Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.96
      1  1.96  kiyohara /*	$NetBSD: sdhc.c,v 1.96 2017/01/07 15:00:38 kiyohara Exp $	*/
      2   1.1    nonaka /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3   1.1    nonaka 
      4   1.1    nonaka /*
      5   1.1    nonaka  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6   1.1    nonaka  *
      7   1.1    nonaka  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    nonaka  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    nonaka  * copyright notice and this permission notice appear in all copies.
     10   1.1    nonaka  *
     11   1.1    nonaka  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    nonaka  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    nonaka  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    nonaka  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    nonaka  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    nonaka  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    nonaka  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    nonaka  */
     19   1.1    nonaka 
     20   1.1    nonaka /*
     21   1.1    nonaka  * SD Host Controller driver based on the SD Host Controller Standard
     22   1.1    nonaka  * Simplified Specification Version 1.00 (www.sdcard.com).
     23   1.1    nonaka  */
     24   1.1    nonaka 
     25   1.1    nonaka #include <sys/cdefs.h>
     26  1.96  kiyohara __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.96 2017/01/07 15:00:38 kiyohara Exp $");
     27  1.10    nonaka 
     28  1.10    nonaka #ifdef _KERNEL_OPT
     29  1.10    nonaka #include "opt_sdmmc.h"
     30  1.10    nonaka #endif
     31   1.1    nonaka 
     32   1.1    nonaka #include <sys/param.h>
     33   1.1    nonaka #include <sys/device.h>
     34   1.1    nonaka #include <sys/kernel.h>
     35   1.1    nonaka #include <sys/malloc.h>
     36   1.1    nonaka #include <sys/systm.h>
     37   1.1    nonaka #include <sys/mutex.h>
     38   1.1    nonaka #include <sys/condvar.h>
     39  1.80  jmcneill #include <sys/atomic.h>
     40   1.1    nonaka 
     41   1.1    nonaka #include <dev/sdmmc/sdhcreg.h>
     42   1.1    nonaka #include <dev/sdmmc/sdhcvar.h>
     43   1.1    nonaka #include <dev/sdmmc/sdmmcchip.h>
     44   1.1    nonaka #include <dev/sdmmc/sdmmcreg.h>
     45   1.1    nonaka #include <dev/sdmmc/sdmmcvar.h>
     46   1.1    nonaka 
     47   1.1    nonaka #ifdef SDHC_DEBUG
     48   1.1    nonaka int sdhcdebug = 1;
     49   1.1    nonaka #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50   1.1    nonaka void	sdhc_dump_regs(struct sdhc_host *);
     51   1.1    nonaka #else
     52   1.1    nonaka #define DPRINTF(n,s)	do {} while (0)
     53   1.1    nonaka #endif
     54   1.1    nonaka 
     55   1.1    nonaka #define SDHC_COMMAND_TIMEOUT	hz
     56   1.1    nonaka #define SDHC_BUFFER_TIMEOUT	hz
     57   1.1    nonaka #define SDHC_TRANSFER_TIMEOUT	hz
     58  1.61  jmcneill #define SDHC_DMA_TIMEOUT	(hz*3)
     59  1.79  jmcneill #define SDHC_TUNING_TIMEOUT	hz
     60   1.1    nonaka 
     61   1.1    nonaka struct sdhc_host {
     62   1.1    nonaka 	struct sdhc_softc *sc;		/* host controller device */
     63   1.1    nonaka 
     64   1.1    nonaka 	bus_space_tag_t iot;		/* host register set tag */
     65   1.1    nonaka 	bus_space_handle_t ioh;		/* host register set handle */
     66  1.36  jakllsch 	bus_size_t ios;			/* host register space size */
     67   1.1    nonaka 	bus_dma_tag_t dmat;		/* host DMA tag */
     68   1.1    nonaka 
     69   1.1    nonaka 	device_t sdmmc;			/* generic SD/MMC device */
     70   1.1    nonaka 
     71   1.1    nonaka 	u_int clkbase;			/* base clock frequency in KHz */
     72   1.1    nonaka 	int maxblklen;			/* maximum block length */
     73   1.1    nonaka 	uint32_t ocr;			/* OCR value from capabilities */
     74   1.1    nonaka 
     75   1.1    nonaka 	uint8_t regs[14];		/* host controller state */
     76   1.1    nonaka 
     77   1.1    nonaka 	uint16_t intr_status;		/* soft interrupt status */
     78   1.1    nonaka 	uint16_t intr_error_status;	/* soft error status */
     79  1.65  jmcneill 	kmutex_t intr_lock;
     80  1.65  jmcneill 	kcondvar_t intr_cv;
     81   1.1    nonaka 
     82  1.80  jmcneill 	callout_t tuning_timer;
     83  1.80  jmcneill 	int tuning_timing;
     84  1.80  jmcneill 	u_int tuning_timer_count;
     85  1.80  jmcneill 	u_int tuning_timer_pending;
     86  1.80  jmcneill 
     87  1.12    nonaka 	int specver;			/* spec. version */
     88  1.12    nonaka 
     89   1.1    nonaka 	uint32_t flags;			/* flags for this host */
     90   1.1    nonaka #define SHF_USE_DMA		0x0001
     91   1.1    nonaka #define SHF_USE_4BIT_MODE	0x0002
     92  1.11      matt #define SHF_USE_8BIT_MODE	0x0004
     93  1.55    bouyer #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94  1.63  jmcneill #define SHF_USE_ADMA2_32	0x0010
     95  1.63  jmcneill #define SHF_USE_ADMA2_64	0x0020
     96  1.63  jmcneill #define SHF_USE_ADMA2_MASK	0x0030
     97  1.63  jmcneill 
     98  1.63  jmcneill 	bus_dmamap_t		adma_map;
     99  1.63  jmcneill 	bus_dma_segment_t	adma_segs[1];
    100  1.63  jmcneill 	void			*adma2;
    101   1.1    nonaka };
    102   1.1    nonaka 
    103   1.1    nonaka #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    104   1.1    nonaka 
    105  1.11      matt static uint8_t
    106  1.11      matt hread1(struct sdhc_host *hp, bus_size_t reg)
    107  1.11      matt {
    108  1.12    nonaka 
    109  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    110  1.11      matt 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    111  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    112  1.11      matt }
    113  1.11      matt 
    114  1.11      matt static uint16_t
    115  1.11      matt hread2(struct sdhc_host *hp, bus_size_t reg)
    116  1.11      matt {
    117  1.12    nonaka 
    118  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    119  1.11      matt 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    120  1.11      matt 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    121  1.11      matt }
    122  1.11      matt 
    123  1.11      matt #define HREAD1(hp, reg)		hread1(hp, reg)
    124  1.11      matt #define HREAD2(hp, reg)		hread2(hp, reg)
    125  1.11      matt #define HREAD4(hp, reg)		\
    126   1.1    nonaka 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    127  1.11      matt 
    128  1.11      matt 
    129  1.11      matt static void
    130  1.11      matt hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    131  1.11      matt {
    132  1.12    nonaka 
    133  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134  1.11      matt 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    135  1.11      matt 	} else {
    136  1.11      matt 		const size_t shift = 8 * (o & 3);
    137  1.11      matt 		o &= -4;
    138  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    140  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141  1.11      matt 	}
    142  1.11      matt }
    143  1.11      matt 
    144  1.11      matt static void
    145  1.11      matt hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    146  1.11      matt {
    147  1.12    nonaka 
    148  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    149  1.11      matt 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    150  1.11      matt 	} else {
    151  1.11      matt 		const size_t shift = 8 * (o & 2);
    152  1.11      matt 		o &= -4;
    153  1.11      matt 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    154  1.11      matt 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    155  1.11      matt 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    156  1.11      matt 	}
    157  1.11      matt }
    158  1.11      matt 
    159  1.11      matt #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    160  1.11      matt #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    161   1.1    nonaka #define HWRITE4(hp, reg, val)						\
    162   1.1    nonaka 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    163  1.11      matt 
    164   1.1    nonaka #define HCLR1(hp, reg, bits)						\
    165  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    166   1.1    nonaka #define HCLR2(hp, reg, bits)						\
    167  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    168  1.11      matt #define HCLR4(hp, reg, bits)						\
    169  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    170   1.1    nonaka #define HSET1(hp, reg, bits)						\
    171  1.11      matt 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    172   1.1    nonaka #define HSET2(hp, reg, bits)						\
    173  1.11      matt 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    174  1.11      matt #define HSET4(hp, reg, bits)						\
    175  1.11      matt 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    176   1.1    nonaka 
    177   1.1    nonaka static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    178   1.1    nonaka static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    179   1.1    nonaka static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    180   1.1    nonaka static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    181   1.1    nonaka static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    182   1.1    nonaka static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    183   1.1    nonaka static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    184  1.76  jmcneill static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    185   1.1    nonaka static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    186   1.8  kiyohara static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    187   1.1    nonaka static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    188   1.1    nonaka static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    189   1.1    nonaka static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    190   1.1    nonaka 		    struct sdmmc_command *);
    191  1.71  jmcneill static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    192  1.83   mlelstv static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    193  1.79  jmcneill static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    194  1.80  jmcneill static void	sdhc_tuning_timer(void *);
    195   1.1    nonaka static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    196   1.1    nonaka static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    197   1.1    nonaka static int	sdhc_soft_reset(struct sdhc_host *, int);
    198  1.88   mlelstv static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    199   1.1    nonaka static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    200   1.7    nonaka static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    201   1.1    nonaka static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    202  1.11      matt static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    203  1.11      matt static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    204  1.11      matt static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    205  1.11      matt static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    206  1.11      matt 
    207   1.1    nonaka static struct sdmmc_chip_functions sdhc_functions = {
    208   1.1    nonaka 	/* host controller reset */
    209  1.60     skrll 	.host_reset = sdhc_host_reset,
    210   1.1    nonaka 
    211   1.1    nonaka 	/* host controller capabilities */
    212  1.60     skrll 	.host_ocr = sdhc_host_ocr,
    213  1.60     skrll 	.host_maxblklen = sdhc_host_maxblklen,
    214   1.1    nonaka 
    215   1.1    nonaka 	/* card detection */
    216  1.60     skrll 	.card_detect = sdhc_card_detect,
    217   1.1    nonaka 
    218   1.1    nonaka 	/* write protect */
    219  1.60     skrll 	.write_protect = sdhc_write_protect,
    220   1.1    nonaka 
    221  1.60     skrll 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    222  1.60     skrll 	.bus_power = sdhc_bus_power,
    223  1.76  jmcneill 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    224  1.60     skrll 	.bus_width = sdhc_bus_width,
    225  1.60     skrll 	.bus_rod = sdhc_bus_rod,
    226   1.1    nonaka 
    227   1.1    nonaka 	/* command execution */
    228  1.60     skrll 	.exec_command = sdhc_exec_command,
    229   1.1    nonaka 
    230   1.1    nonaka 	/* card interrupt */
    231  1.60     skrll 	.card_enable_intr = sdhc_card_enable_intr,
    232  1.71  jmcneill 	.card_intr_ack = sdhc_card_intr_ack,
    233  1.71  jmcneill 
    234  1.71  jmcneill 	/* UHS functions */
    235  1.71  jmcneill 	.signal_voltage = sdhc_signal_voltage,
    236  1.76  jmcneill 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    237  1.79  jmcneill 	.execute_tuning = sdhc_execute_tuning,
    238   1.1    nonaka };
    239   1.1    nonaka 
    240  1.17  jakllsch static int
    241  1.17  jakllsch sdhc_cfprint(void *aux, const char *pnp)
    242  1.17  jakllsch {
    243  1.31     joerg 	const struct sdmmcbus_attach_args * const saa = aux;
    244  1.17  jakllsch 	const struct sdhc_host * const hp = saa->saa_sch;
    245  1.47     skrll 
    246  1.17  jakllsch 	if (pnp) {
    247  1.17  jakllsch 		aprint_normal("sdmmc at %s", pnp);
    248  1.17  jakllsch 	}
    249  1.41  jakllsch 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    250  1.41  jakllsch 		if (hp->sc->sc_host[host] == hp) {
    251  1.41  jakllsch 			aprint_normal(" slot %zu", host);
    252  1.41  jakllsch 		}
    253  1.41  jakllsch 	}
    254  1.17  jakllsch 
    255  1.17  jakllsch 	return UNCONF;
    256  1.17  jakllsch }
    257  1.17  jakllsch 
    258   1.1    nonaka /*
    259   1.1    nonaka  * Called by attachment driver.  For each SD card slot there is one SD
    260   1.1    nonaka  * host controller standard register set. (1.3)
    261   1.1    nonaka  */
    262   1.1    nonaka int
    263   1.1    nonaka sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    264   1.1    nonaka     bus_space_handle_t ioh, bus_size_t iosize)
    265   1.1    nonaka {
    266   1.1    nonaka 	struct sdmmcbus_attach_args saa;
    267   1.1    nonaka 	struct sdhc_host *hp;
    268  1.71  jmcneill 	uint32_t caps, caps2;
    269   1.1    nonaka 	uint16_t sdhcver;
    270  1.63  jmcneill 	int error;
    271   1.1    nonaka 
    272  1.33  riastrad 	/* Allocate one more host structure. */
    273  1.33  riastrad 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    274  1.33  riastrad 	if (hp == NULL) {
    275  1.33  riastrad 		aprint_error_dev(sc->sc_dev,
    276  1.33  riastrad 		    "couldn't alloc memory (sdhc host)\n");
    277  1.33  riastrad 		goto err1;
    278  1.33  riastrad 	}
    279  1.33  riastrad 	sc->sc_host[sc->sc_nhosts++] = hp;
    280  1.33  riastrad 
    281  1.33  riastrad 	/* Fill in the new host structure. */
    282  1.33  riastrad 	hp->sc = sc;
    283  1.33  riastrad 	hp->iot = iot;
    284  1.33  riastrad 	hp->ioh = ioh;
    285  1.36  jakllsch 	hp->ios = iosize;
    286  1.33  riastrad 	hp->dmat = sc->sc_dmat;
    287  1.33  riastrad 
    288  1.65  jmcneill 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    289  1.33  riastrad 	cv_init(&hp->intr_cv, "sdhcintr");
    290  1.80  jmcneill 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    291  1.80  jmcneill 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    292  1.33  riastrad 
    293  1.96  kiyohara 	if (iosize <= SDHC_HOST_CTL_VERSION) {
    294  1.96  kiyohara 		aprint_normal_dev(sc->sc_dev, "SDHC NO-VERS");
    295  1.96  kiyohara 		hp->specver = -1;
    296  1.52    nonaka 	} else {
    297  1.96  kiyohara 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    298  1.96  kiyohara 			sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    299  1.96  kiyohara 		} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    300  1.96  kiyohara 			sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    301  1.96  kiyohara 		} else
    302  1.96  kiyohara 			sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    303  1.96  kiyohara 		aprint_normal_dev(sc->sc_dev, "SDHC ");
    304  1.96  kiyohara 		hp->specver = SDHC_SPEC_VERSION(sdhcver);
    305  1.96  kiyohara 		switch (SDHC_SPEC_VERSION(sdhcver)) {
    306  1.96  kiyohara 		case SDHC_SPEC_VERS_100:
    307  1.96  kiyohara 			aprint_normal("1.0");
    308  1.96  kiyohara 			break;
    309  1.12    nonaka 
    310  1.96  kiyohara 		case SDHC_SPEC_VERS_200:
    311  1.96  kiyohara 			aprint_normal("2.0");
    312  1.96  kiyohara 			break;
    313   1.1    nonaka 
    314  1.96  kiyohara 		case SDHC_SPEC_VERS_300:
    315  1.96  kiyohara 			aprint_normal("3.0");
    316  1.96  kiyohara 			break;
    317   1.9      matt 
    318  1.96  kiyohara 		case SDHC_SPEC_VERS_400:
    319  1.96  kiyohara 			aprint_normal("4.0");
    320  1.96  kiyohara 			break;
    321  1.56  jmcneill 
    322  1.96  kiyohara 		default:
    323  1.96  kiyohara 			aprint_normal("unknown version(0x%x)",
    324  1.96  kiyohara 			    SDHC_SPEC_VERSION(sdhcver));
    325  1.96  kiyohara 			break;
    326  1.96  kiyohara 		}
    327  1.96  kiyohara 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    328   1.1    nonaka 	}
    329   1.1    nonaka 
    330   1.1    nonaka 	/*
    331   1.3  uebayasi 	 * Reset the host controller and enable interrupts.
