sdhc.c revision 1.87 1 1.87 mlelstv /* $NetBSD: sdhc.c,v 1.87 2015/09/09 08:09:28 mlelstv Exp $ */
2 1.1 nonaka /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3 1.1 nonaka
4 1.1 nonaka /*
5 1.1 nonaka * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 1.1 nonaka *
7 1.1 nonaka * Permission to use, copy, modify, and distribute this software for any
8 1.1 nonaka * purpose with or without fee is hereby granted, provided that the above
9 1.1 nonaka * copyright notice and this permission notice appear in all copies.
10 1.1 nonaka *
11 1.1 nonaka * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 nonaka * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 nonaka * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 nonaka * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 nonaka * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 nonaka * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 nonaka * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 nonaka */
19 1.1 nonaka
20 1.1 nonaka /*
21 1.1 nonaka * SD Host Controller driver based on the SD Host Controller Standard
22 1.1 nonaka * Simplified Specification Version 1.00 (www.sdcard.com).
23 1.1 nonaka */
24 1.1 nonaka
25 1.1 nonaka #include <sys/cdefs.h>
26 1.87 mlelstv __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.87 2015/09/09 08:09:28 mlelstv Exp $");
27 1.10 nonaka
28 1.10 nonaka #ifdef _KERNEL_OPT
29 1.10 nonaka #include "opt_sdmmc.h"
30 1.10 nonaka #endif
31 1.1 nonaka
32 1.1 nonaka #include <sys/param.h>
33 1.1 nonaka #include <sys/device.h>
34 1.1 nonaka #include <sys/kernel.h>
35 1.1 nonaka #include <sys/malloc.h>
36 1.1 nonaka #include <sys/systm.h>
37 1.1 nonaka #include <sys/mutex.h>
38 1.1 nonaka #include <sys/condvar.h>
39 1.80 jmcneill #include <sys/atomic.h>
40 1.1 nonaka
41 1.1 nonaka #include <dev/sdmmc/sdhcreg.h>
42 1.1 nonaka #include <dev/sdmmc/sdhcvar.h>
43 1.1 nonaka #include <dev/sdmmc/sdmmcchip.h>
44 1.1 nonaka #include <dev/sdmmc/sdmmcreg.h>
45 1.1 nonaka #include <dev/sdmmc/sdmmcvar.h>
46 1.1 nonaka
47 1.1 nonaka #ifdef SDHC_DEBUG
48 1.1 nonaka int sdhcdebug = 1;
49 1.1 nonaka #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 1.1 nonaka void sdhc_dump_regs(struct sdhc_host *);
51 1.1 nonaka #else
52 1.1 nonaka #define DPRINTF(n,s) do {} while (0)
53 1.1 nonaka #endif
54 1.1 nonaka
55 1.1 nonaka #define SDHC_COMMAND_TIMEOUT hz
56 1.1 nonaka #define SDHC_BUFFER_TIMEOUT hz
57 1.1 nonaka #define SDHC_TRANSFER_TIMEOUT hz
58 1.61 jmcneill #define SDHC_DMA_TIMEOUT (hz*3)
59 1.79 jmcneill #define SDHC_TUNING_TIMEOUT hz
60 1.1 nonaka
61 1.1 nonaka struct sdhc_host {
62 1.1 nonaka struct sdhc_softc *sc; /* host controller device */
63 1.1 nonaka
64 1.1 nonaka bus_space_tag_t iot; /* host register set tag */
65 1.1 nonaka bus_space_handle_t ioh; /* host register set handle */
66 1.36 jakllsch bus_size_t ios; /* host register space size */
67 1.1 nonaka bus_dma_tag_t dmat; /* host DMA tag */
68 1.1 nonaka
69 1.1 nonaka device_t sdmmc; /* generic SD/MMC device */
70 1.1 nonaka
71 1.1 nonaka u_int clkbase; /* base clock frequency in KHz */
72 1.1 nonaka int maxblklen; /* maximum block length */
73 1.1 nonaka uint32_t ocr; /* OCR value from capabilities */
74 1.1 nonaka
75 1.1 nonaka uint8_t regs[14]; /* host controller state */
76 1.1 nonaka
77 1.1 nonaka uint16_t intr_status; /* soft interrupt status */
78 1.1 nonaka uint16_t intr_error_status; /* soft error status */
79 1.65 jmcneill kmutex_t intr_lock;
80 1.65 jmcneill kcondvar_t intr_cv;
81 1.1 nonaka
82 1.80 jmcneill callout_t tuning_timer;
83 1.80 jmcneill int tuning_timing;
84 1.80 jmcneill u_int tuning_timer_count;
85 1.80 jmcneill u_int tuning_timer_pending;
86 1.80 jmcneill
87 1.12 nonaka int specver; /* spec. version */
88 1.12 nonaka
89 1.1 nonaka uint32_t flags; /* flags for this host */
90 1.1 nonaka #define SHF_USE_DMA 0x0001
91 1.1 nonaka #define SHF_USE_4BIT_MODE 0x0002
92 1.11 matt #define SHF_USE_8BIT_MODE 0x0004
93 1.55 bouyer #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
94 1.63 jmcneill #define SHF_USE_ADMA2_32 0x0010
95 1.63 jmcneill #define SHF_USE_ADMA2_64 0x0020
96 1.63 jmcneill #define SHF_USE_ADMA2_MASK 0x0030
97 1.63 jmcneill
98 1.63 jmcneill bus_dmamap_t adma_map;
99 1.63 jmcneill bus_dma_segment_t adma_segs[1];
100 1.63 jmcneill void *adma2;
101 1.1 nonaka };
102 1.1 nonaka
103 1.1 nonaka #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
104 1.1 nonaka
105 1.11 matt static uint8_t
106 1.11 matt hread1(struct sdhc_host *hp, bus_size_t reg)
107 1.11 matt {
108 1.12 nonaka
109 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
110 1.11 matt return bus_space_read_1(hp->iot, hp->ioh, reg);
111 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
112 1.11 matt }
113 1.11 matt
114 1.11 matt static uint16_t
115 1.11 matt hread2(struct sdhc_host *hp, bus_size_t reg)
116 1.11 matt {
117 1.12 nonaka
118 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
119 1.11 matt return bus_space_read_2(hp->iot, hp->ioh, reg);
120 1.11 matt return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
121 1.11 matt }
122 1.11 matt
123 1.11 matt #define HREAD1(hp, reg) hread1(hp, reg)
124 1.11 matt #define HREAD2(hp, reg) hread2(hp, reg)
125 1.11 matt #define HREAD4(hp, reg) \
126 1.1 nonaka (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
127 1.11 matt
128 1.11 matt
129 1.11 matt static void
130 1.11 matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
131 1.11 matt {
132 1.12 nonaka
133 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
134 1.11 matt bus_space_write_1(hp->iot, hp->ioh, o, val);
135 1.11 matt } else {
136 1.11 matt const size_t shift = 8 * (o & 3);
137 1.11 matt o &= -4;
138 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
139 1.11 matt tmp = (val << shift) | (tmp & ~(0xff << shift));
140 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
141 1.11 matt }
142 1.11 matt }
143 1.11 matt
144 1.11 matt static void
145 1.11 matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
146 1.11 matt {
147 1.12 nonaka
148 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
149 1.11 matt bus_space_write_2(hp->iot, hp->ioh, o, val);
150 1.11 matt } else {
151 1.11 matt const size_t shift = 8 * (o & 2);
152 1.11 matt o &= -4;
153 1.11 matt uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
154 1.11 matt tmp = (val << shift) | (tmp & ~(0xffff << shift));
155 1.11 matt bus_space_write_4(hp->iot, hp->ioh, o, tmp);
156 1.11 matt }
157 1.11 matt }
158 1.11 matt
159 1.11 matt #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
160 1.11 matt #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
161 1.1 nonaka #define HWRITE4(hp, reg, val) \
162 1.1 nonaka bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
163 1.11 matt
164 1.1 nonaka #define HCLR1(hp, reg, bits) \
165 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
166 1.1 nonaka #define HCLR2(hp, reg, bits) \
167 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
168 1.11 matt #define HCLR4(hp, reg, bits) \
169 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
170 1.1 nonaka #define HSET1(hp, reg, bits) \
171 1.11 matt do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
172 1.1 nonaka #define HSET2(hp, reg, bits) \
173 1.11 matt do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
174 1.11 matt #define HSET4(hp, reg, bits) \
175 1.11 matt do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
176 1.1 nonaka
177 1.1 nonaka static int sdhc_host_reset(sdmmc_chipset_handle_t);
178 1.1 nonaka static int sdhc_host_reset1(sdmmc_chipset_handle_t);
179 1.1 nonaka static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
180 1.1 nonaka static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
181 1.1 nonaka static int sdhc_card_detect(sdmmc_chipset_handle_t);
182 1.1 nonaka static int sdhc_write_protect(sdmmc_chipset_handle_t);
183 1.1 nonaka static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
184 1.76 jmcneill static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
185 1.1 nonaka static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
186 1.8 kiyohara static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
187 1.1 nonaka static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
188 1.1 nonaka static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
189 1.1 nonaka static void sdhc_exec_command(sdmmc_chipset_handle_t,
190 1.1 nonaka struct sdmmc_command *);
191 1.71 jmcneill static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
192 1.83 mlelstv static int sdhc_execute_tuning1(struct sdhc_host *, int);
193 1.79 jmcneill static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
194 1.80 jmcneill static void sdhc_tuning_timer(void *);
195 1.1 nonaka static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
196 1.1 nonaka static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
197 1.1 nonaka static int sdhc_soft_reset(struct sdhc_host *, int);
198 1.1 nonaka static int sdhc_wait_intr(struct sdhc_host *, int, int);
199 1.1 nonaka static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
200 1.7 nonaka static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
201 1.1 nonaka static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
202 1.11 matt static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
203 1.11 matt static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
204 1.11 matt static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
205 1.11 matt static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
206 1.11 matt
207 1.1 nonaka static struct sdmmc_chip_functions sdhc_functions = {
208 1.1 nonaka /* host controller reset */
209 1.60 skrll .host_reset = sdhc_host_reset,
210 1.1 nonaka
211 1.1 nonaka /* host controller capabilities */
212 1.60 skrll .host_ocr = sdhc_host_ocr,
213 1.60 skrll .host_maxblklen = sdhc_host_maxblklen,
214 1.1 nonaka
215 1.1 nonaka /* card detection */
216 1.60 skrll .card_detect = sdhc_card_detect,
217 1.1 nonaka
218 1.1 nonaka /* write protect */
219 1.60 skrll .write_protect = sdhc_write_protect,
220 1.1 nonaka
221 1.60 skrll /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
222 1.60 skrll .bus_power = sdhc_bus_power,
223 1.76 jmcneill .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
224 1.60 skrll .bus_width = sdhc_bus_width,
225 1.60 skrll .bus_rod = sdhc_bus_rod,
226 1.1 nonaka
227 1.1 nonaka /* command execution */
228 1.60 skrll .exec_command = sdhc_exec_command,
229 1.1 nonaka
230 1.1 nonaka /* card interrupt */
231 1.60 skrll .card_enable_intr = sdhc_card_enable_intr,
232 1.71 jmcneill .card_intr_ack = sdhc_card_intr_ack,
233 1.71 jmcneill
234 1.71 jmcneill /* UHS functions */
235 1.71 jmcneill .signal_voltage = sdhc_signal_voltage,
236 1.76 jmcneill .bus_clock_ddr = sdhc_bus_clock_ddr,
237 1.79 jmcneill .execute_tuning = sdhc_execute_tuning,
238 1.1 nonaka };
239 1.1 nonaka
240 1.17 jakllsch static int
241 1.17 jakllsch sdhc_cfprint(void *aux, const char *pnp)
242 1.17 jakllsch {
243 1.31 joerg const struct sdmmcbus_attach_args * const saa = aux;
244 1.17 jakllsch const struct sdhc_host * const hp = saa->saa_sch;
245 1.47 skrll
246 1.17 jakllsch if (pnp) {
247 1.17 jakllsch aprint_normal("sdmmc at %s", pnp);
248 1.17 jakllsch }
249 1.41 jakllsch for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
250 1.41 jakllsch if (hp->sc->sc_host[host] == hp) {
251 1.41 jakllsch aprint_normal(" slot %zu", host);
252 1.41 jakllsch }
253 1.41 jakllsch }
254 1.17 jakllsch
255 1.17 jakllsch return UNCONF;
256 1.17 jakllsch }
257 1.17 jakllsch
258 1.1 nonaka /*
259 1.1 nonaka * Called by attachment driver. For each SD card slot there is one SD
260 1.1 nonaka * host controller standard register set. (1.3)
261 1.1 nonaka */
262 1.1 nonaka int
263 1.1 nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
264 1.1 nonaka bus_space_handle_t ioh, bus_size_t iosize)
265 1.1 nonaka {
266 1.1 nonaka struct sdmmcbus_attach_args saa;
267 1.1 nonaka struct sdhc_host *hp;
268 1.71 jmcneill uint32_t caps, caps2;
269 1.1 nonaka uint16_t sdhcver;
270 1.63 jmcneill int error;
271 1.1 nonaka
272 1.33 riastrad /* Allocate one more host structure. */
273 1.33 riastrad hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
274 1.33 riastrad if (hp == NULL) {
275 1.33 riastrad aprint_error_dev(sc->sc_dev,
276 1.33 riastrad "couldn't alloc memory (sdhc host)\n");
277 1.33 riastrad goto err1;
278 1.33 riastrad }
279 1.33 riastrad sc->sc_host[sc->sc_nhosts++] = hp;
280 1.33 riastrad
281 1.33 riastrad /* Fill in the new host structure. */
282 1.33 riastrad hp->sc = sc;
283 1.33 riastrad hp->iot = iot;
284 1.33 riastrad hp->ioh = ioh;
285 1.36 jakllsch hp->ios = iosize;
286 1.33 riastrad hp->dmat = sc->sc_dmat;
287 1.33 riastrad
288 1.65 jmcneill mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
289 1.33 riastrad cv_init(&hp->intr_cv, "sdhcintr");
290 1.80 jmcneill callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
291 1.80 jmcneill callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
292 1.33 riastrad
293 1.52 nonaka if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
294 1.52 nonaka sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
295 1.52 nonaka } else {
296 1.52 nonaka sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
297 1.52 nonaka }
298 1.58 jmcneill aprint_normal_dev(sc->sc_dev, "SDHC ");
299 1.33 riastrad hp->specver = SDHC_SPEC_VERSION(sdhcver);
300 1.1 nonaka switch (SDHC_SPEC_VERSION(sdhcver)) {
301 1.12 nonaka case SDHC_SPEC_VERS_100:
302 1.12 nonaka aprint_normal("1.0");
303 1.12 nonaka break;
304 1.12 nonaka
305 1.12 nonaka case SDHC_SPEC_VERS_200:
306 1.12 nonaka aprint_normal("2.0");
307 1.1 nonaka break;
308 1.1 nonaka
309 1.12 nonaka case SDHC_SPEC_VERS_300:
310 1.12 nonaka aprint_normal("3.0");
311 1.9 matt break;
312 1.9 matt
313 1.56 jmcneill case SDHC_SPEC_VERS_400:
314 1.56 jmcneill aprint_normal("4.0");
315 1.56 jmcneill break;
316 1.56 jmcneill
317 1.1 nonaka default:
318 1.12 nonaka aprint_normal("unknown version(0x%x)",
319 1.12 nonaka SDHC_SPEC_VERSION(sdhcver));
320 1.1 nonaka break;
321 1.1 nonaka }
322 1.58 jmcneill aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
323 1.1 nonaka
324 1.1 nonaka /*
325 1.3 uebayasi * Reset the host controller and enable interrupts.
