sdhc.c revision 1.1 1 /* $NetBSD: sdhc.c,v 1.1 2009/04/21 03:00:30 nonaka Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.1 2009/04/21 03:00:30 nonaka Exp $");
27
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/systm.h>
34 #include <sys/mutex.h>
35 #include <sys/condvar.h>
36
37 #include <dev/sdmmc/sdhcreg.h>
38 #include <dev/sdmmc/sdhcvar.h>
39 #include <dev/sdmmc/sdmmcchip.h>
40 #include <dev/sdmmc/sdmmcreg.h>
41 #include <dev/sdmmc/sdmmcvar.h>
42
43 #ifdef SDHC_DEBUG
44 int sdhcdebug = 1;
45 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
46 void sdhc_dump_regs(struct sdhc_host *);
47 #else
48 #define DPRINTF(n,s) do {} while (0)
49 #endif
50
51 #define SDHC_COMMAND_TIMEOUT hz
52 #define SDHC_BUFFER_TIMEOUT hz
53 #define SDHC_TRANSFER_TIMEOUT hz
54 #define SDHC_DMA_TIMEOUT hz
55
56 struct sdhc_host {
57 struct sdhc_softc *sc; /* host controller device */
58
59 bus_space_tag_t iot; /* host register set tag */
60 bus_space_handle_t ioh; /* host register set handle */
61 bus_dma_tag_t dmat; /* host DMA tag */
62
63 device_t sdmmc; /* generic SD/MMC device */
64
65 struct kmutex host_mtx;
66
67 u_int clkbase; /* base clock frequency in KHz */
68 int maxblklen; /* maximum block length */
69 uint32_t ocr; /* OCR value from capabilities */
70
71 uint8_t regs[14]; /* host controller state */
72
73 uint16_t intr_status; /* soft interrupt status */
74 uint16_t intr_error_status; /* soft error status */
75 struct kmutex intr_mtx;
76 struct kcondvar intr_cv;
77
78 uint32_t flags; /* flags for this host */
79 #define SHF_USE_DMA 0x0001
80 #define SHF_USE_4BIT_MODE 0x0002
81 };
82
83 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
84
85 #define HREAD1(hp, reg) \
86 (bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
87 #define HREAD2(hp, reg) \
88 (bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
89 #define HREAD4(hp, reg) \
90 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
91 #define HWRITE1(hp, reg, val) \
92 bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
93 #define HWRITE2(hp, reg, val) \
94 bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
95 #define HWRITE4(hp, reg, val) \
96 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HCLR1(hp, reg, bits) \
98 HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
99 #define HCLR2(hp, reg, bits) \
100 HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
101 #define HSET1(hp, reg, bits) \
102 HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
103 #define HSET2(hp, reg, bits) \
104 HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
105
106 static int sdhc_host_reset(sdmmc_chipset_handle_t);
107 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
108 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
109 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
110 static int sdhc_card_detect(sdmmc_chipset_handle_t);
111 static int sdhc_write_protect(sdmmc_chipset_handle_t);
112 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
114 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
115 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
116 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
117 static void sdhc_exec_command(sdmmc_chipset_handle_t,
118 struct sdmmc_command *);
119 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
120 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
121 static int sdhc_soft_reset(struct sdhc_host *, int);
122 static int sdhc_wait_intr(struct sdhc_host *, int, int);
123 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
124 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
125 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
126 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
127
128 static struct sdmmc_chip_functions sdhc_functions = {
129 /* host controller reset */
130 sdhc_host_reset,
131
132 /* host controller capabilities */
133 sdhc_host_ocr,
134 sdhc_host_maxblklen,
135
136 /* card detection */
137 sdhc_card_detect,
138
139 /* write protect */
140 sdhc_write_protect,
141
142 /* bus power, clock frequency and width */
143 sdhc_bus_power,
144 sdhc_bus_clock,
