sdhc.c revision 1.79 1 1.79 jmcneill /* $NetBSD: sdhc.c,v 1.79 2015/08/05 10:30:25 jmcneill Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.79 jmcneill __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.79 2015/08/05 10:30:25 jmcneill Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/malloc.h>
36 1.1 nonaka #include <sys/systm.h>
37 1.1 nonaka #include <sys/mutex.h>
38 1.1 nonaka #include <sys/condvar.h>
39 1.1 nonaka
40 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
41 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
42 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
45 1.1 nonaka
46 1.1 nonaka #ifdef SDHC_DEBUG
47 1.1 nonaka int sdhcdebug = 1;
48 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
50 1.1 nonaka #else
51 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
52 1.1 nonaka #endif
53 1.1 nonaka
54 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
55 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
56 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
57 1.61 jmcneill #define SDHC_DMA_TIMEOUT (hz*3)
58 1.79 jmcneill #define SDHC_TUNING_TIMEOUT hz
59 1.1 nonaka
60 1.1 nonaka struct sdhc_host {
61 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
62 1.1 nonaka
63 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
64 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
65 1.36 jakllsch bus_size_t ios; /* host register space size */
66 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
67 1.1 nonaka
68 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
69 1.1 nonaka
70 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
71 1.1 nonaka int maxblklen; /* maximum block length */
72 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
73 1.1 nonaka
74 1.1 nonaka uint8_t regs[14]; /* host controller state */
75 1.1 nonaka
76 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
77 1.1 nonaka uint16_t intr_error_status; /* soft error status */
78 1.65 jmcneill kmutex_t intr_lock;
79 1.65 jmcneill kcondvar_t intr_cv;
80 1.1 nonaka
81 1.12 nonaka int specver; /* spec. version */
82 1.12 nonaka
83 1.1 nonaka uint32_t flags; /* flags for this host */
84 1.1 nonaka #define SHF_USE_DMA 0x0001
85 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
86 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
87 1.55 bouyer #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
88 1.63 jmcneill #define SHF_USE_ADMA2_32 0x0010
89 1.63 jmcneill #define SHF_USE_ADMA2_64 0x0020
90 1.63 jmcneill #define SHF_USE_ADMA2_MASK 0x0030
91 1.63 jmcneill
92 1.63 jmcneill bus_dmamap_t adma_map;
93 1.63 jmcneill bus_dma_segment_t adma_segs[1];
94 1.63 jmcneill void *adma2;
95 1.1 nonaka };
96 1.1 nonaka
97 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
98 1.1 nonaka
99 1.11 matt static uint8_t
100 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
101 1.11 matt {
102 1.12 nonaka
103 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
104 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
105 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
106 1.11 matt }
107 1.11 matt
108 1.11 matt static uint16_t
109 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
110 1.11 matt {
111 1.12 nonaka
112 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
113 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
114 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
115 1.11 matt }
116 1.11 matt
117 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
118 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
119 1.11 matt #define HREAD4(hp, reg) \
120 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
121 1.11 matt
122 1.11 matt
123 1.11 matt static void
124 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
125 1.11 matt {
126 1.12 nonaka
127 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
128 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
129 1.11 matt } else {
130 1.11 matt const size_t shift = 8 * (o & 3);
131 1.11 matt o &= -4;
132 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
133 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
134 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
135 1.11 matt }
136 1.11 matt }
137 1.11 matt
138 1.11 matt static void
139 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
140 1.11 matt {
141 1.12 nonaka
142 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
143 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
144 1.11 matt } else {
145 1.11 matt const size_t shift = 8 * (o & 2);
146 1.11 matt o &= -4;
147 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
148 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
149 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
150 1.11 matt }
151 1.11 matt }
152 1.11 matt
153 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
154 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
155 1.1 nonaka #define HWRITE4(hp, reg, val) \
156 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
157 1.11 matt
158 1.1 nonaka #define HCLR1(hp, reg, bits) \
159 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
160 1.1 nonaka #define HCLR2(hp, reg, bits) \
161 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
162 1.11 matt #define HCLR4(hp, reg, bits) \
163 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
164 1.1 nonaka #define HSET1(hp, reg, bits) \
165 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
166 1.1 nonaka #define HSET2(hp, reg, bits) \
167 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
168 1.11 matt #define HSET4(hp, reg, bits) \
169 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
170 1.1 nonaka
171 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
172 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
173 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
174 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
175 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
176 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
177 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
178 1.76 jmcneill static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
179 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
180 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
181 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
182 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
183 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
184 1.1 nonaka struct sdmmc_command *);
185 1.71 jmcneill static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
186 1.79 jmcneill static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
187 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
188 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
189 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
190 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
191 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
192 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
193 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
194 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
195 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
196 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
197 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
198 1.11 matt
199 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
200 1.1 nonaka /* host controller reset */
201 1.60 skrll .host_reset = sdhc_host_reset,
202 1.1 nonaka
203 1.1 nonaka /* host controller capabilities */
204 1.60 skrll .host_ocr = sdhc_host_ocr,
205 1.60 skrll .host_maxblklen = sdhc_host_maxblklen,
206 1.1 nonaka
207 1.1 nonaka /* card detection */
208 1.60 skrll .card_detect = sdhc_card_detect,
209 1.1 nonaka
210 1.1 nonaka /* write protect */
211 1.60 skrll .write_protect = sdhc_write_protect,
212 1.1 nonaka
213 1.60 skrll /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
214 1.60 skrll .bus_power = sdhc_bus_power,
215 1.76 jmcneill .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
216 1.60 skrll .bus_width = sdhc_bus_width,
217 1.60 skrll .bus_rod = sdhc_bus_rod,
218 1.1 nonaka
219 1.1 nonaka /* command execution */
220 1.60 skrll .exec_command = sdhc_exec_command,
221 1.1 nonaka
222 1.1 nonaka /* card interrupt */
223 1.60 skrll .card_enable_intr = sdhc_card_enable_intr,
224 1.71 jmcneill .card_intr_ack = sdhc_card_intr_ack,
225 1.71 jmcneill
226 1.71 jmcneill /* UHS functions */
227 1.71 jmcneill .signal_voltage = sdhc_signal_voltage,
228 1.76 jmcneill .bus_clock_ddr = sdhc_bus_clock_ddr,
229 1.79 jmcneill .execute_tuning = sdhc_execute_tuning,
230 1.1 nonaka };
231 1.1 nonaka
232 1.17 jakllsch static int
233 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
234 1.17 jakllsch {
235 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
236 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
237 1.47 skrll
238 1.17 jakllsch if (pnp) {
239 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
240 1.17 jakllsch }
241 1.41 jakllsch for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
242 1.41 jakllsch if (hp->sc->sc_host[host] == hp) {
243 1.41 jakllsch aprint_normal(" slot %zu", host);
244 1.41 jakllsch }
245 1.41 jakllsch }
246 1.17 jakllsch
247 1.17 jakllsch return UNCONF;
248 1.17 jakllsch }
249 1.17 jakllsch
250 1.1 nonaka /*
251 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
252 1.1 nonaka * host controller standard register set. (1.3)
253 1.1 nonaka */
254 1.1 nonaka int
255 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
256 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
257 1.1 nonaka {
258 1.1 nonaka struct sdmmcbus_attach_args saa;
259 1.1 nonaka struct sdhc_host *hp;
260 1.71 jmcneill uint32_t caps, caps2;
261 1.1 nonaka uint16_t sdhcver;
262 1.63 jmcneill int error;
263 1.1 nonaka
264 1.33 riastrad /* Allocate one more host structure. */
265 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
266 1.33 riastrad if (hp == NULL) {
267 1.33 riastrad aprint_error_dev(sc->sc_dev,
268 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
269 1.33 riastrad goto err1;
270 1.33 riastrad }
271 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
272 1.33 riastrad
273 1.33 riastrad /* Fill in the new host structure. */
274 1.33 riastrad hp->sc = sc;
275 1.33 riastrad hp->iot = iot;
276 1.33 riastrad hp->ioh = ioh;
277 1.36 jakllsch hp->ios = iosize;
278 1.33 riastrad hp->dmat = sc->sc_dmat;
279 1.33 riastrad
280 1.65 jmcneill mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
281 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
282 1.33 riastrad
283 1.52 nonaka if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
284 1.52 nonaka sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
285 1.52 nonaka } else {
286 1.52 nonaka sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
287 1.52 nonaka }
288 1.58 jmcneill aprint_normal_dev(sc->sc_dev, "SDHC ");
289 1.33 riastrad hp->specver = SDHC_SPEC_VERSION(sdhcver);
290 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
291 1.12 nonaka case SDHC_SPEC_VERS_100:
292 1.12 nonaka aprint_normal("1.0");
293 1.12 nonaka break;
294 1.12 nonaka
295 1.12 nonaka case SDHC_SPEC_VERS_200:
296 1.12 nonaka aprint_normal("2.0");
297 1.1 nonaka break;
298 1.1 nonaka
299 1.12 nonaka case SDHC_SPEC_VERS_300:
300 1.12 nonaka aprint_normal("3.0");
301 1.9 matt break;
302 1.9 matt
303 1.56 jmcneill case SDHC_SPEC_VERS_400:
304 1.56 jmcneill aprint_normal("4.0");
305 1.56 jmcneill break;
306 1.56 jmcneill
307 1.1 nonaka default:
308 1.12 nonaka aprint_normal("unknown version(0x%x)",
309 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
310 1.1 nonaka break;
311 1.1 nonaka }
312 1.58 jmcneill aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
313 1.1 nonaka
314 1.1 nonaka /*
315 1.3 uebayasi * Reset the host controller and enable interrupts.
