Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.87
      1  1.87   mlelstv /*	$NetBSD: sdhc.c,v 1.87 2015/09/09 08:09:28 mlelstv Exp $	*/
      2   1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3   1.1    nonaka 
      4   1.1    nonaka /*
      5   1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6   1.1    nonaka  *
      7   1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10   1.1    nonaka  *
     11   1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    nonaka  */
     19   1.1    nonaka 
     20   1.1    nonaka /*
     21   1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22   1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23   1.1    nonaka  */
     24   1.1    nonaka 
     25   1.1    nonaka #include <sys/cdefs.h>
     26  1.87   mlelstv __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.87 2015/09/09 08:09:28 mlelstv Exp $");
     27  1.10    nonaka 
     28  1.10    nonaka #ifdef _KERNEL_OPT
     29  1.10    nonaka #include "opt_sdmmc.h"
     30  1.10    nonaka #endif
     31   1.1    nonaka 
     32   1.1    nonaka #include <sys/param.h>
     33   1.1    nonaka #include <sys/device.h>
     34   1.1    nonaka #include <sys/kernel.h>
     35   1.1    nonaka #include <sys/malloc.h>
     36   1.1    nonaka #include <sys/systm.h>
     37   1.1    nonaka #include <sys/mutex.h>
     38   1.1    nonaka #include <sys/condvar.h>
     39  1.80  jmcneill #include <sys/atomic.h>
     40   1.1    nonaka 
     41   1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42   1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43   1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44   1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45   1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46   1.1    nonaka 
     47   1.1    nonaka #ifdef SDHC_DEBUG
     48   1.1    nonaka int sdhcdebug = 1;
     49   1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50   1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51   1.1    nonaka #else
     52   1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53   1.1    nonaka #endif
     54   1.1    nonaka 
     55   1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56   1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57   1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58  1.61  jmcneill #define SDHC_DMA_TIMEOUT	(hz*3)
     59  1.79  jmcneill #define SDHC_TUNING_TIMEOUT	hz
     60   1.1    nonaka 
     61   1.1    nonaka struct sdhc_host {
     62   1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     63   1.1    nonaka 
     64   1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     65   1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     66  1.36  jakllsch 	bus_size_t ios;			/* host register space size */
     67   1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     68   1.1    nonaka 
     69   1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     70   1.1    nonaka 
     71   1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72   1.1    nonaka 	int maxblklen;			/* maximum block length */
     73   1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74   1.1    nonaka 
     75   1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76   1.1    nonaka 
     77   1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78   1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79  1.65  jmcneill 	kmutex_t intr_lock;
     80  1.65  jmcneill 	kcondvar_t intr_cv;
     81   1.1    nonaka 
     82  1.80  jmcneill 	callout_t tuning_timer;
     83  1.80  jmcneill 	int tuning_timing;
     84  1.80  jmcneill 	u_int tuning_timer_count;
     85  1.80  jmcneill 	u_int tuning_timer_pending;
     86  1.80  jmcneill 
     87  1.12    nonaka 	int specver;			/* spec. version */
     88  1.12    nonaka 
     89   1.1    nonaka 	uint32_t flags;			/* flags for this host */
     90   1.1    nonaka #define SHF_USE_DMA		0x0001
     91   1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     92  1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     93  1.55    bouyer #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94  1.63  jmcneill #define SHF_USE_ADMA2_32	0x0010
     95  1.63  jmcneill #define SHF_USE_ADMA2_64	0x0020
     96  1.63  jmcneill #define SHF_USE_ADMA2_MASK	0x0030
     97  1.63  jmcneill 
     98  1.63  jmcneill 	bus_dmamap_t		adma_map;
     99  1.63  jmcneill 	bus_dma_segment_t	adma_segs[1];
    100  1.63  jmcneill 	void			*adma2;
    101   1.1    nonaka };
    102   1.1    nonaka 
    103   1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    104   1.1    nonaka 
    105  1.11      matt static uint8_t
    106  1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
    107  1.11      matt {
    108  1.12    nonaka 
    109  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    110  1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    111  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    112  1.11      matt }
    113  1.11      matt 
    114  1.11      matt static uint16_t
    115  1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    116  1.11      matt {
    117  1.12    nonaka 
    118  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    119  1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    120  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    121  1.11      matt }
    122  1.11      matt 
    123  1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    124  1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    125  1.11      matt #define HREAD4(hp, reg)		\
    126   1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    127  1.11      matt 
    128  1.11      matt 
    129  1.11      matt static void
    130  1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    131  1.11      matt {
    132  1.12    nonaka 
    133  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134  1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    135  1.11      matt 	} else {
    136  1.11      matt 		const size_t shift = 8 * (o & 3);
    137  1.11      matt 		o &= -4;
    138  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    140  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141  1.11      matt 	}
    142  1.11      matt }
    143  1.11      matt 
    144  1.11      matt static void
    145  1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    146  1.11      matt {
    147  1.12    nonaka 
    148  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    149  1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    150  1.11      matt 	} else {
    151  1.11      matt 		const size_t shift = 8 * (o & 2);
    152  1.11      matt 		o &= -4;
    153  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    154  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    155  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    156  1.11      matt 	}
    157  1.11      matt }
    158  1.11      matt 
    159  1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    160  1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    161   1.1    nonaka #define HWRITE4(hp, reg, val)						\
    162   1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    163  1.11      matt 
    164   1.1    nonaka #define HCLR1(hp, reg, bits)						\
    165  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    166   1.1    nonaka #define HCLR2(hp, reg, bits)						\
    167  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    168  1.11      matt #define HCLR4(hp, reg, bits)						\
    169  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    170   1.1    nonaka #define HSET1(hp, reg, bits)						\
    171  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    172   1.1    nonaka #define HSET2(hp, reg, bits)						\
    173  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    174  1.11      matt #define HSET4(hp, reg, bits)						\
    175  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    176   1.1    nonaka 
    177   1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    178   1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    179   1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    180   1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    181   1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    182   1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    183   1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    184  1.76  jmcneill static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    185   1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    186   1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    187   1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    188   1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    189   1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    190   1.1    nonaka 		    struct sdmmc_command *);
    191  1.71  jmcneill static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    192  1.83   mlelstv static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    193  1.79  jmcneill static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    194  1.80  jmcneill static void	sdhc_tuning_timer(void *);
    195   1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    196   1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    197   1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    198   1.1    nonaka static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    199   1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    200   1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    201   1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    202  1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    203  1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    204  1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    205  1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    206  1.11      matt 
    207   1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    208   1.1    nonaka 	/* host controller reset */
    209  1.60     skrll 	.host_reset = sdhc_host_reset,
    210   1.1    nonaka 
    211   1.1    nonaka 	/* host controller capabilities */
    212  1.60     skrll 	.host_ocr = sdhc_host_ocr,
    213  1.60     skrll 	.host_maxblklen = sdhc_host_maxblklen,
    214   1.1    nonaka 
    215   1.1    nonaka 	/* card detection */
    216  1.60     skrll 	.card_detect = sdhc_card_detect,
    217   1.1    nonaka 
    218   1.1    nonaka 	/* write protect */
    219  1.60     skrll 	.write_protect = sdhc_write_protect,
    220   1.1    nonaka 
    221  1.60     skrll 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    222  1.60     skrll 	.bus_power = sdhc_bus_power,
    223  1.76  jmcneill 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    224  1.60     skrll 	.bus_width = sdhc_bus_width,
    225  1.60     skrll 	.bus_rod = sdhc_bus_rod,
    226   1.1    nonaka 
    227   1.1    nonaka 	/* command execution */
    228  1.60     skrll 	.exec_command = sdhc_exec_command,
    229   1.1    nonaka 
    230   1.1    nonaka 	/* card interrupt */
    231  1.60     skrll 	.card_enable_intr = sdhc_card_enable_intr,
    232  1.71  jmcneill 	.card_intr_ack = sdhc_card_intr_ack,
    233  1.71  jmcneill 
    234  1.71  jmcneill 	/* UHS functions */
    235  1.71  jmcneill 	.signal_voltage = sdhc_signal_voltage,
    236  1.76  jmcneill 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    237  1.79  jmcneill 	.execute_tuning = sdhc_execute_tuning,
    238   1.1    nonaka };
    239   1.1    nonaka 
    240  1.17  jakllsch static int
    241  1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    242  1.17  jakllsch {
    243  1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    244  1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    245  1.47     skrll 
    246  1.17  jakllsch 	if (pnp) {
    247  1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    248  1.17  jakllsch 	}
    249  1.41  jakllsch 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    250  1.41  jakllsch 		if (hp->sc->sc_host[host] == hp) {
    251  1.41  jakllsch 			aprint_normal(" slot %zu", host);
    252  1.41  jakllsch 		}
    253  1.41  jakllsch 	}
    254  1.17  jakllsch 
    255  1.17  jakllsch 	return UNCONF;
    256  1.17  jakllsch }
    257  1.17  jakllsch 
    258   1.1    nonaka /*
    259   1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    260   1.1    nonaka  * host controller standard register set. (1.3)
    261   1.1    nonaka  */
    262   1.1    nonaka int
    263   1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    264   1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    265   1.1    nonaka {
    266   1.1    nonaka 	struct sdmmcbus_attach_args saa;
    267   1.1    nonaka 	struct sdhc_host *hp;
    268  1.71  jmcneill 	uint32_t caps, caps2;
    269   1.1    nonaka 	uint16_t sdhcver;
    270  1.63  jmcneill 	int error;
    271   1.1    nonaka 
    272  1.33  riastrad 	/* Allocate one more host structure. */
    273  1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    274  1.33  riastrad 	if (hp == NULL) {
    275  1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    276  1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    277  1.33  riastrad 		goto err1;
    278  1.33  riastrad 	}
    279  1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    280  1.33  riastrad 
    281  1.33  riastrad 	/* Fill in the new host structure. */
    282  1.33  riastrad 	hp->sc = sc;
    283  1.33  riastrad 	hp->iot = iot;
    284  1.33  riastrad 	hp->ioh = ioh;
    285  1.36  jakllsch 	hp->ios = iosize;
    286  1.33  riastrad 	hp->dmat = sc->sc_dmat;
    287  1.33  riastrad 
    288  1.65  jmcneill 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    289  1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    290  1.80  jmcneill 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    291  1.80  jmcneill 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    292  1.33  riastrad 
    293  1.52    nonaka 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    294  1.52    nonaka 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    295  1.52    nonaka 	} else {
    296  1.52    nonaka 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    297  1.52    nonaka 	}
    298  1.58  jmcneill 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    299  1.33  riastrad 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    300   1.1    nonaka 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    301  1.12    nonaka 	case SDHC_SPEC_VERS_100:
    302  1.12    nonaka 		aprint_normal("1.0");
    303  1.12    nonaka 		break;
    304  1.12    nonaka 
    305  1.12    nonaka 	case SDHC_SPEC_VERS_200:
    306  1.12    nonaka 		aprint_normal("2.0");
    307   1.1    nonaka 		break;
    308   1.1    nonaka 
    309  1.12    nonaka 	case SDHC_SPEC_VERS_300:
    310  1.12    nonaka 		aprint_normal("3.0");
    311   1.9      matt 		break;
    312   1.9      matt 
    313  1.56  jmcneill 	case SDHC_SPEC_VERS_400:
    314  1.56  jmcneill 		aprint_normal("4.0");
    315  1.56  jmcneill 		break;
    316  1.56  jmcneill 
    317   1.1    nonaka 	default:
    318  1.12    nonaka 		aprint_normal("unknown version(0x%x)",
    319  1.12    nonaka 		    SDHC_SPEC_VERSION(sdhcver));
    320   1.1    nonaka 		break;
    321   1.1    nonaka 	}
    322  1.58  jmcneill 	aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    323   1.1    nonaka 
    324   1.1    nonaka 	/*
    325   1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    326   1.1    nonaka 	 */
    327   1.1    nonaka 	(void)sdhc_host_reset(hp);
    328   1.1    nonaka 
    329   1.1    nonaka 	/* Determine host capabilities. */
    330  1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    331  1.24     skrll 		caps = sc->sc_caps;
    332  1.72  jmcneill 		caps2 = sc->sc_caps2;
    333  1.24     skrll 	} else {
    334  1.79  jmcneill 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    335  1.72  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    336  1.79  jmcneill 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    337  1.72  jmcneill 		} else {
    338  1.79  jmcneill 			caps2 = sc->sc_caps2 = 0;
    339  1.72  jmcneill 		}
    340  1.71  jmcneill 	}
    341   1.1    nonaka 
    342  1.80  jmcneill 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    343  1.80  jmcneill 	    SDHC_RETUNING_MODES_MASK;
    344  1.80  jmcneill 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    345  1.80  jmcneill 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    346  1.80  jmcneill 		    SDHC_TIMER_COUNT_MASK;
    347  1.80  jmcneill 		if (hp->tuning_timer_count == 0xf)
    348  1.80  jmcneill 			hp->tuning_timer_count = 0;
    349  1.80  jmcneill 		if (hp->tuning_timer_count)
    350  1.80  jmcneill 			hp->tuning_timer_count =
    351  1.80  jmcneill 			    1 << (hp->tuning_timer_count - 1);
    352  1.80  jmcneill 	}
    353  1.80  jmcneill 
    354  1.55    bouyer 	/*
    355  1.55    bouyer 	 * Use DMA if the host system and the controller support it.