326 1.1 nonaka */
327 1.1 nonaka (void)sdhc_host_reset(hp);
328 1.1 nonaka
329 1.1 nonaka /* Determine host capabilities. */
330 1.24 skrll if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
331 1.24 skrll caps = sc->sc_caps;
332 1.72 jmcneill caps2 = sc->sc_caps2;
333 1.24 skrll } else {
334 1.79 jmcneill caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
335 1.72 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
336 1.79 jmcneill caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
337 1.72 jmcneill } else {
338 1.79 jmcneill caps2 = sc->sc_caps2 = 0;
339 1.72 jmcneill }
340 1.71 jmcneill }
341 1.1 nonaka
342 1.80 jmcneill const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
343 1.80 jmcneill SDHC_RETUNING_MODES_MASK;
344 1.80 jmcneill if (retuning_mode == SDHC_RETUNING_MODE_1) {
345 1.80 jmcneill hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
346 1.80 jmcneill SDHC_TIMER_COUNT_MASK;
347 1.80 jmcneill if (hp->tuning_timer_count == 0xf)
348 1.80 jmcneill hp->tuning_timer_count = 0;
349 1.80 jmcneill if (hp->tuning_timer_count)
350 1.80 jmcneill hp->tuning_timer_count =
351 1.80 jmcneill 1 << (hp->tuning_timer_count - 1);
352 1.80 jmcneill }
353 1.80 jmcneill
354 1.55 bouyer /*
355 1.55 bouyer * Use DMA if the host system and the controller support it.
356 1.55 bouyer * Suports integrated or external DMA egine, with or without
357 1.55 bouyer * SDHC_DMA_ENABLE in the command.
358 1.55 bouyer */
359 1.28 matt if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
360 1.27 jakllsch (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
361 1.28 matt ISSET(caps, SDHC_DMA_SUPPORT)))) {
362 1.1 nonaka SET(hp->flags, SHF_USE_DMA);
363 1.63 jmcneill
364 1.63 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
365 1.63 jmcneill ISSET(caps, SDHC_ADMA2_SUPP)) {
366 1.55 bouyer SET(hp->flags, SHF_MODE_DMAEN);
367 1.63 jmcneill /*
368 1.63 jmcneill * 64-bit mode was present in the 2.00 spec, removed
369 1.63 jmcneill * from 3.00, and re-added in 4.00 with a different
370 1.63 jmcneill * descriptor layout. We only support 2.00 and 3.00
371 1.63 jmcneill * descriptors for now.
372 1.63 jmcneill */
373 1.63 jmcneill if (hp->specver == SDHC_SPEC_VERS_200 &&
374 1.63 jmcneill ISSET(caps, SDHC_64BIT_SYS_BUS)) {
375 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_64);
376 1.63 jmcneill aprint_normal(", 64-bit ADMA2");
377 1.63 jmcneill } else {
378 1.63 jmcneill SET(hp->flags, SHF_USE_ADMA2_32);
379 1.63 jmcneill aprint_normal(", 32-bit ADMA2");
380 1.63 jmcneill }
381 1.63 jmcneill } else {
382 1.63 jmcneill if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
383 1.63 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
384 1.63 jmcneill SET(hp->flags, SHF_MODE_DMAEN);
385 1.64 jmcneill if (sc->sc_vendor_transfer_data_dma) {
386 1.64 jmcneill aprint_normal(", platform DMA");
387 1.64 jmcneill } else {
388 1.64 jmcneill aprint_normal(", SDMA");
389 1.64 jmcneill }
390 1.63 jmcneill }
391 1.58 jmcneill } else {
392 1.58 jmcneill aprint_normal(", PIO");
393 1.1 nonaka }
394 1.1 nonaka
395 1.1 nonaka /*
396 1.1 nonaka * Determine the base clock frequency. (2.2.24)
397 1.1 nonaka */
398 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
399 1.30 matt hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
400 1.30 matt } else {
401 1.30 matt hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
402 1.30 matt }
403 1.56 jmcneill if (hp->clkbase == 0 ||
404 1.56 jmcneill ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
405 1.9 matt if (sc->sc_clkbase == 0) {
406 1.9 matt /* The attachment driver must tell us. */
407 1.12 nonaka aprint_error_dev(sc->sc_dev,
408 1.12 nonaka "unknown base clock frequency\n");
409 1.9 matt goto err;
410 1.9 matt }
411 1.9 matt hp->clkbase = sc->sc_clkbase;
412 1.9 matt }
413 1.9 matt if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
414 1.1 nonaka /* SDHC 1.0 supports only 10-63 MHz. */
415 1.1 nonaka aprint_error_dev(sc->sc_dev,
416 1.1 nonaka "base clock frequency out of range: %u MHz\n",
417 1.1 nonaka hp->clkbase / 1000);
418 1.1 nonaka goto err;
419 1.1 nonaka }
420 1.58 jmcneill aprint_normal(", %u kHz", hp->clkbase);
421 1.1 nonaka
422 1.1 nonaka /*
423 1.1 nonaka * XXX Set the data timeout counter value according to
424 1.1 nonaka * capabilities. (2.2.15)
425 1.1 nonaka */
426 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
427 1.29 matt #if 1
428 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
429 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
430 1.11 matt #endif
431 1.1 nonaka
432 1.58 jmcneill if (ISSET(caps, SDHC_EMBEDDED_SLOT))
433 1.58 jmcneill aprint_normal(", embedded slot");
434 1.58 jmcneill
435 1.1 nonaka /*
436 1.1 nonaka * Determine SD bus voltage levels supported by the controller.
437 1.1 nonaka */
438 1.58 jmcneill aprint_normal(",");
439 1.66 jmcneill if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
440 1.66 jmcneill SET(hp->ocr, MMC_OCR_HCS);
441 1.71 jmcneill aprint_normal(" HS");
442 1.71 jmcneill }
443 1.71 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP)) {
444 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
445 1.71 jmcneill aprint_normal(" SDR50");
446 1.71 jmcneill }
447 1.76 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP)) {
448 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
449 1.76 jmcneill aprint_normal(" DDR50");
450 1.71 jmcneill }
451 1.76 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP)) {
452 1.71 jmcneill SET(hp->ocr, MMC_OCR_S18A);
453 1.76 jmcneill aprint_normal(" SDR104 HS200");
454 1.66 jmcneill }
455 1.71 jmcneill if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
456 1.1 nonaka SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
457 1.58 jmcneill aprint_normal(" 1.8V");
458 1.11 matt }
459 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
460 1.1 nonaka SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
461 1.58 jmcneill aprint_normal(" 3.0V");
462 1.11 matt }
463 1.11 matt if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
464 1.1 nonaka SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
465 1.58 jmcneill aprint_normal(" 3.3V");
466 1.11 matt }
467 1.80 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
468 1.80 jmcneill aprint_normal(", re-tuning mode %d", retuning_mode + 1);
469 1.80 jmcneill if (hp->tuning_timer_count)
470 1.80 jmcneill aprint_normal(" (%us timer)", hp->tuning_timer_count);
471 1.80 jmcneill }
472 1.1 nonaka
473 1.1 nonaka /*
474 1.1 nonaka * Determine the maximum block length supported by the host
475 1.1 nonaka * controller. (2.2.24)
476 1.1 nonaka */
477 1.1 nonaka switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
478 1.1 nonaka case SDHC_MAX_BLK_LEN_512:
479 1.1 nonaka hp->maxblklen = 512;
480 1.1 nonaka break;
481 1.1 nonaka
482 1.1 nonaka case SDHC_MAX_BLK_LEN_1024:
483 1.1 nonaka hp->maxblklen = 1024;
484 1.1 nonaka break;
485 1.1 nonaka
486 1.1 nonaka case SDHC_MAX_BLK_LEN_2048:
487 1.1 nonaka hp->maxblklen = 2048;
488 1.1 nonaka break;
489 1.1 nonaka
490 1.9 matt case SDHC_MAX_BLK_LEN_4096:
491 1.9 matt hp->maxblklen = 4096;
492 1.9 matt break;
493 1.9 matt
494 1.1 nonaka default:
495 1.1 nonaka aprint_error_dev(sc->sc_dev, "max block length unknown\n");
496 1.1 nonaka goto err;
497 1.1 nonaka }
498 1.58 jmcneill aprint_normal(", %u byte blocks", hp->maxblklen);
499 1.58 jmcneill aprint_normal("\n");
500 1.1 nonaka
501 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
502 1.63 jmcneill int rseg;
503 1.63 jmcneill
504 1.63 jmcneill /* Allocate ADMA2 descriptor memory */
505 1.63 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
506 1.63 jmcneill PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
507 1.63 jmcneill if (error) {
508 1.63 jmcneill aprint_error_dev(sc->sc_dev,
509 1.63 jmcneill "ADMA2 dmamem_alloc failed (%d)\n", error);
510 1.63 jmcneill goto adma_done;
511 1.63 jmcneill }
512 1.63 jmcneill error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
513 1.63 jmcneill PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
514 1.63 jmcneill if (error) {
515 1.63 jmcneill aprint_error_dev(sc->sc_dev,
516 1.63 jmcneill "ADMA2 dmamem_map failed (%d)\n", error);
517 1.63 jmcneill goto adma_done;
518 1.63 jmcneill }
519 1.63 jmcneill error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
520 1.63 jmcneill 0, BUS_DMA_WAITOK, &hp->adma_map);
521 1.63 jmcneill if (error) {
522 1.63 jmcneill aprint_error_dev(sc->sc_dev,
523 1.63 jmcneill "ADMA2 dmamap_create failed (%d)\n", error);
524 1.63 jmcneill goto adma_done;
525 1.63 jmcneill }
526 1.63 jmcneill error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
527 1.63 jmcneill hp->adma2, PAGE_SIZE, NULL,
528 1.63 jmcneill BUS_DMA_WAITOK|BUS_DMA_WRITE);
529 1.63 jmcneill if (error) {
530 1.63 jmcneill aprint_error_dev(sc->sc_dev,
531 1.63 jmcneill "ADMA2 dmamap_load failed (%d)\n", error);
532 1.63 jmcneill goto adma_done;
533 1.63 jmcneill }
534 1.63 jmcneill
535 1.63 jmcneill memset(hp->adma2, 0, PAGE_SIZE);
536 1.63 jmcneill
537 1.63 jmcneill adma_done:
538 1.63 jmcneill if (error)
539 1.63 jmcneill CLR(hp->flags, SHF_USE_ADMA2_MASK);
540 1.63 jmcneill }
541 1.63 jmcneill
542 1.1 nonaka /*
543 1.1 nonaka * Attach the generic SD/MMC bus driver. (The bus driver must
544 1.1 nonaka * not invoke any chipset functions before it is attached.)