    332   1.1    nonaka 	 */
    333   1.1    nonaka 	(void)sdhc_host_reset(hp);
    334   1.1    nonaka 
    335  1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    336  1.93       ryo 		/* init uSDHC registers */
    337  1.93       ryo 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    338  1.93       ryo 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    339  1.93       ryo 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    340  1.93       ryo 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    341  1.93       ryo 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    342  1.93       ryo 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    343  1.93       ryo 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    344  1.93       ryo 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    345  1.93       ryo 		HSET4(hp, SDHC_VEND_SPEC,
    346  1.93       ryo 		    SDHC_VEND_SPEC_MBO |
    347  1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    348  1.93       ryo 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    349  1.93       ryo 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    350  1.93       ryo 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    351  1.93       ryo 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    352  1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    353  1.93       ryo 	}
    354  1.93       ryo 
    355   1.1    nonaka 	/* Determine host capabilities. */
    356  1.24     skrll 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    357  1.24     skrll 		caps = sc->sc_caps;
    358  1.72  jmcneill 		caps2 = sc->sc_caps2;
    359  1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    360  1.93       ryo 		/* uSDHC capability register is little bit different */
    361  1.93       ryo 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    362  1.93       ryo 		caps |= SDHC_8BIT_SUPP;
    363  1.93       ryo 		if (caps & SDHC_ADMA1_SUPP)
    364  1.93       ryo 			caps |= SDHC_ADMA2_SUPP;
    365  1.93       ryo 		sc->sc_caps = caps;
    366  1.93       ryo 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    367  1.93       ryo 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    368  1.24     skrll 	} else {
    369  1.79  jmcneill 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    370  1.72  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    371  1.79  jmcneill 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    372  1.72  jmcneill 		} else {
    373  1.79  jmcneill 			caps2 = sc->sc_caps2 = 0;
    374  1.72  jmcneill 		}
    375  1.71  jmcneill 	}
    376   1.1    nonaka 
    377  1.80  jmcneill 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    378  1.80  jmcneill 	    SDHC_RETUNING_MODES_MASK;
    379  1.80  jmcneill 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    380  1.80  jmcneill 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    381  1.80  jmcneill 		    SDHC_TIMER_COUNT_MASK;
    382  1.80  jmcneill 		if (hp->tuning_timer_count == 0xf)
    383  1.80  jmcneill 			hp->tuning_timer_count = 0;
    384  1.80  jmcneill 		if (hp->tuning_timer_count)
    385  1.80  jmcneill 			hp->tuning_timer_count =
    386  1.80  jmcneill 			    1 << (hp->tuning_timer_count - 1);
    387  1.80  jmcneill 	}
    388  1.80  jmcneill 
    389  1.55    bouyer 	/*
    390  1.55    bouyer 	 * Use DMA if the host system and the controller support it.
    391  1.55    bouyer 	 * Suports integrated or external DMA egine, with or without
    392  1.55    bouyer 	 * SDHC_DMA_ENABLE in the command.
    393  1.55    bouyer 	 */
    394  1.28      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    395  1.27  jakllsch 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    396  1.28      matt 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    397   1.1    nonaka 		SET(hp->flags, SHF_USE_DMA);
    398  1.63  jmcneill 
    399  1.63  jmcneill 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    400  1.63  jmcneill 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    401  1.55    bouyer 			SET(hp->flags, SHF_MODE_DMAEN);
    402  1.63  jmcneill 			/*
    403  1.63  jmcneill 			 * 64-bit mode was present in the 2.00 spec, removed
    404  1.63  jmcneill 			 * from 3.00, and re-added in 4.00 with a different
    405  1.63  jmcneill 			 * descriptor layout. We only support 2.00 and 3.00
    406  1.63  jmcneill 			 * descriptors for now.
    407  1.63  jmcneill 			 */
    408  1.63  jmcneill 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    409  1.63  jmcneill 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    410  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_64);
    411  1.63  jmcneill 				aprint_normal(", 64-bit ADMA2");
    412  1.63  jmcneill 			} else {
    413  1.63  jmcneill 				SET(hp->flags, SHF_USE_ADMA2_32);
    414  1.63  jmcneill 				aprint_normal(", 32-bit ADMA2");
    415  1.63  jmcneill 			}
    416  1.63  jmcneill 		} else {
    417  1.63  jmcneill 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    418  1.63  jmcneill 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    419  1.63  jmcneill 				SET(hp->flags, SHF_MODE_DMAEN);
    420  1.64  jmcneill 			if (sc->sc_vendor_transfer_data_dma) {
    421  1.64  jmcneill 				aprint_normal(", platform DMA");
    422  1.64  jmcneill 			} else {
    423  1.64  jmcneill 				aprint_normal(", SDMA");
    424  1.64  jmcneill 			}
    425  1.63  jmcneill 		}
    426  1.58  jmcneill 	} else {
    427  1.58  jmcneill 		aprint_normal(", PIO");
    428   1.1    nonaka 	}
    429   1.1    nonaka 
    430   1.1    nonaka 	/*
    431   1.1    nonaka 	 * Determine the base clock frequency. (2.2.24)
    432   1.1    nonaka 	 */
    433  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    434  1.30      matt 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    435  1.30      matt 	} else {
    436  1.30      matt 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    437  1.30      matt 	}
    438  1.56  jmcneill 	if (hp->clkbase == 0 ||
    439  1.56  jmcneill 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    440   1.9      matt 		if (sc->sc_clkbase == 0) {
    441   1.9      matt 			/* The attachment driver must tell us. */
    442  1.12    nonaka 			aprint_error_dev(sc->sc_dev,
    443  1.12    nonaka 			    "unknown base clock frequency\n");
    444   1.9      matt 			goto err;
    445   1.9      matt 		}
    446   1.9      matt 		hp->clkbase = sc->sc_clkbase;
    447   1.9      matt 	}
    448   1.9      matt 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    449   1.1    nonaka 		/* SDHC 1.0 supports only 10-63 MHz. */
    450   1.1    nonaka 		aprint_error_dev(sc->sc_dev,
    451   1.1    nonaka 		    "base clock frequency out of range: %u MHz\n",
    452   1.1    nonaka 		    hp->clkbase / 1000);
    453   1.1    nonaka 		goto err;
    454   1.1    nonaka 	}
    455  1.58  jmcneill 	aprint_normal(", %u kHz", hp->clkbase);
    456   1.1    nonaka 
    457   1.1    nonaka 	/*
    458   1.1    nonaka 	 * XXX Set the data timeout counter value according to
    459   1.1    nonaka 	 * capabilities. (2.2.15)
    460   1.1    nonaka 	 */
    461   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    462  1.29      matt #if 1
    463  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    464  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    465  1.11      matt #endif
    466   1.1    nonaka 
    467  1.58  jmcneill 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    468  1.58  jmcneill 		aprint_normal(", embedded slot");
    469  1.58  jmcneill 
    470   1.1    nonaka 	/*
    471   1.1    nonaka 	 * Determine SD bus voltage levels supported by the controller.
    472   1.1    nonaka 	 */
    473  1.58  jmcneill 	aprint_normal(",");
    474  1.66  jmcneill 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    475  1.66  jmcneill 		SET(hp->ocr, MMC_OCR_HCS);
    476  1.71  jmcneill 		aprint_normal(" HS");
    477  1.71  jmcneill 	}
    478  1.71  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    479  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    480  1.71  jmcneill 		aprint_normal(" SDR50");
    481  1.71  jmcneill 	}
    482  1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    483  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    484  1.76  jmcneill 		aprint_normal(" DDR50");
    485  1.71  jmcneill 	}
    486  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    487  1.71  jmcneill 		SET(hp->ocr, MMC_OCR_S18A);
    488  1.76  jmcneill 		aprint_normal(" SDR104 HS200");
    489  1.66  jmcneill 	}
    490  1.71  jmcneill 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    491  1.95    nonaka 		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    492  1.58  jmcneill 		aprint_normal(" 1.8V");
    493  1.11      matt 	}
    494  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    495   1.1    nonaka 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    496  1.58  jmcneill 		aprint_normal(" 3.0V");
    497  1.11      matt 	}
    498  1.11      matt 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    499   1.1    nonaka 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    500  1.58  jmcneill 		aprint_normal(" 3.3V");
    501  1.11      matt 	}
    502  1.80  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    503  1.80  jmcneill 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    504  1.80  jmcneill 		if (hp->tuning_timer_count)
    505  1.80  jmcneill 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    506  1.80  jmcneill 	}
    507   1.1    nonaka 
    508   1.1    nonaka 	/*
    509   1.1    nonaka 	 * Determine the maximum block length supported by the host
    510   1.1    nonaka 	 * controller. (2.2.24)
    511   1.1    nonaka 	 */
    512   1.1    nonaka 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    513   1.1    nonaka 	case SDHC_MAX_BLK_LEN_512:
    514   1.1    nonaka 		hp->maxblklen = 512;
    515   1.1    nonaka 		break;
    516   1.1    nonaka 
    517   1.1    nonaka 	case SDHC_MAX_BLK_LEN_1024:
    518   1.1    nonaka 		hp->maxblklen = 1024;
    519   1.1    nonaka 		break;
    520   1.1    nonaka 
    521   1.1    nonaka 	case SDHC_MAX_BLK_LEN_2048:
    522   1.1    nonaka 		hp->maxblklen = 2048;
    523   1.1    nonaka 		break;
    524   1.1    nonaka 
    525   1.9      matt 	case SDHC_MAX_BLK_LEN_4096:
    526   1.9      matt 		hp->maxblklen = 4096;
    527   1.9      matt 		break;
    528   1.9      matt 
    529   1.1    nonaka 	default:
    530   1.1    nonaka 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    531   1.1    nonaka 		goto err;
    532   1.1    nonaka 	}
    533  1.58  jmcneill 	aprint_normal(", %u byte blocks", hp->maxblklen);
    534  1.58  jmcneill 	aprint_normal("\n");
    535   1.1    nonaka 
    536  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    537  1.63  jmcneill 		int rseg;
    538  1.63  jmcneill 
    539  1.63  jmcneill 		/* Allocate ADMA2 descriptor memory */
    540  1.63  jmcneill 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    541  1.63  jmcneill 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    542  1.63  jmcneill 		if (error) {
    543  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    544  1.63  jmcneill 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    545  1.63  jmcneill 			goto adma_done;
    546  1.63  jmcneill 		}
    547  1.63  jmcneill 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    548  1.63  jmcneill 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    549  1.63  jmcneill 		if (error) {
    550  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    551  1.63  jmcneill 			    "ADMA2 dmamem_map failed (%d)\n", error);
    552  1.63  jmcneill 			goto adma_done;
    553  1.63  jmcneill 		}
    554  1.63  jmcneill 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    555  1.63  jmcneill 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    556  1.63  jmcneill 		if (error) {
    557  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    558  1.63  jmcneill 			    "ADMA2 dmamap_create failed (%d)\n", error);
    559  1.63  jmcneill 			goto adma_done;
    560  1.63  jmcneill 		}
    561  1.63  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    562  1.63  jmcneill 		    hp->adma2, PAGE_SIZE, NULL,
    563  1.63  jmcneill 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    564  1.63  jmcneill 		if (error) {
    565  1.63  jmcneill 			aprint_error_dev(sc->sc_dev,
    566  1.63  jmcneill 			    "ADMA2 dmamap_load failed (%d)\n", error);
    567  1.63  jmcneill 			goto adma_done;
    568  1.63  jmcneill 		}
    569  1.63  jmcneill 
    570  1.63  jmcneill 		memset(hp->adma2, 0, PAGE_SIZE);
    571  1.63  jmcneill 
    572  1.63  jmcneill adma_done:
    573  1.63  jmcneill 		if (error)
    574  1.63  jmcneill 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    575  1.63  jmcneill 	}
    576  1.63  jmcneill 
    577   1.1    nonaka 	/*
    578   1.1    nonaka 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    579   1.1    nonaka 	 * not invoke any chipset functions before it is attached.)