    356  1.55    bouyer 	 * Suports integrated or external DMA egine, with or without
    357  1.55    bouyer 	 * SDHC_DMA_ENABLE in the command.
    358  1.55    bouyer 	 */
    359  1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    360  1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    361  1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    362   1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    363  1.63  jmcneill 
    364  1.63  jmcneill 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    365  1.63  jmcneill 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    366  1.55    bouyer 			SET(hp->flags, SHF_MODE_DMAEN);
    367  1.63  jmcneill 			/*
    368  1.63  jmcneill 			 * 64-bit mode was present in the 2.00 spec, removed
    369  1.63  jmcneill 			 * from 3.00, and re-added in 4.00 with a different
    370  1.63  jmcneill 			 * descriptor layout. We only support 2.00 and 3.00
    371  1.63  jmcneill 			 * descriptors for now.
    372  1.63  jmcneill 			 */
    373  1.63  jmcneill 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    374  1.63  jmcneill 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    375  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_64);
    376  1.63  jmcneill 				aprint_normal(", 64-bit ADMA2");
    377  1.63  jmcneill 			} else {
    378  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_32);
    379  1.63  jmcneill 				aprint_normal(", 32-bit ADMA2");
    380  1.63  jmcneill 			}
    381  1.63  jmcneill 		} else {
    382  1.63  jmcneill 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    383  1.63  jmcneill 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    384  1.63  jmcneill 				SET(hp->flags, SHF_MODE_DMAEN);
    385  1.64  jmcneill 			if (sc->sc_vendor_transfer_data_dma) {
    386  1.64  jmcneill 				aprint_normal(", platform DMA");
    387  1.64  jmcneill 			} else {
    388  1.64  jmcneill 				aprint_normal(", SDMA");
    389  1.64  jmcneill 			}
    390  1.63  jmcneill 		}
    391  1.58  jmcneill 	} else {
    392  1.58  jmcneill 		aprint_normal(", PIO");
    393   1.1    nonaka 	}
    394   1.1    nonaka 
    395   1.1    nonaka 	/*
    396   1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    397   1.1    nonaka 	 */
    398  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    399  1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    400  1.30      matt 	} else {
    401  1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    402  1.30      matt 	}
    403  1.56  jmcneill 	if (hp->clkbase == 0 ||
    404  1.56  jmcneill 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    405   1.9      matt 		if (sc->sc_clkbase == 0) {
    406   1.9      matt 			/* The attachment driver must tell us. */
    407  1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    408  1.12    nonaka 			    "unknown base clock frequency\n");
    409   1.9      matt 			goto err;
    410   1.9      matt 		}
    411   1.9      matt 		hp->clkbase = sc->sc_clkbase;
    412   1.9      matt 	}
    413   1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    414   1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    415   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    416   1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    417   1.1    nonaka 		    hp->clkbase / 1000);
    418   1.1    nonaka 		goto err;
    419   1.1    nonaka 	}
    420  1.58  jmcneill 	aprint_normal(", %u kHz", hp->clkbase);
    421   1.1    nonaka 
    422   1.1    nonaka 	/*
    423   1.1    nonaka 	 * XXX Set the data timeout counter value according to
    424   1.1    nonaka 	 * capabilities. (2.2.15)
    425   1.1    nonaka 	 */
    426   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    427  1.29      matt #if 1
    428  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    429  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    430  1.11      matt #endif
    431   1.1    nonaka 
    432  1.58  jmcneill 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    433  1.58  jmcneill 		aprint_normal(", embedded slot");
    434  1.58  jmcneill 
    435   1.1    nonaka 	/*
    436   1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    437   1.1    nonaka 	 */
    438  1.58  jmcneill 	aprint_normal(",");
    439  1.66  jmcneill 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    440  1.66  jmcneill 		SET(hp->ocr, MMC_OCR_HCS);
    441  1.71  jmcneill 		aprint_normal(" HS");
    442  1.71  jmcneill 	}
    443  1.71  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    444  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    445  1.71  jmcneill 		aprint_normal(" SDR50");
    446  1.71  jmcneill 	}
    447  1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    448  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    449  1.76  jmcneill 		aprint_normal(" DDR50");
    450  1.71  jmcneill 	}
    451  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    452  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    453  1.76  jmcneill 		aprint_normal(" SDR104 HS200");
    454  1.66  jmcneill 	}
    455  1.71  jmcneill 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    456   1.1    nonaka 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    457  1.58  jmcneill 		aprint_normal(" 1.8V");
    458  1.11      matt 	}
    459  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    460   1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    461  1.58  jmcneill 		aprint_normal(" 3.0V");
    462  1.11      matt 	}
    463  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    464   1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    465  1.58  jmcneill 		aprint_normal(" 3.3V");
    466  1.11      matt 	}
    467  1.80  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    468  1.80  jmcneill 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    469  1.80  jmcneill 		if (hp->tuning_timer_count)
    470  1.80  jmcneill 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    471  1.80  jmcneill 	}
    472   1.1    nonaka 
    473   1.1    nonaka 	/*
    474   1.1    nonaka 	 * Determine the maximum block length supported by the host
    475   1.1    nonaka 	 * controller. (2.2.24)
    476   1.1    nonaka 	 */
    477   1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    478   1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    479   1.1    nonaka 		hp->maxblklen = 512;
    480   1.1    nonaka 		break;
    481   1.1    nonaka 
    482   1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    483   1.1    nonaka 		hp->maxblklen = 1024;
    484   1.1    nonaka 		break;
    485   1.1    nonaka 
    486   1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    487   1.1    nonaka 		hp->maxblklen = 2048;
    488   1.1    nonaka 		break;
    489   1.1    nonaka 
    490   1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    491   1.9      matt 		hp->maxblklen = 4096;
    492   1.9      matt 		break;
    493   1.9      matt 
    494   1.1    nonaka 	default:
    495   1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    496   1.1    nonaka 		goto err;
    497   1.1    nonaka 	}
    498  1.58  jmcneill 	aprint_normal(", %u byte blocks", hp->maxblklen);
    499  1.58  jmcneill 	aprint_normal("\n");
    500   1.1    nonaka 
    501  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    502  1.63  jmcneill 		int rseg;
    503  1.63  jmcneill 
    504  1.63  jmcneill 		/* Allocate ADMA2 descriptor memory */
    505  1.63  jmcneill 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    506  1.63  jmcneill 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    507  1.63  jmcneill 		if (error) {
    508  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    509  1.63  jmcneill 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    510  1.63  jmcneill 			goto adma_done;
    511  1.63  jmcneill 		}
    512  1.63  jmcneill 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    513  1.63  jmcneill 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    514  1.63  jmcneill 		if (error) {
    515  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    516  1.63  jmcneill 			    "ADMA2 dmamem_map failed (%d)\n", error);
    517  1.63  jmcneill 			goto adma_done;
    518  1.63  jmcneill 		}
    519  1.63  jmcneill 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    520  1.63  jmcneill 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    521  1.63  jmcneill 		if (error) {
    522  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    523  1.63  jmcneill 			    "ADMA2 dmamap_create failed (%d)\n", error);
    524  1.63  jmcneill 			goto adma_done;
    525  1.63  jmcneill 		}
    526  1.63  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    527  1.63  jmcneill 		    hp->adma2, PAGE_SIZE, NULL,
    528  1.63  jmcneill 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    529  1.63  jmcneill 		if (error) {
    530  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    531  1.63  jmcneill 			    "ADMA2 dmamap_load failed (%d)\n", error);
    532  1.63  jmcneill 			goto adma_done;
    533  1.63  jmcneill 		}
    534  1.63  jmcneill 
    535  1.63  jmcneill 		memset(hp->adma2, 0, PAGE_SIZE);
    536  1.63  jmcneill 
    537  1.63  jmcneill adma_done:
    538  1.63  jmcneill 		if (error)
    539  1.63  jmcneill 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    540  1.63  jmcneill 	}
    541  1.63  jmcneill 
    542   1.1    nonaka 	/*
    543   1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    544   1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    545   1.1    nonaka 	 */
    546   1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    547   1.1    nonaka 	saa.saa_busname = "sdmmc";
    548   1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    549   1.1    nonaka 	saa.saa_sch = hp;
    550   1.1    nonaka 	saa.saa_dmat = hp->dmat;
    551   1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    552  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    553  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    554  1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    555  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    556  1.38  jakllsch 	else if (hp->sc->sc_clkmsk != 0)
    557  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    558  1.38  jakllsch 		    (ffs(hp->sc->sc_clkmsk) - 1));
    559  1.56  jmcneill 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    560  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    561  1.38  jakllsch 	else
    562  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256;
    563   1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    564  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    565  1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    566  1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    567  1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    568  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    569  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    570  1.76  jmcneill 				SMC_CAPS_UHS_SDR50 |
    571  1.76  jmcneill 				SMC_CAPS_MMC_HS200;
    572  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    573  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    574  1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    575  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    576  1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    577  1.54    nonaka 		saa.saa_caps |= SMC_CAPS_DMA;
    578  1.54    nonaka 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    579  1.54    nonaka 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    580  1.26      matt 	}