545 1.1 nonaka */
546 1.1 nonaka memset(&saa, 0, sizeof(saa));
547 1.1 nonaka saa.saa_busname = "sdmmc";
548 1.1 nonaka saa.saa_sct = &sdhc_functions;
549 1.1 nonaka saa.saa_sch = hp;
550 1.1 nonaka saa.saa_dmat = hp->dmat;
551 1.1 nonaka saa.saa_clkmax = hp->clkbase;
552 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
553 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 2046;
554 1.11 matt else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
555 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256 / 16;
556 1.38 jakllsch else if (hp->sc->sc_clkmsk != 0)
557 1.38 jakllsch saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
558 1.38 jakllsch (ffs(hp->sc->sc_clkmsk) - 1));
559 1.56 jmcneill else if (hp->specver >= SDHC_SPEC_VERS_300)
560 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 0x3ff;
561 1.38 jakllsch else
562 1.38 jakllsch saa.saa_clkmin = hp->clkbase / 256;
563 1.1 nonaka saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
564 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
565 1.11 matt saa.saa_caps |= SMC_CAPS_8BIT_MODE;
566 1.11 matt if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
567 1.11 matt saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
568 1.76 jmcneill if (ISSET(caps2, SDHC_SDR104_SUPP))
569 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
570 1.76 jmcneill SMC_CAPS_UHS_SDR50 |
571 1.76 jmcneill SMC_CAPS_MMC_HS200;
572 1.76 jmcneill if (ISSET(caps2, SDHC_SDR50_SUPP))
573 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_SDR50;
574 1.76 jmcneill if (ISSET(caps2, SDHC_DDR50_SUPP))
575 1.76 jmcneill saa.saa_caps |= SMC_CAPS_UHS_DDR50;
576 1.26 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
577 1.54 nonaka saa.saa_caps |= SMC_CAPS_DMA;
578 1.54 nonaka if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
579 1.54 nonaka saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
580 1.26 matt }
581 1.32 kiyohara if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
582 1.32 kiyohara saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
583 1.77 jmcneill if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
584 1.77 jmcneill saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
585 1.17 jakllsch hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
586 1.1 nonaka
587 1.1 nonaka return 0;
588 1.1 nonaka
589 1.1 nonaka err:
590 1.80 jmcneill callout_destroy(&hp->tuning_timer);
591 1.1 nonaka cv_destroy(&hp->intr_cv);
592 1.65 jmcneill mutex_destroy(&hp->intr_lock);
593 1.1 nonaka free(hp, M_DEVBUF);
594 1.1 nonaka sc->sc_host[--sc->sc_nhosts] = NULL;
595 1.1 nonaka err1:
596 1.1 nonaka return 1;
597 1.1 nonaka }
598 1.1 nonaka
599 1.7 nonaka int
600 1.36 jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
601 1.7 nonaka {
602 1.36 jakllsch struct sdhc_host *hp;
603 1.7 nonaka int rv = 0;
604 1.7 nonaka
605 1.36 jakllsch for (size_t n = 0; n < sc->sc_nhosts; n++) {
606 1.36 jakllsch hp = sc->sc_host[n];
607 1.36 jakllsch if (hp == NULL)
608 1.36 jakllsch continue;
609 1.36 jakllsch if (hp->sdmmc != NULL) {
610 1.36 jakllsch rv = config_detach(hp->sdmmc, flags);
611 1.36 jakllsch if (rv)
612 1.36 jakllsch break;
613 1.36 jakllsch hp->sdmmc = NULL;
614 1.36 jakllsch }
615 1.36 jakllsch /* disable interrupts */
616 1.36 jakllsch if ((flags & DETACH_FORCE) == 0) {
617 1.78 mlelstv mutex_enter(&hp->intr_lock);
618 1.36 jakllsch if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
619 1.36 jakllsch HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
620 1.36 jakllsch } else {
621 1.36 jakllsch HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
622 1.36 jakllsch }
623 1.36 jakllsch sdhc_soft_reset(hp, SDHC_RESET_ALL);
624 1.78 mlelstv mutex_exit(&hp->intr_lock);
625 1.36 jakllsch }
626 1.80 jmcneill callout_halt(&hp->tuning_timer, NULL);
627 1.80 jmcneill callout_destroy(&hp->tuning_timer);
628 1.36 jakllsch cv_destroy(&hp->intr_cv);
629 1.65 jmcneill mutex_destroy(&hp->intr_lock);
630 1.36 jakllsch if (hp->ios > 0) {
631 1.36 jakllsch bus_space_unmap(hp->iot, hp->ioh, hp->ios);
632 1.36 jakllsch hp->ios = 0;
633 1.36 jakllsch }
634 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
635 1.63 jmcneill bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
636 1.63 jmcneill bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
637 1.63 jmcneill bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
638 1.63 jmcneill bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
639 1.63 jmcneill }
640 1.36 jakllsch free(hp, M_DEVBUF);
641 1.36 jakllsch sc->sc_host[n] = NULL;
642 1.36 jakllsch }
643 1.7 nonaka
644 1.7 nonaka return rv;
645 1.7 nonaka }
646 1.7 nonaka
647 1.1 nonaka bool
648 1.6 dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
649 1.1 nonaka {
650 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
651 1.1 nonaka struct sdhc_host *hp;
652 1.12 nonaka size_t i;
653 1.1 nonaka
654 1.1 nonaka /* XXX poll for command completion or suspend command
655 1.1 nonaka * in progress */
656 1.1 nonaka
657 1.1 nonaka /* Save the host controller state. */
658 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
659 1.1 nonaka hp = sc->sc_host[n];
660 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
661 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
662 1.11 matt uint32_t v = HREAD4(hp, i);
663 1.12 nonaka hp->regs[i + 0] = (v >> 0);
664 1.12 nonaka hp->regs[i + 1] = (v >> 8);
665 1.13 bouyer if (i + 3 < sizeof hp->regs) {
666 1.13 bouyer hp->regs[i + 2] = (v >> 16);
667 1.13 bouyer hp->regs[i + 3] = (v >> 24);
668 1.13 bouyer }
669 1.11 matt }
670 1.11 matt } else {
671 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
672 1.11 matt hp->regs[i] = HREAD1(hp, i);
673 1.11 matt }
674 1.11 matt }
675 1.1 nonaka }
676 1.1 nonaka return true;
677 1.1 nonaka }
678 1.1 nonaka
679 1.1 nonaka bool
680 1.6 dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
681 1.1 nonaka {
682 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
683 1.1 nonaka struct sdhc_host *hp;
684 1.12 nonaka size_t i;
685 1.1 nonaka
686 1.1 nonaka /* Restore the host controller state. */
687 1.11 matt for (size_t n = 0; n < sc->sc_nhosts; n++) {
688 1.1 nonaka hp = sc->sc_host[n];
689 1.1 nonaka (void)sdhc_host_reset(hp);
690 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
691 1.12 nonaka for (i = 0; i < sizeof hp->regs; i += 4) {
692 1.13 bouyer if (i + 3 < sizeof hp->regs) {
693 1.13 bouyer HWRITE4(hp, i,
694 1.13 bouyer (hp->regs[i + 0] << 0)
695 1.13 bouyer | (hp->regs[i + 1] << 8)
696 1.13 bouyer | (hp->regs[i + 2] << 16)
697 1.13 bouyer | (hp->regs[i + 3] << 24));
698 1.13 bouyer } else {
699 1.13 bouyer HWRITE4(hp, i,
700 1.13 bouyer (hp->regs[i + 0] << 0)
701 1.13 bouyer | (hp->regs[i + 1] << 8));
702 1.13 bouyer }
703 1.11 matt }
704 1.11 matt } else {
705 1.12 nonaka for (i = 0; i < sizeof hp->regs; i++) {
706 1.11 matt HWRITE1(hp, i, hp->regs[i]);
707 1.11 matt }
708 1.11 matt }
709 1.1 nonaka }
710 1.1 nonaka return true;
711 1.1 nonaka }
712 1.1 nonaka
713 1.1 nonaka bool
714 1.1 nonaka sdhc_shutdown(device_t dev, int flags)
715 1.1 nonaka {
716 1.1 nonaka struct sdhc_softc *sc = device_private(dev);
717 1.1 nonaka struct sdhc_host *hp;
718 1.1 nonaka
719 1.1 nonaka /* XXX chip locks up if we don't disable it before reboot. */
720 1.11 matt for (size_t i = 0; i < sc->sc_nhosts; i++) {
721 1.1 nonaka hp = sc->sc_host[i];
722 1.1 nonaka (void)sdhc_host_reset(hp);
723 1.1 nonaka }
724 1.1 nonaka return true;
725 1.1 nonaka }
726 1.1 nonaka
727 1.1 nonaka /*
728 1.1 nonaka * Reset the host controller. Called during initialization, when
729 1.1 nonaka * cards are removed, upon resume, and during error recovery.
730 1.1 nonaka */
731 1.1 nonaka static int
732 1.1 nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
733 1.1 nonaka {
734 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
735 1.11 matt uint32_t sdhcimask;
736 1.1 nonaka int error;
737 1.1 nonaka
738 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
739 1.1 nonaka
740 1.1 nonaka /* Disable all interrupts. */
741 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
742 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
743 1.11 matt } else {
744 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
745 1.11 matt }
746 1.1 nonaka
747 1.1 nonaka /*
748 1.1 nonaka * Reset the entire host controller and wait up to 100ms for
749 1.1 nonaka * the controller to clear the reset bit.
750 1.1 nonaka */
751 1.1 nonaka error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
752 1.1 nonaka if (error)
753 1.1 nonaka goto out;
754 1.1 nonaka
755 1.1 nonaka /* Set data timeout counter value to max for now. */
756 1.1 nonaka HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
757 1.29 matt #if 1
758 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
759 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
760 1.11 matt #endif
761 1.1 nonaka
762 1.1 nonaka /* Enable interrupts. */
763 1.1 nonaka sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
764 1.1 nonaka SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
765 1.1 nonaka SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
766 1.1 nonaka SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
767 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
768 1.11 matt sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
769 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
770 1.11 matt sdhcimask ^=
771 1.11 matt (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
772 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
773 1.11 matt HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
774 1.11 matt } else {
775 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
776 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
777 1.11 matt sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
778 1.11 matt HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
779 1.11 matt HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
780 1.11 matt }
781 1.1 nonaka
782 1.1 nonaka out:
783 1.1 nonaka return error;
784 1.1 nonaka }
785 1.1 nonaka
786 1.1 nonaka static int
787 1.1 nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
788 1.1 nonaka {
789 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
790 1.1 nonaka int error;
791 1.1 nonaka
792 1.65 jmcneill mutex_enter(&hp->intr_lock);
793 1.1 nonaka error = sdhc_host_reset1(sch);
794 1.65 jmcneill mutex_exit(&hp->intr_lock);
795 1.1 nonaka
796 1.1 nonaka return error;
797 1.1 nonaka }
798 1.1 nonaka
799 1.1 nonaka static uint32_t
800 1.1 nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
801 1.1 nonaka {
802 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
803 1.1 nonaka
804 1.1 nonaka return hp->ocr;
805 1.1 nonaka }
806 1.1 nonaka
807 1.1 nonaka static int
808 1.1 nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
809 1.1 nonaka {
810 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
811 1.1 nonaka
812 1.1 nonaka return hp->maxblklen;
813 1.1 nonaka }
814 1.1 nonaka
815 1.1 nonaka /*
816 1.1 nonaka * Return non-zero if the card is currently inserted.
817 1.1 nonaka */
818 1.1 nonaka static int
819 1.1 nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
820 1.1 nonaka {
821 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
822 1.1 nonaka int r;
823 1.1 nonaka
824 1.32 kiyohara if (hp->sc->sc_vendor_card_detect)
825 1.32 kiyohara return (*hp->sc->sc_vendor_card_detect)(hp->sc);
826 1.32 kiyohara
827 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
828 1.1 nonaka
829 1.11 matt return r ? 1 : 0;
830 1.1 nonaka }
831 1.1 nonaka
832 1.1 nonaka /*
833 1.1 nonaka * Return non-zero if the card is currently write-protected.