145 sdhc_bus_width,
146
147 /* command execution */
148 sdhc_exec_command,
149
150 /* card interrupt */
151 sdhc_card_enable_intr,
152 sdhc_card_intr_ack
153 };
154
155 /*
156 * Called by attachment driver. For each SD card slot there is one SD
157 * host controller standard register set. (1.3)
158 */
159 int
160 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
161 bus_space_handle_t ioh, bus_size_t iosize)
162 {
163 struct sdmmcbus_attach_args saa;
164 struct sdhc_host *hp;
165 uint32_t caps;
166 #ifdef SDHC_DEBUG
167 uint16_t sdhcver;
168
169 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
170 aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
171 switch (SDHC_SPEC_VERSION(sdhcver)) {
172 case 0x00:
173 aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
174 break;
175
176 default:
177 aprint_normal(">1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
178 break;
179 }
180 #endif
181
182 /* Allocate one more host structure. */
183 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
184 if (hp == NULL) {
185 aprint_error_dev(sc->sc_dev,
186 "couldn't alloc memory (sdhc host)\n");
187 goto err1;
188 }
189 sc->sc_host[sc->sc_nhosts++] = hp;
190
191 /* Fill in the new host structure. */
192 hp->sc = sc;
193 hp->iot = iot;
194 hp->ioh = ioh;
195 hp->dmat = sc->sc_dmat;
196
197 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
198 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
199 cv_init(&hp->intr_cv, "sdhcintr");
200
201 /*
202 * eset the host controller and enable interrupts.
203 */
204 (void)sdhc_host_reset(hp);
205
206 /* Determine host capabilities. */
207 mutex_enter(&hp->host_mtx);
208 caps = HREAD4(hp, SDHC_CAPABILITIES);
209 mutex_exit(&hp->host_mtx);
210
211 #if notyet
212 /* Use DMA if the host system and the controller support it. */
213 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
214 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
215 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
216 SET(hp->flags, SHF_USE_DMA);
217 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
218 }
219 #endif
220
221 /*
222 * Determine the base clock frequency. (2.2.24)
223 */
224 if (SDHC_BASE_FREQ_KHZ(caps) != 0)
225 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
226 if (hp->clkbase == 0) {
227 /* The attachment driver must tell us. */
228 aprint_error_dev(sc->sc_dev,"unknown base clock frequency\n");
229 goto err;
230 } else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
231 /* SDHC 1.0 supports only 10-63 MHz. */
232 aprint_error_dev(sc->sc_dev,
233 "base clock frequency out of range: %u MHz\n",
234 hp->clkbase / 1000);
235 goto err;
236 }
237 DPRINTF(1,("%s: base clock frequency %u MHz\n",
238 device_xname(sc->sc_dev), hp->clkbase / 1000));
239
240 /*
241 * XXX Set the data timeout counter value according to
242 * capabilities. (2.2.15)
243 */
244 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
245
246 /*
247 * Determine SD bus voltage levels supported by the controller.
248 */
249 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
250 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
251 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
252 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
253 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
254 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
255
256 /*
257 * Determine the maximum block length supported by the host
258 * controller. (2.2.24)
259 */
260 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
261 case SDHC_MAX_BLK_LEN_512:
262 hp->maxblklen = 512;
263 break;
264
265 case SDHC_MAX_BLK_LEN_1024:
266 hp->maxblklen = 1024;
267 break;
268
269 case SDHC_MAX_BLK_LEN_2048:
270 hp->maxblklen = 2048;
271 break;
272
273 default:
274 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
275 goto err;
276 }
277 DPRINTF(1, ("%s: max block length %u byte%s\n",
278 device_xname(sc->sc_dev), hp->maxblklen,
279 hp->maxblklen > 1 ? "s" : ""));
280
281 /*
282 * Attach the generic SD/MMC bus driver. (The bus driver must
283 * not invoke any chipset functions before it is attached.)