    580   1.1    nonaka 	 */
    581   1.1    nonaka 	memset(&saa, 0, sizeof(saa));
    582   1.1    nonaka 	saa.saa_busname = "sdmmc";
    583   1.1    nonaka 	saa.saa_sct = &sdhc_functions;
    584   1.1    nonaka 	saa.saa_sch = hp;
    585   1.1    nonaka 	saa.saa_dmat = hp->dmat;
    586   1.1    nonaka 	saa.saa_clkmax = hp->clkbase;
    587  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    588  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    589  1.11      matt 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    590  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    591  1.38  jakllsch 	else if (hp->sc->sc_clkmsk != 0)
    592  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    593  1.38  jakllsch 		    (ffs(hp->sc->sc_clkmsk) - 1));
    594  1.56  jmcneill 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    595  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    596  1.38  jakllsch 	else
    597  1.38  jakllsch 		saa.saa_clkmin = hp->clkbase / 256;
    598   1.1    nonaka 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    599  1.11      matt 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    600  1.11      matt 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    601  1.11      matt 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    602  1.11      matt 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    603  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    604  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    605  1.76  jmcneill 				SMC_CAPS_UHS_SDR50 |
    606  1.76  jmcneill 				SMC_CAPS_MMC_HS200;
    607  1.76  jmcneill 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    608  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    609  1.76  jmcneill 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    610  1.76  jmcneill 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    611  1.26      matt 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    612  1.54    nonaka 		saa.saa_caps |= SMC_CAPS_DMA;
    613  1.54    nonaka 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    614  1.54    nonaka 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    615  1.26      matt 	}
    616  1.32  kiyohara 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    617  1.32  kiyohara 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    618  1.77  jmcneill 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    619  1.77  jmcneill 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    620  1.17  jakllsch 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    621   1.1    nonaka 
    622   1.1    nonaka 	return 0;
    623   1.1    nonaka 
    624   1.1    nonaka err:
    625  1.80  jmcneill 	callout_destroy(&hp->tuning_timer);
    626   1.1    nonaka 	cv_destroy(&hp->intr_cv);
    627  1.65  jmcneill 	mutex_destroy(&hp->intr_lock);
    628   1.1    nonaka 	free(hp, M_DEVBUF);
    629   1.1    nonaka 	sc->sc_host[--sc->sc_nhosts] = NULL;
    630   1.1    nonaka err1:
    631   1.1    nonaka 	return 1;
    632   1.1    nonaka }
    633   1.1    nonaka 
    634   1.7    nonaka int
    635  1.36  jakllsch sdhc_detach(struct sdhc_softc *sc, int flags)
    636   1.7    nonaka {
    637  1.36  jakllsch 	struct sdhc_host *hp;
    638   1.7    nonaka 	int rv = 0;
    639   1.7    nonaka 
    640  1.36  jakllsch 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    641  1.36  jakllsch 		hp = sc->sc_host[n];
    642  1.36  jakllsch 		if (hp == NULL)
    643  1.36  jakllsch 			continue;
    644  1.36  jakllsch 		if (hp->sdmmc != NULL) {
    645  1.36  jakllsch 			rv = config_detach(hp->sdmmc, flags);
    646  1.36  jakllsch 			if (rv)
    647  1.36  jakllsch 				break;
    648  1.36  jakllsch 			hp->sdmmc = NULL;
    649  1.36  jakllsch 		}
    650  1.36  jakllsch 		/* disable interrupts */
    651  1.36  jakllsch 		if ((flags & DETACH_FORCE) == 0) {
    652  1.78   mlelstv 			mutex_enter(&hp->intr_lock);
    653  1.36  jakllsch 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    654  1.36  jakllsch 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    655  1.36  jakllsch 			} else {
    656  1.36  jakllsch 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    657  1.36  jakllsch 			}
    658  1.36  jakllsch 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    659  1.78   mlelstv 			mutex_exit(&hp->intr_lock);
    660  1.36  jakllsch 		}
    661  1.80  jmcneill 		callout_halt(&hp->tuning_timer, NULL);
    662  1.80  jmcneill 		callout_destroy(&hp->tuning_timer);
    663  1.36  jakllsch 		cv_destroy(&hp->intr_cv);
    664  1.65  jmcneill 		mutex_destroy(&hp->intr_lock);
    665  1.36  jakllsch 		if (hp->ios > 0) {
    666  1.36  jakllsch 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    667  1.36  jakllsch 			hp->ios = 0;
    668  1.36  jakllsch 		}
    669  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    670  1.63  jmcneill 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    671  1.63  jmcneill 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    672  1.63  jmcneill 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    673  1.63  jmcneill 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    674  1.63  jmcneill 		}
    675  1.36  jakllsch 		free(hp, M_DEVBUF);
    676  1.36  jakllsch 		sc->sc_host[n] = NULL;
    677  1.36  jakllsch 	}
    678   1.7    nonaka 
    679   1.7    nonaka 	return rv;
    680   1.7    nonaka }
    681   1.7    nonaka 
    682   1.1    nonaka bool
    683   1.6    dyoung sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    684   1.1    nonaka {
    685   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    686   1.1    nonaka 	struct sdhc_host *hp;
    687  1.12    nonaka 	size_t i;
    688   1.1    nonaka 
    689   1.1    nonaka 	/* XXX poll for command completion or suspend command
    690   1.1    nonaka 	 * in progress */
    691   1.1    nonaka 
    692   1.1    nonaka 	/* Save the host controller state. */
    693  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    694   1.1    nonaka 		hp = sc->sc_host[n];
    695  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    696  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    697  1.11      matt 				uint32_t v = HREAD4(hp, i);
    698  1.12    nonaka 				hp->regs[i + 0] = (v >> 0);
    699  1.12    nonaka 				hp->regs[i + 1] = (v >> 8);
    700  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    701  1.13    bouyer 					hp->regs[i + 2] = (v >> 16);
    702  1.13    bouyer 					hp->regs[i + 3] = (v >> 24);
    703  1.13    bouyer 				}
    704  1.11      matt 			}
    705  1.11      matt 		} else {
    706  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    707  1.11      matt 				hp->regs[i] = HREAD1(hp, i);
    708  1.11      matt 			}
    709  1.11      matt 		}
    710   1.1    nonaka 	}
    711   1.1    nonaka 	return true;
    712   1.1    nonaka }
    713   1.1    nonaka 
    714   1.1    nonaka bool
    715   1.6    dyoung sdhc_resume(device_t dev, const pmf_qual_t *qual)
    716   1.1    nonaka {
    717   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    718   1.1    nonaka 	struct sdhc_host *hp;
    719  1.12    nonaka 	size_t i;
    720   1.1    nonaka 
    721   1.1    nonaka 	/* Restore the host controller state. */
    722  1.11      matt 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    723   1.1    nonaka 		hp = sc->sc_host[n];
    724   1.1    nonaka 		(void)sdhc_host_reset(hp);
    725  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    726  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i += 4) {
    727  1.13    bouyer 				if (i + 3 < sizeof hp->regs) {
    728  1.13    bouyer 					HWRITE4(hp, i,
    729  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    730  1.13    bouyer 					    | (hp->regs[i + 1] << 8)
    731  1.13    bouyer 					    | (hp->regs[i + 2] << 16)
    732  1.13    bouyer 					    | (hp->regs[i + 3] << 24));
    733  1.13    bouyer 				} else {
    734  1.13    bouyer 					HWRITE4(hp, i,
    735  1.13    bouyer 					    (hp->regs[i + 0] << 0)
    736  1.13    bouyer 					    | (hp->regs[i + 1] << 8));
    737  1.13    bouyer 				}
    738  1.11      matt 			}
    739  1.11      matt 		} else {
    740  1.12    nonaka 			for (i = 0; i < sizeof hp->regs; i++) {
    741  1.11      matt 				HWRITE1(hp, i, hp->regs[i]);
    742  1.11      matt 			}
    743  1.11      matt 		}
    744   1.1    nonaka 	}
    745   1.1    nonaka 	return true;
    746   1.1    nonaka }
    747   1.1    nonaka 
    748   1.1    nonaka bool
    749   1.1    nonaka sdhc_shutdown(device_t dev, int flags)
    750   1.1    nonaka {
    751   1.1    nonaka 	struct sdhc_softc *sc = device_private(dev);
    752   1.1    nonaka 	struct sdhc_host *hp;
    753   1.1    nonaka 
    754   1.1    nonaka 	/* XXX chip locks up if we don't disable it before reboot. */
    755  1.11      matt 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    756   1.1    nonaka 		hp = sc->sc_host[i];
    757   1.1    nonaka 		(void)sdhc_host_reset(hp);
    758   1.1    nonaka 	}
    759   1.1    nonaka 	return true;
    760   1.1    nonaka }
    761   1.1    nonaka 
    762   1.1    nonaka /*
    763   1.1    nonaka  * Reset the host controller.  Called during initialization, when
    764   1.1    nonaka  * cards are removed, upon resume, and during error recovery.
    765   1.1    nonaka  */
    766   1.1    nonaka static int
    767   1.1    nonaka sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    768   1.1    nonaka {
    769   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    770  1.11      matt 	uint32_t sdhcimask;
    771   1.1    nonaka 	int error;
    772   1.1    nonaka 
    773  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
    774   1.1    nonaka 
    775   1.1    nonaka 	/* Disable all interrupts. */
    776  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    777  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    778  1.11      matt 	} else {
    779  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    780  1.11      matt 	}
    781   1.1    nonaka 
    782   1.1    nonaka 	/*
    783   1.1    nonaka 	 * Reset the entire host controller and wait up to 100ms for
    784   1.1    nonaka 	 * the controller to clear the reset bit.
    785   1.1    nonaka 	 */
    786   1.1    nonaka 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    787   1.1    nonaka 	if (error)
    788   1.1    nonaka 		goto out;
    789   1.1    nonaka 
    790   1.1    nonaka 	/* Set data timeout counter value to max for now. */
    791   1.1    nonaka 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    792  1.29      matt #if 1
    793  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    794  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    795  1.11      matt #endif
    796   1.1    nonaka 
    797   1.1    nonaka 	/* Enable interrupts. */
    798   1.1    nonaka 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    799   1.1    nonaka 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    800   1.1    nonaka 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    801   1.1    nonaka 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    802  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    803  1.11      matt 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    804  1.11      matt 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    805  1.11      matt 		sdhcimask ^=
    806  1.11      matt 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    807  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    808  1.11      matt 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    809  1.11      matt 	} else {
    810  1.11      matt 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    811  1.11      matt 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    812  1.11      matt 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    813  1.11      matt 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    814  1.11      matt 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    815  1.11      matt 	}
    816   1.1    nonaka 
    817   1.1    nonaka out:
    818   1.1    nonaka 	return error;
    819   1.1    nonaka }
    820   1.1    nonaka 
    821   1.1    nonaka static int
    822   1.1    nonaka sdhc_host_reset(sdmmc_chipset_handle_t sch)
    823   1.1    nonaka {
    824   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    825   1.1    nonaka 	int error;
    826   1.1    nonaka 
    827  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    828   1.1    nonaka 	error = sdhc_host_reset1(sch);
    829  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    830   1.1    nonaka 
    831   1.1    nonaka 	return error;
    832   1.1    nonaka }
    833   1.1    nonaka 
    834   1.1    nonaka static uint32_t
    835   1.1    nonaka sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    836   1.1    nonaka {
    837   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    838   1.1    nonaka 
    839   1.1    nonaka 	return hp->ocr;
    840   1.1    nonaka }
    841   1.1    nonaka 
    842   1.1    nonaka static int
    843   1.1    nonaka sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    844   1.1    nonaka {
    845   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    846   1.1    nonaka 
    847   1.1    nonaka 	return hp->maxblklen;
    848   1.1    nonaka }
    849   1.1    nonaka 
    850   1.1    nonaka /*
    851   1.1    nonaka  * Return non-zero if the card is currently inserted.
    852   1.1    nonaka  */
    853   1.1    nonaka static int
    854   1.1    nonaka sdhc_card_detect(sdmmc_chipset_handle_t sch)
    855   1.1    nonaka {
    856   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    857   1.1    nonaka 	int r;
    858   1.1    nonaka 
    859  1.32  kiyohara 	if (hp->sc->sc_vendor_card_detect)
    860  1.32  kiyohara 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    861  1.32  kiyohara 
    862   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    863   1.1    nonaka 
    864  1.11      matt 	return r ? 1 : 0;
    865   1.1    nonaka }
    866   1.1    nonaka 
    867   1.1    nonaka /*
    868   1.1    nonaka  * Return non-zero if the card is currently write-protected.