834 1.1 nonaka */
835 1.1 nonaka static int
836 1.1 nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
837 1.1 nonaka {
838 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
839 1.1 nonaka int r;
840 1.1 nonaka
841 1.32 kiyohara if (hp->sc->sc_vendor_write_protect)
842 1.32 kiyohara return (*hp->sc->sc_vendor_write_protect)(hp->sc);
843 1.32 kiyohara
844 1.1 nonaka r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
845 1.1 nonaka
846 1.12 nonaka return r ? 0 : 1;
847 1.1 nonaka }
848 1.1 nonaka
849 1.1 nonaka /*
850 1.1 nonaka * Set or change SD bus voltage and enable or disable SD bus power.
851 1.1 nonaka * Return zero on success.
852 1.1 nonaka */
853 1.1 nonaka static int
854 1.1 nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
855 1.1 nonaka {
856 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
857 1.1 nonaka uint8_t vdd;
858 1.1 nonaka int error = 0;
859 1.32 kiyohara const uint32_t pcmask =
860 1.32 kiyohara ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
861 1.1 nonaka
862 1.65 jmcneill mutex_enter(&hp->intr_lock);
863 1.1 nonaka
864 1.1 nonaka /*
865 1.1 nonaka * Disable bus power before voltage change.
866 1.1 nonaka */
867 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
868 1.11 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
869 1.1 nonaka HWRITE1(hp, SDHC_POWER_CTL, 0);
870 1.1 nonaka
871 1.1 nonaka /* If power is disabled, reset the host and return now. */
872 1.1 nonaka if (ocr == 0) {
873 1.1 nonaka (void)sdhc_host_reset1(hp);
874 1.80 jmcneill callout_halt(&hp->tuning_timer, &hp->intr_lock);
875 1.1 nonaka goto out;
876 1.1 nonaka }
877 1.1 nonaka
878 1.1 nonaka /*
879 1.1 nonaka * Select the lowest voltage according to capabilities.
880 1.1 nonaka */
881 1.1 nonaka ocr &= hp->ocr;
882 1.73 jmcneill if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
883 1.1 nonaka vdd = SDHC_VOLTAGE_1_8V;
884 1.11 matt } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
885 1.1 nonaka vdd = SDHC_VOLTAGE_3_0V;
886 1.11 matt } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
887 1.1 nonaka vdd = SDHC_VOLTAGE_3_3V;
888 1.11 matt } else {
889 1.1 nonaka /* Unsupported voltage level requested. */
890 1.1 nonaka error = EINVAL;
891 1.1 nonaka goto out;
892 1.1 nonaka }
893 1.1 nonaka
894 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
895 1.11 matt /*
896 1.11 matt * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
897 1.11 matt * voltage ramp until power rises.
898 1.11 matt */
899 1.57 jmcneill
900 1.57 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
901 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
902 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
903 1.57 jmcneill } else {
904 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
905 1.57 jmcneill HREAD1(hp, SDHC_POWER_CTL) & pcmask);
906 1.57 jmcneill sdmmc_delay(1);
907 1.57 jmcneill HWRITE1(hp, SDHC_POWER_CTL,
908 1.57 jmcneill (vdd << SDHC_VOLTAGE_SHIFT));
909 1.57 jmcneill sdmmc_delay(1);
910 1.57 jmcneill HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
911 1.57 jmcneill sdmmc_delay(10000);
912 1.57 jmcneill }
913 1.1 nonaka
914 1.11 matt /*
915 1.11 matt * The host system may not power the bus due to battery low,
916 1.11 matt * etc. In that case, the host controller should clear the
917 1.11 matt * bus power bit.
918 1.11 matt */
919 1.11 matt if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
920 1.11 matt error = ENXIO;
921 1.11 matt goto out;
922 1.11 matt }
923 1.1 nonaka }
924 1.1 nonaka
925 1.1 nonaka out:
926 1.65 jmcneill mutex_exit(&hp->intr_lock);
927 1.1 nonaka
928 1.1 nonaka return error;
929 1.1 nonaka }
930 1.1 nonaka
931 1.1 nonaka /*
932 1.1 nonaka * Return the smallest possible base clock frequency divisor value
933 1.1 nonaka * for the CLOCK_CTL register to produce `freq' (KHz).
934 1.1 nonaka */
935 1.11 matt static bool
936 1.11 matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
937 1.1 nonaka {
938 1.11 matt u_int div;
939 1.1 nonaka
940 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
941 1.11 matt for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
942 1.11 matt if ((hp->clkbase / div) <= freq) {
943 1.11 matt *divp = SDHC_SDCLK_CGM
944 1.11 matt | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
945 1.11 matt | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
946 1.18 jakllsch //freq = hp->clkbase / div;
947 1.11 matt return true;
948 1.11 matt }
949 1.11 matt }
950 1.11 matt /* No divisor found. */
951 1.11 matt return false;
952 1.11 matt }
953 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
954 1.11 matt u_int dvs = (hp->clkbase + freq - 1) / freq;
955 1.11 matt u_int roundup = dvs & 1;
956 1.11 matt for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
957 1.11 matt if (dvs + roundup <= 16) {
958 1.11 matt dvs += roundup - 1;
959 1.11 matt *divp = (div << SDHC_SDCLK_DIV_SHIFT)
960 1.11 matt | (dvs << SDHC_SDCLK_DVS_SHIFT);
961 1.11 matt DPRINTF(2,
962 1.11 matt ("%s: divisor for freq %u is %u * %u\n",
963 1.11 matt HDEVNAME(hp), freq, div * 2, dvs + 1));
964 1.18 jakllsch //freq = hp->clkbase / (div * 2) * (dvs + 1);
965 1.11 matt return true;
966 1.9 matt }
967 1.11 matt /*
968 1.11 matt * If we drop bits, we need to round up the divisor.
969 1.11 matt */
970 1.11 matt roundup |= dvs & 1;
971 1.9 matt }
972 1.18 jakllsch /* No divisor found. */
973 1.18 jakllsch return false;
974 1.38 jakllsch }
975 1.38 jakllsch if (hp->sc->sc_clkmsk != 0) {
976 1.38 jakllsch div = howmany(hp->clkbase, freq);
977 1.38 jakllsch if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
978 1.38 jakllsch return false;
979 1.38 jakllsch *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
980 1.38 jakllsch //freq = hp->clkbase / div;
981 1.38 jakllsch return true;
982 1.38 jakllsch }
983 1.56 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
984 1.38 jakllsch div = howmany(hp->clkbase, freq);
985 1.50 mlelstv div = div > 1 ? howmany(div, 2) : 0;
986 1.38 jakllsch if (div > 0x3ff)
987 1.38 jakllsch return false;
988 1.38 jakllsch *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
989 1.38 jakllsch << SDHC_SDCLK_XDIV_SHIFT) |
990 1.38 jakllsch (((div >> 0) & SDHC_SDCLK_DIV_MASK)
991 1.38 jakllsch << SDHC_SDCLK_DIV_SHIFT);
992 1.67 mlelstv //freq = hp->clkbase / (div ? div * 2 : 1);
993 1.38 jakllsch return true;
994 1.9 matt } else {
995 1.38 jakllsch for (div = 1; div <= 256; div *= 2) {
996 1.38 jakllsch if ((hp->clkbase / div) <= freq) {
997 1.38 jakllsch *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
998 1.38 jakllsch //freq = hp->clkbase / div;
999 1.38 jakllsch return true;
1000 1.38 jakllsch }
1001 1.38 jakllsch }
1002 1.38 jakllsch /* No divisor found. */
1003 1.38 jakllsch return false;
1004 1.9 matt }
1005 1.1 nonaka /* No divisor found. */
1006 1.11 matt return false;
1007 1.1 nonaka }
1008 1.1 nonaka
1009 1.1 nonaka /*
1010 1.1 nonaka * Set or change SDCLK frequency or disable the SD clock.
1011 1.1 nonaka * Return zero on success.
1012 1.1 nonaka */
1013 1.1 nonaka static int
1014 1.76 jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
1015 1.1 nonaka {
1016 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1017 1.11 matt u_int div;
1018 1.11 matt u_int timo;
1019 1.32 kiyohara int16_t reg;
1020 1.1 nonaka int error = 0;
1021 1.65 jmcneill bool present __diagused;
1022 1.65 jmcneill
1023 1.65 jmcneill mutex_enter(&hp->intr_lock);
1024 1.65 jmcneill
1025 1.2 cegger #ifdef DIAGNOSTIC
1026 1.12 nonaka present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
1027 1.1 nonaka
1028 1.1 nonaka /* Must not stop the clock if commands are in progress. */
1029 1.12 nonaka if (present && sdhc_card_detect(hp)) {
1030 1.26 matt aprint_normal_dev(hp->sc->sc_dev,
1031 1.26 matt "%s: command in progress\n", __func__);
1032 1.12 nonaka }
1033 1.1 nonaka #endif
1034 1.1 nonaka
1035 1.34 matt if (hp->sc->sc_vendor_bus_clock) {
1036 1.34 matt error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1037 1.34 matt if (error != 0)
1038 1.34 matt goto out;
1039 1.34 matt }
1040 1.34 matt
1041 1.1 nonaka /*
1042 1.1 nonaka * Stop SD clock before changing the frequency.
1043 1.1 nonaka */
1044 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1045 1.11 matt HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1046 1.11 matt if (freq == SDMMC_SDCLK_OFF) {
1047 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1048 1.11 matt goto out;
1049 1.11 matt }
1050 1.11 matt } else {
1051 1.32 kiyohara HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1052 1.11 matt if (freq == SDMMC_SDCLK_OFF)
1053 1.11 matt goto out;
1054 1.11 matt }
1055 1.1 nonaka
1056 1.71 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1057 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1058 1.71 jmcneill if (freq > 100000) {
1059 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1060 1.71 jmcneill } else if (freq > 50000) {
1061 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
1062 1.71 jmcneill } else if (freq > 25000) {
1063 1.76 jmcneill if (ddr) {
1064 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1065 1.76 jmcneill SDHC_UHS_MODE_SELECT_DDR50);
1066 1.76 jmcneill } else {
1067 1.76 jmcneill HSET2(hp, SDHC_HOST_CTL2,
1068 1.76 jmcneill SDHC_UHS_MODE_SELECT_SDR25);
1069 1.76 jmcneill }
1070 1.74 jmcneill } else if (freq > 400) {
1071 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1072 1.71 jmcneill }
1073 1.71 jmcneill }
1074 1.71 jmcneill
1075 1.1 nonaka /*
1076 1.82 mlelstv * Slow down Ricoh 5U823 controller that isn't reliable
1077 1.82 mlelstv * at 100MHz bus clock.
1078 1.82 mlelstv */
1079 1.82 mlelstv if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
1080 1.82 mlelstv if (freq == 100000)
1081 1.82 mlelstv --freq;
1082 1.82 mlelstv }
1083 1.82 mlelstv
1084 1.82 mlelstv /*
1085 1.1 nonaka * Set the minimum base clock frequency divisor.
1086 1.1 nonaka */
1087 1.11 matt if (!sdhc_clock_divisor(hp, freq, &div)) {
1088 1.1 nonaka /* Invalid base clock frequency or `freq' value. */
1089 1.68 mlelstv aprint_error_dev(hp->sc->sc_dev,
1090 1.68 mlelstv "Invalid bus clock %d kHz\n", freq);
1091 1.1 nonaka error = EINVAL;
1092 1.1 nonaka goto out;
1093 1.1 nonaka }
1094 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1095 1.11 matt HWRITE4(hp, SDHC_CLOCK_CTL,
1096 1.11 matt div | (SDHC_TIMEOUT_MAX << 16));
1097 1.11 matt } else {
1098 1.32 kiyohara reg = HREAD2(hp, SDHC_CLOCK_CTL);
1099 1.32 kiyohara reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1100 1.32 kiyohara HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1101 1.11 matt }
1102 1.1 nonaka
1103 1.1 nonaka /*
1104 1.1 nonaka * Start internal clock. Wait 10ms for stabilization.
1105 1.1 nonaka */
1106 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1107 1.11 matt sdmmc_delay(10000);
1108 1.12 nonaka HSET4(hp, SDHC_CLOCK_CTL,
1109 1.12 nonaka 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1110 1.11 matt } else {
1111 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1112 1.11 matt for (timo = 1000; timo > 0; timo--) {
1113 1.12 nonaka if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1114 1.12 nonaka SDHC_INTCLK_STABLE))
1115 1.11 matt break;
1116 1.11 matt sdmmc_delay(10);
1117 1.11 matt }
1118 1.11 matt if (timo == 0) {
1119 1.11 matt error = ETIMEDOUT;
1120 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
1121 1.11 matt goto out;
1122 1.11 matt }
1123 1.1 nonaka }
1124 1.1 nonaka
1125 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1126 1.11 matt HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1127 1.11 matt /*
1128 1.11 matt * Sending 80 clocks at 400kHz takes 200us.