284 */
285 memset(&saa, 0, sizeof(saa));
286 saa.saa_busname = "sdmmc";
287 saa.saa_sct = &sdhc_functions;
288 saa.saa_sch = hp;
289 saa.saa_dmat = hp->dmat;
290 saa.saa_clkmin = hp->clkbase / 256;
291 saa.saa_clkmax = hp->clkbase;
292 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
293 #if notyet
294 if (ISSET(hp->flags, SHF_USE_DMA))
295 saa.saa_caps |= SMC_CAPS_DMA;
296 #endif
297
298 hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
299
300 return 0;
301
302 err:
303 cv_destroy(&hp->intr_cv);
304 mutex_destroy(&hp->intr_mtx);
305 mutex_destroy(&hp->host_mtx);
306 free(hp, M_DEVBUF);
307 sc->sc_host[--sc->sc_nhosts] = NULL;
308 err1:
309 return 1;
310 }
311
312 bool
313 sdhc_suspend(device_t dev PMF_FN_ARGS)
314 {
315 struct sdhc_softc *sc = device_private(dev);
316 struct sdhc_host *hp;
317 int n, i;
318
319 /* XXX poll for command completion or suspend command
320 * in progress */
321
322 /* Save the host controller state. */
323 for (n = 0; n < sc->sc_nhosts; n++) {
324 hp = sc->sc_host[n];
325 for (i = 0; i < sizeof hp->regs; i++)
326 hp->regs[i] = HREAD1(hp, i);
327 }
328 return true;
329 }
330
331 bool
332 sdhc_resume(device_t dev PMF_FN_ARGS)
333 {
334 struct sdhc_softc *sc = device_private(dev);
335 struct sdhc_host *hp;
336 int n, i;
337
338 /* Restore the host controller state. */
339 for (n = 0; n < sc->sc_nhosts; n++) {
340 hp = sc->sc_host[n];
341 (void)sdhc_host_reset(hp);
342 for (i = 0; i < sizeof hp->regs; i++)
343 HWRITE1(hp, i, hp->regs[i]);
344 }
345 return true;
346 }
347
348 bool
349 sdhc_shutdown(device_t dev, int flags)
350 {
351 struct sdhc_softc *sc = device_private(dev);
352 struct sdhc_host *hp;
353 int i;
354
355 /* XXX chip locks up if we don't disable it before reboot. */
356 for (i = 0; i < sc->sc_nhosts; i++) {
357 hp = sc->sc_host[i];
358 (void)sdhc_host_reset(hp);
359 }
360 return true;
361 }
362
363 /*
364 * Reset the host controller. Called during initialization, when
365 * cards are removed, upon resume, and during error recovery.
366 */
367 static int
368 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
369 {
370 struct sdhc_host *hp = (struct sdhc_host *)sch;
371 uint16_t sdhcimask;
372 int error;
373
374 /* Don't lock. */
375
376 /* Disable all interrupts. */
377 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
378
379 /*
380 * Reset the entire host controller and wait up to 100ms for
381 * the controller to clear the reset bit.
382 */
383 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
384 if (error)
385 goto out;
386
387 /* Set data timeout counter value to max for now. */
388 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
389
390 /* Enable interrupts. */
391 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
392 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
393 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
394 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
395 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
396 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
397 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
398 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
399
400 out:
401 return error;
402 }
403
404 static int
405 sdhc_host_reset(sdmmc_chipset_handle_t sch)
406 {
407 struct sdhc_host *hp = (struct sdhc_host *)sch;
408 int error;
409
410 mutex_enter(&hp->host_mtx);
411 error = sdhc_host_reset1(sch);
412 mutex_exit(&hp->host_mtx);
413
414 return error;
415 }
416
417 static uint32_t
418 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
419 {
420 struct sdhc_host *hp = (struct sdhc_host *)sch;
421
422 return hp->ocr;
423 }
424
425 static int
426 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
427 {
428 struct sdhc_host *hp = (struct sdhc_host *)sch;
429
430 return hp->maxblklen;
431 }
432
433 /*
434 * Return non-zero if the card is currently inserted.
435 */
436 static int
437 sdhc_card_detect(sdmmc_chipset_handle_t sch)
438 {
439 struct sdhc_host *hp = (struct sdhc_host *)sch;
440 int r;
441
442 mutex_enter(&hp->host_mtx);
443 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
444 mutex_exit(&hp->host_mtx);
445
446 if (r)
447 return 1;
448 return 0;
449 }
450
451 /*
452 * Return non-zero if the card is currently write-protected.