    869   1.1    nonaka  */
    870   1.1    nonaka static int
    871   1.1    nonaka sdhc_write_protect(sdmmc_chipset_handle_t sch)
    872   1.1    nonaka {
    873   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    874   1.1    nonaka 	int r;
    875   1.1    nonaka 
    876  1.32  kiyohara 	if (hp->sc->sc_vendor_write_protect)
    877  1.32  kiyohara 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    878  1.32  kiyohara 
    879   1.1    nonaka 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    880   1.1    nonaka 
    881  1.12    nonaka 	return r ? 0 : 1;
    882   1.1    nonaka }
    883   1.1    nonaka 
    884   1.1    nonaka /*
    885   1.1    nonaka  * Set or change SD bus voltage and enable or disable SD bus power.
    886   1.1    nonaka  * Return zero on success.
    887   1.1    nonaka  */
    888   1.1    nonaka static int
    889   1.1    nonaka sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    890   1.1    nonaka {
    891   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    892   1.1    nonaka 	uint8_t vdd;
    893   1.1    nonaka 	int error = 0;
    894  1.32  kiyohara 	const uint32_t pcmask =
    895  1.32  kiyohara 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    896   1.1    nonaka 
    897  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
    898   1.1    nonaka 
    899   1.1    nonaka 	/*
    900   1.1    nonaka 	 * Disable bus power before voltage change.
    901   1.1    nonaka 	 */
    902  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    903  1.11      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    904   1.1    nonaka 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    905   1.1    nonaka 
    906   1.1    nonaka 	/* If power is disabled, reset the host and return now. */
    907   1.1    nonaka 	if (ocr == 0) {
    908   1.1    nonaka 		(void)sdhc_host_reset1(hp);
    909  1.80  jmcneill 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    910   1.1    nonaka 		goto out;
    911   1.1    nonaka 	}
    912   1.1    nonaka 
    913   1.1    nonaka 	/*
    914   1.1    nonaka 	 * Select the lowest voltage according to capabilities.
    915   1.1    nonaka 	 */
    916   1.1    nonaka 	ocr &= hp->ocr;
    917  1.95    nonaka 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    918   1.1    nonaka 		vdd = SDHC_VOLTAGE_1_8V;
    919  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    920   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_0V;
    921  1.11      matt 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    922   1.1    nonaka 		vdd = SDHC_VOLTAGE_3_3V;
    923  1.11      matt 	} else {
    924   1.1    nonaka 		/* Unsupported voltage level requested. */
    925   1.1    nonaka 		error = EINVAL;
    926   1.1    nonaka 		goto out;
    927   1.1    nonaka 	}
    928   1.1    nonaka 
    929  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    930  1.11      matt 		/*
    931  1.11      matt 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    932  1.11      matt 		 * voltage ramp until power rises.
    933  1.11      matt 		 */
    934  1.57  jmcneill 
    935  1.57  jmcneill 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    936  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    937  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    938  1.57  jmcneill 		} else {
    939  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    940  1.57  jmcneill 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    941  1.57  jmcneill 			sdmmc_delay(1);
    942  1.57  jmcneill 			HWRITE1(hp, SDHC_POWER_CTL,
    943  1.57  jmcneill 			    (vdd << SDHC_VOLTAGE_SHIFT));
    944  1.57  jmcneill 			sdmmc_delay(1);
    945  1.57  jmcneill 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    946  1.57  jmcneill 			sdmmc_delay(10000);
    947  1.57  jmcneill 		}
    948   1.1    nonaka 
    949  1.11      matt 		/*
    950  1.11      matt 		 * The host system may not power the bus due to battery low,
    951  1.11      matt 		 * etc.  In that case, the host controller should clear the
    952  1.11      matt 		 * bus power bit.
    953  1.11      matt 		 */
    954  1.11      matt 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    955  1.11      matt 			error = ENXIO;
    956  1.11      matt 			goto out;
    957  1.11      matt 		}
    958   1.1    nonaka 	}
    959   1.1    nonaka 
    960   1.1    nonaka out:
    961  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
    962   1.1    nonaka 
    963   1.1    nonaka 	return error;
    964   1.1    nonaka }
    965   1.1    nonaka 
    966   1.1    nonaka /*
    967   1.1    nonaka  * Return the smallest possible base clock frequency divisor value
    968   1.1    nonaka  * for the CLOCK_CTL register to produce `freq' (KHz).
    969   1.1    nonaka  */
    970  1.11      matt static bool
    971  1.11      matt sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    972   1.1    nonaka {
    973  1.11      matt 	u_int div;
    974   1.1    nonaka 
    975  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    976  1.11      matt 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    977  1.11      matt 			if ((hp->clkbase / div) <= freq) {
    978  1.11      matt 				*divp = SDHC_SDCLK_CGM
    979  1.11      matt 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    980  1.11      matt 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    981  1.18  jakllsch 				//freq = hp->clkbase / div;
    982  1.11      matt 				return true;
    983  1.11      matt 			}
    984  1.11      matt 		}
    985  1.11      matt 		/* No divisor found. */
    986  1.11      matt 		return false;
    987  1.11      matt 	}
    988  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    989  1.11      matt 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    990  1.11      matt 		u_int roundup = dvs & 1;
    991  1.11      matt 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    992  1.11      matt 			if (dvs + roundup <= 16) {
    993  1.11      matt 				dvs += roundup - 1;
    994  1.11      matt 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    995  1.11      matt 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    996  1.11      matt 				DPRINTF(2,
    997  1.11      matt 				    ("%s: divisor for freq %u is %u * %u\n",
    998  1.11      matt 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    999  1.18  jakllsch 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1000  1.11      matt 				return true;
   1001   1.9      matt 			}
   1002  1.11      matt 			/*
   1003  1.11      matt 			 * If we drop bits, we need to round up the divisor.
   1004  1.11      matt 			 */
   1005  1.11      matt 			roundup |= dvs & 1;
   1006   1.9      matt 		}
   1007  1.18  jakllsch 		/* No divisor found. */
   1008  1.18  jakllsch 		return false;
   1009  1.38  jakllsch 	}
   1010  1.38  jakllsch 	if (hp->sc->sc_clkmsk != 0) {
   1011  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
   1012  1.38  jakllsch 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1013  1.38  jakllsch 			return false;
   1014  1.38  jakllsch 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1015  1.38  jakllsch 		//freq = hp->clkbase / div;
   1016  1.38  jakllsch 		return true;
   1017  1.38  jakllsch 	}
   1018  1.56  jmcneill 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1019  1.38  jakllsch 		div = howmany(hp->clkbase, freq);
   1020  1.50   mlelstv 		div = div > 1 ? howmany(div, 2) : 0;
   1021  1.38  jakllsch 		if (div > 0x3ff)
   1022  1.38  jakllsch 			return false;
   1023  1.38  jakllsch 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1024  1.38  jakllsch 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1025  1.38  jakllsch 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1026  1.38  jakllsch 			 << SDHC_SDCLK_DIV_SHIFT);
   1027  1.67   mlelstv 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1028  1.38  jakllsch 		return true;
   1029   1.9      matt 	} else {
   1030  1.38  jakllsch 		for (div = 1; div <= 256; div *= 2) {
   1031  1.38  jakllsch 			if ((hp->clkbase / div) <= freq) {
   1032  1.38  jakllsch 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1033  1.38  jakllsch 				//freq = hp->clkbase / div;
   1034  1.38  jakllsch 				return true;
   1035  1.38  jakllsch 			}
   1036  1.38  jakllsch 		}
   1037  1.38  jakllsch 		/* No divisor found. */
   1038  1.38  jakllsch 		return false;
   1039   1.9      matt 	}
   1040   1.1    nonaka 	/* No divisor found. */
   1041  1.11      matt 	return false;
   1042   1.1    nonaka }
   1043   1.1    nonaka 
   1044   1.1    nonaka /*
   1045   1.1    nonaka  * Set or change SDCLK frequency or disable the SD clock.
   1046   1.1    nonaka  * Return zero on success.
   1047   1.1    nonaka  */
   1048   1.1    nonaka static int
   1049  1.76  jmcneill sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1050   1.1    nonaka {
   1051   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1052  1.11      matt 	u_int div;
   1053  1.11      matt 	u_int timo;
   1054  1.32  kiyohara 	int16_t reg;
   1055   1.1    nonaka 	int error = 0;
   1056  1.65  jmcneill 	bool present __diagused;
   1057  1.65  jmcneill 
   1058  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1059  1.65  jmcneill 
   1060   1.2    cegger #ifdef DIAGNOSTIC
   1061  1.12    nonaka 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1062   1.1    nonaka 
   1063   1.1    nonaka 	/* Must not stop the clock if commands are in progress. */
   1064  1.12    nonaka 	if (present && sdhc_card_detect(hp)) {
   1065  1.26      matt 		aprint_normal_dev(hp->sc->sc_dev,
   1066  1.26      matt 		    "%s: command in progress\n", __func__);
   1067  1.12    nonaka 	}
   1068   1.1    nonaka #endif
   1069   1.1    nonaka 
   1070  1.34      matt 	if (hp->sc->sc_vendor_bus_clock) {
   1071  1.34      matt 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1072  1.34      matt 		if (error != 0)
   1073  1.34      matt 			goto out;
   1074  1.34      matt 	}
   1075  1.34      matt 
   1076   1.1    nonaka 	/*
   1077   1.1    nonaka 	 * Stop SD clock before changing the frequency.
   1078   1.1    nonaka 	 */
   1079  1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1080  1.93       ryo 		HCLR4(hp, SDHC_VEND_SPEC,
   1081  1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1082  1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1083  1.93       ryo 		if (freq == SDMMC_SDCLK_OFF) {
   1084  1.93       ryo 			goto out;
   1085  1.93       ryo 		}
   1086  1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1087  1.11      matt 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1088  1.11      matt 		if (freq == SDMMC_SDCLK_OFF) {
   1089  1.11      matt 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1090  1.11      matt 			goto out;
   1091  1.11      matt 		}
   1092  1.11      matt 	} else {
   1093  1.32  kiyohara 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1094  1.11      matt 		if (freq == SDMMC_SDCLK_OFF)
   1095  1.11      matt 			goto out;
   1096  1.11      matt 	}
   1097   1.1    nonaka 
   1098  1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1099  1.93       ryo 		if (ddr)
   1100  1.93       ryo 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1101  1.93       ryo 		else
   1102  1.93       ryo 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1103  1.93       ryo 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1104  1.71  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1105  1.71  jmcneill 		if (freq > 100000) {
   1106  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1107  1.71  jmcneill 		} else if (freq > 50000) {
   1108  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
   1109  1.71  jmcneill 		} else if (freq > 25000) {
   1110  1.76  jmcneill 			if (ddr) {
   1111  1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1112  1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_DDR50);
   1113  1.76  jmcneill 			} else {
   1114  1.76  jmcneill 				HSET2(hp, SDHC_HOST_CTL2,
   1115  1.76  jmcneill 				    SDHC_UHS_MODE_SELECT_SDR25);
   1116  1.76  jmcneill 			}
   1117  1.74  jmcneill 		} else if (freq > 400) {
   1118  1.71  jmcneill 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1119  1.71  jmcneill 		}
   1120  1.71  jmcneill 	}
   1121  1.71  jmcneill 
   1122   1.1    nonaka 	/*
   1123  1.82   mlelstv 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1124  1.82   mlelstv 	 * at 100MHz bus clock.
   1125  1.82   mlelstv 	 */
   1126  1.82   mlelstv 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1127  1.82   mlelstv 		if (freq == 100000)
   1128  1.82   mlelstv 			--freq;
   1129  1.82   mlelstv 	}
   1130  1.82   mlelstv 
   1131  1.82   mlelstv 	/*
   1132   1.1    nonaka 	 * Set the minimum base clock frequency divisor.
   1133   1.1    nonaka 	 */
   1134  1.11      matt 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1135   1.1    nonaka 		/* Invalid base clock frequency or `freq' value. */
   1136  1.68   mlelstv 		aprint_error_dev(hp->sc->sc_dev,
   1137  1.68   mlelstv 			"Invalid bus clock %d kHz\n", freq);
   1138   1.1    nonaka 		error = EINVAL;
   1139   1.1    nonaka 		goto out;
   1140   1.1    nonaka 	}
   1141  1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1142  1.93       ryo 		if (ddr) {
   1143  1.93       ryo 			/* in ddr mode, divisor >>= 1 */
   1144  1.93       ryo 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1145  1.93       ryo 			    SDHC_SDCLK_DIV_SHIFT)) |
   1146  1.93       ryo 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1147  1.93       ryo 			    SDHC_SDCLK_DVS_SHIFT));
   1148  1.93       ryo 		}
   1149  1.93       ryo 		for (timo = 1000; timo > 0; timo--) {
   1150  1.93       ryo 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1151  1.93       ryo 				break;
   1152  1.93       ryo 			sdmmc_delay(10);
   1153  1.93       ryo 		}
   1154  1.93       ryo 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1155  1.93       ryo 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1156  1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1157  1.11      matt 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1158  1.11      matt 		    div | (SDHC_TIMEOUT_MAX << 16));
   1159  1.11      matt 	} else {
   1160  1.32  kiyohara 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1161  1.32  kiyohara 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1162  1.32  kiyohara 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1163  1.11      matt 	}
   1164   1.1    nonaka 
   1165   1.1    nonaka 	/*
   1166   1.1    nonaka 	 * Start internal clock.  Wait 10ms for stabilization.
   1167   1.1    nonaka 	 */
   1168  1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1169  1.93       ryo 		HSET4(hp, SDHC_VEND_SPEC,
   1170  1.93       ryo 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1171  1.93       ryo 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1172  1.93       ryo 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1173  1.11      matt 		sdmmc_delay(10000);
   1174  1.12    nonaka 		HSET4(hp, SDHC_CLOCK_CTL,
   1175  1.12    nonaka 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1176  1.11      matt 	} else {
   1177  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1178  1.11      matt 		for (timo = 1000; timo > 0; timo--) {
   1179  1.12    nonaka 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1180  1.12    nonaka 			    SDHC_INTCLK_STABLE))
   1181  1.11      matt 				break;
   1182  1.11      matt 			sdmmc_delay(10);
   1183  1.11      matt 		}
   1184  1.11      matt 		if (timo == 0) {
   1185  1.11      matt 			error = ETIMEDOUT;
   1186  1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1187  1.11      matt 			goto out;
   1188  1.11      matt 		}
   1189   1.1    nonaka 	}
   1190   1.1    nonaka 
   1191  1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1192  1.11      matt 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1193  1.11      matt 		/*
   1194  1.11      matt 		 * Sending 80 clocks at 400kHz takes 200us.