316 1.1 nonaka */
317 1.1 nonaka (void)sdhc_host_reset(hp);
318 1.1 nonaka
319 1.1 nonaka /* Determine host capabilities. */
320 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
321 1.24 skrll caps = sc->sc_caps;
322 1.72 jmcneill caps2 = sc->sc_caps2;
323 1.24 skrll } else {
324 1.79 jmcneill caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
325 1.72 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
326 1.79 jmcneill caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
327 1.72 jmcneill } else {
328 1.79 jmcneill caps2 = sc->sc_caps2 = 0;
329 1.72 jmcneill }
330 1.71 jmcneill }
331 1.1 nonaka
332 1.55 bouyer /*
333 1.55 bouyer * Use DMA if the host system and the controller support it.
334 1.55 bouyer * Suports integrated or external DMA egine, with or without
335 1.55 bouyer * SDHC_DMA_ENABLE in the command.
336 1.55 bouyer */
337 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
338 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
339 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
340 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
341 1.63 jmcneill
342 1.63 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
343 1.63 jmcneill ISSET(caps, SDHC_ADMA2_SUPP)) {
344 1.55 bouyer SET(hp->flags, SHF_MODE_DMAEN);
345 1.63 jmcneill /*
346 1.63 jmcneill * 64-bit mode was present in the 2.00 spec, removed
347 1.63 jmcneill * from 3.00, and re-added in 4.00 with a different
348 1.63 jmcneill * descriptor layout. We only support 2.00 and 3.00
349 1.63 jmcneill * descriptors for now.
350 1.63 jmcneill */
351 1.63 jmcneill if (hp->specver == SDHC_SPEC_VERS_200 &&
352 1.63 jmcneill ISSET(caps, SDHC_64BIT_SYS_BUS)) {
353 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_64);
354 1.63 jmcneill aprint_normal(", 64-bit ADMA2");
355 1.63 jmcneill } else {
356 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_32);
357 1.63 jmcneill aprint_normal(", 32-bit ADMA2");
358 1.63 jmcneill }
359 1.63 jmcneill } else {
360 1.63 jmcneill if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
361 1.63 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
362 1.63 jmcneill SET(hp->flags, SHF_MODE_DMAEN);
363 1.64 jmcneill if (sc->sc_vendor_transfer_data_dma) {
364 1.64 jmcneill aprint_normal(", platform DMA");
365 1.64 jmcneill } else {
366 1.64 jmcneill aprint_normal(", SDMA");
367 1.64 jmcneill }
368 1.63 jmcneill }
369 1.58 jmcneill } else {
370 1.58 jmcneill aprint_normal(", PIO");
371 1.1 nonaka }
372 1.1 nonaka
373 1.1 nonaka /*
374 1.1 nonaka * Determine the base clock frequency. (2.2.24)
375 1.1 nonaka */
376 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
377 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
378 1.30 matt } else {
379 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
380 1.30 matt }
381 1.56 jmcneill if (hp->clkbase == 0 ||
382 1.56 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
383 1.9 matt if (sc->sc_clkbase == 0) {
384 1.9 matt /* The attachment driver must tell us. */
385 1.12 nonaka aprint_error_dev(sc->sc_dev,
386 1.12 nonaka "unknown base clock frequency\n");
387 1.9 matt goto err;
388 1.9 matt }
389 1.9 matt hp->clkbase = sc->sc_clkbase;
390 1.9 matt }
391 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
392 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
393 1.1 nonaka aprint_error_dev(sc->sc_dev,
394 1.1 nonaka "base clock frequency out of range: %u MHz\n",
395 1.1 nonaka hp->clkbase / 1000);
396 1.1 nonaka goto err;
397 1.1 nonaka }
398 1.58 jmcneill aprint_normal(", %u kHz", hp->clkbase);
399 1.1 nonaka
400 1.1 nonaka /*
401 1.1 nonaka * XXX Set the data timeout counter value according to
402 1.1 nonaka * capabilities. (2.2.15)
403 1.1 nonaka */
404 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
405 1.29 matt #if 1
406 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
407 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
408 1.11 matt #endif
409 1.1 nonaka
410 1.58 jmcneill if (ISSET(caps, SDHC_EMBEDDED_SLOT))
411 1.58 jmcneill aprint_normal(", embedded slot");
412 1.58 jmcneill
413 1.1 nonaka /*
414 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
415 1.1 nonaka */
416 1.58 jmcneill aprint_normal(",");
417 1.66 jmcneill if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
418 1.66 jmcneill SET(hp->ocr, MMC_OCR_HCS);
419 1.71 jmcneill aprint_normal(" HS");
420 1.71 jmcneill }
421 1.71 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP)) {
422 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
423 1.71 jmcneill aprint_normal(" SDR50");
424 1.71 jmcneill }
425 1.76 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP)) {
426 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
427 1.76 jmcneill aprint_normal(" DDR50");
428 1.71 jmcneill }
429 1.76 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP)) {
430 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
431 1.76 jmcneill aprint_normal(" SDR104 HS200");
432 1.66 jmcneill }
433 1.71 jmcneill if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
434 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
435 1.58 jmcneill aprint_normal(" 1.8V");
436 1.11 matt }
437 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
438 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
439 1.58 jmcneill aprint_normal(" 3.0V");
440 1.11 matt }
441 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
442 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
443 1.58 jmcneill aprint_normal(" 3.3V");
444 1.11 matt }
445 1.1 nonaka
446 1.1 nonaka /*
447 1.1 nonaka * Determine the maximum block length supported by the host
448 1.1 nonaka * controller. (2.2.24)
449 1.1 nonaka */
450 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
451 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
452 1.1 nonaka hp->maxblklen = 512;
453 1.1 nonaka break;
454 1.1 nonaka
455 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
456 1.1 nonaka hp->maxblklen = 1024;
457 1.1 nonaka break;
458 1.1 nonaka
459 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
460 1.1 nonaka hp->maxblklen = 2048;
461 1.1 nonaka break;
462 1.1 nonaka
463 1.9 matt case SDHC_MAX_BLK_LEN_4096:
464 1.9 matt hp->maxblklen = 4096;
465 1.9 matt break;
466 1.9 matt
467 1.1 nonaka default:
468 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
469 1.1 nonaka goto err;
470 1.1 nonaka }
471 1.58 jmcneill aprint_normal(", %u byte blocks", hp->maxblklen);
472 1.58 jmcneill aprint_normal("\n");
473 1.1 nonaka
474 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
475 1.63 jmcneill int rseg;
476 1.63 jmcneill
477 1.63 jmcneill /* Allocate ADMA2 descriptor memory */
478 1.63 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
479 1.63 jmcneill PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
480 1.63 jmcneill if (error) {
481 1.63 jmcneill aprint_error_dev(sc->sc_dev,
482 1.63 jmcneill "ADMA2 dmamem_alloc failed (%d)\n", error);
483 1.63 jmcneill goto adma_done;
484 1.63 jmcneill }
485 1.63 jmcneill error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
486 1.63 jmcneill PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
487 1.63 jmcneill if (error) {
488 1.63 jmcneill aprint_error_dev(sc->sc_dev,
489 1.63 jmcneill "ADMA2 dmamem_map failed (%d)\n", error);
490 1.63 jmcneill goto adma_done;
491 1.63 jmcneill }
492 1.63 jmcneill error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
493 1.63 jmcneill 0, BUS_DMA_WAITOK, &hp->adma_map);
494 1.63 jmcneill if (error) {
495 1.63 jmcneill aprint_error_dev(sc->sc_dev,
496 1.63 jmcneill "ADMA2 dmamap_create failed (%d)\n", error);
497 1.63 jmcneill goto adma_done;
498 1.63 jmcneill }
499 1.63 jmcneill error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
500 1.63 jmcneill hp->adma2, PAGE_SIZE, NULL,
501 1.63 jmcneill BUS_DMA_WAITOK|BUS_DMA_WRITE);
502 1.63 jmcneill if (error) {
503 1.63 jmcneill aprint_error_dev(sc->sc_dev,
504 1.63 jmcneill "ADMA2 dmamap_load failed (%d)\n", error);
505 1.63 jmcneill goto adma_done;
506 1.63 jmcneill }
507 1.63 jmcneill
508 1.63 jmcneill memset(hp->adma2, 0, PAGE_SIZE);
509 1.63 jmcneill
510 1.63 jmcneill adma_done:
511 1.63 jmcneill if (error)
512 1.63 jmcneill CLR(hp->flags, SHF_USE_ADMA2_MASK);
513 1.63 jmcneill }
514 1.63 jmcneill
515 1.1 nonaka /*
516 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
517 1.1 nonaka * not invoke any chipset functions before it is attached.)