    581  1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    582  1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    583  1.77  jmcneill 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    584  1.77  jmcneill 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    585  1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    586   1.1    nonaka 
    587   1.1    nonaka 	return 0;
    588   1.1    nonaka 
    589   1.1    nonaka err:
    590  1.80  jmcneill 	callout_destroy(&hp->tuning_timer);
    591   1.1    nonaka 	cv_destroy(&hp->intr_cv);
    592  1.65  jmcneill 	mutex_destroy(&hp->intr_lock);
    593   1.1    nonaka 	free(hp, M_DEVBUF);
    594   1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    595   1.1    nonaka err1:
    596   1.1    nonaka 	return 1;
    597   1.1    nonaka }
    598   1.1    nonaka 
    599   1.7    nonaka int
    600  1.36  jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
    601   1.7    nonaka {
    602  1.36  jakllsch 	struct sdhc_host *hp;
    603   1.7    nonaka 	int rv = 0;
    604   1.7    nonaka 
    605  1.36  jakllsch 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    606  1.36  jakllsch 		hp = sc->sc_host[n];
    607  1.36  jakllsch 		if (hp == NULL)
    608  1.36  jakllsch 			continue;
    609  1.36  jakllsch 		if (hp->sdmmc != NULL) {
    610  1.36  jakllsch 			rv = config_detach(hp->sdmmc, flags);
    611  1.36  jakllsch 			if (rv)
    612  1.36  jakllsch 				break;
    613  1.36  jakllsch 			hp->sdmmc = NULL;
    614  1.36  jakllsch 		}
    615  1.36  jakllsch 		/* disable interrupts */
    616  1.36  jakllsch 		if ((flags & DETACH_FORCE) == 0) {
    617  1.78   mlelstv 			mutex_enter(&hp->intr_lock);
    618  1.36  jakllsch 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    619  1.36  jakllsch 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    620  1.36  jakllsch 			} else {
    621  1.36  jakllsch 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    622  1.36  jakllsch 			}
    623  1.36  jakllsch 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    624  1.78   mlelstv 			mutex_exit(&hp->intr_lock);
    625  1.36  jakllsch 		}
    626  1.80  jmcneill 		callout_halt(&hp->tuning_timer, NULL);
    627  1.80  jmcneill 		callout_destroy(&hp->tuning_timer);
    628  1.36  jakllsch 		cv_destroy(&hp->intr_cv);
    629  1.65  jmcneill 		mutex_destroy(&hp->intr_lock);
    630  1.36  jakllsch 		if (hp->ios > 0) {
    631  1.36  jakllsch 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    632  1.36  jakllsch 			hp->ios = 0;
    633  1.36  jakllsch 		}
    634  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    635  1.63  jmcneill 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    636  1.63  jmcneill 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    637  1.63  jmcneill 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    638  1.63  jmcneill 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    639  1.63  jmcneill 		}
    640  1.36  jakllsch 		free(hp, M_DEVBUF);
    641  1.36  jakllsch 		sc->sc_host[n] = NULL;
    642  1.36  jakllsch 	}
    643   1.7    nonaka 
    644   1.7    nonaka 	return rv;
    645   1.7    nonaka }
    646   1.7    nonaka 
    647   1.1    nonaka bool
    648   1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    649   1.1    nonaka {
    650   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    651   1.1    nonaka 	struct sdhc_host *hp;
    652  1.12    nonaka 	size_t i;
    653   1.1    nonaka 
    654   1.1    nonaka 	/* XXX poll for command completion or suspend command
    655   1.1    nonaka 	 * in progress */
    656   1.1    nonaka 
    657   1.1    nonaka 	/* Save the host controller state. */
    658  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    659   1.1    nonaka 		hp = sc->sc_host[n];
    660  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    661  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    662  1.11      matt 				uint32_t v = HREAD4(hp, i);
    663  1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    664  1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    665  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    666  1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    667  1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    668  1.13    bouyer 				}
    669  1.11      matt 			}
    670  1.11      matt 		} else {
    671  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    672  1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    673  1.11      matt 			}
    674  1.11      matt 		}
    675   1.1    nonaka 	}
    676   1.1    nonaka 	return true;
    677   1.1    nonaka }
    678   1.1    nonaka 
    679   1.1    nonaka bool
    680   1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    681   1.1    nonaka {
    682   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    683   1.1    nonaka 	struct sdhc_host *hp;
    684  1.12    nonaka 	size_t i;
    685   1.1    nonaka 
    686   1.1    nonaka 	/* Restore the host controller state. */
    687  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    688   1.1    nonaka 		hp = sc->sc_host[n];
    689   1.1    nonaka 		(void)sdhc_host_reset(hp);
    690  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    691  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    692  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    693  1.13    bouyer 					HWRITE4(hp, i,
    694  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    695  1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    696  1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    697  1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    698  1.13    bouyer 				} else {
    699  1.13    bouyer 					HWRITE4(hp, i,
    700  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    701  1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    702  1.13    bouyer 				}
    703  1.11      matt 			}
    704  1.11      matt 		} else {
    705  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    706  1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    707  1.11      matt 			}
    708  1.11      matt 		}
    709   1.1    nonaka 	}
    710   1.1    nonaka 	return true;
    711   1.1    nonaka }
    712   1.1    nonaka 
    713   1.1    nonaka bool
    714   1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    715   1.1    nonaka {
    716   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    717   1.1    nonaka 	struct sdhc_host *hp;
    718   1.1    nonaka 
    719   1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    720  1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    721   1.1    nonaka 		hp = sc->sc_host[i];
    722   1.1    nonaka 		(void)sdhc_host_reset(hp);
    723   1.1    nonaka 	}
    724   1.1    nonaka 	return true;
    725   1.1    nonaka }
    726   1.1    nonaka 
    727   1.1    nonaka /*
    728   1.1    nonaka  * Reset the host controller.  Called during initialization, when
    729   1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    730   1.1    nonaka  */
    731   1.1    nonaka static int
    732   1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    733   1.1    nonaka {
    734   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    735  1.11      matt 	uint32_t sdhcimask;
    736   1.1    nonaka 	int error;
    737   1.1    nonaka 
    738  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
    739   1.1    nonaka 
    740   1.1    nonaka 	/* Disable all interrupts. */
    741  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    742  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    743  1.11      matt 	} else {
    744  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    745  1.11      matt 	}
    746   1.1    nonaka 
    747   1.1    nonaka 	/*
    748   1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    749   1.1    nonaka 	 * the controller to clear the reset bit.
    750   1.1    nonaka 	 */
    751   1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    752   1.1    nonaka 	if (error)
    753   1.1    nonaka 		goto out;
    754   1.1    nonaka 
    755   1.1    nonaka 	/* Set data timeout counter value to max for now. */
    756   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    757  1.29      matt #if 1
    758  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    759  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    760  1.11      matt #endif
    761   1.1    nonaka 
    762   1.1    nonaka 	/* Enable interrupts. */
    763   1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    764   1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    765   1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    766   1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    767  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    768  1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    769  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    770  1.11      matt 		sdhcimask ^=
    771  1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    772  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    773  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    774  1.11      matt 	} else {
    775  1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    776  1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    777  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    778  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    779  1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    780  1.11      matt 	}
    781   1.1    nonaka 
    782   1.1    nonaka out:
    783   1.1    nonaka 	return error;
    784   1.1    nonaka }
    785   1.1    nonaka 
    786   1.1    nonaka static int
    787   1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    788   1.1    nonaka {
    789   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    790   1.1    nonaka 	int error;
    791   1.1    nonaka 
    792  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    793   1.1    nonaka 	error = sdhc_host_reset1(sch);
    794  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    795   1.1    nonaka 
    796   1.1    nonaka 	return error;
    797   1.1    nonaka }
    798   1.1    nonaka 
    799   1.1    nonaka static uint32_t
    800   1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    801   1.1    nonaka {
    802   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    803   1.1    nonaka 
    804   1.1    nonaka 	return hp->ocr;
    805   1.1    nonaka }
    806   1.1    nonaka 
    807   1.1    nonaka static int
    808   1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    809   1.1    nonaka {
    810   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    811   1.1    nonaka 
    812   1.1    nonaka 	return hp->maxblklen;
    813   1.1    nonaka }
    814   1.1    nonaka 
    815   1.1    nonaka /*
    816   1.1    nonaka  * Return non-zero if the card is currently inserted.
    817   1.1    nonaka  */
    818   1.1    nonaka static int
    819   1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    820   1.1    nonaka {
    821   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    822   1.1    nonaka 	int r;
    823   1.1    nonaka 
    824  1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    825  1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    826  1.32  kiyohara 
    827   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    828   1.1    nonaka 
    829  1.11      matt 	return r ? 1 : 0;
    830   1.1    nonaka }
    831   1.1    nonaka 
    832   1.1    nonaka /*
    833   1.1    nonaka  * Return non-zero if the card is currently write-protected.