   1195  1.11      matt 		 * So delay for that time + slop and then
   1196  1.11      matt 		 * check a few times for completion.
   1197  1.11      matt 		 */
   1198  1.11      matt 		sdmmc_delay(210);
   1199  1.11      matt 		for (timo = 10; timo > 0; timo--) {
   1200  1.11      matt 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1201  1.11      matt 			    SDHC_INIT_ACTIVE))
   1202  1.11      matt 				break;
   1203  1.11      matt 			sdmmc_delay(10);
   1204  1.11      matt 		}
   1205  1.11      matt 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1206  1.12    nonaka 
   1207  1.11      matt 		/*
   1208  1.11      matt 		 * Enable SD clock.
   1209  1.11      matt 		 */
   1210  1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1211  1.93       ryo 			HSET4(hp, SDHC_VEND_SPEC,
   1212  1.93       ryo 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1213  1.93       ryo 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1214  1.93       ryo 		} else {
   1215  1.93       ryo 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1216  1.93       ryo 		}
   1217  1.11      matt 	} else {
   1218  1.11      matt 		/*
   1219  1.11      matt 		 * Enable SD clock.
   1220  1.11      matt 		 */
   1221  1.11      matt 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1222   1.1    nonaka 
   1223  1.43  jmcneill 		if (freq > 25000 &&
   1224  1.43  jmcneill 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1225  1.11      matt 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1226  1.11      matt 		else
   1227  1.11      matt 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1228  1.11      matt 	}
   1229   1.8  kiyohara 
   1230   1.1    nonaka out:
   1231  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1232   1.1    nonaka 
   1233   1.1    nonaka 	return error;
   1234   1.1    nonaka }
   1235   1.1    nonaka 
   1236   1.1    nonaka static int
   1237   1.1    nonaka sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1238   1.1    nonaka {
   1239   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1240   1.1    nonaka 	int reg;
   1241   1.1    nonaka 
   1242   1.1    nonaka 	switch (width) {
   1243   1.1    nonaka 	case 1:
   1244   1.1    nonaka 	case 4:
   1245   1.1    nonaka 		break;
   1246   1.1    nonaka 
   1247  1.11      matt 	case 8:
   1248  1.11      matt 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1249  1.11      matt 			break;
   1250  1.11      matt 		/* FALLTHROUGH */
   1251   1.1    nonaka 	default:
   1252   1.1    nonaka 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1253   1.1    nonaka 		    HDEVNAME(hp), width));
   1254   1.1    nonaka 		return 1;
   1255   1.1    nonaka 	}
   1256   1.1    nonaka 
   1257  1.89  jmcneill 	if (hp->sc->sc_vendor_bus_width) {
   1258  1.89  jmcneill 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1259  1.89  jmcneill 		if (error != 0)
   1260  1.89  jmcneill 			return error;
   1261  1.89  jmcneill 	}
   1262  1.89  jmcneill 
   1263  1.65  jmcneill 	mutex_enter(&hp->intr_lock);
   1264  1.65  jmcneill 
   1265   1.5  uebayasi 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1266  1.93       ryo 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1267  1.12    nonaka 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1268  1.11      matt 		if (width == 4)
   1269  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1270  1.11      matt 		else if (width == 8)
   1271  1.12    nonaka 			reg |= SDHC_ESDHC_8BIT_MODE;
   1272  1.11      matt 	} else {
   1273  1.11      matt 		reg &= ~SDHC_4BIT_MODE;
   1274  1.59  jmcneill 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1275  1.59  jmcneill 			reg &= ~SDHC_8BIT_MODE;
   1276  1.59  jmcneill 		}
   1277  1.59  jmcneill 		if (width == 4) {
   1278  1.11      matt 			reg |= SDHC_4BIT_MODE;
   1279  1.59  jmcneill 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1280  1.59  jmcneill 			reg |= SDHC_8BIT_MODE;
   1281  1.59  jmcneill 		}
   1282  1.11      matt 	}
   1283   1.5  uebayasi 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1284  1.65  jmcneill 
   1285  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1286   1.1    nonaka 
   1287   1.1    nonaka 	return 0;
   1288   1.1    nonaka }
   1289   1.1    nonaka 
   1290   1.8  kiyohara static int
   1291   1.8  kiyohara sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1292   1.8  kiyohara {
   1293  1.32  kiyohara 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1294  1.32  kiyohara 
   1295  1.32  kiyohara 	if (hp->sc->sc_vendor_rod)
   1296  1.32  kiyohara 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1297   1.8  kiyohara 
   1298   1.8  kiyohara 	return 0;
   1299   1.8  kiyohara }
   1300   1.8  kiyohara 
   1301   1.1    nonaka static void
   1302   1.1    nonaka sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1303   1.1    nonaka {
   1304   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1305   1.1    nonaka 
   1306  1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1307  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1308  1.11      matt 		if (enable) {
   1309  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1310  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1311  1.11      matt 		} else {
   1312  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1313  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1314  1.11      matt 		}
   1315  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1316   1.1    nonaka 	}
   1317   1.1    nonaka }
   1318   1.1    nonaka 
   1319  1.47     skrll static void
   1320   1.1    nonaka sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1321   1.1    nonaka {
   1322   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1323   1.1    nonaka 
   1324  1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1325  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   1326  1.11      matt 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1327  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   1328  1.11      matt 	}
   1329   1.1    nonaka }
   1330   1.1    nonaka 
   1331   1.1    nonaka static int
   1332  1.71  jmcneill sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1333  1.71  jmcneill {
   1334  1.71  jmcneill 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1335  1.71  jmcneill 
   1336  1.78   mlelstv 	mutex_enter(&hp->intr_lock);
   1337  1.71  jmcneill 	switch (signal_voltage) {
   1338  1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_180:
   1339  1.93       ryo 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1340  1.93       ryo 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1341  1.71  jmcneill 		break;
   1342  1.71  jmcneill 	case SDMMC_SIGNAL_VOLTAGE_330:
   1343  1.93       ryo 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1344  1.93       ryo 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1345  1.71  jmcneill 		break;
   1346  1.71  jmcneill 	default:
   1347  1.71  jmcneill 		return EINVAL;
   1348  1.71  jmcneill 	}
   1349  1.78   mlelstv 	mutex_exit(&hp->intr_lock);
   1350  1.71  jmcneill 
   1351  1.71  jmcneill 	return 0;
   1352  1.71  jmcneill }
   1353  1.71  jmcneill 
   1354  1.79  jmcneill /*
   1355  1.79  jmcneill  * Sampling clock tuning procedure (UHS)
   1356  1.79  jmcneill  */
   1357  1.79  jmcneill static int
   1358  1.83   mlelstv sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1359  1.79  jmcneill {
   1360  1.79  jmcneill 	struct sdmmc_command cmd;
   1361  1.79  jmcneill 	uint8_t hostctl;
   1362  1.79  jmcneill 	int opcode, error, retry = 40;
   1363  1.79  jmcneill 
   1364  1.83   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1365  1.83   mlelstv 
   1366  1.80  jmcneill 	hp->tuning_timing = timing;
   1367  1.80  jmcneill 
   1368  1.79  jmcneill 	switch (timing) {
   1369  1.79  jmcneill 	case SDMMC_TIMING_MMC_HS200:
   1370  1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1371  1.79  jmcneill 		break;
   1372  1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR50:
   1373  1.79  jmcneill 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1374  1.79  jmcneill 			return 0;
   1375  1.79  jmcneill 		/* FALLTHROUGH */
   1376  1.79  jmcneill 	case SDMMC_TIMING_UHS_SDR104:
   1377  1.79  jmcneill 		opcode = MMC_SEND_TUNING_BLOCK;
   1378  1.79  jmcneill 		break;
   1379  1.79  jmcneill 	default:
   1380  1.79  jmcneill 		return EINVAL;
   1381  1.79  jmcneill 	}
   1382  1.79  jmcneill 
   1383  1.79  jmcneill 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1384  1.79  jmcneill 
   1385  1.79  jmcneill 	/* enable buffer read ready interrupt */
   1386  1.79  jmcneill 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1387  1.79  jmcneill 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1388  1.79  jmcneill 
   1389  1.79  jmcneill 	/* disable DMA */
   1390  1.79  jmcneill 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1391  1.79  jmcneill 
   1392  1.79  jmcneill 	/* reset tuning circuit */
   1393  1.79  jmcneill 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1394  1.79  jmcneill 
   1395  1.79  jmcneill 	/* start of tuning */
   1396  1.79  jmcneill 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1397  1.79  jmcneill 
   1398  1.79  jmcneill 	do {
   1399  1.79  jmcneill 		memset(&cmd, 0, sizeof(cmd));
   1400  1.79  jmcneill 		cmd.c_opcode = opcode;
   1401  1.79  jmcneill 		cmd.c_arg = 0;
   1402  1.79  jmcneill 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1403  1.79  jmcneill 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1404  1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 128;
   1405  1.79  jmcneill 		} else {
   1406  1.79  jmcneill 			cmd.c_blklen = cmd.c_datalen = 64;
   1407  1.79  jmcneill 		}
   1408  1.79  jmcneill 
   1409  1.79  jmcneill 		error = sdhc_start_command(hp, &cmd);
   1410  1.79  jmcneill 		if (error)
   1411  1.79  jmcneill 			break;
   1412  1.79  jmcneill 
   1413  1.79  jmcneill 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1414  1.88   mlelstv 		    SDHC_TUNING_TIMEOUT, false)) {
   1415  1.79  jmcneill 			break;
   1416  1.79  jmcneill 		}
   1417  1.79  jmcneill 
   1418  1.79  jmcneill 		delay(1000);
   1419  1.79  jmcneill 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1420  1.79  jmcneill 
   1421  1.79  jmcneill 	/* disable buffer read ready interrupt */
   1422  1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1423  1.79  jmcneill 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1424  1.79  jmcneill 
   1425  1.79  jmcneill 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1426  1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1427  1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1428  1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1429  1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1430  1.79  jmcneill 		    "tuning did not complete, using fixed sampling clock\n");
   1431  1.79  jmcneill 		return EIO;		/* tuning did not complete */
   1432  1.79  jmcneill 	}
   1433  1.79  jmcneill 
   1434  1.79  jmcneill 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1435  1.79  jmcneill 		HCLR2(hp, SDHC_HOST_CTL2,
   1436  1.79  jmcneill 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1437  1.79  jmcneill 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1438  1.79  jmcneill 		aprint_error_dev(hp->sc->sc_dev,
   1439  1.79  jmcneill 		    "tuning failed, using fixed sampling clock\n");
   1440  1.79  jmcneill 		return EIO;		/* tuning failed */
   1441  1.79  jmcneill 	}
   1442  1.79  jmcneill 
   1443  1.80  jmcneill 	if (hp->tuning_timer_count) {
   1444  1.80  jmcneill 		callout_schedule(&hp->tuning_timer,
   1445  1.80  jmcneill 		    hz * hp->tuning_timer_count);
   1446  1.80  jmcneill 	}
   1447  1.80  jmcneill 
   1448  1.79  jmcneill 	return 0;		/* tuning completed */
   1449  1.79  jmcneill }
   1450  1.79  jmcneill 
   1451  1.83   mlelstv static int
   1452  1.83   mlelstv sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1453  1.83   mlelstv {
   1454  1.83   mlelstv 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1455  1.83   mlelstv 	int error;
   1456  1.83   mlelstv 
   1457  1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1458  1.83   mlelstv 	error = sdhc_execute_tuning1(hp, timing);
   1459  1.83   mlelstv 	mutex_exit(&hp->intr_lock);
   1460  1.83   mlelstv 	return error;
   1461  1.83   mlelstv }
   1462  1.83   mlelstv 
   1463  1.80  jmcneill static void
   1464  1.80  jmcneill sdhc_tuning_timer(void *arg)
   1465  1.80  jmcneill {
   1466  1.80  jmcneill 	struct sdhc_host *hp = arg;
   1467  1.80  jmcneill 
   1468  1.80  jmcneill 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1469  1.80  jmcneill }
   1470  1.80  jmcneill 
   1471  1.71  jmcneill static int
   1472   1.1    nonaka sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1473   1.1    nonaka {
   1474   1.1    nonaka 	uint32_t state;
   1475   1.1    nonaka 	int timeout;
   1476   1.1    nonaka 
   1477  1.65  jmcneill 	for (timeout = 10000; timeout > 0; timeout--) {
   1478   1.1    nonaka 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1479   1.1    nonaka 			return 0;
   1480  1.65  jmcneill 		sdmmc_delay(10);
   1481   1.1    nonaka 	}
   1482  1.75   mlelstv 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1483  1.75   mlelstv 	    mask, value, state);
   1484   1.1    nonaka 	return ETIMEDOUT;
   1485   1.1    nonaka }
   1486   1.1    nonaka 
   1487   1.1    nonaka static void
   1488   1.1    nonaka sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1489   1.1    nonaka {
   1490   1.1    nonaka 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1491   1.1    nonaka 	int error;
   1492  1.88   mlelstv 	bool probing;
   1493   1.1    nonaka 
   1494  1.83   mlelstv 	mutex_enter(&hp->intr_lock);
   1495  1.83   mlelstv 
   1496  1.80  jmcneill 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1497  1.83   mlelstv 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1498  1.80  jmcneill 	}
   1499  1.80  jmcneill 
   1500  1.93       ryo 	if (cmd->c_data &&
   1501  1.93       ryo 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1502  1.11      matt 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1503  1.11      matt 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1504  1.11      matt 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1505  1.11      matt 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1506  1.11      matt 		} else {
   1507  1.11      matt 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1508  1.11      matt 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1509  1.47     skrll 		}
   1510  1.11      matt 	}
   1511  1.11      matt 
   1512  1.61  jmcneill 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1513  1.61  jmcneill 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1514  1.61  jmcneill 		if (cmd->c_data != NULL) {
   1515  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1516  1.61  jmcneill 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1517  1.61  jmcneill 		} else {
   1518  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1519  1.61  jmcneill 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1520  1.61  jmcneill 		}
   1521  1.61  jmcneill 	}
   1522  1.61  jmcneill 
   1523   1.1    nonaka 	/*
   1524   1.1    nonaka 	 * Start the MMC command, or mark `cmd' as failed and return.