518 1.1 nonaka */
519 1.1 nonaka memset(&saa, 0, sizeof(saa));
520 1.1 nonaka saa.saa_busname = "sdmmc";
521 1.1 nonaka saa.saa_sct = &sdhc_functions;
522 1.1 nonaka saa.saa_sch = hp;
523 1.1 nonaka saa.saa_dmat = hp->dmat;
524 1.1 nonaka saa.saa_clkmax = hp->clkbase;
525 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
526 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
527 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
528 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
529 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
530 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
531 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
532 1.56 jmcneill else if (hp->specver >= SDHC_SPEC_VERS_300)
533 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
534 1.38 jakllsch else
535 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
536 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
537 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
538 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
539 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
540 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
541 1.76 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP))
542 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
543 1.76 jmcneill SMC_CAPS_UHS_SDR50 |
544 1.76 jmcneill SMC_CAPS_MMC_HS200;
545 1.76 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP))
546 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR50;
547 1.76 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP))
548 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_DDR50;
549 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
550 1.54 nonaka saa.saa_caps |= SMC_CAPS_DMA;
551 1.54 nonaka if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
552 1.54 nonaka saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
553 1.26 matt }
554 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
555 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
556 1.77 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
557 1.77 jmcneill saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
558 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
559 1.1 nonaka
560 1.1 nonaka return 0;
561 1.1 nonaka
562 1.1 nonaka err:
563 1.1 nonaka cv_destroy(&hp->intr_cv);
564 1.65 jmcneill mutex_destroy(&hp->intr_lock);
565 1.1 nonaka free(hp, M_DEVBUF);
566 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
567 1.1 nonaka err1:
568 1.1 nonaka return 1;
569 1.1 nonaka }
570 1.1 nonaka
571 1.7 nonaka int
572 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
573 1.7 nonaka {
574 1.36 jakllsch struct sdhc_host *hp;
575 1.7 nonaka int rv = 0;
576 1.7 nonaka
577 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
578 1.36 jakllsch hp = sc->sc_host[n];
579 1.36 jakllsch if (hp == NULL)
580 1.36 jakllsch continue;
581 1.36 jakllsch if (hp->sdmmc != NULL) {
582 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
583 1.36 jakllsch if (rv)
584 1.36 jakllsch break;
585 1.36 jakllsch hp->sdmmc = NULL;
586 1.36 jakllsch }
587 1.36 jakllsch /* disable interrupts */
588 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
589 1.78 mlelstv mutex_enter(&hp->intr_lock);
590 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
591 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
592 1.36 jakllsch } else {
593 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
594 1.36 jakllsch }
595 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
596 1.78 mlelstv mutex_exit(&hp->intr_lock);
597 1.36 jakllsch }
598 1.36 jakllsch cv_destroy(&hp->intr_cv);
599 1.65 jmcneill mutex_destroy(&hp->intr_lock);
600 1.36 jakllsch if (hp->ios > 0) {
601 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
602 1.36 jakllsch hp->ios = 0;
603 1.36 jakllsch }
604 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
605 1.63 jmcneill bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
606 1.63 jmcneill bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
607 1.63 jmcneill bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
608 1.63 jmcneill bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
609 1.63 jmcneill }
610 1.36 jakllsch free(hp, M_DEVBUF);
611 1.36 jakllsch sc->sc_host[n] = NULL;
612 1.36 jakllsch }
613 1.7 nonaka
614 1.7 nonaka return rv;
615 1.7 nonaka }
616 1.7 nonaka
617 1.1 nonaka bool
618 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
619 1.1 nonaka {
620 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
621 1.1 nonaka struct sdhc_host *hp;
622 1.12 nonaka size_t i;
623 1.1 nonaka
624 1.1 nonaka /* XXX poll for command completion or suspend command
625 1.1 nonaka * in progress */
626 1.1 nonaka
627 1.1 nonaka /* Save the host controller state. */
628 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
629 1.1 nonaka hp = sc->sc_host[n];
630 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
631 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
632 1.11 matt uint32_t v = HREAD4(hp, i);
633 1.12 nonaka hp->regs[i + 0] = (v >> 0);
634 1.12 nonaka hp->regs[i + 1] = (v >> 8);
635 1.13 bouyer if (i + 3 < sizeof hp->regs) {
636 1.13 bouyer hp->regs[i + 2] = (v >> 16);
637 1.13 bouyer hp->regs[i + 3] = (v >> 24);
638 1.13 bouyer }
639 1.11 matt }
640 1.11 matt } else {
641 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
642 1.11 matt hp->regs[i] = HREAD1(hp, i);
643 1.11 matt }
644 1.11 matt }
645 1.1 nonaka }
646 1.1 nonaka return true;
647 1.1 nonaka }
648 1.1 nonaka
649 1.1 nonaka bool
650 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
651 1.1 nonaka {
652 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
653 1.1 nonaka struct sdhc_host *hp;
654 1.12 nonaka size_t i;
655 1.1 nonaka
656 1.1 nonaka /* Restore the host controller state. */
657 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
658 1.1 nonaka hp = sc->sc_host[n];
659 1.1 nonaka (void)sdhc_host_reset(hp);
660 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
661 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
662 1.13 bouyer if (i + 3 < sizeof hp->regs) {
663 1.13 bouyer HWRITE4(hp, i,
664 1.13 bouyer (hp->regs[i + 0] << 0)
665 1.13 bouyer | (hp->regs[i + 1] << 8)
666 1.13 bouyer | (hp->regs[i + 2] << 16)
667 1.13 bouyer | (hp->regs[i + 3] << 24));
668 1.13 bouyer } else {
669 1.13 bouyer HWRITE4(hp, i,
670 1.13 bouyer (hp->regs[i + 0] << 0)
671 1.13 bouyer | (hp->regs[i + 1] << 8));
672 1.13 bouyer }
673 1.11 matt }
674 1.11 matt } else {
675 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
676 1.11 matt HWRITE1(hp, i, hp->regs[i]);
677 1.11 matt }
678 1.11 matt }
679 1.1 nonaka }
680 1.1 nonaka return true;
681 1.1 nonaka }
682 1.1 nonaka
683 1.1 nonaka bool
684 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
685 1.1 nonaka {
686 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
687 1.1 nonaka struct sdhc_host *hp;
688 1.1 nonaka
689 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
690 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
691 1.1 nonaka hp = sc->sc_host[i];
692 1.1 nonaka (void)sdhc_host_reset(hp);
693 1.1 nonaka }
694 1.1 nonaka return true;
695 1.1 nonaka }
696 1.1 nonaka
697 1.1 nonaka /*
698 1.1 nonaka * Reset the host controller. Called during initialization, when
699 1.1 nonaka * cards are removed, upon resume, and during error recovery.
700 1.1 nonaka */
701 1.1 nonaka static int
702 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
703 1.1 nonaka {
704 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
705 1.11 matt uint32_t sdhcimask;
706 1.1 nonaka int error;
707 1.1 nonaka
708 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
709 1.1 nonaka
710 1.1 nonaka /* Disable all interrupts. */
711 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
712 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
713 1.11 matt } else {
714 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
715 1.11 matt }
716 1.1 nonaka
717 1.1 nonaka /*
718 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
719 1.1 nonaka * the controller to clear the reset bit.
720 1.1 nonaka */
721 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
722 1.1 nonaka if (error)
723 1.1 nonaka goto out;
724 1.1 nonaka
725 1.1 nonaka /* Set data timeout counter value to max for now. */
726 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
727 1.29 matt #if 1
728 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
729 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
730 1.11 matt #endif
731 1.1 nonaka
732 1.1 nonaka /* Enable interrupts. */
733 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
734 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
735 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
736 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
737 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
738 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
739 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
740 1.11 matt sdhcimask ^=
741 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
742 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
743 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
744 1.11 matt } else {
745 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
746 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
747 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
748 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
749 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
750 1.11 matt }
751 1.1 nonaka
752 1.1 nonaka out:
753 1.1 nonaka return error;
754 1.1 nonaka }
755 1.1 nonaka
756 1.1 nonaka static int
757 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
758 1.1 nonaka {
759 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
760 1.1 nonaka int error;
761 1.1 nonaka
762 1.65 jmcneill mutex_enter(&hp->intr_lock);
763 1.1 nonaka error = sdhc_host_reset1(sch);
764 1.65 jmcneill mutex_exit(&hp->intr_lock);
765 1.1 nonaka
766 1.1 nonaka return error;
767 1.1 nonaka }
768 1.1 nonaka
769 1.1 nonaka static uint32_t
770 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
771 1.1 nonaka {
772 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
773 1.1 nonaka
774 1.1 nonaka return hp->ocr;
775 1.1 nonaka }
776 1.1 nonaka
777 1.1 nonaka static int
778 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
779 1.1 nonaka {
780 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
781 1.1 nonaka
782 1.1 nonaka return hp->maxblklen;
783 1.1 nonaka }
784 1.1 nonaka
785 1.1 nonaka /*
786 1.1 nonaka * Return non-zero if the card is currently inserted.
787 1.1 nonaka */
788 1.1 nonaka static int
789 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
790 1.1 nonaka {
791 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
792 1.1 nonaka int r;
793 1.1 nonaka
794 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
795 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
796 1.32 kiyohara
797 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
798 1.1 nonaka
799 1.11 matt return r ? 1 : 0;
800 1.1 nonaka }
801 1.1 nonaka
802 1.1 nonaka /*
803 1.1 nonaka * Return non-zero if the card is currently write-protected.
