nonaka 		sdmmc_delay(10000);
   1966   1.1    nonaka 	}
   1967   1.1    nonaka 	if (timo == 0) {
   1968   1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1969   1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1970   1.1    nonaka 		return ETIMEDOUT;
   1971   1.1    nonaka 	}
   1972   1.1    nonaka 
   1973  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1974  1.53    nonaka 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1975  1.11      matt 	}
   1976  1.11      matt 
   1977   1.1    nonaka 	return 0;
   1978   1.1    nonaka }
   1979   1.1    nonaka 
   1980   1.1    nonaka static int
   1981   1.1    nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1982   1.1    nonaka {
   1983   1.1    nonaka 	int status;
   1984   1.1    nonaka 
   1985  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1986  1.65  jmcneill 
   1987   1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   1988   1.1    nonaka 
   1989   1.1    nonaka 	status = hp->intr_status & mask;
   1990   1.1    nonaka 	while (status == 0) {
   1991  1.65  jmcneill 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   1992   1.1    nonaka 		    == EWOULDBLOCK) {
   1993   1.1    nonaka 			status |= SDHC_ERROR_INTERRUPT;
   1994   1.1    nonaka 			break;
   1995   1.1    nonaka 		}
   1996   1.1    nonaka 		status = hp->intr_status & mask;
   1997   1.1    nonaka 	}
   1998   1.1    nonaka 	hp->intr_status &= ~status;
   1999   1.1    nonaka 
   2000   1.1    nonaka 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2001   1.1    nonaka 	    hp->intr_error_status));
   2002  1.47     skrll 
   2003   1.1    nonaka 	/* Command timeout has higher priority than command complete. */
   2004  1.11      matt 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   2005   1.1    nonaka 		hp->intr_error_status = 0;
   2006  1.11      matt 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   2007  1.11      matt 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2008  1.11      matt 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   2009  1.11      matt 		}
   2010   1.1    nonaka 		status = 0;
   2011   1.1    nonaka 	}
   2012   1.1    nonaka 
   2013   1.1    nonaka 	return status;
   2014   1.1    nonaka }
   2015   1.1    nonaka 
   2016   1.1    nonaka /*
   2017   1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2018   1.1    nonaka  */
   2019   1.1    nonaka int
   2020   1.1    nonaka sdhc_intr(void *arg)
   2021   1.1    nonaka {
   2022   1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2023   1.1    nonaka 	struct sdhc_host *hp;
   2024   1.1    nonaka 	int done = 0;
   2025   1.1    nonaka 	uint16_t status;
   2026   1.1    nonaka 	uint16_t error;
   2027   1.1    nonaka 
   2028   1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   2029  1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2030   1.1    nonaka 		hp = sc->sc_host[host];
   2031   1.1    nonaka 		if (hp == NULL)
   2032   1.1    nonaka 			continue;
   2033   1.1    nonaka 
   2034  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   2035  1.65  jmcneill 
   2036  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2037  1.11      matt 			/* Find out which interrupts are pending. */
   2038  1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2039  1.11      matt 			status = xstatus;
   2040  1.11      matt 			error = xstatus >> 16;
   2041  1.22      matt 			if (error)
   2042  1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   2043  1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2044  1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2045  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2046  1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2047  1.11      matt 		} else {
   2048  1.11      matt 			/* Find out which interrupts are pending. */
   2049  1.11      matt 			error = 0;
   2050  1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2051  1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2052  1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2053  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2054  1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2055  1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2056  1.11      matt 				/* Acknowledge error interrupts. */
   2057  1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2058  1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2059  1.11      matt 			}
   2060  1.11      matt 		}
   2061  1.47     skrll 
   2062  1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2063  1.11      matt 		    status, error));
   2064   1.1    nonaka 
   2065   1.1    nonaka 		/* Claim this interrupt. */
   2066   1.1    nonaka 		done = 1;
   2067   1.1    nonaka 
   2068  1.63  jmcneill 		if (ISSET(error, SDHC_ADMA_ERROR)) {
   2069  1.63  jmcneill 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2070  1.63  jmcneill 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2071  1.63  jmcneill 			    adma_err);
   2072  1.63  jmcneill 		}
   2073  1.63  jmcneill 
   2074   1.1    nonaka 		/*
   2075   1.1    nonaka 		 * Service error interrupts.
   2076   1.1    nonaka 		 */
   2077  1.11      matt 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   2078  1.11      matt 		    SDHC_DATA_TIMEOUT_ERROR)) {
   2079  1.11      matt 			hp->intr_error_status |= error;
   2080  1.11      matt 			hp->intr_status |= status;
   2081  1.11      matt 			cv_broadcast(&hp->intr_cv);
   2082   1.1    nonaka 		}
   2083   1.1    nonaka 
   2084   1.1    nonaka 		/*
   2085   1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   2086   1.1    nonaka 		 */
   2087   1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2088  1.46  jakllsch 			if (hp->sdmmc != NULL) {
   2089  1.46  jakllsch 				sdmmc_needs_discover(hp->sdmmc);
   2090  1.46  jakllsch 			}
   2091  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2092  1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2093  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2094  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2095  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2096  1.11      matt 			}
   2097   1.9      matt 		}
   2098   1.1    nonaka 
   2099   1.1    nonaka 		/*
   2100   1.1    nonaka 		 * Wake up the blocking process to service command
   2101   1.1    nonaka 		 * related interrupt(s).
   2102   1.1    nonaka 		 */
   2103  1.11      matt 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   2104  1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2105   1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2106   1.1    nonaka 			hp->intr_status |= status;
   2107  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2108  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2109  1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2110  1.11      matt 			}
   2111   1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   2112   1.1    nonaka 		}
   2113   1.1    nonaka 
   2114   1.1    nonaka 		/*
   2115   1.1    nonaka 		 * Service SD card interrupts.
   2116   1.1    nonaka 		 */
   2117  1.11      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   2118  1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2119   1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2120   1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2121   1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   2122   1.1    nonaka 		}
   2123  1.65  jmcneill next_port:
   2124  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   2125   1.1    nonaka 	}
   2126   1.1    nonaka 
   2127   1.1    nonaka 	return done;
   2128   1.1    nonaka }
   2129   1.1    nonaka 
   2130  1.65  jmcneill kmutex_t *
   2131  1.65  jmcneill sdhc_host_lock(struct sdhc_host *hp)
   2132  1.65  jmcneill {
   2133  1.65  jmcneill 	return &hp->intr_lock;
   2134  1.65  jmcneill }
   2135  1.65  jmcneill 
   2136   1.1    nonaka #ifdef SDHC_DEBUG
   2137   1.1    nonaka void
   2138   1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   2139   1.1    nonaka {
   2140   1.1    nonaka 
   2141   1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2142   1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2143  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2144  1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2145  1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   2146   1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2147   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2148   1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2149   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2150   1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2151   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2152   1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2153   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2154   1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2155   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2156   1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2157   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2158   1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2159   1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   2160   1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2161   1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2162   1.1    nonaka }
   2163   1.1    nonaka #endif
   2164