   1525   1.1    nonaka 	 */
   1526   1.1    nonaka 	error = sdhc_start_command(hp, cmd);
   1527   1.1    nonaka 	if (error) {
   1528   1.1    nonaka 		cmd->c_error = error;
   1529   1.1    nonaka 		goto out;
   1530   1.1    nonaka 	}
   1531   1.1    nonaka 
   1532   1.1    nonaka 	/*
   1533   1.1    nonaka 	 * Wait until the command phase is done, or until the command
   1534   1.1    nonaka 	 * is marked done for any other reason.
   1535   1.1    nonaka 	 */
   1536  1.88   mlelstv 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1537  1.88   mlelstv 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) {
   1538  1.84   mlelstv 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1539  1.94  kiyohara 		sdmmc_delay(50);
   1540   1.1    nonaka 		cmd->c_error = ETIMEDOUT;
   1541   1.1    nonaka 		goto out;
   1542   1.1    nonaka 	}
   1543   1.1    nonaka 
   1544   1.1    nonaka 	/*
   1545   1.1    nonaka 	 * The host controller removes bits [0:7] from the response
   1546   1.1    nonaka 	 * data (CRC) and we pass the data up unchanged to the bus
   1547   1.1    nonaka 	 * driver (without padding).
   1548   1.1    nonaka 	 */
   1549   1.1    nonaka 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1550  1.23      matt 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1551  1.23      matt 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1552  1.23      matt 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1553  1.23      matt 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1554  1.23      matt 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1555  1.32  kiyohara 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1556  1.32  kiyohara 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1557  1.32  kiyohara 				    (cmd->c_resp[1] << 24);
   1558  1.32  kiyohara 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1559  1.32  kiyohara 				    (cmd->c_resp[2] << 24);
   1560  1.32  kiyohara 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1561  1.32  kiyohara 				    (cmd->c_resp[3] << 24);
   1562  1.32  kiyohara 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1563  1.32  kiyohara 			}
   1564   1.1    nonaka 		}
   1565   1.1    nonaka 	}
   1566  1.25      matt 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1567   1.1    nonaka 
   1568   1.1    nonaka 	/*
   1569   1.1    nonaka 	 * If the command has data to transfer in any direction,
   1570   1.1    nonaka 	 * execute the transfer now.
   1571   1.1    nonaka 	 */
   1572   1.1    nonaka 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1573   1.1    nonaka 		sdhc_transfer_data(hp, cmd);
   1574  1.42  jakllsch 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1575  1.88   mlelstv 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1576  1.85   mlelstv 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1577  1.85   mlelstv 			    HDEVNAME(hp)));
   1578  1.42  jakllsch 			cmd->c_error = ETIMEDOUT;
   1579  1.42  jakllsch 			goto out;
   1580  1.42  jakllsch 		}
   1581  1.42  jakllsch 	}
   1582   1.1    nonaka 
   1583   1.1    nonaka out:
   1584  1.14      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1585  1.14      matt 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1586  1.11      matt 		/* Turn off the LED. */
   1587  1.11      matt 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1588  1.11      matt 	}
   1589   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1590   1.1    nonaka 
   1591  1.65  jmcneill 	mutex_exit(&hp->intr_lock);
   1592  1.65  jmcneill 
   1593   1.1    nonaka 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1594   1.1    nonaka 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1595   1.1    nonaka 	    cmd->c_flags, cmd->c_error));
   1596   1.1    nonaka }
   1597   1.1    nonaka 
   1598   1.1    nonaka static int
   1599   1.1    nonaka sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1600   1.1    nonaka {
   1601  1.11      matt 	struct sdhc_softc * const sc = hp->sc;
   1602   1.1    nonaka 	uint16_t blksize = 0;
   1603   1.1    nonaka 	uint16_t blkcount = 0;
   1604   1.1    nonaka 	uint16_t mode;
   1605   1.1    nonaka 	uint16_t command;
   1606  1.84   mlelstv 	uint32_t pmask;
   1607   1.1    nonaka 	int error;
   1608   1.1    nonaka 
   1609  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1610  1.65  jmcneill 
   1611  1.11      matt 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1612   1.7    nonaka 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1613  1.11      matt 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1614   1.1    nonaka 
   1615   1.1    nonaka 	/*
   1616   1.1    nonaka 	 * The maximum block length for commands should be the minimum
   1617   1.1    nonaka 	 * of the host buffer size and the card buffer size. (1.7.2)
   1618   1.1    nonaka 	 */
   1619   1.1    nonaka 
   1620   1.1    nonaka 	/* Fragment the data into proper blocks. */
   1621   1.1    nonaka 	if (cmd->c_datalen > 0) {
   1622   1.1    nonaka 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1623   1.1    nonaka 		blkcount = cmd->c_datalen / blksize;
   1624   1.1    nonaka 		if (cmd->c_datalen % blksize > 0) {
   1625   1.1    nonaka 			/* XXX: Split this command. (1.7.4) */
   1626  1.11      matt 			aprint_error_dev(sc->sc_dev,
   1627   1.1    nonaka 			    "data not a multiple of %u bytes\n", blksize);
   1628   1.1    nonaka 			return EINVAL;
   1629   1.1    nonaka 		}
   1630   1.1    nonaka 	}
   1631   1.1    nonaka 
   1632   1.1    nonaka 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1633   1.1    nonaka 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1634  1.11      matt 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1635   1.1    nonaka 		return EINVAL;
   1636   1.1    nonaka 	}
   1637   1.1    nonaka 
   1638   1.1    nonaka 	/* Prepare transfer mode register value. (2.2.5) */
   1639  1.15  jakllsch 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1640   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1641   1.1    nonaka 		mode |= SDHC_READ_MODE;
   1642  1.15  jakllsch 	if (blkcount > 1) {
   1643  1.15  jakllsch 		mode |= SDHC_MULTI_BLOCK_MODE;
   1644  1.15  jakllsch 		/* XXX only for memory commands? */
   1645  1.15  jakllsch 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1646   1.1    nonaka 	}
   1647  1.45  jakllsch 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1648  1.55    bouyer 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1649  1.19  jakllsch 		mode |= SDHC_DMA_ENABLE;
   1650   1.7    nonaka 	}
   1651   1.1    nonaka 
   1652   1.1    nonaka 	/*
   1653   1.1    nonaka 	 * Prepare command register value. (2.2.6)
   1654   1.1    nonaka 	 */
   1655  1.12    nonaka 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1656   1.1    nonaka 
   1657   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1658   1.1    nonaka 		command |= SDHC_CRC_CHECK_ENABLE;
   1659   1.1    nonaka 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1660   1.1    nonaka 		command |= SDHC_INDEX_CHECK_ENABLE;
   1661  1.79  jmcneill 	if (cmd->c_datalen > 0)
   1662   1.1    nonaka 		command |= SDHC_DATA_PRESENT_SELECT;
   1663   1.1    nonaka 
   1664   1.1    nonaka 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1665   1.1    nonaka 		command |= SDHC_NO_RESPONSE;
   1666   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1667   1.1    nonaka 		command |= SDHC_RESP_LEN_136;
   1668   1.1    nonaka 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1669   1.1    nonaka 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1670   1.1    nonaka 	else
   1671   1.1    nonaka 		command |= SDHC_RESP_LEN_48;
   1672   1.1    nonaka 
   1673  1.84   mlelstv 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1674  1.84   mlelstv 	pmask = SDHC_CMD_INHIBIT_CMD;
   1675  1.91   mlelstv 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1676  1.84   mlelstv 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1677  1.84   mlelstv 	error = sdhc_wait_state(hp, pmask, 0);
   1678  1.68   mlelstv 	if (error) {
   1679  1.84   mlelstv 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1680  1.84   mlelstv 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1681   1.1    nonaka 		return error;
   1682  1.68   mlelstv 	}
   1683   1.1    nonaka 
   1684   1.1    nonaka 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1685   1.1    nonaka 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1686   1.1    nonaka 
   1687  1.93       ryo 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1688  1.44   hkenken 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1689  1.44   hkenken 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1690  1.44   hkenken 	}
   1691  1.19  jakllsch 
   1692  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1693  1.11      matt 		/* Alert the user not to remove the card. */
   1694  1.11      matt 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1695  1.11      matt 	}
   1696   1.1    nonaka 
   1697   1.7    nonaka 	/* Set DMA start address. */
   1698  1.79  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1699  1.63  jmcneill 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1700  1.69  jmcneill 			bus_addr_t paddr =
   1701  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1702  1.63  jmcneill 			uint16_t len =
   1703  1.63  jmcneill 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1704  1.63  jmcneill 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1705  1.63  jmcneill 			uint16_t attr =
   1706  1.63  jmcneill 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1707  1.63  jmcneill 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1708  1.63  jmcneill 				attr |= SDHC_ADMA2_END;
   1709  1.63  jmcneill 			}
   1710  1.63  jmcneill 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1711  1.63  jmcneill 				struct sdhc_adma2_descriptor32 *desc =
   1712  1.63  jmcneill 				    hp->adma2;
   1713  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1714  1.63  jmcneill 				desc[seg].length = htole16(len);
   1715  1.63  jmcneill 				desc[seg].address = htole32(paddr);
   1716  1.63  jmcneill 			} else {
   1717  1.63  jmcneill 				struct sdhc_adma2_descriptor64 *desc =
   1718  1.63  jmcneill 				    hp->adma2;
   1719  1.63  jmcneill 				desc[seg].attribute = htole16(attr);
   1720  1.63  jmcneill 				desc[seg].length = htole16(len);
   1721  1.63  jmcneill 				desc[seg].address = htole32(paddr & 0xffffffff);
   1722  1.63  jmcneill 				desc[seg].address_hi = htole32(
   1723  1.63  jmcneill 				    (uint64_t)paddr >> 32);
   1724  1.63  jmcneill 			}
   1725  1.63  jmcneill 		}
   1726  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1727  1.63  jmcneill 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1728  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1729  1.63  jmcneill 		} else {
   1730  1.63  jmcneill 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1731  1.63  jmcneill 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1732  1.63  jmcneill 		}
   1733  1.63  jmcneill 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1734  1.63  jmcneill 		    BUS_DMASYNC_PREWRITE);
   1735  1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1736  1.93       ryo 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1737  1.93       ryo 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1738  1.93       ryo 		} else {
   1739  1.93       ryo 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1740  1.93       ryo 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1741  1.93       ryo 		}
   1742  1.63  jmcneill 
   1743  1.70  jmcneill 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1744  1.63  jmcneill 
   1745  1.63  jmcneill 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1746  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1747  1.63  jmcneill 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1748  1.63  jmcneill 			    (uint64_t)desc_addr >> 32);
   1749  1.63  jmcneill 		}
   1750  1.63  jmcneill 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1751  1.63  jmcneill 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1752  1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1753  1.93       ryo 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1754  1.93       ryo 		}
   1755   1.7    nonaka 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1756  1.63  jmcneill 	}
   1757   1.7    nonaka 
   1758   1.1    nonaka 	/*
   1759   1.1    nonaka 	 * Start a CPU data transfer.  Writing to the high order byte
   1760   1.1    nonaka 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1761   1.1    nonaka 	 */
   1762  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1763  1.11      matt 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1764  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1765  1.93       ryo 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1766  1.93       ryo 			/* mode bits is in MIX_CTRL register on uSDHC */
   1767  1.93       ryo 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1768  1.93       ryo 			    (HREAD4(hp, SDHC_MIX_CTRL) &
   1769  1.93       ryo 			    ~(SDHC_MULTI_BLOCK_MODE |
   1770  1.93       ryo 			    SDHC_READ_MODE |
   1771  1.93       ryo 			    SDHC_AUTO_CMD12_ENABLE |
   1772  1.93       ryo 			    SDHC_BLOCK_COUNT_ENABLE |
   1773  1.93       ryo 			    SDHC_DMA_ENABLE)));
   1774  1.93       ryo 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1775  1.93       ryo 		} else {
   1776  1.93       ryo 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1777  1.93       ryo 		}
   1778  1.11      matt 	} else {
   1779  1.11      matt 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1780  1.15  jakllsch 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1781  1.11      matt 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1782  1.15  jakllsch 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1783  1.11      matt 		HWRITE2(hp, SDHC_COMMAND, command);
   1784  1.11      matt 	}
   1785   1.1    nonaka 
   1786   1.1    nonaka 	return 0;
   1787   1.1    nonaka }
   1788   1.1    nonaka 
   1789   1.1    nonaka static void
   1790   1.1    nonaka sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1791   1.1    nonaka {
   1792  1.51  jmcneill 	struct sdhc_softc *sc = hp->sc;
   1793   1.1    nonaka 	int error;
   1794   1.1    nonaka 
   1795  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1796  1.65  jmcneill 
   1797   1.1    nonaka 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1798   1.1    nonaka 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1799   1.1    nonaka 
   1800   1.1    nonaka #ifdef SDHC_DEBUG
   1801   1.1    nonaka 	/* XXX I forgot why I wanted to know when this happens :-( */
   1802   1.1    nonaka 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1803   1.1    nonaka 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1804   1.1    nonaka 		aprint_error_dev(hp->sc->sc_dev,