804 1.1 nonaka */
805 1.1 nonaka static int
806 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
807 1.1 nonaka {
808 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
809 1.1 nonaka int r;
810 1.1 nonaka
811 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
812 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
813 1.32 kiyohara
814 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
815 1.1 nonaka
816 1.12 nonaka return r ? 0 : 1;
817 1.1 nonaka }
818 1.1 nonaka
819 1.1 nonaka /*
820 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
821 1.1 nonaka * Return zero on success.
822 1.1 nonaka */
823 1.1 nonaka static int
824 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
825 1.1 nonaka {
826 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
827 1.1 nonaka uint8_t vdd;
828 1.1 nonaka int error = 0;
829 1.32 kiyohara const uint32_t pcmask =
830 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
831 1.1 nonaka
832 1.65 jmcneill mutex_enter(&hp->intr_lock);
833 1.1 nonaka
834 1.1 nonaka /*
835 1.1 nonaka * Disable bus power before voltage change.
836 1.1 nonaka */
837 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
838 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
839 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
840 1.1 nonaka
841 1.1 nonaka /* If power is disabled, reset the host and return now. */
842 1.1 nonaka if (ocr == 0) {
843 1.1 nonaka (void)sdhc_host_reset1(hp);
844 1.1 nonaka goto out;
845 1.1 nonaka }
846 1.1 nonaka
847 1.1 nonaka /*
848 1.1 nonaka * Select the lowest voltage according to capabilities.
849 1.1 nonaka */
850 1.1 nonaka ocr &= hp->ocr;
851 1.73 jmcneill if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
852 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
853 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
854 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
855 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
856 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
857 1.11 matt } else {
858 1.1 nonaka /* Unsupported voltage level requested. */
859 1.1 nonaka error = EINVAL;
860 1.1 nonaka goto out;
861 1.1 nonaka }
862 1.1 nonaka
863 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
864 1.11 matt /*
865 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
866 1.11 matt * voltage ramp until power rises.
867 1.11 matt */
868 1.57 jmcneill
869 1.57 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
870 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
871 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
872 1.57 jmcneill } else {
873 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
874 1.57 jmcneill HREAD1(hp, SDHC_POWER_CTL) & pcmask);
875 1.57 jmcneill sdmmc_delay(1);
876 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
877 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT));
878 1.57 jmcneill sdmmc_delay(1);
879 1.57 jmcneill HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
880 1.57 jmcneill sdmmc_delay(10000);
881 1.57 jmcneill }
882 1.1 nonaka
883 1.11 matt /*
884 1.11 matt * The host system may not power the bus due to battery low,
885 1.11 matt * etc. In that case, the host controller should clear the
886 1.11 matt * bus power bit.
887 1.11 matt */
888 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
889 1.11 matt error = ENXIO;
890 1.11 matt goto out;
891 1.11 matt }
892 1.1 nonaka }
893 1.1 nonaka
894 1.1 nonaka out:
895 1.65 jmcneill mutex_exit(&hp->intr_lock);
896 1.1 nonaka
897 1.1 nonaka return error;
898 1.1 nonaka }
899 1.1 nonaka
900 1.1 nonaka /*
901 1.1 nonaka * Return the smallest possible base clock frequency divisor value
902 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
903 1.1 nonaka */
904 1.11 matt static bool
905 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
906 1.1 nonaka {
907 1.11 matt u_int div;
908 1.1 nonaka
909 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
910 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
911 1.11 matt if ((hp->clkbase / div) <= freq) {
912 1.11 matt *divp = SDHC_SDCLK_CGM
913 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
914 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
915 1.18 jakllsch //freq = hp->clkbase / div;
916 1.11 matt return true;
917 1.11 matt }
918 1.11 matt }
919 1.11 matt /* No divisor found. */
920 1.11 matt return false;
921 1.11 matt }
922 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
923 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
924 1.11 matt u_int roundup = dvs & 1;
925 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
926 1.11 matt if (dvs + roundup <= 16) {
927 1.11 matt dvs += roundup - 1;
928 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
929 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
930 1.11 matt DPRINTF(2,
931 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
932 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
933 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
934 1.11 matt return true;
935 1.9 matt }
936 1.11 matt /*
937 1.11 matt * If we drop bits, we need to round up the divisor.
938 1.11 matt */
939 1.11 matt roundup |= dvs & 1;
940 1.9 matt }
941 1.18 jakllsch /* No divisor found. */
942 1.18 jakllsch return false;
943 1.38 jakllsch }
944 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
945 1.38 jakllsch div = howmany(hp->clkbase, freq);
946 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
947 1.38 jakllsch return false;
948 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
949 1.38 jakllsch //freq = hp->clkbase / div;
950 1.38 jakllsch return true;
951 1.38 jakllsch }
952 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
953 1.38 jakllsch div = howmany(hp->clkbase, freq);
954 1.50 mlelstv div = div > 1 ? howmany(div, 2) : 0;
955 1.38 jakllsch if (div > 0x3ff)
956 1.38 jakllsch return false;
957 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
958 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
959 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
960 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
961 1.67 mlelstv //freq = hp->clkbase / (div ? div * 2 : 1);
962 1.38 jakllsch return true;
963 1.9 matt } else {
964 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
965 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
966 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
967 1.38 jakllsch //freq = hp->clkbase / div;
968 1.38 jakllsch return true;
969 1.38 jakllsch }
970 1.38 jakllsch }
971 1.38 jakllsch /* No divisor found. */
972 1.38 jakllsch return false;
973 1.9 matt }
974 1.1 nonaka /* No divisor found. */
975 1.11 matt return false;
976 1.1 nonaka }
977 1.1 nonaka
978 1.1 nonaka /*
979 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
980 1.1 nonaka * Return zero on success.
981 1.1 nonaka */
982 1.1 nonaka static int
983 1.76 jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
984 1.1 nonaka {
985 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
986 1.11 matt u_int div;
987 1.11 matt u_int timo;
988 1.32 kiyohara int16_t reg;
989 1.1 nonaka int error = 0;
990 1.65 jmcneill bool present __diagused;
991 1.65 jmcneill
992 1.65 jmcneill mutex_enter(&hp->intr_lock);
993 1.65 jmcneill
994 1.2 cegger #ifdef DIAGNOSTIC
995 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
996 1.1 nonaka
997 1.1 nonaka /* Must not stop the clock if commands are in progress. */
998 1.12 nonaka if (present && sdhc_card_detect(hp)) {
999 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
1000 1.26 matt "%s: command in progress\n", __func__);
1001 1.12 nonaka }
1002 1.1 nonaka #endif
1003 1.1 nonaka
1004 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
1005 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1006 1.34 matt if (error != 0)
1007 1.34 matt goto out;
1008 1.34 matt }
1009 1.34 matt
1010 1.1 nonaka /*
1011 1.1 nonaka * Stop SD clock before changing the frequency.
1012 1.1 nonaka */
1013 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1014 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1015 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
1016 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1017 1.11 matt goto out;
1018 1.11 matt }
1019 1.11 matt } else {
1020 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1021 1.11 matt if (freq == SDMMC_SDCLK_OFF)
1022 1.11 matt goto out;
1023 1.11 matt }
1024 1.1 nonaka
1025 1.71 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1026 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1027 1.71 jmcneill if (freq > 100000) {
1028 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1029 1.71 jmcneill } else if (freq > 50000) {
1030 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
1031 1.71 jmcneill } else if (freq > 25000) {
1032 1.76 jmcneill if (ddr) {
1033 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1034 1.76 jmcneill SDHC_UHS_MODE_SELECT_DDR50);
1035 1.76 jmcneill } else {
1036 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1037 1.76 jmcneill SDHC_UHS_MODE_SELECT_SDR25);
1038 1.76 jmcneill }
1039 1.74 jmcneill } else if (freq > 400) {
1040 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1041 1.71 jmcneill }
1042 1.71 jmcneill }
1043 1.71 jmcneill
1044 1.1 nonaka /*
1045 1.1 nonaka * Set the minimum base clock frequency divisor.
1046 1.1 nonaka */
1047 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
1048 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
1049 1.68 mlelstv aprint_error_dev(hp->sc->sc_dev,
1050 1.68 mlelstv "Invalid bus clock %d kHz\n", freq);
1051 1.1 nonaka error = EINVAL;
1052 1.1 nonaka goto out;
1053 1.1 nonaka }
1054 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1055 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
1056 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
1057 1.11 matt } else {
1058 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
1059 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1060 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1061 1.11 matt }
1062 1.1 nonaka
1063 1.1 nonaka /*
1064 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
1065 1.1 nonaka */
1066 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1067 1.11 matt sdmmc_delay(10000);
1068 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
1069 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1070 1.11 matt } else {
1071 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1072 1.11 matt for (timo = 1000; timo > 0; timo--) {
1073 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1074 1.12 nonaka SDHC_INTCLK_STABLE))
1075 1.11 matt break;
1076 1.11 matt sdmmc_delay(10);
1077 1.11 matt }
1078 1.11 matt if (timo == 0) {
1079 1.11 matt error = ETIMEDOUT;
1080 1.11 matt goto out;
1081 1.11 matt }
1082 1.1 nonaka }
1083 1.1 nonaka
1084 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1085 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1086 1.11 matt /*
1087 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
1088 1.11 matt * So delay for that time + slop and then
1089 1.11 matt * check a few times for completion.