    834   1.1    nonaka  */
    835   1.1    nonaka static int
    836   1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    837   1.1    nonaka {
    838   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    839   1.1    nonaka 	int r;
    840   1.1    nonaka 
    841  1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    842  1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    843  1.32  kiyohara 
    844   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    845   1.1    nonaka 
    846  1.12    nonaka 	return r ? 0 : 1;
    847   1.1    nonaka }
    848   1.1    nonaka 
    849   1.1    nonaka /*
    850   1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    851   1.1    nonaka  * Return zero on success.
    852   1.1    nonaka  */
    853   1.1    nonaka static int
    854   1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    855   1.1    nonaka {
    856   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    857   1.1    nonaka 	uint8_t vdd;
    858   1.1    nonaka 	int error = 0;
    859  1.32  kiyohara 	const uint32_t pcmask =
    860  1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    861   1.1    nonaka 
    862  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    863   1.1    nonaka 
    864   1.1    nonaka 	/*
    865   1.1    nonaka 	 * Disable bus power before voltage change.
    866   1.1    nonaka 	 */
    867  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    868  1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    869   1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    870   1.1    nonaka 
    871   1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    872   1.1    nonaka 	if (ocr == 0) {
    873   1.1    nonaka 		(void)sdhc_host_reset1(hp);
    874  1.80  jmcneill 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    875   1.1    nonaka 		goto out;
    876   1.1    nonaka 	}
    877   1.1    nonaka 
    878   1.1    nonaka 	/*
    879   1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    880   1.1    nonaka 	 */
    881   1.1    nonaka 	ocr &= hp->ocr;
    882  1.73  jmcneill 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    883   1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    884  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    885   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    886  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    887   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    888  1.11      matt 	} else {
    889   1.1    nonaka 		/* Unsupported voltage level requested. */
    890   1.1    nonaka 		error = EINVAL;
    891   1.1    nonaka 		goto out;
    892   1.1    nonaka 	}
    893   1.1    nonaka 
    894  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    895  1.11      matt 		/*
    896  1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    897  1.11      matt 		 * voltage ramp until power rises.
    898  1.11      matt 		 */
    899  1.57  jmcneill 
    900  1.57  jmcneill 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    901  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    902  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    903  1.57  jmcneill 		} else {
    904  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    905  1.57  jmcneill 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    906  1.57  jmcneill 			sdmmc_delay(1);
    907  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    908  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT));
    909  1.57  jmcneill 			sdmmc_delay(1);
    910  1.57  jmcneill 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    911  1.57  jmcneill 			sdmmc_delay(10000);
    912  1.57  jmcneill 		}
    913   1.1    nonaka 
    914  1.11      matt 		/*
    915  1.11      matt 		 * The host system may not power the bus due to battery low,
    916  1.11      matt 		 * etc.  In that case, the host controller should clear the
    917  1.11      matt 		 * bus power bit.
    918  1.11      matt 		 */
    919  1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    920  1.11      matt 			error = ENXIO;
    921  1.11      matt 			goto out;
    922  1.11      matt 		}
    923   1.1    nonaka 	}
    924   1.1    nonaka 
    925   1.1    nonaka out:
    926  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    927   1.1    nonaka 
    928   1.1    nonaka 	return error;
    929   1.1    nonaka }
    930   1.1    nonaka 
    931   1.1    nonaka /*
    932   1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    933   1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    934   1.1    nonaka  */
    935  1.11      matt static bool
    936  1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    937   1.1    nonaka {
    938  1.11      matt 	u_int div;
    939   1.1    nonaka 
    940  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    941  1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    942  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    943  1.11      matt 				*divp = SDHC_SDCLK_CGM
    944  1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    945  1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    946  1.18  jakllsch 				//freq = hp->clkbase / div;
    947  1.11      matt 				return true;
    948  1.11      matt 			}
    949  1.11      matt 		}
    950  1.11      matt 		/* No divisor found. */
    951  1.11      matt 		return false;
    952  1.11      matt 	}
    953  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    954  1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    955  1.11      matt 		u_int roundup = dvs & 1;
    956  1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    957  1.11      matt 			if (dvs + roundup <= 16) {
    958  1.11      matt 				dvs += roundup - 1;
    959  1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    960  1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    961  1.11      matt 				DPRINTF(2,
    962  1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    963  1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    964  1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    965  1.11      matt 				return true;
    966   1.9      matt 			}
    967  1.11      matt 			/*
    968  1.11      matt 			 * If we drop bits, we need to round up the divisor.
    969  1.11      matt 			 */
    970  1.11      matt 			roundup |= dvs & 1;
    971   1.9      matt 		}
    972  1.18  jakllsch 		/* No divisor found. */
    973  1.18  jakllsch 		return false;
    974  1.38  jakllsch 	}
    975  1.38  jakllsch 	if (hp->sc->sc_clkmsk != 0) {
    976  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    977  1.38  jakllsch 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    978  1.38  jakllsch 			return false;
    979  1.38  jakllsch 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    980  1.38  jakllsch 		//freq = hp->clkbase / div;
    981  1.38  jakllsch 		return true;
    982  1.38  jakllsch 	}
    983  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    984  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
    985  1.50   mlelstv 		div = div > 1 ? howmany(div, 2) : 0;
    986  1.38  jakllsch 		if (div > 0x3ff)
    987  1.38  jakllsch 			return false;
    988  1.38  jakllsch 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    989  1.38  jakllsch 			 << SDHC_SDCLK_XDIV_SHIFT) |
    990  1.38  jakllsch 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    991  1.38  jakllsch 			 << SDHC_SDCLK_DIV_SHIFT);
    992  1.67   mlelstv 		//freq = hp->clkbase / (div ? div * 2 : 1);
    993  1.38  jakllsch 		return true;
    994   1.9      matt 	} else {
    995  1.38  jakllsch 		for (div = 1; div <= 256; div *= 2) {
    996  1.38  jakllsch 			if ((hp->clkbase / div) <= freq) {
    997  1.38  jakllsch 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    998  1.38  jakllsch 				//freq = hp->clkbase / div;
    999  1.38  jakllsch 				return true;
   1000  1.38  jakllsch 			}
   1001  1.38  jakllsch 		}
   1002  1.38  jakllsch 		/* No divisor found. */
   1003  1.38  jakllsch 		return false;
   1004   1.9      matt 	}
   1005   1.1    nonaka 	/* No divisor found. */
   1006  1.11      matt 	return false;
   1007   1.1    nonaka }
   1008   1.1    nonaka 
   1009   1.1    nonaka /*
   1010   1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
   1011   1.1    nonaka  * Return zero on success.
   1012   1.1    nonaka  */
   1013   1.1    nonaka static int
   1014  1.76  jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1015   1.1    nonaka {
   1016   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1017  1.11      matt 	u_int div;
   1018  1.11      matt 	u_int timo;
   1019  1.32  kiyohara 	int16_t reg;
   1020   1.1    nonaka 	int error = 0;
   1021  1.65  jmcneill 	bool present __diagused;
   1022  1.65  jmcneill 
   1023  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1024  1.65  jmcneill 
   1025   1.2    cegger #ifdef DIAGNOSTIC
   1026  1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1027   1.1    nonaka 
   1028   1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
   1029  1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
   1030  1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
   1031  1.26      matt 		    "%s: command in progress\n", __func__);
   1032  1.12    nonaka 	}
   1033   1.1    nonaka #endif
   1034   1.1    nonaka 
   1035  1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
   1036  1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1037  1.34      matt 		if (error != 0)
   1038  1.34      matt 			goto out;
   1039  1.34      matt 	}
   1040  1.34      matt 
   1041   1.1    nonaka 	/*
   1042   1.1    nonaka 	 * Stop SD clock before changing the frequency.
   1043   1.1    nonaka 	 */
   1044  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1045  1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1046  1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
   1047  1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1048  1.11      matt 			goto out;
   1049  1.11      matt 		}
   1050  1.11      matt 	} else {
   1051  1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1052  1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
   1053  1.11      matt 			goto out;
   1054  1.11      matt 	}
   1055   1.1    nonaka 
   1056  1.71  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1057  1.71  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1058  1.71  jmcneill 		if (freq > 100000) {
   1059  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1060  1.71  jmcneill 		} else if (freq > 50000) {
   1061  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
   1062  1.71  jmcneill 		} else if (freq > 25000) {
   1063  1.76  jmcneill 			if (ddr) {
   1064  1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1065  1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_DDR50);
   1066  1.76  jmcneill 			} else {
   1067  1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1068  1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_SDR25);
   1069  1.76  jmcneill 			}
   1070  1.74  jmcneill 		} else if (freq > 400) {
   1071  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1072  1.71  jmcneill 		}
   1073  1.71  jmcneill 	}
   1074  1.71  jmcneill 
   1075   1.1    nonaka 	/*
   1076  1.82   mlelstv 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1077  1.82   mlelstv 	 * at 100MHz bus clock.
   1078  1.82   mlelstv 	 */
   1079  1.82   mlelstv 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1080  1.82   mlelstv 		if (freq == 100000)
   1081  1.82   mlelstv 			--freq;
   1082  1.82   mlelstv 	}
   1083  1.82   mlelstv 
   1084  1.82   mlelstv 	/*
   1085   1.1    nonaka 	 * Set the minimum base clock frequency divisor.
   1086   1.1    nonaka 	 */
   1087  1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1088   1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
   1089  1.68   mlelstv 		aprint_error_dev(hp->sc->sc_dev,
   1090  1.68   mlelstv 			"Invalid bus clock %d kHz\n", freq);
   1091   1.1    nonaka 		error = EINVAL;
   1092   1.1    nonaka 		goto out;
   1093   1.1    nonaka 	}
   1094  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1095  1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1096  1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
   1097  1.11      matt 	} else {
   1098  1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1099  1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1100  1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1101  1.11      matt 	}
   1102   1.1    nonaka 
   1103   1.1    nonaka 	/*
   1104   1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
   1105   1.1    nonaka 	 */
   1106  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1107  1.11      matt 		sdmmc_delay(10000);
   1108  1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
   1109  1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1110  1.11      matt 	} else {
   1111  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1112  1.11      matt 		for (timo = 1000; timo > 0; timo--) {
   1113  1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1114  1.12    nonaka 			    SDHC_INTCLK_STABLE))
   1115  1.11      matt 				break;
   1116  1.11      matt 			sdmmc_delay(10);
   1117  1.11      matt 		}
   1118  1.11      matt 		if (timo == 0) {
   1119  1.11      matt 			error = ETIMEDOUT;
   1120  1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1121  1.11      matt 			goto out;
   1122  1.11      matt 		}
   1123   1.1    nonaka 	}
   1124   1.1    nonaka 
   1125  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1126  1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1127  1.11      matt 		/*
   1128  1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
   1129  1.11      matt 		 * So delay for that time + slop and then
   1130  1.11      matt 		 * check a few times for completion.