453 */
454 static int
455 sdhc_write_protect(sdmmc_chipset_handle_t sch)
456 {
457 struct sdhc_host *hp = (struct sdhc_host *)sch;
458 int r;
459
460 mutex_enter(&hp->host_mtx);
461 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
462 mutex_exit(&hp->host_mtx);
463
464 if (!r)
465 return 1;
466 return 0;
467 }
468
469 /*
470 * Set or change SD bus voltage and enable or disable SD bus power.
471 * Return zero on success.
472 */
473 static int
474 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
475 {
476 struct sdhc_host *hp = (struct sdhc_host *)sch;
477 uint8_t vdd;
478 int error = 0;
479
480 mutex_enter(&hp->host_mtx);
481
482 /*
483 * Disable bus power before voltage change.
484 */
485 if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
486 HWRITE1(hp, SDHC_POWER_CTL, 0);
487
488 /* If power is disabled, reset the host and return now. */
489 if (ocr == 0) {
490 (void)sdhc_host_reset1(hp);
491 goto out;
492 }
493
494 /*
495 * Select the lowest voltage according to capabilities.
496 */
497 ocr &= hp->ocr;
498 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
499 vdd = SDHC_VOLTAGE_1_8V;
500 else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
501 vdd = SDHC_VOLTAGE_3_0V;
502 else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
503 vdd = SDHC_VOLTAGE_3_3V;
504 else {
505 /* Unsupported voltage level requested. */
506 error = EINVAL;
507 goto out;
508 }
509
510 /*
511 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
512 * voltage ramp until power rises.
513 */
514 HWRITE1(hp, SDHC_POWER_CTL,
515 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
516 sdmmc_delay(10000);
517
518 /*
519 * The host system may not power the bus due to battery low,
520 * etc. In that case, the host controller should clear the
521 * bus power bit.
522 */
523 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
524 error = ENXIO;
525 goto out;
526 }
527
528 out:
529 mutex_exit(&hp->host_mtx);
530
531 return error;
532 }
533
534 /*
535 * Return the smallest possible base clock frequency divisor value
536 * for the CLOCK_CTL register to produce `freq' (KHz).
537 */
538 static int
539 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
540 {
541 int div;
542
543 for (div = 1; div <= 256; div *= 2)
544 if ((hp->clkbase / div) <= freq)
545 return (div / 2);
546 /* No divisor found. */
547 return -1;
548 }
549
550 /*
551 * Set or change SDCLK frequency or disable the SD clock.
552 * Return zero on success.
553 */
554 static int
555 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
556 {
557 struct sdhc_host *hp = (struct sdhc_host *)sch;
558 int div;
559 int timo;
560 int error = 0;
561
562 mutex_enter(&hp->host_mtx);
563
564 #ifdef DIAGNOSTIC
565 /* Must not stop the clock if commands are in progress. */
566 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) &&
567 sdhc_card_detect(hp))
568 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
569 device_xname(hp->sc->sc_dev));
570 #endif
571
572 /*
573 * Stop SD clock before changing the frequency.
574 */
575 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
576 if (freq == SDMMC_SDCLK_OFF)
577 goto out;
578
579 /*
580 * Set the minimum base clock frequency divisor.
581 */
582 if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
583 /* Invalid base clock frequency or `freq' value. */
584 error = EINVAL;
585 goto out;
586 }
587 HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
588
589 /*
590 * Start internal clock. Wait 10ms for stabilization.
591 */
592 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
593 for (timo = 1000; timo > 0; timo--) {
594 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
595 break;
596 sdmmc_delay(10);
597 }
598 if (timo == 0) {
599 error = ETIMEDOUT;
600 goto out;
601 }
602
603 /*
604 * Enable SD clock.