1090 1.11 matt */
1091 1.11 matt sdmmc_delay(210);
1092 1.11 matt for (timo = 10; timo > 0; timo--) {
1093 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1094 1.11 matt SDHC_INIT_ACTIVE))
1095 1.11 matt break;
1096 1.11 matt sdmmc_delay(10);
1097 1.11 matt }
1098 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1099 1.12 nonaka
1100 1.11 matt /*
1101 1.11 matt * Enable SD clock.
1102 1.11 matt */
1103 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1104 1.11 matt } else {
1105 1.11 matt /*
1106 1.11 matt * Enable SD clock.
1107 1.11 matt */
1108 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1109 1.1 nonaka
1110 1.43 jmcneill if (freq > 25000 &&
1111 1.43 jmcneill !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1112 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1113 1.11 matt else
1114 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1115 1.11 matt }
1116 1.8 kiyohara
1117 1.1 nonaka out:
1118 1.65 jmcneill mutex_exit(&hp->intr_lock);
1119 1.1 nonaka
1120 1.1 nonaka return error;
1121 1.1 nonaka }
1122 1.1 nonaka
1123 1.1 nonaka static int
1124 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1125 1.1 nonaka {
1126 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1127 1.1 nonaka int reg;
1128 1.1 nonaka
1129 1.1 nonaka switch (width) {
1130 1.1 nonaka case 1:
1131 1.1 nonaka case 4:
1132 1.1 nonaka break;
1133 1.1 nonaka
1134 1.11 matt case 8:
1135 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1136 1.11 matt break;
1137 1.11 matt /* FALLTHROUGH */
1138 1.1 nonaka default:
1139 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
1140 1.1 nonaka HDEVNAME(hp), width));
1141 1.1 nonaka return 1;
1142 1.1 nonaka }
1143 1.1 nonaka
1144 1.65 jmcneill mutex_enter(&hp->intr_lock);
1145 1.65 jmcneill
1146 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
1147 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1148 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1149 1.11 matt if (width == 4)
1150 1.11 matt reg |= SDHC_4BIT_MODE;
1151 1.11 matt else if (width == 8)
1152 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
1153 1.11 matt } else {
1154 1.11 matt reg &= ~SDHC_4BIT_MODE;
1155 1.59 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1156 1.59 jmcneill reg &= ~SDHC_8BIT_MODE;
1157 1.59 jmcneill }
1158 1.59 jmcneill if (width == 4) {
1159 1.11 matt reg |= SDHC_4BIT_MODE;
1160 1.59 jmcneill } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1161 1.59 jmcneill reg |= SDHC_8BIT_MODE;
1162 1.59 jmcneill }
1163 1.11 matt }
1164 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
1165 1.65 jmcneill
1166 1.65 jmcneill mutex_exit(&hp->intr_lock);
1167 1.1 nonaka
1168 1.1 nonaka return 0;
1169 1.1 nonaka }
1170 1.1 nonaka
1171 1.8 kiyohara static int
1172 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1173 1.8 kiyohara {
1174 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1175 1.32 kiyohara
1176 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1177 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1178 1.8 kiyohara
1179 1.8 kiyohara return 0;
1180 1.8 kiyohara }
1181 1.8 kiyohara
1182 1.1 nonaka static void
1183 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1184 1.1 nonaka {
1185 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1186 1.1 nonaka
1187 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1188 1.65 jmcneill mutex_enter(&hp->intr_lock);
1189 1.11 matt if (enable) {
1190 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1191 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1192 1.11 matt } else {
1193 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1194 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1195 1.11 matt }
1196 1.65 jmcneill mutex_exit(&hp->intr_lock);
1197 1.1 nonaka }
1198 1.1 nonaka }
1199 1.1 nonaka
1200 1.47 skrll static void
1201 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1202 1.1 nonaka {
1203 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1204 1.1 nonaka
1205 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1206 1.65 jmcneill mutex_enter(&hp->intr_lock);
1207 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1208 1.65 jmcneill mutex_exit(&hp->intr_lock);
1209 1.11 matt }
1210 1.1 nonaka }
1211 1.1 nonaka
1212 1.1 nonaka static int
1213 1.71 jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1214 1.71 jmcneill {
1215 1.71 jmcneill struct sdhc_host *hp = (struct sdhc_host *)sch;
1216 1.71 jmcneill
1217 1.78 mlelstv mutex_enter(&hp->intr_lock);
1218 1.71 jmcneill switch (signal_voltage) {
1219 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_180:
1220 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1221 1.71 jmcneill break;
1222 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_330:
1223 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1224 1.71 jmcneill break;
1225 1.71 jmcneill default:
1226 1.71 jmcneill return EINVAL;
1227 1.71 jmcneill }
1228 1.78 mlelstv mutex_exit(&hp->intr_lock);
1229 1.71 jmcneill
1230 1.71 jmcneill return 0;
1231 1.71 jmcneill }
1232 1.71 jmcneill
1233 1.79 jmcneill /*
1234 1.79 jmcneill * Sampling clock tuning procedure (UHS)
1235 1.79 jmcneill */
1236 1.79 jmcneill static int
1237 1.79 jmcneill sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1238 1.79 jmcneill {
1239 1.79 jmcneill struct sdhc_host *hp = (struct sdhc_host *)sch;
1240 1.79 jmcneill struct sdmmc_command cmd;
1241 1.79 jmcneill uint8_t hostctl;
1242 1.79 jmcneill int opcode, error, retry = 40;
1243 1.79 jmcneill
1244 1.79 jmcneill switch (timing) {
1245 1.79 jmcneill case SDMMC_TIMING_MMC_HS200:
1246 1.79 jmcneill opcode = MMC_SEND_TUNING_BLOCK_HS200;
1247 1.79 jmcneill break;
1248 1.79 jmcneill case SDMMC_TIMING_UHS_SDR50:
1249 1.79 jmcneill if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1250 1.79 jmcneill return 0;
1251 1.79 jmcneill /* FALLTHROUGH */
1252 1.79 jmcneill case SDMMC_TIMING_UHS_SDR104:
1253 1.79 jmcneill opcode = MMC_SEND_TUNING_BLOCK;
1254 1.79 jmcneill break;
1255 1.79 jmcneill default:
1256 1.79 jmcneill return EINVAL;
1257 1.79 jmcneill }
1258 1.79 jmcneill
1259 1.79 jmcneill hostctl = HREAD1(hp, SDHC_HOST_CTL);
1260 1.79 jmcneill
1261 1.79 jmcneill /* enable buffer read ready interrupt */
1262 1.79 jmcneill HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1263 1.79 jmcneill HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1264 1.79 jmcneill
1265 1.79 jmcneill /* disable DMA */
1266 1.79 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1267 1.79 jmcneill
1268 1.79 jmcneill /* reset tuning circuit */
1269 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1270 1.79 jmcneill
1271 1.79 jmcneill /* start of tuning */
1272 1.79 jmcneill HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1273 1.79 jmcneill
1274 1.79 jmcneill mutex_enter(&hp->intr_lock);
1275 1.79 jmcneill do {
1276 1.79 jmcneill memset(&cmd, 0, sizeof(cmd));
1277 1.79 jmcneill cmd.c_opcode = opcode;
1278 1.79 jmcneill cmd.c_arg = 0;
1279 1.79 jmcneill cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1280 1.79 jmcneill if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1281 1.79 jmcneill cmd.c_blklen = cmd.c_datalen = 128;
1282 1.79 jmcneill } else {
1283 1.79 jmcneill cmd.c_blklen = cmd.c_datalen = 64;
1284 1.79 jmcneill }
1285 1.79 jmcneill
1286 1.79 jmcneill error = sdhc_start_command(hp, &cmd);
1287 1.79 jmcneill if (error)
1288 1.79 jmcneill break;
1289 1.79 jmcneill
1290 1.79 jmcneill if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1291 1.79 jmcneill SDHC_TUNING_TIMEOUT)) {
1292 1.79 jmcneill break;
1293 1.79 jmcneill }
1294 1.79 jmcneill
1295 1.79 jmcneill delay(1000);
1296 1.79 jmcneill } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1297 1.79 jmcneill mutex_exit(&hp->intr_lock);
1298 1.79 jmcneill
1299 1.79 jmcneill /* disable buffer read ready interrupt */
1300 1.79 jmcneill HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1301 1.79 jmcneill HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1302 1.79 jmcneill
1303 1.79 jmcneill if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1304 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2,
1305 1.79 jmcneill SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1306 1.79 jmcneill sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1307 1.79 jmcneill aprint_error_dev(hp->sc->sc_dev,
1308 1.79 jmcneill "tuning did not complete, using fixed sampling clock\n");
1309 1.79 jmcneill return EIO; /* tuning did not complete */
1310 1.79 jmcneill }
1311 1.79 jmcneill
1312 1.79 jmcneill if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1313 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2,
1314 1.79 jmcneill SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1315 1.79 jmcneill sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1316 1.79 jmcneill aprint_error_dev(hp->sc->sc_dev,
1317 1.79 jmcneill "tuning failed, using fixed sampling clock\n");
1318 1.79 jmcneill return EIO; /* tuning failed */
1319 1.79 jmcneill }
1320 1.79 jmcneill
1321 1.79 jmcneill return 0; /* tuning completed */
1322 1.79 jmcneill }
1323 1.79 jmcneill
1324 1.71 jmcneill static int
1325 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1326 1.1 nonaka {
1327 1.1 nonaka uint32_t state;
1328 1.1 nonaka int timeout;
1329 1.1 nonaka
1330 1.65 jmcneill for (timeout = 10000; timeout > 0; timeout--) {
1331 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1332 1.1 nonaka return 0;
1333 1.65 jmcneill sdmmc_delay(10);
1334 1.1 nonaka }
1335 1.75 mlelstv aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1336 1.75 mlelstv mask, value, state);
1337 1.1 nonaka return ETIMEDOUT;
1338 1.1 nonaka }
1339 1.1 nonaka
1340 1.1 nonaka static void
1341 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1342 1.1 nonaka {
1343 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1344 1.1 nonaka int error;
1345 1.1 nonaka
1346 1.65 jmcneill mutex_enter(&hp->intr_lock);
1347 1.65 jmcneill
1348 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1349 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1350 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1351 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1352 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1353 1.11 matt } else {
1354 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1355 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1356 1.47 skrll }
1357 1.11 matt }
1358 1.11 matt
1359 1.61 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1360 1.61 jmcneill const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1361 1.61 jmcneill if (cmd->c_data != NULL) {
1362 1.61 jmcneill HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1363 1.61 jmcneill HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1364 1.61 jmcneill } else {
1365 1.61 jmcneill HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1366 1.61 jmcneill HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1367 1.61 jmcneill }
1368 1.61 jmcneill }
1369 1.61 jmcneill
1370 1.1 nonaka /*
1371 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1372 1.1 nonaka */
1373 1.1 nonaka error = sdhc_start_command(hp, cmd);
1374 1.1 nonaka if (error) {
1375 1.1 nonaka cmd->c_error = error;
1376 1.1 nonaka goto out;
1377 1.1 nonaka }
1378 1.1 nonaka
1379 1.1 nonaka /*
1380 1.1 nonaka * Wait until the command phase is done, or until the command
1381 1.1 nonaka * is marked done for any other reason.