   1131  1.11      matt 		 */
   1132  1.11      matt 		sdmmc_delay(210);
   1133  1.11      matt 		for (timo = 10; timo > 0; timo--) {
   1134  1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1135  1.11      matt 			    SDHC_INIT_ACTIVE))
   1136  1.11      matt 				break;
   1137  1.11      matt 			sdmmc_delay(10);
   1138  1.11      matt 		}
   1139  1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1140  1.12    nonaka 
   1141  1.11      matt 		/*
   1142  1.11      matt 		 * Enable SD clock.
   1143  1.11      matt 		 */
   1144  1.11      matt 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1145  1.11      matt 	} else {
   1146  1.11      matt 		/*
   1147  1.11      matt 		 * Enable SD clock.
   1148  1.11      matt 		 */
   1149  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1150   1.1    nonaka 
   1151  1.43  jmcneill 		if (freq > 25000 &&
   1152  1.43  jmcneill 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1153  1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1154  1.11      matt 		else
   1155  1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1156  1.11      matt 	}
   1157   1.8  kiyohara 
   1158   1.1    nonaka out:
   1159  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1160   1.1    nonaka 
   1161   1.1    nonaka 	return error;
   1162   1.1    nonaka }
   1163   1.1    nonaka 
   1164   1.1    nonaka static int
   1165   1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1166   1.1    nonaka {
   1167   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1168   1.1    nonaka 	int reg;
   1169   1.1    nonaka 
   1170   1.1    nonaka 	switch (width) {
   1171   1.1    nonaka 	case 1:
   1172   1.1    nonaka 	case 4:
   1173   1.1    nonaka 		break;
   1174   1.1    nonaka 
   1175  1.11      matt 	case 8:
   1176  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1177  1.11      matt 			break;
   1178  1.11      matt 		/* FALLTHROUGH */
   1179   1.1    nonaka 	default:
   1180   1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1181   1.1    nonaka 		    HDEVNAME(hp), width));
   1182   1.1    nonaka 		return 1;
   1183   1.1    nonaka 	}
   1184   1.1    nonaka 
   1185  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1186  1.65  jmcneill 
   1187   1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1188  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1189  1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1190  1.11      matt 		if (width == 4)
   1191  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1192  1.11      matt 		else if (width == 8)
   1193  1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
   1194  1.11      matt 	} else {
   1195  1.11      matt 		reg &= ~SDHC_4BIT_MODE;
   1196  1.59  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1197  1.59  jmcneill 			reg &= ~SDHC_8BIT_MODE;
   1198  1.59  jmcneill 		}
   1199  1.59  jmcneill 		if (width == 4) {
   1200  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1201  1.59  jmcneill 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1202  1.59  jmcneill 			reg |= SDHC_8BIT_MODE;
   1203  1.59  jmcneill 		}
   1204  1.11      matt 	}
   1205   1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1206  1.65  jmcneill 
   1207  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1208   1.1    nonaka 
   1209   1.1    nonaka 	return 0;
   1210   1.1    nonaka }
   1211   1.1    nonaka 
   1212   1.8  kiyohara static int
   1213   1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1214   1.8  kiyohara {
   1215  1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1216  1.32  kiyohara 
   1217  1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
   1218  1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1219   1.8  kiyohara 
   1220   1.8  kiyohara 	return 0;
   1221   1.8  kiyohara }
   1222   1.8  kiyohara 
   1223   1.1    nonaka static void
   1224   1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1225   1.1    nonaka {
   1226   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1227   1.1    nonaka 
   1228  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1229  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1230  1.11      matt 		if (enable) {
   1231  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1232  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1233  1.11      matt 		} else {
   1234  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1235  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1236  1.11      matt 		}
   1237  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1238   1.1    nonaka 	}
   1239   1.1    nonaka }
   1240   1.1    nonaka 
   1241  1.47     skrll static void
   1242   1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1243   1.1    nonaka {
   1244   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1245   1.1    nonaka 
   1246  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1247  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1248  1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1249  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1250  1.11      matt 	}
   1251   1.1    nonaka }
   1252   1.1    nonaka 
   1253   1.1    nonaka static int
   1254  1.71  jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1255  1.71  jmcneill {
   1256  1.71  jmcneill 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1257  1.71  jmcneill 
   1258  1.78   mlelstv 	mutex_enter(&hp->intr_lock);
   1259  1.71  jmcneill 	switch (signal_voltage) {
   1260  1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_180:
   1261  1.71  jmcneill 		HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1262  1.71  jmcneill 		break;
   1263  1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_330:
   1264  1.71  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1265  1.71  jmcneill 		break;
   1266  1.71  jmcneill 	default:
   1267  1.71  jmcneill 		return EINVAL;
   1268  1.71  jmcneill 	}
   1269  1.78   mlelstv 	mutex_exit(&hp->intr_lock);
   1270  1.71  jmcneill 
   1271  1.71  jmcneill 	return 0;
   1272  1.71  jmcneill }
   1273  1.71  jmcneill 
   1274  1.79  jmcneill /*
   1275  1.79  jmcneill  * Sampling clock tuning procedure (UHS)
   1276  1.79  jmcneill  */
   1277  1.79  jmcneill static int
   1278  1.83   mlelstv sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1279  1.79  jmcneill {
   1280  1.79  jmcneill 	struct sdmmc_command cmd;
   1281  1.79  jmcneill 	uint8_t hostctl;
   1282  1.79  jmcneill 	int opcode, error, retry = 40;
   1283  1.79  jmcneill 
   1284  1.83   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1285  1.83   mlelstv 
   1286  1.80  jmcneill 	hp->tuning_timing = timing;
   1287  1.80  jmcneill 
   1288  1.79  jmcneill 	switch (timing) {
   1289  1.79  jmcneill 	case SDMMC_TIMING_MMC_HS200:
   1290  1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1291  1.79  jmcneill 		break;
   1292  1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR50:
   1293  1.79  jmcneill 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1294  1.79  jmcneill 			return 0;
   1295  1.79  jmcneill 		/* FALLTHROUGH */
   1296  1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR104:
   1297  1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK;
   1298  1.79  jmcneill 		break;
   1299  1.79  jmcneill 	default:
   1300  1.79  jmcneill 		return EINVAL;
   1301  1.79  jmcneill 	}
   1302  1.79  jmcneill 
   1303  1.79  jmcneill 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1304  1.79  jmcneill 
   1305  1.79  jmcneill 	/* enable buffer read ready interrupt */
   1306  1.79  jmcneill 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1307  1.79  jmcneill 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1308  1.79  jmcneill 
   1309  1.79  jmcneill 	/* disable DMA */
   1310  1.79  jmcneill 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1311  1.79  jmcneill 
   1312  1.79  jmcneill 	/* reset tuning circuit */
   1313  1.79  jmcneill 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1314  1.79  jmcneill 
   1315  1.79  jmcneill 	/* start of tuning */
   1316  1.79  jmcneill 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1317  1.79  jmcneill 
   1318  1.79  jmcneill 	do {
   1319  1.79  jmcneill 		memset(&cmd, 0, sizeof(cmd));
   1320  1.79  jmcneill 		cmd.c_opcode = opcode;
   1321  1.79  jmcneill 		cmd.c_arg = 0;
   1322  1.79  jmcneill 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1323  1.79  jmcneill 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1324  1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 128;
   1325  1.79  jmcneill 		} else {
   1326  1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 64;
   1327  1.79  jmcneill 		}
   1328  1.79  jmcneill 
   1329  1.79  jmcneill 		error = sdhc_start_command(hp, &cmd);
   1330  1.79  jmcneill 		if (error)
   1331  1.79  jmcneill 			break;
   1332  1.79  jmcneill 
   1333  1.79  jmcneill 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1334  1.79  jmcneill 		    SDHC_TUNING_TIMEOUT)) {
   1335  1.79  jmcneill 			break;
   1336  1.79  jmcneill 		}
   1337  1.79  jmcneill 
   1338  1.79  jmcneill 		delay(1000);
   1339  1.79  jmcneill 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1340  1.79  jmcneill 
   1341  1.79  jmcneill 	/* disable buffer read ready interrupt */
   1342  1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1343  1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1344  1.79  jmcneill 
   1345  1.79  jmcneill 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1346  1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1347  1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1348  1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1349  1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1350  1.79  jmcneill 		    "tuning did not complete, using fixed sampling clock\n");
   1351  1.79  jmcneill 		return EIO;		/* tuning did not complete */
   1352  1.79  jmcneill 	}
   1353  1.79  jmcneill 
   1354  1.79  jmcneill 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1355  1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1356  1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1357  1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1358  1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1359  1.79  jmcneill 		    "tuning failed, using fixed sampling clock\n");
   1360  1.79  jmcneill 		return EIO;		/* tuning failed */
   1361  1.79  jmcneill 	}
   1362  1.79  jmcneill 
   1363  1.80  jmcneill 	if (hp->tuning_timer_count) {
   1364  1.80  jmcneill 		callout_schedule(&hp->tuning_timer,
   1365  1.80  jmcneill 		    hz * hp->tuning_timer_count);
   1366  1.80  jmcneill 	}
   1367  1.80  jmcneill 
   1368  1.79  jmcneill 	return 0;		/* tuning completed */
   1369  1.79  jmcneill }
   1370  1.79  jmcneill 
   1371  1.83   mlelstv static int
   1372  1.83   mlelstv sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1373  1.83   mlelstv {
   1374  1.83   mlelstv 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1375  1.83   mlelstv 	int error;
   1376  1.83   mlelstv 
   1377  1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1378  1.83   mlelstv 	error = sdhc_execute_tuning1(hp, timing);
   1379  1.83   mlelstv 	mutex_exit(&hp->intr_lock);
   1380  1.83   mlelstv 	return error;
   1381  1.83   mlelstv }
   1382  1.83   mlelstv 
   1383  1.80  jmcneill static void
   1384  1.80  jmcneill sdhc_tuning_timer(void *arg)
   1385  1.80  jmcneill {
   1386  1.80  jmcneill 	struct sdhc_host *hp = arg;
   1387  1.80  jmcneill 
   1388  1.80  jmcneill 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1389  1.80  jmcneill }
   1390  1.80  jmcneill 
   1391  1.71  jmcneill static int
   1392   1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1393   1.1    nonaka {
   1394   1.1    nonaka 	uint32_t state;
   1395   1.1    nonaka 	int timeout;
   1396   1.1    nonaka 
   1397  1.65  jmcneill 	for (timeout = 10000; timeout > 0; timeout--) {
   1398   1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1399   1.1    nonaka 			return 0;
   1400  1.65  jmcneill 		sdmmc_delay(10);
   1401   1.1    nonaka 	}
   1402  1.75   mlelstv 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1403  1.75   mlelstv 	    mask, value, state);
   1404   1.1    nonaka 	return ETIMEDOUT;
   1405   1.1    nonaka }
   1406   1.1    nonaka 
   1407   1.1    nonaka static void
   1408   1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1409   1.1    nonaka {
   1410   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1411   1.1    nonaka 	int error;
   1412   1.1    nonaka 
   1413  1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1414  1.83   mlelstv 
   1415  1.80  jmcneill 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1416  1.83   mlelstv 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1417  1.80  jmcneill 	}
   1418  1.80  jmcneill 
   1419  1.26      matt 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1420  1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1421  1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1422  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1423  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1424  1.11      matt 		} else {
   1425  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1426  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1427  1.47     skrll 		}
   1428  1.11      matt 	}
   1429  1.11      matt 
   1430  1.61  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1431  1.61  jmcneill 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1432  1.61  jmcneill 		if (cmd->c_data != NULL) {
   1433  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1434  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1435  1.61  jmcneill 		} else {
   1436  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1437  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1438  1.61  jmcneill 		}
   1439  1.61  jmcneill 	}
   1440  1.61  jmcneill 
   1441   1.1    nonaka 	/*
   1442   1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1443   1.1    nonaka 	 */
   1444   1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1445   1.1    nonaka 	if (error) {
   1446   1.1    nonaka 		cmd->c_error = error;
   1447   1.1    nonaka 		goto out;
   1448   1.1    nonaka 	}
   1449   1.1    nonaka 
   1450   1.1    nonaka 	/*
   1451   1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1452   1.1    nonaka 	 * is marked done for any other reason.