1129 1.11 matt * So delay for that time + slop and then
1130 1.11 matt * check a few times for completion.
1131 1.11 matt */
1132 1.11 matt sdmmc_delay(210);
1133 1.11 matt for (timo = 10; timo > 0; timo--) {
1134 1.11 matt if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1135 1.11 matt SDHC_INIT_ACTIVE))
1136 1.11 matt break;
1137 1.11 matt sdmmc_delay(10);
1138 1.11 matt }
1139 1.11 matt DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1140 1.12 nonaka
1141 1.11 matt /*
1142 1.11 matt * Enable SD clock.
1143 1.11 matt */
1144 1.11 matt HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1145 1.11 matt } else {
1146 1.11 matt /*
1147 1.11 matt * Enable SD clock.
1148 1.11 matt */
1149 1.11 matt HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1150 1.1 nonaka
1151 1.43 jmcneill if (freq > 25000 &&
1152 1.43 jmcneill !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1153 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1154 1.11 matt else
1155 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1156 1.11 matt }
1157 1.8 kiyohara
1158 1.1 nonaka out:
1159 1.65 jmcneill mutex_exit(&hp->intr_lock);
1160 1.1 nonaka
1161 1.1 nonaka return error;
1162 1.1 nonaka }
1163 1.1 nonaka
1164 1.1 nonaka static int
1165 1.1 nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1166 1.1 nonaka {
1167 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1168 1.1 nonaka int reg;
1169 1.1 nonaka
1170 1.1 nonaka switch (width) {
1171 1.1 nonaka case 1:
1172 1.1 nonaka case 4:
1173 1.1 nonaka break;
1174 1.1 nonaka
1175 1.11 matt case 8:
1176 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1177 1.11 matt break;
1178 1.11 matt /* FALLTHROUGH */
1179 1.1 nonaka default:
1180 1.1 nonaka DPRINTF(0,("%s: unsupported bus width (%d)\n",
1181 1.1 nonaka HDEVNAME(hp), width));
1182 1.1 nonaka return 1;
1183 1.1 nonaka }
1184 1.1 nonaka
1185 1.65 jmcneill mutex_enter(&hp->intr_lock);
1186 1.65 jmcneill
1187 1.5 uebayasi reg = HREAD1(hp, SDHC_HOST_CTL);
1188 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1189 1.12 nonaka reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1190 1.11 matt if (width == 4)
1191 1.11 matt reg |= SDHC_4BIT_MODE;
1192 1.11 matt else if (width == 8)
1193 1.12 nonaka reg |= SDHC_ESDHC_8BIT_MODE;
1194 1.11 matt } else {
1195 1.11 matt reg &= ~SDHC_4BIT_MODE;
1196 1.59 jmcneill if (hp->specver >= SDHC_SPEC_VERS_300) {
1197 1.59 jmcneill reg &= ~SDHC_8BIT_MODE;
1198 1.59 jmcneill }
1199 1.59 jmcneill if (width == 4) {
1200 1.11 matt reg |= SDHC_4BIT_MODE;
1201 1.59 jmcneill } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1202 1.59 jmcneill reg |= SDHC_8BIT_MODE;
1203 1.59 jmcneill }
1204 1.11 matt }
1205 1.5 uebayasi HWRITE1(hp, SDHC_HOST_CTL, reg);
1206 1.65 jmcneill
1207 1.65 jmcneill mutex_exit(&hp->intr_lock);
1208 1.1 nonaka
1209 1.1 nonaka return 0;
1210 1.1 nonaka }
1211 1.1 nonaka
1212 1.8 kiyohara static int
1213 1.8 kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1214 1.8 kiyohara {
1215 1.32 kiyohara struct sdhc_host *hp = (struct sdhc_host *)sch;
1216 1.32 kiyohara
1217 1.32 kiyohara if (hp->sc->sc_vendor_rod)
1218 1.32 kiyohara return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1219 1.8 kiyohara
1220 1.8 kiyohara return 0;
1221 1.8 kiyohara }
1222 1.8 kiyohara
1223 1.1 nonaka static void
1224 1.1 nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1225 1.1 nonaka {
1226 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1227 1.1 nonaka
1228 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1229 1.65 jmcneill mutex_enter(&hp->intr_lock);
1230 1.11 matt if (enable) {
1231 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1232 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1233 1.11 matt } else {
1234 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1235 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1236 1.11 matt }
1237 1.65 jmcneill mutex_exit(&hp->intr_lock);
1238 1.1 nonaka }
1239 1.1 nonaka }
1240 1.1 nonaka
1241 1.47 skrll static void
1242 1.1 nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1243 1.1 nonaka {
1244 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1245 1.1 nonaka
1246 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1247 1.65 jmcneill mutex_enter(&hp->intr_lock);
1248 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1249 1.65 jmcneill mutex_exit(&hp->intr_lock);
1250 1.11 matt }
1251 1.1 nonaka }
1252 1.1 nonaka
1253 1.1 nonaka static int
1254 1.71 jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1255 1.71 jmcneill {
1256 1.71 jmcneill struct sdhc_host *hp = (struct sdhc_host *)sch;
1257 1.71 jmcneill
1258 1.78 mlelstv mutex_enter(&hp->intr_lock);
1259 1.71 jmcneill switch (signal_voltage) {
1260 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_180:
1261 1.71 jmcneill HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1262 1.71 jmcneill break;
1263 1.71 jmcneill case SDMMC_SIGNAL_VOLTAGE_330:
1264 1.71 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1265 1.71 jmcneill break;
1266 1.71 jmcneill default:
1267 1.71 jmcneill return EINVAL;
1268 1.71 jmcneill }
1269 1.78 mlelstv mutex_exit(&hp->intr_lock);
1270 1.71 jmcneill
1271 1.71 jmcneill return 0;
1272 1.71 jmcneill }
1273 1.71 jmcneill
1274 1.79 jmcneill /*
1275 1.79 jmcneill * Sampling clock tuning procedure (UHS)
1276 1.79 jmcneill */
1277 1.79 jmcneill static int
1278 1.83 mlelstv sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
1279 1.79 jmcneill {
1280 1.79 jmcneill struct sdmmc_command cmd;
1281 1.79 jmcneill uint8_t hostctl;
1282 1.79 jmcneill int opcode, error, retry = 40;
1283 1.79 jmcneill
1284 1.83 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
1285 1.83 mlelstv
1286 1.80 jmcneill hp->tuning_timing = timing;
1287 1.80 jmcneill
1288 1.79 jmcneill switch (timing) {
1289 1.79 jmcneill case SDMMC_TIMING_MMC_HS200:
1290 1.79 jmcneill opcode = MMC_SEND_TUNING_BLOCK_HS200;
1291 1.79 jmcneill break;
1292 1.79 jmcneill case SDMMC_TIMING_UHS_SDR50:
1293 1.79 jmcneill if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1294 1.79 jmcneill return 0;
1295 1.79 jmcneill /* FALLTHROUGH */
1296 1.79 jmcneill case SDMMC_TIMING_UHS_SDR104:
1297 1.79 jmcneill opcode = MMC_SEND_TUNING_BLOCK;
1298 1.79 jmcneill break;
1299 1.79 jmcneill default:
1300 1.79 jmcneill return EINVAL;
1301 1.79 jmcneill }
1302 1.79 jmcneill
1303 1.79 jmcneill hostctl = HREAD1(hp, SDHC_HOST_CTL);
1304 1.79 jmcneill
1305 1.79 jmcneill /* enable buffer read ready interrupt */
1306 1.79 jmcneill HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1307 1.79 jmcneill HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1308 1.79 jmcneill
1309 1.79 jmcneill /* disable DMA */
1310 1.79 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1311 1.79 jmcneill
1312 1.79 jmcneill /* reset tuning circuit */
1313 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1314 1.79 jmcneill
1315 1.79 jmcneill /* start of tuning */
1316 1.79 jmcneill HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1317 1.79 jmcneill
1318 1.79 jmcneill do {
1319 1.79 jmcneill memset(&cmd, 0, sizeof(cmd));
1320 1.79 jmcneill cmd.c_opcode = opcode;
1321 1.79 jmcneill cmd.c_arg = 0;
1322 1.79 jmcneill cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1323 1.79 jmcneill if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1324 1.79 jmcneill cmd.c_blklen = cmd.c_datalen = 128;
1325 1.79 jmcneill } else {
1326 1.79 jmcneill cmd.c_blklen = cmd.c_datalen = 64;
1327 1.79 jmcneill }
1328 1.79 jmcneill
1329 1.79 jmcneill error = sdhc_start_command(hp, &cmd);
1330 1.79 jmcneill if (error)
1331 1.79 jmcneill break;
1332 1.79 jmcneill
1333 1.79 jmcneill if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1334 1.79 jmcneill SDHC_TUNING_TIMEOUT)) {
1335 1.79 jmcneill break;
1336 1.79 jmcneill }
1337 1.79 jmcneill
1338 1.79 jmcneill delay(1000);
1339 1.79 jmcneill } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1340 1.79 jmcneill
1341 1.79 jmcneill /* disable buffer read ready interrupt */
1342 1.79 jmcneill HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1343 1.79 jmcneill HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1344 1.79 jmcneill
1345 1.79 jmcneill if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1346 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2,
1347 1.79 jmcneill SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1348 1.79 jmcneill sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1349 1.79 jmcneill aprint_error_dev(hp->sc->sc_dev,
1350 1.79 jmcneill "tuning did not complete, using fixed sampling clock\n");
1351 1.79 jmcneill return EIO; /* tuning did not complete */
1352 1.79 jmcneill }
1353 1.79 jmcneill
1354 1.79 jmcneill if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1355 1.79 jmcneill HCLR2(hp, SDHC_HOST_CTL2,
1356 1.79 jmcneill SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1357 1.79 jmcneill sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1358 1.79 jmcneill aprint_error_dev(hp->sc->sc_dev,
1359 1.79 jmcneill "tuning failed, using fixed sampling clock\n");
1360 1.79 jmcneill return EIO; /* tuning failed */
1361 1.79 jmcneill }
1362 1.79 jmcneill
1363 1.80 jmcneill if (hp->tuning_timer_count) {
1364 1.80 jmcneill callout_schedule(&hp->tuning_timer,
1365 1.80 jmcneill hz * hp->tuning_timer_count);
1366 1.80 jmcneill }
1367 1.80 jmcneill
1368 1.79 jmcneill return 0; /* tuning completed */
1369 1.79 jmcneill }
1370 1.79 jmcneill
1371 1.83 mlelstv static int
1372 1.83 mlelstv sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1373 1.83 mlelstv {
1374 1.83 mlelstv struct sdhc_host *hp = (struct sdhc_host *)sch;
1375 1.83 mlelstv int error;
1376 1.83 mlelstv
1377 1.83 mlelstv mutex_enter(&hp->intr_lock);
1378 1.83 mlelstv error = sdhc_execute_tuning1(hp, timing);
1379 1.83 mlelstv mutex_exit(&hp->intr_lock);
1380 1.83 mlelstv return error;
1381 1.83 mlelstv }
1382 1.83 mlelstv
1383 1.80 jmcneill static void
1384 1.80 jmcneill sdhc_tuning_timer(void *arg)
1385 1.80 jmcneill {
1386 1.80 jmcneill struct sdhc_host *hp = arg;
1387 1.80 jmcneill
1388 1.80 jmcneill atomic_swap_uint(&hp->tuning_timer_pending, 1);
1389 1.80 jmcneill }
1390 1.80 jmcneill
1391 1.71 jmcneill static int
1392 1.1 nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1393 1.1 nonaka {
1394 1.1 nonaka uint32_t state;
1395 1.1 nonaka int timeout;
1396 1.1 nonaka
1397 1.65 jmcneill for (timeout = 10000; timeout > 0; timeout--) {
1398 1.1 nonaka if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1399 1.1 nonaka return 0;
1400 1.65 jmcneill sdmmc_delay(10);
1401 1.1 nonaka }
1402 1.75 mlelstv aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1403 1.75 mlelstv mask, value, state);
1404 1.1 nonaka return ETIMEDOUT;
1405 1.1 nonaka }
1406 1.1 nonaka
1407 1.1 nonaka static void
1408 1.1 nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1409 1.1 nonaka {
1410 1.1 nonaka struct sdhc_host *hp = (struct sdhc_host *)sch;
1411 1.1 nonaka int error;
1412 1.1 nonaka
1413 1.83 mlelstv mutex_enter(&hp->intr_lock);
1414 1.83 mlelstv
1415 1.80 jmcneill if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
1416 1.83 mlelstv (void)sdhc_execute_tuning1(hp, hp->tuning_timing);
1417 1.80 jmcneill }
1418 1.80 jmcneill
1419 1.26 matt if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1420 1.11 matt const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1421 1.11 matt if (ISSET(hp->flags, SHF_USE_DMA)) {
1422 1.11 matt HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1423 1.11 matt HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1424 1.11 matt } else {
1425 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1426 1.11 matt HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1427 1.47 skrll }
1428 1.11 matt }
1429 1.11 matt
1430 1.61 jmcneill if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1431 1.61 jmcneill const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1432 1.61 jmcneill if (cmd->c_data != NULL) {
1433 1.61 jmcneill HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1434 1.61 jmcneill HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1435 1.61 jmcneill } else {
1436 1.61 jmcneill HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1437 1.61 jmcneill HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1438 1.61 jmcneill }
1439 1.61 jmcneill }
1440 1.61 jmcneill
1441 1.1 nonaka /*
1442 1.1 nonaka * Start the MMC command, or mark `cmd' as failed and return.