1382 1.1 nonaka */
1383 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1384 1.1 nonaka cmd->c_error = ETIMEDOUT;
1385 1.1 nonaka goto out;
1386 1.1 nonaka }
1387 1.1 nonaka
1388 1.1 nonaka /*
1389 1.1 nonaka * The host controller removes bits [0:7] from the response
1390 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1391 1.1 nonaka * driver (without padding).
1392 1.1 nonaka */
1393 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1394 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1395 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1396 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1397 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1398 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1399 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1400 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1401 1.32 kiyohara (cmd->c_resp[1] << 24);
1402 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1403 1.32 kiyohara (cmd->c_resp[2] << 24);
1404 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1405 1.32 kiyohara (cmd->c_resp[3] << 24);
1406 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1407 1.32 kiyohara }
1408 1.1 nonaka }
1409 1.1 nonaka }
1410 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1411 1.1 nonaka
1412 1.1 nonaka /*
1413 1.1 nonaka * If the command has data to transfer in any direction,
1414 1.1 nonaka * execute the transfer now.
1415 1.1 nonaka */
1416 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1417 1.1 nonaka sdhc_transfer_data(hp, cmd);
1418 1.42 jakllsch else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1419 1.42 jakllsch if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1420 1.42 jakllsch cmd->c_error = ETIMEDOUT;
1421 1.42 jakllsch goto out;
1422 1.42 jakllsch }
1423 1.42 jakllsch }
1424 1.1 nonaka
1425 1.1 nonaka out:
1426 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1427 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1428 1.11 matt /* Turn off the LED. */
1429 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1430 1.11 matt }
1431 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1432 1.1 nonaka
1433 1.65 jmcneill mutex_exit(&hp->intr_lock);
1434 1.65 jmcneill
1435 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1436 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1437 1.1 nonaka cmd->c_flags, cmd->c_error));
1438 1.1 nonaka }
1439 1.1 nonaka
1440 1.1 nonaka static int
1441 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1442 1.1 nonaka {
1443 1.11 matt struct sdhc_softc * const sc = hp->sc;
1444 1.1 nonaka uint16_t blksize = 0;
1445 1.1 nonaka uint16_t blkcount = 0;
1446 1.1 nonaka uint16_t mode;
1447 1.1 nonaka uint16_t command;
1448 1.1 nonaka int error;
1449 1.1 nonaka
1450 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1451 1.65 jmcneill
1452 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1453 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1454 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1455 1.1 nonaka
1456 1.1 nonaka /*
1457 1.1 nonaka * The maximum block length for commands should be the minimum
1458 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1459 1.1 nonaka */
1460 1.1 nonaka
1461 1.1 nonaka /* Fragment the data into proper blocks. */
1462 1.1 nonaka if (cmd->c_datalen > 0) {
1463 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1464 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1465 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1466 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1467 1.11 matt aprint_error_dev(sc->sc_dev,
1468 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1469 1.1 nonaka return EINVAL;
1470 1.1 nonaka }
1471 1.1 nonaka }
1472 1.1 nonaka
1473 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1474 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1475 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1476 1.1 nonaka return EINVAL;
1477 1.1 nonaka }
1478 1.1 nonaka
1479 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1480 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1481 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1482 1.1 nonaka mode |= SDHC_READ_MODE;
1483 1.15 jakllsch if (blkcount > 1) {
1484 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1485 1.15 jakllsch /* XXX only for memory commands? */
1486 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1487 1.1 nonaka }
1488 1.45 jakllsch if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1489 1.55 bouyer ISSET(hp->flags, SHF_MODE_DMAEN)) {
1490 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1491 1.7 nonaka }
1492 1.1 nonaka
1493 1.1 nonaka /*
1494 1.1 nonaka * Prepare command register value. (2.2.6)
1495 1.1 nonaka */
1496 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1497 1.1 nonaka
1498 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1499 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1500 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1501 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1502 1.79 jmcneill if (cmd->c_datalen > 0)
1503 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1504 1.1 nonaka
1505 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1506 1.1 nonaka command |= SDHC_NO_RESPONSE;
1507 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1508 1.1 nonaka command |= SDHC_RESP_LEN_136;
1509 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1510 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1511 1.1 nonaka else
1512 1.1 nonaka command |= SDHC_RESP_LEN_48;
1513 1.1 nonaka
1514 1.1 nonaka /* Wait until command and data inhibit bits are clear. (1.5) */
1515 1.1 nonaka error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1516 1.68 mlelstv if (error) {
1517 1.68 mlelstv aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
1518 1.1 nonaka return error;
1519 1.68 mlelstv }
1520 1.1 nonaka
1521 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1522 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1523 1.1 nonaka
1524 1.44 hkenken if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1525 1.44 hkenken blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1526 1.44 hkenken SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1527 1.44 hkenken }
1528 1.19 jakllsch
1529 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1530 1.11 matt /* Alert the user not to remove the card. */
1531 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1532 1.11 matt }
1533 1.1 nonaka
1534 1.7 nonaka /* Set DMA start address. */
1535 1.79 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1536 1.63 jmcneill for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1537 1.69 jmcneill bus_addr_t paddr =
1538 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_addr;
1539 1.63 jmcneill uint16_t len =
1540 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1541 1.63 jmcneill 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1542 1.63 jmcneill uint16_t attr =
1543 1.63 jmcneill SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1544 1.63 jmcneill if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1545 1.63 jmcneill attr |= SDHC_ADMA2_END;
1546 1.63 jmcneill }
1547 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1548 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc =
1549 1.63 jmcneill hp->adma2;
1550 1.63 jmcneill desc[seg].attribute = htole16(attr);
1551 1.63 jmcneill desc[seg].length = htole16(len);
1552 1.63 jmcneill desc[seg].address = htole32(paddr);
1553 1.63 jmcneill } else {
1554 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc =
1555 1.63 jmcneill hp->adma2;
1556 1.63 jmcneill desc[seg].attribute = htole16(attr);
1557 1.63 jmcneill desc[seg].length = htole16(len);
1558 1.63 jmcneill desc[seg].address = htole32(paddr & 0xffffffff);
1559 1.63 jmcneill desc[seg].address_hi = htole32(
1560 1.63 jmcneill (uint64_t)paddr >> 32);
1561 1.63 jmcneill }
1562 1.63 jmcneill }
1563 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1564 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1565 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1566 1.63 jmcneill } else {
1567 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1568 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1569 1.63 jmcneill }
1570 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1571 1.63 jmcneill BUS_DMASYNC_PREWRITE);
1572 1.63 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1573 1.63 jmcneill HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1574 1.63 jmcneill
1575 1.70 jmcneill const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1576 1.63 jmcneill
1577 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1578 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1579 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1580 1.63 jmcneill (uint64_t)desc_addr >> 32);
1581 1.63 jmcneill }
1582 1.63 jmcneill } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1583 1.63 jmcneill !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1584 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1585 1.63 jmcneill }
1586 1.7 nonaka
1587 1.1 nonaka /*
1588 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1589 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1590 1.1 nonaka */
1591 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1592 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1593 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1594 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1595 1.11 matt } else {
1596 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1597 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1598 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1599 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1600 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1601 1.11 matt }
1602 1.1 nonaka
1603 1.1 nonaka return 0;