   1805   1.1    nonaka 		    "CMD52/53 error response flags %#x\n",
   1806   1.1    nonaka 		    MMC_R1(cmd->c_resp) & 0xff00);
   1807   1.1    nonaka 	}
   1808   1.1    nonaka #endif
   1809   1.1    nonaka 
   1810  1.47     skrll 	if (cmd->c_dmamap != NULL) {
   1811  1.47     skrll 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1812  1.51  jmcneill 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1813  1.47     skrll 			if (error == 0 && !sdhc_wait_intr(hp,
   1814  1.88   mlelstv 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1815  1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   1816  1.47     skrll 				error = ETIMEDOUT;
   1817  1.47     skrll 			}
   1818  1.47     skrll 		} else {
   1819  1.47     skrll 			error = sdhc_transfer_data_dma(hp, cmd);
   1820  1.47     skrll 		}
   1821  1.47     skrll 	} else
   1822   1.7    nonaka 		error = sdhc_transfer_data_pio(hp, cmd);
   1823   1.1    nonaka 	if (error)
   1824   1.1    nonaka 		cmd->c_error = error;
   1825   1.1    nonaka 	SET(cmd->c_flags, SCF_ITSDONE);
   1826   1.1    nonaka 
   1827   1.1    nonaka 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1828   1.1    nonaka 	    HDEVNAME(hp), cmd->c_error));
   1829   1.1    nonaka }
   1830   1.1    nonaka 
   1831   1.1    nonaka static int
   1832   1.7    nonaka sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1833   1.7    nonaka {
   1834  1.19  jakllsch 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1835  1.19  jakllsch 	bus_addr_t posaddr;
   1836  1.19  jakllsch 	bus_addr_t segaddr;
   1837  1.19  jakllsch 	bus_size_t seglen;
   1838  1.19  jakllsch 	u_int seg = 0;
   1839   1.7    nonaka 	int error = 0;
   1840  1.19  jakllsch 	int status;
   1841   1.7    nonaka 
   1842  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1843  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1844  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1845  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1846  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1847  1.11      matt 
   1848   1.7    nonaka 	for (;;) {
   1849  1.19  jakllsch 		status = sdhc_wait_intr(hp,
   1850   1.7    nonaka 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1851  1.88   mlelstv 		    SDHC_DMA_TIMEOUT, false);
   1852  1.19  jakllsch 
   1853  1.19  jakllsch 		if (status & SDHC_TRANSFER_COMPLETE) {
   1854  1.19  jakllsch 			break;
   1855  1.19  jakllsch 		}
   1856  1.19  jakllsch 		if (!status) {
   1857  1.84   mlelstv 			DPRINTF(1,("%s: timeout\n", __func__));
   1858   1.7    nonaka 			error = ETIMEDOUT;
   1859   1.7    nonaka 			break;
   1860   1.7    nonaka 		}
   1861  1.63  jmcneill 
   1862  1.63  jmcneill 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1863  1.63  jmcneill 			continue;
   1864  1.63  jmcneill 		}
   1865  1.63  jmcneill 
   1866  1.19  jakllsch 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1867  1.19  jakllsch 			continue;
   1868  1.19  jakllsch 		}
   1869  1.19  jakllsch 
   1870  1.19  jakllsch 		/* DMA Interrupt (boundary crossing) */
   1871   1.7    nonaka 
   1872  1.19  jakllsch 		segaddr = dm_segs[seg].ds_addr;
   1873  1.19  jakllsch 		seglen = dm_segs[seg].ds_len;
   1874  1.19  jakllsch 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1875   1.7    nonaka 
   1876  1.19  jakllsch 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1877  1.37  jakllsch 			continue;
   1878  1.19  jakllsch 		}
   1879  1.19  jakllsch 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1880  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1881  1.19  jakllsch 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1882  1.19  jakllsch 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1883  1.19  jakllsch 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1884   1.7    nonaka 	}
   1885   1.7    nonaka 
   1886  1.63  jmcneill 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1887  1.63  jmcneill 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1888  1.63  jmcneill 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1889  1.63  jmcneill 	}
   1890  1.63  jmcneill 
   1891   1.7    nonaka 	return error;
   1892   1.7    nonaka }
   1893   1.7    nonaka 
   1894   1.7    nonaka static int
   1895   1.1    nonaka sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1896   1.1    nonaka {
   1897   1.1    nonaka 	uint8_t *data = cmd->c_data;
   1898  1.12    nonaka 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1899  1.11      matt 	u_int len, datalen;
   1900  1.11      matt 	u_int imask;
   1901  1.11      matt 	u_int pmask;
   1902   1.1    nonaka 	int error = 0;
   1903   1.1    nonaka 
   1904  1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   1905  1.78   mlelstv 
   1906  1.11      matt 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1907  1.11      matt 		imask = SDHC_BUFFER_READ_READY;
   1908  1.11      matt 		pmask = SDHC_BUFFER_READ_ENABLE;
   1909  1.93       ryo 		if (ISSET(hp->sc->sc_flags,
   1910  1.93       ryo 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1911  1.11      matt 			pio_func = esdhc_read_data_pio;
   1912  1.11      matt 		} else {
   1913  1.11      matt 			pio_func = sdhc_read_data_pio;
   1914  1.11      matt 		}
   1915  1.11      matt 	} else {
   1916  1.11      matt 		imask = SDHC_BUFFER_WRITE_READY;
   1917  1.11      matt 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1918  1.93       ryo 		if (ISSET(hp->sc->sc_flags,
   1919  1.93       ryo 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1920  1.11      matt 			pio_func = esdhc_write_data_pio;
   1921  1.11      matt 		} else {
   1922  1.11      matt 			pio_func = sdhc_write_data_pio;
   1923  1.11      matt 		}
   1924  1.11      matt 	}
   1925   1.1    nonaka 	datalen = cmd->c_datalen;
   1926   1.1    nonaka 
   1927  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   1928  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1929  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1930  1.11      matt 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1931  1.11      matt 
   1932   1.1    nonaka 	while (datalen > 0) {
   1933  1.92       ryo 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   1934  1.11      matt 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1935  1.11      matt 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1936  1.11      matt 			} else {
   1937  1.11      matt 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1938  1.11      matt 			}
   1939  1.88   mlelstv 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   1940  1.84   mlelstv 				DPRINTF(1,("%s: timeout\n", __func__));
   1941  1.11      matt 				error = ETIMEDOUT;
   1942  1.11      matt 				break;
   1943  1.11      matt 			}
   1944  1.11      matt 
   1945  1.11      matt 			error = sdhc_wait_state(hp, pmask, pmask);
   1946  1.11      matt 			if (error)
   1947  1.11      matt 				break;
   1948   1.1    nonaka 		}
   1949   1.1    nonaka 
   1950   1.1    nonaka 		len = MIN(datalen, cmd->c_blklen);
   1951  1.11      matt 		(*pio_func)(hp, data, len);
   1952  1.11      matt 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1953  1.11      matt 		    HDEVNAME(hp), len, data));
   1954   1.1    nonaka 
   1955   1.1    nonaka 		data += len;
   1956   1.1    nonaka 		datalen -= len;
   1957   1.1    nonaka 	}
   1958   1.1    nonaka 
   1959   1.1    nonaka 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1960  1.88   mlelstv 	    SDHC_TRANSFER_TIMEOUT, false)) {
   1961  1.84   mlelstv 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   1962   1.1    nonaka 		error = ETIMEDOUT;
   1963  1.84   mlelstv 	}
   1964   1.1    nonaka 
   1965   1.1    nonaka 	return error;
   1966   1.1    nonaka }
   1967   1.1    nonaka 
   1968   1.1    nonaka static void
   1969  1.11      matt sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1970   1.1    nonaka {
   1971   1.1    nonaka 
   1972   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   1973   1.1    nonaka 		while (datalen > 3) {
   1974  1.29      matt 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1975   1.1    nonaka 			data += 4;
   1976   1.1    nonaka 			datalen -= 4;
   1977   1.1    nonaka 		}
   1978   1.1    nonaka 		if (datalen > 1) {
   1979  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1980   1.1    nonaka 			data += 2;
   1981   1.1    nonaka 			datalen -= 2;
   1982   1.1    nonaka 		}
   1983   1.1    nonaka 		if (datalen > 0) {
   1984   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1985   1.1    nonaka 			data += 1;
   1986   1.1    nonaka 			datalen -= 1;
   1987   1.1    nonaka 		}
   1988   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   1989   1.1    nonaka 		while (datalen > 1) {
   1990  1.29      matt 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1991   1.1    nonaka 			data += 2;
   1992   1.1    nonaka 			datalen -= 2;
   1993   1.1    nonaka 		}
   1994   1.1    nonaka 		if (datalen > 0) {
   1995   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   1996   1.1    nonaka 			data += 1;
   1997   1.1    nonaka 			datalen -= 1;
   1998   1.1    nonaka 		}
   1999   1.1    nonaka 	} else {
   2000   1.1    nonaka 		while (datalen > 0) {
   2001   1.1    nonaka 			*data = HREAD1(hp, SDHC_DATA);
   2002   1.1    nonaka 			data += 1;
   2003   1.1    nonaka 			datalen -= 1;
   2004   1.1    nonaka 		}
   2005   1.1    nonaka 	}
   2006   1.1    nonaka }
   2007   1.1    nonaka 
   2008   1.1    nonaka static void
   2009  1.11      matt sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2010   1.1    nonaka {
   2011   1.1    nonaka 
   2012   1.1    nonaka 	if (((__uintptr_t)data & 3) == 0) {
   2013   1.1    nonaka 		while (datalen > 3) {
   2014  1.29      matt 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2015   1.1    nonaka 			data += 4;
   2016   1.1    nonaka 			datalen -= 4;
   2017   1.1    nonaka 		}
   2018   1.1    nonaka 		if (datalen > 1) {
   2019  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2020   1.1    nonaka 			data += 2;
   2021   1.1    nonaka 			datalen -= 2;
   2022   1.1    nonaka 		}
   2023   1.1    nonaka 		if (datalen > 0) {
   2024   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2025   1.1    nonaka 			data += 1;
   2026   1.1    nonaka 			datalen -= 1;
   2027   1.1    nonaka 		}
   2028   1.1    nonaka 	} else if (((__uintptr_t)data & 1) == 0) {
   2029   1.1    nonaka 		while (datalen > 1) {
   2030  1.29      matt 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2031   1.1    nonaka 			data += 2;
   2032   1.1    nonaka 			datalen -= 2;
   2033   1.1    nonaka 		}
   2034   1.1    nonaka 		if (datalen > 0) {
   2035   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2036   1.1    nonaka 			data += 1;
   2037   1.1    nonaka 			datalen -= 1;
   2038   1.1    nonaka 		}
   2039   1.1    nonaka 	} else {
   2040   1.1    nonaka 		while (datalen > 0) {
   2041   1.1    nonaka 			HWRITE1(hp, SDHC_DATA, *data);
   2042   1.1    nonaka 			data += 1;
   2043   1.1    nonaka 			datalen -= 1;
   2044   1.1    nonaka 		}
   2045   1.1    nonaka 	}
   2046   1.1    nonaka }
   2047   1.1    nonaka 
   2048  1.11      matt static void
   2049  1.11      matt esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2050  1.11      matt {
   2051  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2052  1.12    nonaka 	uint32_t v;
   2053  1.12    nonaka 
   2054  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2055  1.23      matt 	size_t count = 0;
   2056  1.23      matt 
   2057  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2058  1.23      matt 		if (count == 0) {
   2059  1.23      matt 			/*
   2060  1.23      matt 			 * If we've drained "watermark" words, we need to wait
   2061  1.23      matt 			 * a little bit so the read FIFO can refill.
   2062  1.23      matt 			 */
   2063  1.23      matt 			sdmmc_delay(10);
   2064  1.23      matt 			count = watermark;
   2065  1.23      matt 		}
   2066  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   2067  1.11      matt 		v = le32toh(v);
   2068  1.11      matt 		*(uint32_t *)data = v;
   2069  1.11      matt 		data += 4;
   2070  1.11      matt 		datalen -= 4;
   2071  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2072  1.23      matt 		count--;
   2073  1.11      matt 	}
   2074  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2075  1.23      matt 		if (count == 0) {
   2076  1.23      matt 			sdmmc_delay(10);
   2077  1.23      matt 		}
   2078  1.12    nonaka 		v = HREAD4(hp, SDHC_DATA);
   2079  1.11      matt 		v = le32toh(v);
   2080  1.11      matt 		do {
   2081  1.11      matt 			*data++ = v;
   2082  1.11      matt 			v >>= 8;
   2083  1.11      matt 		} while (--datalen > 0);
   2084  1.11      matt 	}
   2085  1.11      matt }
   2086  1.11      matt 
   2087  1.11      matt static void
   2088  1.11      matt esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2089  1.11      matt {
   2090  1.11      matt 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2091  1.12    nonaka 	uint32_t v;
   2092  1.12    nonaka 
   2093  1.23      matt 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2094  1.23      matt 	size_t count = watermark;
   2095  1.23      matt 
   2096  1.11      matt 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2097  1.23      matt 		if (count == 0) {
   2098  1.23      matt 			sdmmc_delay(10);
   2099  1.23      matt 			count = watermark;
   2100  1.23      matt 		}
   2101  1.12    nonaka 		v = *(uint32_t *)data;
   2102  1.11      matt 		v = htole32(v);
   2103  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   2104  1.11      matt 		data += 4;
   2105  1.11      matt 		datalen -= 4;
   2106  1.11      matt 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2107  1.23      matt 		count--;
   2108  1.11      matt 	}
   2109  1.11      matt 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2110  1.23      matt 		if (count == 0) {
   2111  1.23      matt 			sdmmc_delay(10);
   2112  1.23      matt 		}
   2113  1.12    nonaka 		v = *(uint32_t *)data;
   2114  1.11      matt 		v = htole32(v);
   2115  1.11      matt 		HWRITE4(hp, SDHC_DATA, v);
   2116  1.11      matt 	}
   2117  1.11      matt }
   2118  1.11      matt 
   2119   1.1    nonaka /* Prepare for another command. */
   2120   1.1    nonaka static int
   2121   1.1    nonaka sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2122   1.1    nonaka {
   2123   1.1    nonaka 	int timo;
   2124   1.1    nonaka 
   2125  1.78   mlelstv 	KASSERT(mutex_owned(&hp->intr_lock));
   2126  1.78   mlelstv 
   2127   1.1    nonaka 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2128   1.1    nonaka 
   2129  1.35  riastrad 	/* Request the reset.  */
   2130   1.1    nonaka 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2131  1.35  riastrad 
   2132  1.35  riastrad 	/*
   2133  1.35  riastrad 	 * If necessary, wait for the controller to set the bits to
   2134  1.35  riastrad 	 * acknowledge the reset.