1443 1.1 nonaka */
1444 1.1 nonaka error = sdhc_start_command(hp, cmd);
1445 1.1 nonaka if (error) {
1446 1.1 nonaka cmd->c_error = error;
1447 1.1 nonaka goto out;
1448 1.1 nonaka }
1449 1.1 nonaka
1450 1.1 nonaka /*
1451 1.1 nonaka * Wait until the command phase is done, or until the command
1452 1.1 nonaka * is marked done for any other reason.
1453 1.1 nonaka */
1454 1.1 nonaka if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1455 1.84 mlelstv DPRINTF(1,("%s: timeout for command\n", __func__));
1456 1.1 nonaka cmd->c_error = ETIMEDOUT;
1457 1.1 nonaka goto out;
1458 1.1 nonaka }
1459 1.1 nonaka
1460 1.1 nonaka /*
1461 1.1 nonaka * The host controller removes bits [0:7] from the response
1462 1.1 nonaka * data (CRC) and we pass the data up unchanged to the bus
1463 1.1 nonaka * driver (without padding).
1464 1.1 nonaka */
1465 1.1 nonaka if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1466 1.23 matt cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1467 1.23 matt if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1468 1.23 matt cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1469 1.23 matt cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1470 1.23 matt cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1471 1.32 kiyohara if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1472 1.32 kiyohara cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1473 1.32 kiyohara (cmd->c_resp[1] << 24);
1474 1.32 kiyohara cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1475 1.32 kiyohara (cmd->c_resp[2] << 24);
1476 1.32 kiyohara cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1477 1.32 kiyohara (cmd->c_resp[3] << 24);
1478 1.32 kiyohara cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1479 1.32 kiyohara }
1480 1.1 nonaka }
1481 1.1 nonaka }
1482 1.25 matt DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1483 1.1 nonaka
1484 1.1 nonaka /*
1485 1.1 nonaka * If the command has data to transfer in any direction,
1486 1.1 nonaka * execute the transfer now.
1487 1.1 nonaka */
1488 1.1 nonaka if (cmd->c_error == 0 && cmd->c_data != NULL)
1489 1.1 nonaka sdhc_transfer_data(hp, cmd);
1490 1.42 jakllsch else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1491 1.42 jakllsch if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1492 1.85 mlelstv DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
1493 1.85 mlelstv HDEVNAME(hp)));
1494 1.42 jakllsch cmd->c_error = ETIMEDOUT;
1495 1.42 jakllsch goto out;
1496 1.42 jakllsch }
1497 1.42 jakllsch }
1498 1.1 nonaka
1499 1.1 nonaka out:
1500 1.14 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1501 1.14 matt && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1502 1.11 matt /* Turn off the LED. */
1503 1.11 matt HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1504 1.11 matt }
1505 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1506 1.1 nonaka
1507 1.65 jmcneill mutex_exit(&hp->intr_lock);
1508 1.65 jmcneill
1509 1.1 nonaka DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1510 1.1 nonaka cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1511 1.1 nonaka cmd->c_flags, cmd->c_error));
1512 1.1 nonaka }
1513 1.1 nonaka
1514 1.1 nonaka static int
1515 1.1 nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1516 1.1 nonaka {
1517 1.11 matt struct sdhc_softc * const sc = hp->sc;
1518 1.1 nonaka uint16_t blksize = 0;
1519 1.1 nonaka uint16_t blkcount = 0;
1520 1.1 nonaka uint16_t mode;
1521 1.1 nonaka uint16_t command;
1522 1.84 mlelstv uint32_t pmask;
1523 1.1 nonaka int error;
1524 1.1 nonaka
1525 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1526 1.65 jmcneill
1527 1.11 matt DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1528 1.7 nonaka HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1529 1.11 matt cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1530 1.1 nonaka
1531 1.1 nonaka /*
1532 1.1 nonaka * The maximum block length for commands should be the minimum
1533 1.1 nonaka * of the host buffer size and the card buffer size. (1.7.2)
1534 1.1 nonaka */
1535 1.1 nonaka
1536 1.1 nonaka /* Fragment the data into proper blocks. */
1537 1.1 nonaka if (cmd->c_datalen > 0) {
1538 1.1 nonaka blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1539 1.1 nonaka blkcount = cmd->c_datalen / blksize;
1540 1.1 nonaka if (cmd->c_datalen % blksize > 0) {
1541 1.1 nonaka /* XXX: Split this command. (1.7.4) */
1542 1.11 matt aprint_error_dev(sc->sc_dev,
1543 1.1 nonaka "data not a multiple of %u bytes\n", blksize);
1544 1.1 nonaka return EINVAL;
1545 1.1 nonaka }
1546 1.1 nonaka }
1547 1.1 nonaka
1548 1.1 nonaka /* Check limit imposed by 9-bit block count. (1.7.2) */
1549 1.1 nonaka if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1550 1.11 matt aprint_error_dev(sc->sc_dev, "too much data\n");
1551 1.1 nonaka return EINVAL;
1552 1.1 nonaka }
1553 1.1 nonaka
1554 1.1 nonaka /* Prepare transfer mode register value. (2.2.5) */
1555 1.15 jakllsch mode = SDHC_BLOCK_COUNT_ENABLE;
1556 1.1 nonaka if (ISSET(cmd->c_flags, SCF_CMD_READ))
1557 1.1 nonaka mode |= SDHC_READ_MODE;
1558 1.15 jakllsch if (blkcount > 1) {
1559 1.15 jakllsch mode |= SDHC_MULTI_BLOCK_MODE;
1560 1.15 jakllsch /* XXX only for memory commands? */
1561 1.15 jakllsch mode |= SDHC_AUTO_CMD12_ENABLE;
1562 1.1 nonaka }
1563 1.45 jakllsch if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1564 1.55 bouyer ISSET(hp->flags, SHF_MODE_DMAEN)) {
1565 1.19 jakllsch mode |= SDHC_DMA_ENABLE;
1566 1.7 nonaka }
1567 1.1 nonaka
1568 1.1 nonaka /*
1569 1.1 nonaka * Prepare command register value. (2.2.6)
1570 1.1 nonaka */
1571 1.12 nonaka command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1572 1.1 nonaka
1573 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1574 1.1 nonaka command |= SDHC_CRC_CHECK_ENABLE;
1575 1.1 nonaka if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1576 1.1 nonaka command |= SDHC_INDEX_CHECK_ENABLE;
1577 1.79 jmcneill if (cmd->c_datalen > 0)
1578 1.1 nonaka command |= SDHC_DATA_PRESENT_SELECT;
1579 1.1 nonaka
1580 1.1 nonaka if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1581 1.1 nonaka command |= SDHC_NO_RESPONSE;
1582 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_136))
1583 1.1 nonaka command |= SDHC_RESP_LEN_136;
1584 1.1 nonaka else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1585 1.1 nonaka command |= SDHC_RESP_LEN_48_CHK_BUSY;
1586 1.1 nonaka else
1587 1.1 nonaka command |= SDHC_RESP_LEN_48;
1588 1.1 nonaka
1589 1.84 mlelstv /* Wait until command and optionally data inhibit bits are clear. (1.5) */
1590 1.84 mlelstv pmask = SDHC_CMD_INHIBIT_CMD;
1591 1.84 mlelstv if (cmd->c_flags & SCF_CMD_ADTC)
1592 1.84 mlelstv pmask |= SDHC_CMD_INHIBIT_DAT;
1593 1.84 mlelstv error = sdhc_wait_state(hp, pmask, 0);
1594 1.68 mlelstv if (error) {
1595 1.84 mlelstv (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1596 1.84 mlelstv device_printf(sc->sc_dev, "command or data phase inhibited\n");
1597 1.1 nonaka return error;
1598 1.68 mlelstv }
1599 1.1 nonaka
1600 1.1 nonaka DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1601 1.1 nonaka HDEVNAME(hp), blksize, blkcount, mode, command));
1602 1.1 nonaka
1603 1.44 hkenken if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1604 1.44 hkenken blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1605 1.44 hkenken SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1606 1.44 hkenken }
1607 1.19 jakllsch
1608 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1609 1.11 matt /* Alert the user not to remove the card. */
1610 1.11 matt HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1611 1.11 matt }
1612 1.1 nonaka
1613 1.7 nonaka /* Set DMA start address. */
1614 1.79 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1615 1.63 jmcneill for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1616 1.69 jmcneill bus_addr_t paddr =
1617 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_addr;
1618 1.63 jmcneill uint16_t len =
1619 1.63 jmcneill cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1620 1.63 jmcneill 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1621 1.63 jmcneill uint16_t attr =
1622 1.63 jmcneill SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1623 1.63 jmcneill if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1624 1.63 jmcneill attr |= SDHC_ADMA2_END;
1625 1.63 jmcneill }
1626 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1627 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc =
1628 1.63 jmcneill hp->adma2;
1629 1.63 jmcneill desc[seg].attribute = htole16(attr);
1630 1.63 jmcneill desc[seg].length = htole16(len);
1631 1.63 jmcneill desc[seg].address = htole32(paddr);
1632 1.63 jmcneill } else {
1633 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc =
1634 1.63 jmcneill hp->adma2;
1635 1.63 jmcneill desc[seg].attribute = htole16(attr);
1636 1.63 jmcneill desc[seg].length = htole16(len);
1637 1.63 jmcneill desc[seg].address = htole32(paddr & 0xffffffff);
1638 1.63 jmcneill desc[seg].address_hi = htole32(
1639 1.63 jmcneill (uint64_t)paddr >> 32);
1640 1.63 jmcneill }
1641 1.63 jmcneill }
1642 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1643 1.63 jmcneill struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1644 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1645 1.63 jmcneill } else {
1646 1.63 jmcneill struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1647 1.63 jmcneill desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1648 1.63 jmcneill }
1649 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1650 1.63 jmcneill BUS_DMASYNC_PREWRITE);
1651 1.63 jmcneill HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1652 1.63 jmcneill HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1653 1.63 jmcneill
1654 1.70 jmcneill const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1655 1.63 jmcneill
1656 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1657 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1658 1.63 jmcneill HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1659 1.63 jmcneill (uint64_t)desc_addr >> 32);
1660 1.63 jmcneill }
1661 1.63 jmcneill } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1662 1.63 jmcneill !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1663 1.7 nonaka HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1664 1.63 jmcneill }
1665 1.7 nonaka
1666 1.1 nonaka /*
1667 1.1 nonaka * Start a CPU data transfer. Writing to the high order byte
1668 1.1 nonaka * of the SDHC_COMMAND register triggers the SD command. (1.5)
1669 1.1 nonaka */
1670 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1671 1.11 matt HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1672 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1673 1.11 matt HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1674 1.11 matt } else {
1675 1.11 matt HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1676 1.15 jakllsch HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1677 1.11 matt HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1678 1.15 jakllsch HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1679 1.11 matt HWRITE2(hp, SDHC_COMMAND, command);
1680 1.11 matt }
1681 1.1 nonaka
1682 1.1 nonaka return 0;
1683 1.1 nonaka }
1684 1.1 nonaka
1685 1.1 nonaka static void
1686 1.1 nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1687 1.1 nonaka {
1688 1.51 jmcneill struct sdhc_softc *sc = hp->sc;
1689 1.1 nonaka int error;
1690 1.1 nonaka
1691 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1692 1.65 jmcneill
1693 1.1 nonaka DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1694 1.1 nonaka MMC_R1(cmd->c_resp), cmd->c_datalen));
1695 1.1 nonaka
1696 1.1 nonaka #ifdef SDHC_DEBUG
1697 1.1 nonaka /* XXX I forgot why I wanted to know when this happens :-( */
1698 1.1 nonaka if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1699 1.1 nonaka ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1700 1.1 nonaka aprint_error_dev(hp->sc->sc_dev,
1701 1.1 nonaka "CMD52/53 error response flags %#x\n",
1702 1.1 nonaka MMC_R1(cmd->c_resp) & 0xff00);