1604 1.1 nonaka }
1605 1.1 nonaka
1606 1.1 nonaka static void
1607 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1608 1.1 nonaka {
1609 1.51 jmcneill struct sdhc_softc *sc = hp->sc;
1610 1.1 nonaka int error;
1611 1.1 nonaka
1612 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1613 1.65 jmcneill
1614 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1615 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1616 1.1 nonaka
1617 1.1 nonaka #ifdef SDHC_DEBUG
1618 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1619 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1620 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1621 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1622 1.1 nonaka "CMD52/53 error response flags %#x\n",
1623 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1624 1.1 nonaka }
1625 1.1 nonaka #endif
1626 1.1 nonaka
1627 1.47 skrll if (cmd->c_dmamap != NULL) {
1628 1.47 skrll if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1629 1.51 jmcneill error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1630 1.47 skrll if (error == 0 && !sdhc_wait_intr(hp,
1631 1.61 jmcneill SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1632 1.47 skrll error = ETIMEDOUT;
1633 1.47 skrll }
1634 1.47 skrll } else {
1635 1.47 skrll error = sdhc_transfer_data_dma(hp, cmd);
1636 1.47 skrll }
1637 1.47 skrll } else
1638 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1639 1.1 nonaka if (error)
1640 1.1 nonaka cmd->c_error = error;
1641 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1642 1.1 nonaka
1643 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1644 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1645 1.1 nonaka }
1646 1.1 nonaka
1647 1.1 nonaka static int
1648 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1649 1.7 nonaka {
1650 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1651 1.19 jakllsch bus_addr_t posaddr;
1652 1.19 jakllsch bus_addr_t segaddr;
1653 1.19 jakllsch bus_size_t seglen;
1654 1.19 jakllsch u_int seg = 0;
1655 1.7 nonaka int error = 0;
1656 1.19 jakllsch int status;
1657 1.7 nonaka
1658 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1659 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1660 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1661 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1662 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1663 1.11 matt
1664 1.7 nonaka for (;;) {
1665 1.19 jakllsch status = sdhc_wait_intr(hp,
1666 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1667 1.19 jakllsch SDHC_DMA_TIMEOUT);
1668 1.19 jakllsch
1669 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1670 1.19 jakllsch break;
1671 1.19 jakllsch }
1672 1.19 jakllsch if (!status) {
1673 1.7 nonaka error = ETIMEDOUT;
1674 1.7 nonaka break;
1675 1.7 nonaka }
1676 1.63 jmcneill
1677 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1678 1.63 jmcneill continue;
1679 1.63 jmcneill }
1680 1.63 jmcneill
1681 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1682 1.19 jakllsch continue;
1683 1.19 jakllsch }
1684 1.19 jakllsch
1685 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1686 1.7 nonaka
1687 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1688 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1689 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1690 1.7 nonaka
1691 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1692 1.37 jakllsch continue;
1693 1.19 jakllsch }
1694 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1695 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1696 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1697 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1698 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1699 1.7 nonaka }
1700 1.7 nonaka
1701 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1702 1.63 jmcneill bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1703 1.63 jmcneill PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1704 1.63 jmcneill }
1705 1.63 jmcneill
1706 1.7 nonaka return error;
1707 1.7 nonaka }
1708 1.7 nonaka
1709 1.7 nonaka static int
1710 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1711 1.1 nonaka {
1712 1.1 nonaka uint8_t *data = cmd->c_data;
1713 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1714 1.11 matt u_int len, datalen;
1715 1.11 matt u_int imask;
1716 1.11 matt u_int pmask;
1717 1.1 nonaka int error = 0;
1718 1.1 nonaka
1719 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
1720 1.78 mlelstv
1721 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1722 1.11 matt imask = SDHC_BUFFER_READ_READY;
1723 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1724 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1725 1.11 matt pio_func = esdhc_read_data_pio;
1726 1.11 matt } else {
1727 1.11 matt pio_func = sdhc_read_data_pio;
1728 1.11 matt }
1729 1.11 matt } else {
1730 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1731 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1732 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1733 1.11 matt pio_func = esdhc_write_data_pio;
1734 1.11 matt } else {
1735 1.11 matt pio_func = sdhc_write_data_pio;
1736 1.11 matt }
1737 1.11 matt }
1738 1.1 nonaka datalen = cmd->c_datalen;
1739 1.1 nonaka
1740 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1741 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1742 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1743 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1744 1.11 matt
1745 1.1 nonaka while (datalen > 0) {
1746 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1747 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1748 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1749 1.11 matt } else {
1750 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1751 1.11 matt }
1752 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1753 1.11 matt error = ETIMEDOUT;
1754 1.11 matt break;
1755 1.11 matt }
1756 1.11 matt
1757 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1758 1.11 matt if (error)
1759 1.11 matt break;
1760 1.1 nonaka }
1761 1.1 nonaka
1762 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1763 1.11 matt (*pio_func)(hp, data, len);
1764 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1765 1.11 matt HDEVNAME(hp), len, data));
1766 1.1 nonaka
1767 1.1 nonaka data += len;
1768 1.1 nonaka datalen -= len;
1769 1.1 nonaka }
1770 1.1 nonaka
1771 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1772 1.1 nonaka SDHC_TRANSFER_TIMEOUT))
1773 1.1 nonaka error = ETIMEDOUT;
1774 1.1 nonaka
1775 1.1 nonaka return error;
1776 1.1 nonaka }
1777 1.1 nonaka
1778 1.1 nonaka static void
1779 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1780 1.1 nonaka {
1781 1.1 nonaka
1782 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1783 1.1 nonaka while (datalen > 3) {
1784 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1785 1.1 nonaka data += 4;
1786 1.1 nonaka datalen -= 4;
1787 1.1 nonaka }
1788 1.1 nonaka if (datalen > 1) {
1789 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1790 1.1 nonaka data += 2;
1791 1.1 nonaka datalen -= 2;
1792 1.1 nonaka }
1793 1.1 nonaka if (datalen > 0) {
1794 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1795 1.1 nonaka data += 1;
1796 1.1 nonaka datalen -= 1;
1797 1.1 nonaka }
1798 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1799 1.1 nonaka while (datalen > 1) {
1800 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1801 1.1 nonaka data += 2;
1802 1.1 nonaka datalen -= 2;
1803 1.1 nonaka }
1804 1.1 nonaka if (datalen > 0) {
1805 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1806 1.1 nonaka data += 1;
1807 1.1 nonaka datalen -= 1;
1808 1.1 nonaka }
1809 1.1 nonaka } else {
1810 1.1 nonaka while (datalen > 0) {
1811 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1812 1.1 nonaka data += 1;
1813 1.1 nonaka datalen -= 1;
1814 1.1 nonaka }
1815 1.1 nonaka }
1816 1.1 nonaka }
1817 1.1 nonaka
1818 1.1 nonaka static void
1819 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1820 1.1 nonaka {
1821 1.1 nonaka
1822 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1823 1.1 nonaka while (datalen > 3) {
1824 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1825 1.1 nonaka data += 4;
1826 1.1 nonaka datalen -= 4;
1827 1.1 nonaka }
1828 1.1 nonaka if (datalen > 1) {
1829 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1830 1.1 nonaka data += 2;
1831 1.1 nonaka datalen -= 2;
1832 1.1 nonaka }
1833 1.1 nonaka if (datalen > 0) {
1834 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1835 1.1 nonaka data += 1;
1836 1.1 nonaka datalen -= 1;
1837 1.1 nonaka }
1838 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1839 1.1 nonaka while (datalen > 1) {
1840 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1841 1.1 nonaka data += 2;
1842 1.1 nonaka datalen -= 2;
1843 1.1 nonaka }
1844 1.1 nonaka if (datalen > 0) {
1845 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1846 1.1 nonaka data += 1;
1847 1.1 nonaka datalen -= 1;
1848 1.1 nonaka }
1849 1.1 nonaka } else {
1850 1.1 nonaka while (datalen > 0) {
1851 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1852 1.1 nonaka data += 1;
1853 1.1 nonaka datalen -= 1;
1854 1.1 nonaka }
1855 1.1 nonaka }
1856 1.1 nonaka }
1857 1.1 nonaka
1858 1.11 matt static void
1859 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1860 1.11 matt {
1861 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1862 1.12 nonaka uint32_t v;
1863 1.12 nonaka
1864 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1865 1.23 matt size_t count = 0;
1866 1.23 matt
1867 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1868 1.23 matt if (count == 0) {
1869 1.23 matt /*
1870 1.23 matt * If we've drained "watermark" words, we need to wait
1871 1.23 matt * a little bit so the read FIFO can refill.