   1453   1.1    nonaka 	 */
   1454   1.1    nonaka 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1455  1.84   mlelstv 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1456   1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1457   1.1    nonaka 		goto out;
   1458   1.1    nonaka 	}
   1459   1.1    nonaka 
   1460   1.1    nonaka 	/*
   1461   1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1462   1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1463   1.1    nonaka 	 * driver (without padding).
   1464   1.1    nonaka 	 */
   1465   1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1466  1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1467  1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1468  1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1469  1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1470  1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1471  1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1472  1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1473  1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1474  1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1475  1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1476  1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1477  1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1478  1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1479  1.32  kiyohara 			}
   1480   1.1    nonaka 		}
   1481   1.1    nonaka 	}
   1482  1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1483   1.1    nonaka 
   1484   1.1    nonaka 	/*
   1485   1.1    nonaka 	 * If the command has data to transfer in any direction,
   1486   1.1    nonaka 	 * execute the transfer now.
   1487   1.1    nonaka 	 */
   1488   1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1489   1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1490  1.42  jakllsch 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1491  1.42  jakllsch 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
   1492  1.85   mlelstv 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1493  1.85   mlelstv 			    HDEVNAME(hp)));
   1494  1.42  jakllsch 			cmd->c_error = ETIMEDOUT;
   1495  1.42  jakllsch 			goto out;
   1496  1.42  jakllsch 		}
   1497  1.42  jakllsch 	}
   1498   1.1    nonaka 
   1499   1.1    nonaka out:
   1500  1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1501  1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1502  1.11      matt 		/* Turn off the LED. */
   1503  1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1504  1.11      matt 	}
   1505   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1506   1.1    nonaka 
   1507  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1508  1.65  jmcneill 
   1509   1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1510   1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1511   1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1512   1.1    nonaka }
   1513   1.1    nonaka 
   1514   1.1    nonaka static int
   1515   1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1516   1.1    nonaka {
   1517  1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1518   1.1    nonaka 	uint16_t blksize = 0;
   1519   1.1    nonaka 	uint16_t blkcount = 0;
   1520   1.1    nonaka 	uint16_t mode;
   1521   1.1    nonaka 	uint16_t command;
   1522  1.84   mlelstv 	uint32_t pmask;
   1523   1.1    nonaka 	int error;
   1524   1.1    nonaka 
   1525  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1526  1.65  jmcneill 
   1527  1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1528   1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1529  1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1530   1.1    nonaka 
   1531   1.1    nonaka 	/*
   1532   1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1533   1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1534   1.1    nonaka 	 */
   1535   1.1    nonaka 
   1536   1.1    nonaka 	/* Fragment the data into proper blocks. */
   1537   1.1    nonaka 	if (cmd->c_datalen > 0) {
   1538   1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1539   1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1540   1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1541   1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1542  1.11      matt 			aprint_error_dev(sc->sc_dev,
   1543   1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1544   1.1    nonaka 			return EINVAL;
   1545   1.1    nonaka 		}
   1546   1.1    nonaka 	}
   1547   1.1    nonaka 
   1548   1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1549   1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1550  1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1551   1.1    nonaka 		return EINVAL;
   1552   1.1    nonaka 	}
   1553   1.1    nonaka 
   1554   1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1555  1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1556   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1557   1.1    nonaka 		mode |= SDHC_READ_MODE;
   1558  1.15  jakllsch 	if (blkcount > 1) {
   1559  1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1560  1.15  jakllsch 		/* XXX only for memory commands? */
   1561  1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1562   1.1    nonaka 	}
   1563  1.45  jakllsch 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1564  1.55    bouyer 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1565  1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1566   1.7    nonaka 	}
   1567   1.1    nonaka 
   1568   1.1    nonaka 	/*
   1569   1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1570   1.1    nonaka 	 */
   1571  1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1572   1.1    nonaka 
   1573   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1574   1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1575   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1576   1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1577  1.79  jmcneill 	if (cmd->c_datalen > 0)
   1578   1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1579   1.1    nonaka 
   1580   1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1581   1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1582   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1583   1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1584   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1585   1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1586   1.1    nonaka 	else
   1587   1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1588   1.1    nonaka 
   1589  1.84   mlelstv 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1590  1.84   mlelstv 	pmask = SDHC_CMD_INHIBIT_CMD;
   1591  1.84   mlelstv 	if (cmd->c_flags & SCF_CMD_ADTC)
   1592  1.84   mlelstv 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1593  1.84   mlelstv 	error = sdhc_wait_state(hp, pmask, 0);
   1594  1.68   mlelstv 	if (error) {
   1595  1.84   mlelstv 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1596  1.84   mlelstv 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1597   1.1    nonaka 		return error;
   1598  1.68   mlelstv 	}
   1599   1.1    nonaka 
   1600   1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1601   1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1602   1.1    nonaka 
   1603  1.44   hkenken 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1604  1.44   hkenken 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1605  1.44   hkenken 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1606  1.44   hkenken 	}
   1607  1.19  jakllsch 
   1608  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1609  1.11      matt 		/* Alert the user not to remove the card. */
   1610  1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1611  1.11      matt 	}
   1612   1.1    nonaka 
   1613   1.7    nonaka 	/* Set DMA start address. */
   1614  1.79  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1615  1.63  jmcneill 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1616  1.69  jmcneill 			bus_addr_t paddr =
   1617  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1618  1.63  jmcneill 			uint16_t len =
   1619  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1620  1.63  jmcneill 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1621  1.63  jmcneill 			uint16_t attr =
   1622  1.63  jmcneill 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1623  1.63  jmcneill 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1624  1.63  jmcneill 				attr |= SDHC_ADMA2_END;
   1625  1.63  jmcneill 			}
   1626  1.63  jmcneill 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1627  1.63  jmcneill 				struct sdhc_adma2_descriptor32 *desc =
   1628  1.63  jmcneill 				    hp->adma2;
   1629  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1630  1.63  jmcneill 				desc[seg].length = htole16(len);
   1631  1.63  jmcneill 				desc[seg].address = htole32(paddr);
   1632  1.63  jmcneill 			} else {
   1633  1.63  jmcneill 				struct sdhc_adma2_descriptor64 *desc =
   1634  1.63  jmcneill 				    hp->adma2;
   1635  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1636  1.63  jmcneill 				desc[seg].length = htole16(len);
   1637  1.63  jmcneill 				desc[seg].address = htole32(paddr & 0xffffffff);
   1638  1.63  jmcneill 				desc[seg].address_hi = htole32(
   1639  1.63  jmcneill 				    (uint64_t)paddr >> 32);
   1640  1.63  jmcneill 			}
   1641  1.63  jmcneill 		}
   1642  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1643  1.63  jmcneill 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1644  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1645  1.63  jmcneill 		} else {
   1646  1.63  jmcneill 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1647  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1648  1.63  jmcneill 		}
   1649  1.63  jmcneill 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1650  1.63  jmcneill 		    BUS_DMASYNC_PREWRITE);
   1651  1.63  jmcneill 		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1652  1.63  jmcneill 		HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1653  1.63  jmcneill 
   1654  1.70  jmcneill 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1655  1.63  jmcneill 
   1656  1.63  jmcneill 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1657  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1658  1.63  jmcneill 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1659  1.63  jmcneill 			    (uint64_t)desc_addr >> 32);
   1660  1.63  jmcneill 		}
   1661  1.63  jmcneill 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1662  1.63  jmcneill 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1663   1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1664  1.63  jmcneill 	}
   1665   1.7    nonaka 
   1666   1.1    nonaka 	/*
   1667   1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1668   1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1669   1.1    nonaka 	 */
   1670  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1671  1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1672  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1673  1.11      matt 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1674  1.11      matt 	} else {
   1675  1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1676  1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1677  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1678  1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1679  1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1680  1.11      matt 	}
   1681   1.1    nonaka 
   1682   1.1    nonaka 	return 0;
   1683   1.1    nonaka }
   1684   1.1    nonaka 
   1685   1.1    nonaka static void
   1686   1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1687   1.1    nonaka {
   1688  1.51  jmcneill 	struct sdhc_softc *sc = hp->sc;
   1689   1.1    nonaka 	int error;
   1690   1.1    nonaka 
   1691  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1692  1.65  jmcneill 
   1693   1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1694   1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1695   1.1    nonaka 
   1696   1.1    nonaka #ifdef SDHC_DEBUG
   1697   1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1698   1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1699   1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1700   1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1701   1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1702   1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1703   1.1    nonaka 	}
   1704   1.1    nonaka #endif
   1705   1.1    nonaka 
   1706  1.47     skrll 	if (cmd->c_dmamap != NULL) {
   1707  1.47     skrll 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1708  1.51  jmcneill 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1709  1.47     skrll 			if (error == 0 && !sdhc_wait_intr(hp,
   1710  1.61  jmcneill 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
   1711  1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   1712  1.47     skrll 				error = ETIMEDOUT;
   1713  1.47     skrll 			}
   1714  1.47     skrll 		} else {
   1715  1.47     skrll 			error = sdhc_transfer_data_dma(hp, cmd);
   1716  1.47     skrll 		}
   1717  1.47     skrll 	} else