1703 1.1 nonaka }
1704 1.1 nonaka #endif
1705 1.1 nonaka
1706 1.47 skrll if (cmd->c_dmamap != NULL) {
1707 1.47 skrll if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1708 1.51 jmcneill error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1709 1.47 skrll if (error == 0 && !sdhc_wait_intr(hp,
1710 1.61 jmcneill SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1711 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
1712 1.47 skrll error = ETIMEDOUT;
1713 1.47 skrll }
1714 1.47 skrll } else {
1715 1.47 skrll error = sdhc_transfer_data_dma(hp, cmd);
1716 1.47 skrll }
1717 1.47 skrll } else
1718 1.7 nonaka error = sdhc_transfer_data_pio(hp, cmd);
1719 1.1 nonaka if (error)
1720 1.1 nonaka cmd->c_error = error;
1721 1.1 nonaka SET(cmd->c_flags, SCF_ITSDONE);
1722 1.1 nonaka
1723 1.1 nonaka DPRINTF(1,("%s: data transfer done (error=%d)\n",
1724 1.1 nonaka HDEVNAME(hp), cmd->c_error));
1725 1.1 nonaka }
1726 1.1 nonaka
1727 1.1 nonaka static int
1728 1.7 nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1729 1.7 nonaka {
1730 1.19 jakllsch bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1731 1.19 jakllsch bus_addr_t posaddr;
1732 1.19 jakllsch bus_addr_t segaddr;
1733 1.19 jakllsch bus_size_t seglen;
1734 1.19 jakllsch u_int seg = 0;
1735 1.7 nonaka int error = 0;
1736 1.19 jakllsch int status;
1737 1.7 nonaka
1738 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1739 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1740 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1741 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1742 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1743 1.11 matt
1744 1.7 nonaka for (;;) {
1745 1.19 jakllsch status = sdhc_wait_intr(hp,
1746 1.7 nonaka SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1747 1.19 jakllsch SDHC_DMA_TIMEOUT);
1748 1.19 jakllsch
1749 1.19 jakllsch if (status & SDHC_TRANSFER_COMPLETE) {
1750 1.19 jakllsch break;
1751 1.19 jakllsch }
1752 1.19 jakllsch if (!status) {
1753 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
1754 1.7 nonaka error = ETIMEDOUT;
1755 1.7 nonaka break;
1756 1.7 nonaka }
1757 1.63 jmcneill
1758 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1759 1.63 jmcneill continue;
1760 1.63 jmcneill }
1761 1.63 jmcneill
1762 1.19 jakllsch if ((status & SDHC_DMA_INTERRUPT) == 0) {
1763 1.19 jakllsch continue;
1764 1.19 jakllsch }
1765 1.19 jakllsch
1766 1.19 jakllsch /* DMA Interrupt (boundary crossing) */
1767 1.7 nonaka
1768 1.19 jakllsch segaddr = dm_segs[seg].ds_addr;
1769 1.19 jakllsch seglen = dm_segs[seg].ds_len;
1770 1.19 jakllsch posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1771 1.7 nonaka
1772 1.19 jakllsch if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1773 1.37 jakllsch continue;
1774 1.19 jakllsch }
1775 1.19 jakllsch if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1776 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1777 1.19 jakllsch else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1778 1.19 jakllsch HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1779 1.19 jakllsch KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1780 1.7 nonaka }
1781 1.7 nonaka
1782 1.63 jmcneill if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1783 1.63 jmcneill bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1784 1.63 jmcneill PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1785 1.63 jmcneill }
1786 1.63 jmcneill
1787 1.7 nonaka return error;
1788 1.7 nonaka }
1789 1.7 nonaka
1790 1.7 nonaka static int
1791 1.1 nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1792 1.1 nonaka {
1793 1.1 nonaka uint8_t *data = cmd->c_data;
1794 1.12 nonaka void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1795 1.11 matt u_int len, datalen;
1796 1.11 matt u_int imask;
1797 1.11 matt u_int pmask;
1798 1.1 nonaka int error = 0;
1799 1.1 nonaka
1800 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
1801 1.78 mlelstv
1802 1.11 matt if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1803 1.11 matt imask = SDHC_BUFFER_READ_READY;
1804 1.11 matt pmask = SDHC_BUFFER_READ_ENABLE;
1805 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1806 1.11 matt pio_func = esdhc_read_data_pio;
1807 1.11 matt } else {
1808 1.11 matt pio_func = sdhc_read_data_pio;
1809 1.11 matt }
1810 1.11 matt } else {
1811 1.11 matt imask = SDHC_BUFFER_WRITE_READY;
1812 1.11 matt pmask = SDHC_BUFFER_WRITE_ENABLE;
1813 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1814 1.11 matt pio_func = esdhc_write_data_pio;
1815 1.11 matt } else {
1816 1.11 matt pio_func = sdhc_write_data_pio;
1817 1.11 matt }
1818 1.11 matt }
1819 1.1 nonaka datalen = cmd->c_datalen;
1820 1.1 nonaka
1821 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
1822 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1823 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1824 1.11 matt KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1825 1.11 matt
1826 1.1 nonaka while (datalen > 0) {
1827 1.11 matt if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1828 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1829 1.11 matt HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1830 1.11 matt } else {
1831 1.11 matt HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1832 1.11 matt }
1833 1.11 matt if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1834 1.84 mlelstv DPRINTF(1,("%s: timeout\n", __func__));
1835 1.11 matt error = ETIMEDOUT;
1836 1.11 matt break;
1837 1.11 matt }
1838 1.11 matt
1839 1.11 matt error = sdhc_wait_state(hp, pmask, pmask);
1840 1.11 matt if (error)
1841 1.11 matt break;
1842 1.1 nonaka }
1843 1.1 nonaka
1844 1.1 nonaka len = MIN(datalen, cmd->c_blklen);
1845 1.11 matt (*pio_func)(hp, data, len);
1846 1.11 matt DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1847 1.11 matt HDEVNAME(hp), len, data));
1848 1.1 nonaka
1849 1.1 nonaka data += len;
1850 1.1 nonaka datalen -= len;
1851 1.1 nonaka }
1852 1.1 nonaka
1853 1.1 nonaka if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1854 1.84 mlelstv SDHC_TRANSFER_TIMEOUT)) {
1855 1.84 mlelstv DPRINTF(1,("%s: timeout for transfer\n", __func__));
1856 1.1 nonaka error = ETIMEDOUT;
1857 1.84 mlelstv }
1858 1.1 nonaka
1859 1.1 nonaka return error;
1860 1.1 nonaka }
1861 1.1 nonaka
1862 1.1 nonaka static void
1863 1.11 matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1864 1.1 nonaka {
1865 1.1 nonaka
1866 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1867 1.1 nonaka while (datalen > 3) {
1868 1.29 matt *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1869 1.1 nonaka data += 4;
1870 1.1 nonaka datalen -= 4;
1871 1.1 nonaka }
1872 1.1 nonaka if (datalen > 1) {
1873 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1874 1.1 nonaka data += 2;
1875 1.1 nonaka datalen -= 2;
1876 1.1 nonaka }
1877 1.1 nonaka if (datalen > 0) {
1878 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1879 1.1 nonaka data += 1;
1880 1.1 nonaka datalen -= 1;
1881 1.1 nonaka }
1882 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1883 1.1 nonaka while (datalen > 1) {
1884 1.29 matt *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1885 1.1 nonaka data += 2;
1886 1.1 nonaka datalen -= 2;
1887 1.1 nonaka }
1888 1.1 nonaka if (datalen > 0) {
1889 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1890 1.1 nonaka data += 1;
1891 1.1 nonaka datalen -= 1;
1892 1.1 nonaka }
1893 1.1 nonaka } else {
1894 1.1 nonaka while (datalen > 0) {
1895 1.1 nonaka *data = HREAD1(hp, SDHC_DATA);
1896 1.1 nonaka data += 1;
1897 1.1 nonaka datalen -= 1;
1898 1.1 nonaka }
1899 1.1 nonaka }
1900 1.1 nonaka }
1901 1.1 nonaka
1902 1.1 nonaka static void
1903 1.11 matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1904 1.1 nonaka {
1905 1.1 nonaka
1906 1.1 nonaka if (((__uintptr_t)data & 3) == 0) {
1907 1.1 nonaka while (datalen > 3) {
1908 1.29 matt HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1909 1.1 nonaka data += 4;
1910 1.1 nonaka datalen -= 4;
1911 1.1 nonaka }
1912 1.1 nonaka if (datalen > 1) {
1913 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1914 1.1 nonaka data += 2;
1915 1.1 nonaka datalen -= 2;
1916 1.1 nonaka }
1917 1.1 nonaka if (datalen > 0) {
1918 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1919 1.1 nonaka data += 1;
1920 1.1 nonaka datalen -= 1;
1921 1.1 nonaka }
1922 1.1 nonaka } else if (((__uintptr_t)data & 1) == 0) {
1923 1.1 nonaka while (datalen > 1) {
1924 1.29 matt HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1925 1.1 nonaka data += 2;
1926 1.1 nonaka datalen -= 2;
1927 1.1 nonaka }
1928 1.1 nonaka if (datalen > 0) {
1929 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1930 1.1 nonaka data += 1;
1931 1.1 nonaka datalen -= 1;
1932 1.1 nonaka }
1933 1.1 nonaka } else {
1934 1.1 nonaka while (datalen > 0) {
1935 1.1 nonaka HWRITE1(hp, SDHC_DATA, *data);
1936 1.1 nonaka data += 1;
1937 1.1 nonaka datalen -= 1;
1938 1.1 nonaka }
1939 1.1 nonaka }
1940 1.1 nonaka }
1941 1.1 nonaka
1942 1.11 matt static void
1943 1.11 matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1944 1.11 matt {
1945 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1946 1.12 nonaka uint32_t v;
1947 1.12 nonaka
1948 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1949 1.23 matt size_t count = 0;
1950 1.23 matt
1951 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1952 1.23 matt if (count == 0) {
1953 1.23 matt /*
1954 1.23 matt * If we've drained "watermark" words, we need to wait
1955 1.23 matt * a little bit so the read FIFO can refill.
1956 1.23 matt */
1957 1.23 matt sdmmc_delay(10);
1958 1.23 matt count = watermark;
1959 1.23 matt }
1960 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1961 1.11 matt v = le32toh(v);
1962 1.11 matt *(uint32_t *)data = v;
1963 1.11 matt data += 4;
1964 1.11 matt datalen -= 4;
1965 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
1966 1.23 matt count--;
1967 1.11 matt }
1968 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1969 1.23 matt if (count == 0) {
1970 1.23 matt sdmmc_delay(10);
1971 1.23 matt }
1972 1.12 nonaka v = HREAD4(hp, SDHC_DATA);
1973 1.11 matt v = le32toh(v);
1974 1.11 matt do {
1975 1.11 matt *data++ = v;
1976 1.11 matt v >>= 8;
1977 1.11 matt } while (--datalen > 0);
1978 1.11 matt }
1979 1.11 matt }
1980 1.11 matt
1981 1.11 matt static void
1982 1.11 matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1983 1.11 matt {
1984 1.11 matt uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1985 1.12 nonaka uint32_t v;
1986 1.12 nonaka
1987 1.23 matt const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1988 1.23 matt size_t count = watermark;
1989 1.23 matt
1990 1.11 matt while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1991 1.23 matt if (count == 0) {
1992 1.23 matt sdmmc_delay(10);
1993 1.23 matt count = watermark;
1994 1.23 matt }
1995 1.12 nonaka v = *(uint32_t *)data;
1996 1.11 matt v = htole32(v);
1997 1.11 matt HWRITE4(hp, SDHC_DATA, v);
1998 1.11 matt data += 4;
1999 1.11 matt datalen -= 4;
2000 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
2001 1.23 matt count--;
2002 1.11 matt }
2003 1.11 matt if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2004 1.23 matt if (count == 0) {
2005 1.23 matt sdmmc_delay(10);
2006 1.23 matt }
2007 1.12 nonaka v = *(uint32_t *)data;
2008 1.11 matt v = htole32(v);
2009 1.11 matt HWRITE4(hp, SDHC_DATA, v);
2010 1.11 matt }
2011 1.11 matt }
2012 1.11 matt
2013 1.1 nonaka /* Prepare for another command. */
2014 1.1 nonaka static int
2015 1.1 nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
2016 1.1 nonaka {
2017 1.1 nonaka int timo;
2018 1.1 nonaka
2019 1.78 mlelstv KASSERT(mutex_owned(&hp->intr_lock));
2020 1.78 mlelstv
2021 1.1 nonaka DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
2022 1.1 nonaka
2023 1.35 riastrad /* Request the reset. */
2024 1.1 nonaka HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
2025 1.35 riastrad
2026 1.35 riastrad /*
2027 1.35 riastrad * If necessary, wait for the controller to set the bits to
2028 1.35 riastrad * acknowledge the reset.