   2135  1.35  riastrad 	 */
   2136  1.35  riastrad 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2137  1.35  riastrad 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2138  1.35  riastrad 		for (timo = 10000; timo > 0; timo--) {
   2139  1.35  riastrad 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2140  1.35  riastrad 				break;
   2141  1.35  riastrad 			/* Short delay because I worry we may miss it...  */
   2142  1.35  riastrad 			sdmmc_delay(1);
   2143  1.35  riastrad 		}
   2144  1.90   mlelstv 		if (timo == 0) {
   2145  1.84   mlelstv 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2146  1.35  riastrad 			return ETIMEDOUT;
   2147  1.90   mlelstv 		}
   2148  1.35  riastrad 	}
   2149  1.35  riastrad 
   2150  1.35  riastrad 	/*
   2151  1.35  riastrad 	 * Wait for the controller to clear the bits to indicate that
   2152  1.35  riastrad 	 * the reset has completed.
   2153  1.35  riastrad 	 */
   2154   1.1    nonaka 	for (timo = 10; timo > 0; timo--) {
   2155   1.1    nonaka 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2156   1.1    nonaka 			break;
   2157   1.1    nonaka 		sdmmc_delay(10000);
   2158   1.1    nonaka 	}
   2159   1.1    nonaka 	if (timo == 0) {
   2160   1.1    nonaka 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2161   1.1    nonaka 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2162   1.1    nonaka 		return ETIMEDOUT;
   2163   1.1    nonaka 	}
   2164   1.1    nonaka 
   2165  1.11      matt 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2166  1.53    nonaka 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2167  1.11      matt 	}
   2168  1.11      matt 
   2169   1.1    nonaka 	return 0;
   2170   1.1    nonaka }
   2171   1.1    nonaka 
   2172   1.1    nonaka static int
   2173  1.88   mlelstv sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2174   1.1    nonaka {
   2175  1.84   mlelstv 	int status, error, nointr;
   2176   1.1    nonaka 
   2177  1.65  jmcneill 	KASSERT(mutex_owned(&hp->intr_lock));
   2178  1.65  jmcneill 
   2179   1.1    nonaka 	mask |= SDHC_ERROR_INTERRUPT;
   2180   1.1    nonaka 
   2181  1.84   mlelstv 	nointr = 0;
   2182   1.1    nonaka 	status = hp->intr_status & mask;
   2183   1.1    nonaka 	while (status == 0) {
   2184  1.65  jmcneill 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2185   1.1    nonaka 		    == EWOULDBLOCK) {
   2186  1.84   mlelstv 			nointr = 1;
   2187   1.1    nonaka 			break;
   2188   1.1    nonaka 		}
   2189   1.1    nonaka 		status = hp->intr_status & mask;
   2190   1.1    nonaka 	}
   2191  1.84   mlelstv 	error = hp->intr_error_status;
   2192  1.84   mlelstv 
   2193  1.84   mlelstv 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2194  1.84   mlelstv 	    error));
   2195  1.84   mlelstv 
   2196   1.1    nonaka 	hp->intr_status &= ~status;
   2197  1.84   mlelstv 	hp->intr_error_status &= ~error;
   2198   1.1    nonaka 
   2199  1.84   mlelstv 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2200  1.84   mlelstv 		if (ISSET(error, SDHC_DMA_ERROR))
   2201  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"dma error\n");
   2202  1.84   mlelstv 		if (ISSET(error, SDHC_ADMA_ERROR))
   2203  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"adma error\n");
   2204  1.84   mlelstv 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2205  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2206  1.84   mlelstv 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2207  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2208  1.84   mlelstv 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2209  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2210  1.84   mlelstv 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2211  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2212  1.84   mlelstv 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2213  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2214  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2215  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2216  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2217  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2218  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2219  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2220  1.88   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2221  1.88   mlelstv 			if (!probing)
   2222  1.88   mlelstv 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2223  1.88   mlelstv #ifdef SDHC_DEBUG
   2224  1.88   mlelstv 			else if (sdhcdebug > 0)
   2225  1.88   mlelstv 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2226  1.88   mlelstv #endif
   2227  1.88   mlelstv 		}
   2228  1.84   mlelstv 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2229  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2230  1.84   mlelstv 				(error & ~SDHC_EINTR_STATUS_MASK));
   2231  1.84   mlelstv 		if (error == 0)
   2232  1.84   mlelstv 			device_printf(hp->sc->sc_dev,"no error\n");
   2233  1.84   mlelstv 
   2234  1.84   mlelstv 		/* Command timeout has higher priority than command complete. */
   2235  1.84   mlelstv 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2236  1.84   mlelstv 			CLR(status, SDHC_COMMAND_COMPLETE);
   2237  1.84   mlelstv 
   2238  1.84   mlelstv 		/* Transfer complete has higher priority than data timeout. */
   2239  1.84   mlelstv 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2240  1.84   mlelstv 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2241  1.84   mlelstv 	}
   2242  1.47     skrll 
   2243  1.84   mlelstv 	if (nointr ||
   2244  1.84   mlelstv 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2245  1.84   mlelstv 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2246  1.84   mlelstv 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2247   1.1    nonaka 		hp->intr_error_status = 0;
   2248   1.1    nonaka 		status = 0;
   2249   1.1    nonaka 	}
   2250   1.1    nonaka 
   2251   1.1    nonaka 	return status;
   2252   1.1    nonaka }
   2253   1.1    nonaka 
   2254   1.1    nonaka /*
   2255   1.1    nonaka  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2256   1.1    nonaka  */
   2257   1.1    nonaka int
   2258   1.1    nonaka sdhc_intr(void *arg)
   2259   1.1    nonaka {
   2260   1.1    nonaka 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2261   1.1    nonaka 	struct sdhc_host *hp;
   2262   1.1    nonaka 	int done = 0;
   2263   1.1    nonaka 	uint16_t status;
   2264   1.1    nonaka 	uint16_t error;
   2265   1.1    nonaka 
   2266   1.1    nonaka 	/* We got an interrupt, but we don't know from which slot. */
   2267  1.11      matt 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2268   1.1    nonaka 		hp = sc->sc_host[host];
   2269   1.1    nonaka 		if (hp == NULL)
   2270   1.1    nonaka 			continue;
   2271   1.1    nonaka 
   2272  1.65  jmcneill 		mutex_enter(&hp->intr_lock);
   2273  1.65  jmcneill 
   2274  1.11      matt 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2275  1.11      matt 			/* Find out which interrupts are pending. */
   2276  1.11      matt 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2277  1.11      matt 			status = xstatus;
   2278  1.11      matt 			error = xstatus >> 16;
   2279  1.93       ryo 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2280  1.93       ryo 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2281  1.93       ryo 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2282  1.93       ryo 				/* read again due to uSDHC errata */
   2283  1.93       ryo 				status = xstatus = HREAD4(hp,
   2284  1.93       ryo 				    SDHC_NINTR_STATUS);
   2285  1.93       ryo 				error = xstatus >> 16;
   2286  1.93       ryo 			}
   2287  1.93       ryo 			if (ISSET(sc->sc_flags,
   2288  1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2289  1.87   mlelstv 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2290  1.87   mlelstv 					SET(status, SDHC_ERROR_INTERRUPT);
   2291  1.87   mlelstv 			}
   2292  1.22      matt 			if (error)
   2293  1.22      matt 				xstatus |= SDHC_ERROR_INTERRUPT;
   2294  1.22      matt 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2295  1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2296  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2297  1.11      matt 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2298  1.11      matt 		} else {
   2299  1.11      matt 			/* Find out which interrupts are pending. */
   2300  1.11      matt 			error = 0;
   2301  1.11      matt 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2302  1.11      matt 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2303  1.65  jmcneill 				goto next_port; /* no interrupt for us */
   2304  1.11      matt 			/* Acknowledge the interrupts we are about to handle. */
   2305  1.11      matt 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2306  1.11      matt 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2307  1.11      matt 				/* Acknowledge error interrupts. */
   2308  1.11      matt 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2309  1.11      matt 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2310  1.11      matt 			}
   2311  1.11      matt 		}
   2312  1.47     skrll 
   2313  1.11      matt 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2314  1.11      matt 		    status, error));
   2315   1.1    nonaka 
   2316   1.1    nonaka 		/* Claim this interrupt. */
   2317   1.1    nonaka 		done = 1;
   2318   1.1    nonaka 
   2319  1.84   mlelstv 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2320  1.84   mlelstv 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2321  1.63  jmcneill 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2322  1.63  jmcneill 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2323  1.63  jmcneill 			    adma_err);
   2324  1.63  jmcneill 		}
   2325  1.63  jmcneill 
   2326   1.1    nonaka 		/*
   2327   1.1    nonaka 		 * Wake up the sdmmc event thread to scan for cards.
   2328   1.1    nonaka 		 */
   2329   1.9      matt 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2330  1.46  jakllsch 			if (hp->sdmmc != NULL) {
   2331  1.46  jakllsch 				sdmmc_needs_discover(hp->sdmmc);
   2332  1.46  jakllsch 			}
   2333  1.93       ryo 			if (ISSET(sc->sc_flags,
   2334  1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2335  1.11      matt 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2336  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2337  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2338  1.11      matt 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2339  1.11      matt 			}
   2340   1.9      matt 		}
   2341   1.1    nonaka 
   2342   1.1    nonaka 		/*
   2343  1.80  jmcneill 		 * Schedule re-tuning process (UHS).
   2344  1.80  jmcneill 		 */
   2345  1.80  jmcneill 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2346  1.80  jmcneill 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2347  1.80  jmcneill 		}
   2348  1.80  jmcneill 
   2349  1.80  jmcneill 		/*
   2350   1.1    nonaka 		 * Wake up the blocking process to service command
   2351   1.1    nonaka 		 * related interrupt(s).
   2352   1.1    nonaka 		 */
   2353  1.86   mlelstv 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2354  1.11      matt 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2355   1.1    nonaka 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2356  1.84   mlelstv 			hp->intr_error_status |= error;
   2357   1.1    nonaka 			hp->intr_status |= status;
   2358  1.93       ryo 			if (ISSET(sc->sc_flags,
   2359  1.93       ryo 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2360  1.11      matt 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2361  1.11      matt 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2362  1.11      matt 			}
   2363   1.1    nonaka 			cv_broadcast(&hp->intr_cv);
   2364   1.1    nonaka 		}
   2365   1.1    nonaka 
   2366   1.1    nonaka 		/*
   2367   1.1    nonaka 		 * Service SD card interrupts.
   2368   1.1    nonaka 		 */
   2369  1.93       ryo 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2370  1.11      matt 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2371   1.1    nonaka 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2372   1.1    nonaka 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2373   1.1    nonaka 			sdmmc_card_intr(hp->sdmmc);
   2374   1.1    nonaka 		}
   2375  1.65  jmcneill next_port:
   2376  1.65  jmcneill 		mutex_exit(&hp->intr_lock);
   2377   1.1    nonaka 	}
   2378   1.1    nonaka 
   2379   1.1    nonaka 	return done;
   2380   1.1    nonaka }
   2381   1.1    nonaka 
   2382  1.65  jmcneill kmutex_t *
   2383  1.65  jmcneill sdhc_host_lock(struct sdhc_host *hp)
   2384  1.65  jmcneill {
   2385  1.65  jmcneill 	return &hp->intr_lock;
   2386  1.65  jmcneill }
   2387  1.65  jmcneill 
   2388   1.1    nonaka #ifdef SDHC_DEBUG
   2389   1.1    nonaka void
   2390   1.1    nonaka sdhc_dump_regs(struct sdhc_host *hp)
   2391   1.1    nonaka {
   2392   1.1    nonaka 
   2393   1.1    nonaka 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2394   1.1    nonaka 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2395  1.11      matt 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2396  1.11      matt 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2397  1.11      matt 		    HREAD1(hp, SDHC_POWER_CTL));
   2398   1.1    nonaka 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2399   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2400   1.1    nonaka 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2401   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2402   1.1    nonaka 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2403   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2404   1.1    nonaka 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2405   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2406   1.1    nonaka 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2407   1.1    nonaka 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2408   1.1    nonaka 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2409   1.1    nonaka 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2410   1.1    nonaka 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2411   1.1    nonaka 	    HREAD4(hp, SDHC_CAPABILITIES));
   2412   1.1    nonaka 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2413   1.1    nonaka 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2414   1.1    nonaka }
   2415   1.1    nonaka #endif
   2416