605 */
606 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
607
608 out:
609 mutex_exit(&hp->host_mtx);
610
611 return error;
612 }
613
614 static int
615 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
616 {
617 struct sdhc_host *hp = (struct sdhc_host *)sch;
618 int reg;
619
620 switch (width) {
621 case 1:
622 case 4:
623 break;
624
625 default:
626 DPRINTF(0,("%s: unsupported bus width (%d)\n",
627 HDEVNAME(hp), width));
628 return 1;
629 }
630
631 mutex_enter(&hp->host_mtx);
632 reg = HREAD1(hp, SDHC_POWER_CTL);
633 reg &= ~SDHC_4BIT_MODE;
634 if (width == 4)
635 reg |= SDHC_4BIT_MODE;
636 HWRITE1(hp, SDHC_POWER_CTL, reg);
637 mutex_exit(&hp->host_mtx);
638
639 return 0;
640 }
641
642 static void
643 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
644 {
645 struct sdhc_host *hp = (struct sdhc_host *)sch;
646
647 mutex_enter(&hp->host_mtx);
648 if (enable) {
649 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
650 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
651 } else {
652 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
653 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
654 }
655 mutex_exit(&hp->host_mtx);
656 }
657
658 static void
659 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
660 {
661 struct sdhc_host *hp = (struct sdhc_host *)sch;
662
663 mutex_enter(&hp->host_mtx);
664 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
665 mutex_exit(&hp->host_mtx);
666 }
667
668 static int
669 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
670 {
671 uint32_t state;
672 int timeout;
673
674 for (timeout = 10; timeout > 0; timeout--) {
675 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
676 return 0;
677 sdmmc_delay(10000);
678 }
679 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
680 value, state));
681 return ETIMEDOUT;
682 }
683
684 static void
685 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
686 {
687 struct sdhc_host *hp = (struct sdhc_host *)sch;
688 int error;
689
690 /*
691 * Start the MMC command, or mark `cmd' as failed and return.
692 */
693 error = sdhc_start_command(hp, cmd);
694 if (error) {
695 cmd->c_error = error;
696 goto out;
697 }
698
699 /*
700 * Wait until the command phase is done, or until the command
701 * is marked done for any other reason.
702 */
703 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
704 cmd->c_error = ETIMEDOUT;
705 goto out;
706 }
707
708 /*
709 * The host controller removes bits [0:7] from the response
710 * data (CRC) and we pass the data up unchanged to the bus
711 * driver (without padding).
712 */
713 mutex_enter(&hp->host_mtx);
714 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
715 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
716 uint8_t *p = (uint8_t *)cmd->c_resp;
717 int i;
718
719 for (i = 0; i < 15; i++)
720 *p++ = HREAD1(hp, SDHC_RESPONSE + i);
721 } else {
722 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
723 }
724 }
725 mutex_exit(&hp->host_mtx);
726 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
727
728 /*
729 * If the command has data to transfer in any direction,
730 * execute the transfer now.
731 */
732 if (cmd->c_error == 0 && cmd->c_data != NULL)
733 sdhc_transfer_data(hp, cmd);
734
735 out:
736 mutex_enter(&hp->host_mtx);
737 /* Turn off the LED. */
738 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
739 mutex_exit(&hp->host_mtx);
740 SET(cmd->c_flags, SCF_ITSDONE);
741
742 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
743 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
744 cmd->c_flags, cmd->c_error));
745 }
746
747 static int
748 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
749 {
750 uint16_t blksize = 0;
751 uint16_t blkcount = 0;
752 uint16_t mode;
753 uint16_t command;
754 int error;
755
756 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x "
757 "proc=%p \"%s\"\n", HDEVNAME(hp), cmd->c_opcode, cmd->c_arg,
758 cmd->c_data, cmd->c_datalen, cmd->c_flags, curproc,
759 curproc ? curproc->p_comm : ""));
760
761 /*
762 * The maximum block length for commands should be the minimum
763 * of the host buffer size and the card buffer size. (1.7.2)
764 */
765
766 /* Fragment the data into proper blocks. */
767 if (cmd->c_datalen > 0) {
768 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
769 blkcount = cmd->c_datalen / blksize;
770 if (cmd->c_datalen % blksize > 0) {