2029 1.35 riastrad */
2030 1.35 riastrad if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
2031 1.35 riastrad ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
2032 1.35 riastrad for (timo = 10000; timo > 0; timo--) {
2033 1.35 riastrad if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2034 1.35 riastrad break;
2035 1.35 riastrad /* Short delay because I worry we may miss it... */
2036 1.35 riastrad sdmmc_delay(1);
2037 1.35 riastrad }
2038 1.35 riastrad if (timo == 0)
2039 1.84 mlelstv DPRINTF(1,("%s: timeout for reset on\n", __func__));
2040 1.35 riastrad return ETIMEDOUT;
2041 1.35 riastrad }
2042 1.35 riastrad
2043 1.35 riastrad /*
2044 1.35 riastrad * Wait for the controller to clear the bits to indicate that
2045 1.35 riastrad * the reset has completed.
2046 1.35 riastrad */
2047 1.1 nonaka for (timo = 10; timo > 0; timo--) {
2048 1.1 nonaka if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2049 1.1 nonaka break;
2050 1.1 nonaka sdmmc_delay(10000);
2051 1.1 nonaka }
2052 1.1 nonaka if (timo == 0) {
2053 1.1 nonaka DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
2054 1.1 nonaka HREAD1(hp, SDHC_SOFTWARE_RESET)));
2055 1.1 nonaka return ETIMEDOUT;
2056 1.1 nonaka }
2057 1.1 nonaka
2058 1.11 matt if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2059 1.53 nonaka HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
2060 1.11 matt }
2061 1.11 matt
2062 1.1 nonaka return 0;
2063 1.1 nonaka }
2064 1.1 nonaka
2065 1.1 nonaka static int
2066 1.1 nonaka sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
2067 1.1 nonaka {
2068 1.84 mlelstv int status, error, nointr;
2069 1.1 nonaka
2070 1.65 jmcneill KASSERT(mutex_owned(&hp->intr_lock));
2071 1.65 jmcneill
2072 1.1 nonaka mask |= SDHC_ERROR_INTERRUPT;
2073 1.1 nonaka
2074 1.84 mlelstv nointr = 0;
2075 1.1 nonaka status = hp->intr_status & mask;
2076 1.1 nonaka while (status == 0) {
2077 1.65 jmcneill if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
2078 1.1 nonaka == EWOULDBLOCK) {
2079 1.84 mlelstv nointr = 1;
2080 1.1 nonaka break;
2081 1.1 nonaka }
2082 1.1 nonaka status = hp->intr_status & mask;
2083 1.1 nonaka }
2084 1.84 mlelstv error = hp->intr_error_status;
2085 1.84 mlelstv
2086 1.84 mlelstv DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2087 1.84 mlelstv error));
2088 1.84 mlelstv
2089 1.1 nonaka hp->intr_status &= ~status;
2090 1.84 mlelstv hp->intr_error_status &= ~error;
2091 1.1 nonaka
2092 1.84 mlelstv if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2093 1.84 mlelstv if (ISSET(error, SDHC_DMA_ERROR))
2094 1.84 mlelstv device_printf(hp->sc->sc_dev,"dma error\n");
2095 1.84 mlelstv if (ISSET(error, SDHC_ADMA_ERROR))
2096 1.84 mlelstv device_printf(hp->sc->sc_dev,"adma error\n");
2097 1.84 mlelstv if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
2098 1.84 mlelstv device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
2099 1.84 mlelstv if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
2100 1.84 mlelstv device_printf(hp->sc->sc_dev,"current limit error\n");
2101 1.84 mlelstv if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
2102 1.84 mlelstv device_printf(hp->sc->sc_dev,"data end bit error\n");
2103 1.84 mlelstv if (ISSET(error, SDHC_DATA_CRC_ERROR))
2104 1.84 mlelstv device_printf(hp->sc->sc_dev,"data crc error\n");
2105 1.84 mlelstv if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
2106 1.84 mlelstv device_printf(hp->sc->sc_dev,"data timeout error\n");
2107 1.84 mlelstv if (ISSET(error, SDHC_CMD_INDEX_ERROR))
2108 1.84 mlelstv device_printf(hp->sc->sc_dev,"cmd index error\n");
2109 1.84 mlelstv if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
2110 1.84 mlelstv device_printf(hp->sc->sc_dev,"cmd end bit error\n");
2111 1.84 mlelstv if (ISSET(error, SDHC_CMD_CRC_ERROR))
2112 1.84 mlelstv device_printf(hp->sc->sc_dev,"cmd crc error\n");
2113 1.84 mlelstv if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
2114 1.84 mlelstv device_printf(hp->sc->sc_dev,"cmd timeout error\n");
2115 1.84 mlelstv if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
2116 1.84 mlelstv device_printf(hp->sc->sc_dev,"vendor error %#x\n",
2117 1.84 mlelstv (error & ~SDHC_EINTR_STATUS_MASK));
2118 1.84 mlelstv if (error == 0)
2119 1.84 mlelstv device_printf(hp->sc->sc_dev,"no error\n");
2120 1.84 mlelstv
2121 1.84 mlelstv /* Command timeout has higher priority than command complete. */
2122 1.84 mlelstv if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
2123 1.84 mlelstv CLR(status, SDHC_COMMAND_COMPLETE);
2124 1.84 mlelstv
2125 1.84 mlelstv /* Transfer complete has higher priority than data timeout. */
2126 1.84 mlelstv if (ISSET(status, SDHC_TRANSFER_COMPLETE))
2127 1.84 mlelstv CLR(error, SDHC_DATA_TIMEOUT_ERROR);
2128 1.84 mlelstv }
2129 1.47 skrll
2130 1.84 mlelstv if (nointr ||
2131 1.84 mlelstv (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
2132 1.84 mlelstv if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2133 1.84 mlelstv (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
2134 1.1 nonaka hp->intr_error_status = 0;
2135 1.1 nonaka status = 0;
2136 1.1 nonaka }
2137 1.1 nonaka
2138 1.1 nonaka return status;
2139 1.1 nonaka }
2140 1.1 nonaka
2141 1.1 nonaka /*
2142 1.1 nonaka * Established by attachment driver at interrupt priority IPL_SDMMC.
2143 1.1 nonaka */
2144 1.1 nonaka int
2145 1.1 nonaka sdhc_intr(void *arg)
2146 1.1 nonaka {
2147 1.1 nonaka struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2148 1.1 nonaka struct sdhc_host *hp;
2149 1.1 nonaka int done = 0;
2150 1.1 nonaka uint16_t status;
2151 1.1 nonaka uint16_t error;
2152 1.1 nonaka
2153 1.1 nonaka /* We got an interrupt, but we don't know from which slot. */
2154 1.11 matt for (size_t host = 0; host < sc->sc_nhosts; host++) {
2155 1.1 nonaka hp = sc->sc_host[host];
2156 1.1 nonaka if (hp == NULL)
2157 1.1 nonaka continue;
2158 1.1 nonaka
2159 1.65 jmcneill mutex_enter(&hp->intr_lock);
2160 1.65 jmcneill
2161 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2162 1.11 matt /* Find out which interrupts are pending. */
2163 1.11 matt uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2164 1.11 matt status = xstatus;
2165 1.11 matt error = xstatus >> 16;
2166 1.87 mlelstv if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2167 1.87 mlelstv if ((error & SDHC_NINTR_STATUS_MASK) != 0)
2168 1.87 mlelstv SET(status, SDHC_ERROR_INTERRUPT);
2169 1.87 mlelstv }
2170 1.22 matt if (error)
2171 1.22 matt xstatus |= SDHC_ERROR_INTERRUPT;
2172 1.22 matt else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2173 1.65 jmcneill goto next_port; /* no interrupt for us */
2174 1.11 matt /* Acknowledge the interrupts we are about to handle. */
2175 1.11 matt HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2176 1.11 matt } else {
2177 1.11 matt /* Find out which interrupts are pending. */
2178 1.11 matt error = 0;
2179 1.11 matt status = HREAD2(hp, SDHC_NINTR_STATUS);
2180 1.11 matt if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2181 1.65 jmcneill goto next_port; /* no interrupt for us */
2182 1.11 matt /* Acknowledge the interrupts we are about to handle. */
2183 1.11 matt HWRITE2(hp, SDHC_NINTR_STATUS, status);
2184 1.11 matt if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2185 1.11 matt /* Acknowledge error interrupts. */
2186 1.11 matt error = HREAD2(hp, SDHC_EINTR_STATUS);
2187 1.11 matt HWRITE2(hp, SDHC_EINTR_STATUS, error);
2188 1.11 matt }
2189 1.11 matt }
2190 1.47 skrll
2191 1.11 matt DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2192 1.11 matt status, error));
2193 1.1 nonaka
2194 1.1 nonaka /* Claim this interrupt. */
2195 1.1 nonaka done = 1;
2196 1.1 nonaka
2197 1.84 mlelstv if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
2198 1.84 mlelstv ISSET(error, SDHC_ADMA_ERROR)) {
2199 1.63 jmcneill uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2200 1.63 jmcneill printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2201 1.63 jmcneill adma_err);
2202 1.63 jmcneill }
2203 1.63 jmcneill
2204 1.1 nonaka /*
2205 1.1 nonaka * Wake up the sdmmc event thread to scan for cards.
2206 1.1 nonaka */
2207 1.9 matt if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2208 1.46 jakllsch if (hp->sdmmc != NULL) {
2209 1.46 jakllsch sdmmc_needs_discover(hp->sdmmc);
2210 1.46 jakllsch }
2211 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2212 1.11 matt HCLR4(hp, SDHC_NINTR_STATUS_EN,
2213 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2214 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2215 1.11 matt status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2216 1.11 matt }
2217 1.9 matt }
2218 1.1 nonaka
2219 1.1 nonaka /*
2220 1.80 jmcneill * Schedule re-tuning process (UHS).
2221 1.80 jmcneill */
2222 1.80 jmcneill if (ISSET(status, SDHC_RETUNING_EVENT)) {
2223 1.80 jmcneill atomic_swap_uint(&hp->tuning_timer_pending, 1);
2224 1.80 jmcneill }
2225 1.80 jmcneill
2226 1.80 jmcneill /*
2227 1.1 nonaka * Wake up the blocking process to service command
2228 1.1 nonaka * related interrupt(s).
2229 1.1 nonaka */
2230 1.86 mlelstv if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
2231 1.11 matt SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2232 1.1 nonaka SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2233 1.84 mlelstv hp->intr_error_status |= error;
2234 1.1 nonaka hp->intr_status |= status;
2235 1.11 matt if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2236 1.11 matt HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2237 1.11 matt status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2238 1.11 matt }
2239 1.1 nonaka cv_broadcast(&hp->intr_cv);
2240 1.1 nonaka }
2241 1.1 nonaka
2242 1.1 nonaka /*
2243 1.1 nonaka * Service SD card interrupts.
2244 1.1 nonaka */
2245 1.11 matt if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
2246 1.11 matt && ISSET(status, SDHC_CARD_INTERRUPT)) {
2247 1.1 nonaka DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2248 1.1 nonaka HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2249 1.1 nonaka sdmmc_card_intr(hp->sdmmc);
2250 1.1 nonaka }
2251 1.65 jmcneill next_port:
2252 1.65 jmcneill mutex_exit(&hp->intr_lock);
2253 1.1 nonaka }
2254 1.1 nonaka
2255 1.1 nonaka return done;
2256 1.1 nonaka }
2257 1.1 nonaka
2258 1.65 jmcneill kmutex_t *
2259 1.65 jmcneill sdhc_host_lock(struct sdhc_host *hp)
2260 1.65 jmcneill {
2261 1.65 jmcneill return &hp->intr_lock;
2262 1.65 jmcneill }
2263 1.65 jmcneill
2264 1.1 nonaka #ifdef SDHC_DEBUG
2265 1.1 nonaka void
2266 1.1 nonaka sdhc_dump_regs(struct sdhc_host *hp)
2267 1.1 nonaka {
2268 1.1 nonaka
2269 1.1 nonaka printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2270 1.1 nonaka HREAD4(hp, SDHC_PRESENT_STATE));
2271 1.11 matt if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2272 1.11 matt printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2273 1.11 matt HREAD1(hp, SDHC_POWER_CTL));
2274 1.1 nonaka printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2275 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS));
2276 1.1 nonaka printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2277 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS));
2278 1.1 nonaka printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2279 1.1 nonaka HREAD2(hp, SDHC_NINTR_STATUS_EN));
2280 1.1 nonaka printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2281 1.1 nonaka HREAD2(hp, SDHC_EINTR_STATUS_EN));
2282 1.1 nonaka printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2283 1.1 nonaka HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2284 1.1 nonaka printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2285 1.1 nonaka HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2286 1.1 nonaka printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2287 1.1 nonaka HREAD4(hp, SDHC_CAPABILITIES));
2288 1.1 nonaka printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2289 1.1 nonaka HREAD4(hp, SDHC_MAX_CAPABILITIES));
2290 1.1 nonaka }
2291 1.1 nonaka #endif
2292