   1718   1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1719   1.1    nonaka 	if (error)
   1720   1.1    nonaka 		cmd->c_error = error;
   1721   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1722   1.1    nonaka 
   1723   1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1724   1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1725   1.1    nonaka }
   1726   1.1    nonaka 
   1727   1.1    nonaka static int
   1728   1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1729   1.7    nonaka {
   1730  1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1731  1.19  jakllsch 	bus_addr_t posaddr;
   1732  1.19  jakllsch 	bus_addr_t segaddr;
   1733  1.19  jakllsch 	bus_size_t seglen;
   1734  1.19  jakllsch 	u_int seg = 0;
   1735   1.7    nonaka 	int error = 0;
   1736  1.19  jakllsch 	int status;
   1737   1.7    nonaka 
   1738  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1739  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1740  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1741  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1742  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1743  1.11      matt 
   1744   1.7    nonaka 	for (;;) {
   1745  1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1746   1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1747  1.19  jakllsch 		    SDHC_DMA_TIMEOUT);
   1748  1.19  jakllsch 
   1749  1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1750  1.19  jakllsch 			break;
   1751  1.19  jakllsch 		}
   1752  1.19  jakllsch 		if (!status) {
   1753  1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1754   1.7    nonaka 			error = ETIMEDOUT;
   1755   1.7    nonaka 			break;
   1756   1.7    nonaka 		}
   1757  1.63  jmcneill 
   1758  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1759  1.63  jmcneill 			continue;
   1760  1.63  jmcneill 		}
   1761  1.63  jmcneill 
   1762  1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1763  1.19  jakllsch 			continue;
   1764  1.19  jakllsch 		}
   1765  1.19  jakllsch 
   1766  1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1767   1.7    nonaka 
   1768  1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1769  1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1770  1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1771   1.7    nonaka 
   1772  1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1773  1.37  jakllsch 			continue;
   1774  1.19  jakllsch 		}
   1775  1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1776  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1777  1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1778  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1779  1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1780   1.7    nonaka 	}
   1781   1.7    nonaka 
   1782  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1783  1.63  jmcneill 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1784  1.63  jmcneill 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1785  1.63  jmcneill 	}
   1786  1.63  jmcneill 
   1787   1.7    nonaka 	return error;
   1788   1.7    nonaka }
   1789   1.7    nonaka 
   1790   1.7    nonaka static int
   1791   1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1792   1.1    nonaka {
   1793   1.1    nonaka 	uint8_t *data = cmd->c_data;
   1794  1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1795  1.11      matt 	u_int len, datalen;
   1796  1.11      matt 	u_int imask;
   1797  1.11      matt 	u_int pmask;
   1798   1.1    nonaka 	int error = 0;
   1799   1.1    nonaka 
   1800  1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1801  1.78   mlelstv 
   1802  1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1803  1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1804  1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1805  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1806  1.11      matt 			pio_func = esdhc_read_data_pio;
   1807  1.11      matt 		} else {
   1808  1.11      matt 			pio_func = sdhc_read_data_pio;
   1809  1.11      matt 		}
   1810  1.11      matt 	} else {
   1811  1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1812  1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1813  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1814  1.11      matt 			pio_func = esdhc_write_data_pio;
   1815  1.11      matt 		} else {
   1816  1.11      matt 			pio_func = sdhc_write_data_pio;
   1817  1.11      matt 		}
   1818  1.11      matt 	}
   1819   1.1    nonaka 	datalen = cmd->c_datalen;
   1820   1.1    nonaka 
   1821  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1822  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1823  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1824  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1825  1.11      matt 
   1826   1.1    nonaka 	while (datalen > 0) {
   1827  1.11      matt 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1828  1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1829  1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1830  1.11      matt 			} else {
   1831  1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1832  1.11      matt 			}
   1833  1.11      matt 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1834  1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   1835  1.11      matt 				error = ETIMEDOUT;
   1836  1.11      matt 				break;
   1837  1.11      matt 			}
   1838  1.11      matt 
   1839  1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1840  1.11      matt 			if (error)
   1841  1.11      matt 				break;
   1842   1.1    nonaka 		}
   1843   1.1    nonaka 
   1844   1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1845  1.11      matt 		(*pio_func)(hp, data, len);
   1846  1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1847  1.11      matt 		    HDEVNAME(hp), len, data));
   1848   1.1    nonaka 
   1849   1.1    nonaka 		data += len;
   1850   1.1    nonaka 		datalen -= len;
   1851   1.1    nonaka 	}
   1852   1.1    nonaka 
   1853   1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1854  1.84   mlelstv 	    SDHC_TRANSFER_TIMEOUT)) {
   1855  1.84   mlelstv 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   1856   1.1    nonaka 		error = ETIMEDOUT;
   1857  1.84   mlelstv 	}
   1858   1.1    nonaka 
   1859   1.1    nonaka 	return error;
   1860   1.1    nonaka }
   1861   1.1    nonaka 
   1862   1.1    nonaka static void
   1863  1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1864   1.1    nonaka {
   1865   1.1    nonaka 
   1866   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1867   1.1    nonaka 		while (datalen > 3) {
   1868  1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1869   1.1    nonaka 			data += 4;
   1870   1.1    nonaka 			datalen -= 4;
   1871   1.1    nonaka 		}
   1872   1.1    nonaka 		if (datalen > 1) {
   1873  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1874   1.1    nonaka 			data += 2;
   1875   1.1    nonaka 			datalen -= 2;
   1876   1.1    nonaka 		}
   1877   1.1    nonaka 		if (datalen > 0) {
   1878   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1879   1.1    nonaka 			data += 1;
   1880   1.1    nonaka 			datalen -= 1;
   1881   1.1    nonaka 		}
   1882   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1883   1.1    nonaka 		while (datalen > 1) {
   1884  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1885   1.1    nonaka 			data += 2;
   1886   1.1    nonaka 			datalen -= 2;
   1887   1.1    nonaka 		}
   1888   1.1    nonaka 		if (datalen > 0) {
   1889   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1890   1.1    nonaka 			data += 1;
   1891   1.1    nonaka 			datalen -= 1;
   1892   1.1    nonaka 		}
   1893   1.1    nonaka 	} else {
   1894   1.1    nonaka 		while (datalen > 0) {
   1895   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1896   1.1    nonaka 			data += 1;
   1897   1.1    nonaka 			datalen -= 1;
   1898   1.1    nonaka 		}
   1899   1.1    nonaka 	}
   1900   1.1    nonaka }
   1901   1.1    nonaka 
   1902   1.1    nonaka static void
   1903  1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1904   1.1    nonaka {
   1905   1.1    nonaka 
   1906   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1907   1.1    nonaka 		while (datalen > 3) {
   1908  1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1909   1.1    nonaka 			data += 4;
   1910   1.1    nonaka 			datalen -= 4;
   1911   1.1    nonaka 		}
   1912   1.1    nonaka 		if (datalen > 1) {
   1913  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1914   1.1    nonaka 			data += 2;
   1915   1.1    nonaka 			datalen -= 2;
   1916   1.1    nonaka 		}
   1917   1.1    nonaka 		if (datalen > 0) {
   1918   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1919   1.1    nonaka 			data += 1;
   1920   1.1    nonaka 			datalen -= 1;
   1921   1.1    nonaka 		}
   1922   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1923   1.1    nonaka 		while (datalen > 1) {
   1924  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1925   1.1    nonaka 			data += 2;
   1926   1.1    nonaka 			datalen -= 2;
   1927   1.1    nonaka 		}
   1928   1.1    nonaka 		if (datalen > 0) {
   1929   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1930   1.1    nonaka 			data += 1;
   1931   1.1    nonaka 			datalen -= 1;
   1932   1.1    nonaka 		}
   1933   1.1    nonaka 	} else {
   1934   1.1    nonaka 		while (datalen > 0) {
   1935   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   1936   1.1    nonaka 			data += 1;
   1937   1.1    nonaka 			datalen -= 1;
   1938   1.1    nonaka 		}
   1939   1.1    nonaka 	}
   1940   1.1    nonaka }
   1941   1.1    nonaka 
   1942  1.11      matt static void
   1943  1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1944  1.11      matt {
   1945  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1946  1.12    nonaka 	uint32_t v;
   1947  1.12    nonaka 
   1948  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1949  1.23      matt 	size_t count = 0;
   1950  1.23      matt 
   1951  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1952  1.23      matt 		if (count == 0) {
   1953  1.23      matt 			/*
   1954  1.23      matt 			 * If we've drained "watermark" words, we need to wait
   1955  1.23      matt 			 * a little bit so the read FIFO can refill.
   1956  1.23      matt 			 */
   1957  1.23      matt 			sdmmc_delay(10);
   1958  1.23      matt 			count = watermark;
   1959  1.23      matt 		}
   1960  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1961  1.11      matt 		v = le32toh(v);
   1962  1.11      matt 		*(uint32_t *)data = v;
   1963  1.11      matt 		data += 4;
   1964  1.11      matt 		datalen -= 4;
   1965  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1966  1.23      matt 		count--;
   1967  1.11      matt 	}
   1968  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1969  1.23      matt 		if (count == 0) {
   1970  1.23      matt 			sdmmc_delay(10);
   1971  1.23      matt 		}
   1972  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   1973  1.11      matt 		v = le32toh(v);
   1974  1.11      matt 		do {
   1975  1.11      matt 			*data++ = v;
   1976  1.11      matt 			v >>= 8;
   1977  1.11      matt 		} while (--datalen > 0);
   1978  1.11      matt 	}
   1979  1.11      matt }
   1980  1.11      matt 
   1981  1.11      matt static void
   1982  1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1983  1.11      matt {
   1984  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1985  1.12    nonaka 	uint32_t v;
   1986  1.12    nonaka 
   1987  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1988  1.23      matt 	size_t count = watermark;
   1989  1.23      matt 
   1990  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1991  1.23      matt 		if (count == 0) {
   1992  1.23      matt 			sdmmc_delay(10);
   1993  1.23      matt 			count = watermark;
   1994  1.23      matt 		}
   1995  1.12    nonaka 		v = *(uint32_t *)data;
   1996  1.11      matt 		v = htole32(v);
   1997  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   1998  1.11      matt 		data += 4;
   1999  1.11      matt 		datalen -= 4;
   2000  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2001  1.23      matt 		count--;
   2002  1.11      matt 	}
   2003  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2004  1.23      matt 		if (count == 0) {
   2005  1.23      matt 			sdmmc_delay(10);
   2006  1.23      matt 		}
   2007  1.12    nonaka 		v = *(uint32_t *)data;
   2008  1.11      matt 		v = htole32(v);
   2009  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   2010  1.11      matt 	}
   2011  1.11      matt }
   2012  1.11      matt 
   2013   1.1    nonaka /* Prepare for another command. */
   2014   1.1    nonaka static int
   2015   1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2016   1.1    nonaka {
   2017   1.1    nonaka 	int timo;
   2018   1.1    nonaka 
   2019  1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   2020  1.78   mlelstv 
   2021   1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2022   1.1    nonaka 
   2023  1.35  riastrad 	/* Request the reset.  */
   2024   1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2025  1.35  riastrad 
   2026  1.35  riastrad 	/*
   2027  1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   2028  1.35  riastrad 	 * acknowledge the reset.