1872 1.23 matt */
1873 1.23 matt sdmmc_delay(10);
1874 1.23 matt count = watermark;
1875 1.23 matt }
1876 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1877 1.11 matt v = le32toh(v);
1878 1.11 matt *(uint32_t *)data = v;
1879 1.11 matt data += 4;
1880 1.11 matt datalen -= 4;
1881 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1882 1.23 matt count--;
1883 1.11 matt }
1884 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1885 1.23 matt if (count == 0) {
1886 1.23 matt sdmmc_delay(10);
1887 1.23 matt }
1888 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1889 1.11 matt v = le32toh(v);
1890 1.11 matt do {
1891 1.11 matt *data++ = v;
1892 1.11 matt v >>= 8;
1893 1.11 matt } while (--datalen > 0);
1894 1.11 matt }
1895 1.11 matt }
1896 1.11 matt
1897 1.11 matt static void
1898 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1899 1.11 matt {
1900 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1901 1.12 nonaka uint32_t v;
1902 1.12 nonaka
1903 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1904 1.23 matt size_t count = watermark;
1905 1.23 matt
1906 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1907 1.23 matt if (count == 0) {
1908 1.23 matt sdmmc_delay(10);
1909 1.23 matt count = watermark;
1910 1.23 matt }
1911 1.12 nonaka v = *(uint32_t *)data;
1912 1.11 matt v = htole32(v);
1913 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1914 1.11 matt data += 4;
1915 1.11 matt datalen -= 4;
1916 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1917 1.23 matt count--;
1918 1.11 matt }
1919 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1920 1.23 matt if (count == 0) {
1921 1.23 matt sdmmc_delay(10);
1922 1.23 matt }
1923 1.12 nonaka v = *(uint32_t *)data;
1924 1.11 matt v = htole32(v);
1925 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1926 1.11 matt }
1927 1.11 matt }
1928 1.11 matt
1929 1.1 nonaka /* Prepare for another command. */
1930 1.1 nonaka static int
1931 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
1932 1.1 nonaka {
1933 1.1 nonaka int timo;
1934 1.1 nonaka
1935 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
1936 1.78 mlelstv
1937 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1938 1.1 nonaka
1939 1.35 riastrad /* Request the reset. */
1940 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1941 1.35 riastrad
1942 1.35 riastrad /*
1943 1.35 riastrad * If necessary, wait for the controller to set the bits to
1944 1.35 riastrad * acknowledge the reset.
1945 1.35 riastrad */
1946 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1947 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1948 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
1949 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1950 1.35 riastrad break;
1951 1.35 riastrad /* Short delay because I worry we may miss it... */
1952 1.35 riastrad sdmmc_delay(1);
1953 1.35 riastrad }
1954 1.35 riastrad if (timo == 0)
1955 1.35 riastrad return ETIMEDOUT;
1956 1.35 riastrad }
1957 1.35 riastrad
1958 1.35 riastrad /*
1959 1.35 riastrad * Wait for the controller to clear the bits to indicate that
1960 1.35 riastrad * the reset has completed.
1961 1.35 riastrad */
1962 1.1 nonaka for (timo = 10; timo > 0; timo--) {
1963 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1964 1.1 nonaka break;
1965 1.1 nonaka sdmmc_delay(10000);
1966 1.1 nonaka }
1967 1.1 nonaka if (timo == 0) {
1968 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1969 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
1970 1.1 nonaka return ETIMEDOUT;
1971 1.1 nonaka }
1972 1.1 nonaka
1973 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1974 1.53 nonaka HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1975 1.11 matt }
1976 1.11 matt
1977 1.1 nonaka return 0;
1978 1.1 nonaka }
1979 1.1 nonaka
1980 1.1 nonaka static int
1981 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1982 1.1 nonaka {
1983 1.1 nonaka int status;
1984 1.1 nonaka
1985 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1986 1.65 jmcneill
1987 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
1988 1.1 nonaka
1989 1.1 nonaka status = hp->intr_status & mask;
1990 1.1 nonaka while (status == 0) {
1991 1.65 jmcneill if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
1992 1.1 nonaka == EWOULDBLOCK) {
1993 1.1 nonaka status |= SDHC_ERROR_INTERRUPT;
1994 1.1 nonaka break;
1995 1.1 nonaka }
1996 1.1 nonaka status = hp->intr_status & mask;
1997 1.1 nonaka }
1998 1.1 nonaka hp->intr_status &= ~status;
1999 1.1 nonaka
2000 1.1 nonaka DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2001 1.1 nonaka hp->intr_error_status));
2002 1.47 skrll
2003 1.1 nonaka /* Command timeout has higher priority than command complete. */
2004 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
2005 1.1 nonaka hp->intr_error_status = 0;
2006 1.11 matt hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
2007 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2008 1.11 matt (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
2009 1.11 matt }
2010 1.1 nonaka status = 0;
2011 1.1 nonaka }
2012 1.1 nonaka
2013 1.1 nonaka return status;
2014 1.1 nonaka }
2015 1.1 nonaka
2016 1.1 nonaka /*
2017 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
2018 1.1 nonaka */
2019 1.1 nonaka int
2020 1.1 nonaka sdhc_intr(void *arg)
2021 1.1 nonaka {
2022 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2023 1.1 nonaka struct sdhc_host *hp;
2024 1.1 nonaka int done = 0;
2025 1.1 nonaka uint16_t status;
2026 1.1 nonaka uint16_t error;
2027 1.1 nonaka
2028 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
2029 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
2030 1.1 nonaka hp = sc->sc_host[host];
2031 1.1 nonaka if (hp == NULL)
2032 1.1 nonaka continue;
2033 1.1 nonaka
2034 1.65 jmcneill mutex_enter(&hp->intr_lock);
2035 1.65 jmcneill
2036 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2037 1.11 matt /* Find out which interrupts are pending. */
2038 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2039 1.11 matt status = xstatus;
2040 1.11 matt error = xstatus >> 16;
2041 1.22 matt if (error)
2042 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
2043 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2044 1.65 jmcneill goto next_port; /* no interrupt for us */
2045 1.11 matt /* Acknowledge the interrupts we are about to handle. */
2046 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2047 1.11 matt } else {
2048 1.11 matt /* Find out which interrupts are pending. */
2049 1.11 matt error = 0;
2050 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
2051 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2052 1.65 jmcneill goto next_port; /* no interrupt for us */
2053 1.11 matt /* Acknowledge the interrupts we are about to handle. */
2054 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
2055 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2056 1.11 matt /* Acknowledge error interrupts. */
2057 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
2058 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
2059 1.11 matt }
2060 1.11 matt }
2061 1.47 skrll
2062 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2063 1.11 matt status, error));
2064 1.1 nonaka
2065 1.1 nonaka /* Claim this interrupt. */
2066 1.1 nonaka done = 1;
2067 1.1 nonaka
2068 1.63 jmcneill if (ISSET(error, SDHC_ADMA_ERROR)) {
2069 1.63 jmcneill uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2070 1.63 jmcneill printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2071 1.63 jmcneill adma_err);
2072 1.63 jmcneill }
2073 1.63 jmcneill
2074 1.1 nonaka /*
2075 1.1 nonaka * Service error interrupts.
2076 1.1 nonaka */
2077 1.11 matt if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
2078 1.11 matt SDHC_DATA_TIMEOUT_ERROR)) {
2079 1.11 matt hp->intr_error_status |= error;
2080 1.11 matt hp->intr_status |= status;
2081 1.11 matt cv_broadcast(&hp->intr_cv);
2082 1.1 nonaka }
2083 1.1 nonaka
2084 1.1 nonaka /*
2085 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
2086 1.1 nonaka */
2087 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2088 1.46 jakllsch if (hp->sdmmc != NULL) {
2089 1.46 jakllsch sdmmc_needs_discover(hp->sdmmc);
2090 1.46 jakllsch }
2091 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2092 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
2093 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2094 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2095 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2096 1.11 matt }
2097 1.9 matt }
2098 1.1 nonaka
2099 1.1 nonaka /*
2100 1.1 nonaka * Wake up the blocking process to service command
2101 1.1 nonaka * related interrupt(s).
2102 1.1 nonaka */
2103 1.11 matt if (ISSET(status, SDHC_COMMAND_COMPLETE|
2104 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2105 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2106 1.1 nonaka hp->intr_status |= status;
2107 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2108 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2109 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2110 1.11 matt }
2111 1.1 nonaka cv_broadcast(&hp->intr_cv);
2112 1.1 nonaka }
2113 1.1 nonaka
2114 1.1 nonaka /*
2115 1.1 nonaka * Service SD card interrupts.
2116 1.1 nonaka */
2117 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
2118 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
2119 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2120 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2121 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
2122 1.1 nonaka }
2123 1.65 jmcneill next_port:
2124 1.65 jmcneill mutex_exit(&hp->intr_lock);
2125 1.1 nonaka }
2126 1.1 nonaka
2127 1.1 nonaka return done;
2128 1.1 nonaka }
2129 1.1 nonaka
2130 1.65 jmcneill kmutex_t *
2131 1.65 jmcneill sdhc_host_lock(struct sdhc_host *hp)
2132 1.65 jmcneill {
2133 1.65 jmcneill return &hp->intr_lock;
2134 1.65 jmcneill }
2135 1.65 jmcneill
2136 1.1 nonaka #ifdef SDHC_DEBUG
2137 1.1 nonaka void
2138 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
2139 1.1 nonaka {
2140 1.1 nonaka
2141 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2142 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
2143 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2144 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2145 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
2146 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2147 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
2148 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2149 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
2150 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2151 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
2152 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2153 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
2154 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2155 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2156 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2157 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2158 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2159 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
2160 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2161 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
2162 1.1 nonaka }
2163 1.1 nonaka #endif
2164