   2029  1.35  riastrad 	 */
   2030  1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2031  1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2032  1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   2033  1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2034  1.35  riastrad 				break;
   2035  1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   2036  1.35  riastrad 			sdmmc_delay(1);
   2037  1.35  riastrad 		}
   2038  1.35  riastrad 		if (timo == 0)
   2039  1.84   mlelstv 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2040  1.35  riastrad 			return ETIMEDOUT;
   2041  1.35  riastrad 	}
   2042  1.35  riastrad 
   2043  1.35  riastrad 	/*
   2044  1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   2045  1.35  riastrad 	 * the reset has completed.
   2046  1.35  riastrad 	 */
   2047   1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   2048   1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2049   1.1    nonaka 			break;
   2050   1.1    nonaka 		sdmmc_delay(10000);
   2051   1.1    nonaka 	}
   2052   1.1    nonaka 	if (timo == 0) {
   2053   1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2054   1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2055   1.1    nonaka 		return ETIMEDOUT;
   2056   1.1    nonaka 	}
   2057   1.1    nonaka 
   2058  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2059  1.53    nonaka 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2060  1.11      matt 	}
   2061  1.11      matt 
   2062   1.1    nonaka 	return 0;
   2063   1.1    nonaka }
   2064   1.1    nonaka 
   2065   1.1    nonaka static int
   2066   1.1    nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   2067   1.1    nonaka {
   2068  1.84   mlelstv 	int status, error, nointr;
   2069   1.1    nonaka 
   2070  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   2071  1.65  jmcneill 
   2072   1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   2073   1.1    nonaka 
   2074  1.84   mlelstv 	nointr = 0;
   2075   1.1    nonaka 	status = hp->intr_status & mask;
   2076   1.1    nonaka 	while (status == 0) {
   2077  1.65  jmcneill 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2078   1.1    nonaka 		    == EWOULDBLOCK) {
   2079  1.84   mlelstv 			nointr = 1;
   2080   1.1    nonaka 			break;
   2081   1.1    nonaka 		}
   2082   1.1    nonaka 		status = hp->intr_status & mask;
   2083   1.1    nonaka 	}
   2084  1.84   mlelstv 	error = hp->intr_error_status;
   2085  1.84   mlelstv 
   2086  1.84   mlelstv 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2087  1.84   mlelstv 	    error));
   2088  1.84   mlelstv 
   2089   1.1    nonaka 	hp->intr_status &= ~status;
   2090  1.84   mlelstv 	hp->intr_error_status &= ~error;
   2091   1.1    nonaka 
   2092  1.84   mlelstv 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2093  1.84   mlelstv 		if (ISSET(error, SDHC_DMA_ERROR))
   2094  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"dma error\n");
   2095  1.84   mlelstv 		if (ISSET(error, SDHC_ADMA_ERROR))
   2096  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"adma error\n");
   2097  1.84   mlelstv 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2098  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2099  1.84   mlelstv 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2100  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2101  1.84   mlelstv 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2102  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2103  1.84   mlelstv 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2104  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2105  1.84   mlelstv 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2106  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2107  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2108  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2109  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2110  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2111  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2112  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2113  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2114  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2115  1.84   mlelstv 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2116  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2117  1.84   mlelstv 				(error & ~SDHC_EINTR_STATUS_MASK));
   2118  1.84   mlelstv 		if (error == 0)
   2119  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"no error\n");
   2120  1.84   mlelstv 
   2121  1.84   mlelstv 		/* Command timeout has higher priority than command complete. */
   2122  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2123  1.84   mlelstv 			CLR(status, SDHC_COMMAND_COMPLETE);
   2124  1.84   mlelstv 
   2125  1.84   mlelstv 		/* Transfer complete has higher priority than data timeout. */
   2126  1.84   mlelstv 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2127  1.84   mlelstv 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2128  1.84   mlelstv 	}
   2129  1.47     skrll 
   2130  1.84   mlelstv 	if (nointr ||
   2131  1.84   mlelstv 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2132  1.84   mlelstv 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2133  1.84   mlelstv 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2134   1.1    nonaka 		hp->intr_error_status = 0;
   2135   1.1    nonaka 		status = 0;
   2136   1.1    nonaka 	}
   2137   1.1    nonaka 
   2138   1.1    nonaka 	return status;
   2139   1.1    nonaka }
   2140   1.1    nonaka 
   2141   1.1    nonaka /*
   2142   1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2143   1.1    nonaka  */
   2144   1.1    nonaka int
   2145   1.1    nonaka sdhc_intr(void *arg)
   2146   1.1    nonaka {
   2147   1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2148   1.1    nonaka 	struct sdhc_host *hp;
   2149   1.1    nonaka 	int done = 0;
   2150   1.1    nonaka 	uint16_t status;
   2151   1.1    nonaka 	uint16_t error;
   2152   1.1    nonaka 
   2153   1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   2154  1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2155   1.1    nonaka 		hp = sc->sc_host[host];
   2156   1.1    nonaka 		if (hp == NULL)
   2157   1.1    nonaka 			continue;
   2158   1.1    nonaka 
   2159  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   2160  1.65  jmcneill 
   2161  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2162  1.11      matt 			/* Find out which interrupts are pending. */
   2163  1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2164  1.11      matt 			status = xstatus;
   2165  1.11      matt 			error = xstatus >> 16;
   2166  1.87   mlelstv 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2167  1.87   mlelstv 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2168  1.87   mlelstv 					SET(status, SDHC_ERROR_INTERRUPT);
   2169  1.87   mlelstv 			}
   2170  1.22      matt 			if (error)
   2171  1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   2172  1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2173  1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2174  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2175  1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2176  1.11      matt 		} else {
   2177  1.11      matt 			/* Find out which interrupts are pending. */
   2178  1.11      matt 			error = 0;
   2179  1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2180  1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2181  1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2182  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2183  1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2184  1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2185  1.11      matt 				/* Acknowledge error interrupts. */
   2186  1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2187  1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2188  1.11      matt 			}
   2189  1.11      matt 		}
   2190  1.47     skrll 
   2191  1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2192  1.11      matt 		    status, error));
   2193   1.1    nonaka 
   2194   1.1    nonaka 		/* Claim this interrupt. */
   2195   1.1    nonaka 		done = 1;
   2196   1.1    nonaka 
   2197  1.84   mlelstv 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2198  1.84   mlelstv 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2199  1.63  jmcneill 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2200  1.63  jmcneill 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2201  1.63  jmcneill 			    adma_err);
   2202  1.63  jmcneill 		}
   2203  1.63  jmcneill 
   2204   1.1    nonaka 		/*
   2205   1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   2206   1.1    nonaka 		 */
   2207   1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2208  1.46  jakllsch 			if (hp->sdmmc != NULL) {
   2209  1.46  jakllsch 				sdmmc_needs_discover(hp->sdmmc);
   2210  1.46  jakllsch 			}
   2211  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2212  1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2213  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2214  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2215  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2216  1.11      matt 			}
   2217   1.9      matt 		}
   2218   1.1    nonaka 
   2219   1.1    nonaka 		/*
   2220  1.80  jmcneill 		 * Schedule re-tuning process (UHS).
   2221  1.80  jmcneill 		 */
   2222  1.80  jmcneill 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2223  1.80  jmcneill 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2224  1.80  jmcneill 		}
   2225  1.80  jmcneill 
   2226  1.80  jmcneill 		/*
   2227   1.1    nonaka 		 * Wake up the blocking process to service command
   2228   1.1    nonaka 		 * related interrupt(s).
   2229   1.1    nonaka 		 */
   2230  1.86   mlelstv 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2231  1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2232   1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2233  1.84   mlelstv 			hp->intr_error_status |= error;
   2234   1.1    nonaka 			hp->intr_status |= status;
   2235  1.11      matt 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2236  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2237  1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2238  1.11      matt 			}
   2239   1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   2240   1.1    nonaka 		}
   2241   1.1    nonaka 
   2242   1.1    nonaka 		/*
   2243   1.1    nonaka 		 * Service SD card interrupts.
   2244   1.1    nonaka 		 */
   2245  1.11      matt 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   2246  1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2247   1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2248   1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2249   1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   2250   1.1    nonaka 		}
   2251  1.65  jmcneill next_port:
   2252  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   2253   1.1    nonaka 	}
   2254   1.1    nonaka 
   2255   1.1    nonaka 	return done;
   2256   1.1    nonaka }
   2257   1.1    nonaka 
   2258  1.65  jmcneill kmutex_t *
   2259  1.65  jmcneill sdhc_host_lock(struct sdhc_host *hp)
   2260  1.65  jmcneill {
   2261  1.65  jmcneill 	return &hp->intr_lock;
   2262  1.65  jmcneill }
   2263  1.65  jmcneill 
   2264   1.1    nonaka #ifdef SDHC_DEBUG
   2265   1.1    nonaka void
   2266   1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   2267   1.1    nonaka {
   2268   1.1    nonaka 
   2269   1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2270   1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2271  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2272  1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2273  1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   2274   1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2275   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2276   1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2277   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2278   1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2279   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2280   1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2281   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2282   1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2283   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2284   1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2285   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2286   1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2287   1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   2288   1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2289   1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2290   1.1    nonaka }
   2291   1.1    nonaka #endif
   2292