771 /* XXX: Split this command. (1.7.4) */
772 aprint_error_dev(hp->sc->sc_dev,
773 "data not a multiple of %u bytes\n", blksize);
774 return EINVAL;
775 }
776 }
777
778 /* Check limit imposed by 9-bit block count. (1.7.2) */
779 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
780 aprint_error_dev(hp->sc->sc_dev, "too much data\n");
781 return EINVAL;
782 }
783
784 /* Prepare transfer mode register value. (2.2.5) */
785 mode = 0;
786 if (ISSET(cmd->c_flags, SCF_CMD_READ))
787 mode |= SDHC_READ_MODE;
788 if (blkcount > 0) {
789 mode |= SDHC_BLOCK_COUNT_ENABLE;
790 if (blkcount > 1) {
791 mode |= SDHC_MULTI_BLOCK_MODE;
792 /* XXX only for memory commands? */
793 mode |= SDHC_AUTO_CMD12_ENABLE;
794 }
795 }
796 #if notyet
797 if (cmd->c_dmap != NULL && cmd->c_datalen > 0)
798 mode |= SDHC_DMA_ENABLE;
799 #endif
800
801 /*
802 * Prepare command register value. (2.2.6)
803 */
804 command =
805 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
806
807 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
808 command |= SDHC_CRC_CHECK_ENABLE;
809 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
810 command |= SDHC_INDEX_CHECK_ENABLE;
811 if (cmd->c_data != NULL)
812 command |= SDHC_DATA_PRESENT_SELECT;
813
814 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
815 command |= SDHC_NO_RESPONSE;
816 else if (ISSET(cmd->c_flags, SCF_RSP_136))
817 command |= SDHC_RESP_LEN_136;
818 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
819 command |= SDHC_RESP_LEN_48_CHK_BUSY;
820 else
821 command |= SDHC_RESP_LEN_48;
822
823 /* Wait until command and data inhibit bits are clear. (1.5) */
824 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
825 if (error)
826 return error;
827
828 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
829 HDEVNAME(hp), blksize, blkcount, mode, command));
830
831 mutex_enter(&hp->host_mtx);
832
833 /* Alert the user not to remove the card. */
834 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
835
836 /*
837 * Start a CPU data transfer. Writing to the high order byte
838 * of the SDHC_COMMAND register triggers the SD command. (1.5)
839 */
840 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
841 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
842 if (blkcount > 1)
843 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
844 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
845 HWRITE2(hp, SDHC_COMMAND, command);
846
847 mutex_exit(&hp->host_mtx);
848
849 return 0;
850 }
851
852 static void
853 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
854 {
855 int error;
856
857 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
858 MMC_R1(cmd->c_resp), cmd->c_datalen));
859
860 #ifdef SDHC_DEBUG
861 /* XXX I forgot why I wanted to know when this happens :-( */
862 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
863 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
864 aprint_error_dev(hp->sc->sc_dev,
865 "CMD52/53 error response flags %#x\n",
866 MMC_R1(cmd->c_resp) & 0xff00);
867 }
868 #endif
869
870 error = sdhc_transfer_data_pio(hp, cmd);
871 if (error)
872 cmd->c_error = error;
873 SET(cmd->c_flags, SCF_ITSDONE);
874
875 DPRINTF(1,("%s: data transfer done (error=%d)\n",
876 HDEVNAME(hp), cmd->c_error));
877 }
878
879 static int
880 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
881 {
882 uint8_t *data = cmd->c_data;
883 int len, datalen;
884 int mask;
885 int error = 0;
886
887 mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
888 SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
889 datalen = cmd->c_datalen;
890
891 while (datalen > 0) {
892 if (!sdhc_wait_intr(hp,
893 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
894 SDHC_BUFFER_TIMEOUT)) {
895 error = ETIMEDOUT;
896 break;
897 }
898
899 error = sdhc_wait_state(hp, mask, mask);
900 if (error)
901 break;
902
903 len = MIN(datalen, cmd->c_blklen);
904 if (ISSET(cmd->c_flags, SCF_CMD_READ))
905 sdhc_read_data_pio(hp, data, len);
906 else
907 sdhc_write_data_pio(hp, data, len);
908
909 data += len;
910 datalen -= len;
911 }
912
913 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
914 SDHC_TRANSFER_TIMEOUT))
915 error = ETIMEDOUT;
916
917 return error;
918 }
919
920 static void
921 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
922 {
923
924 if (((__uintptr_t)data & 3) == 0) {
925 while (datalen > 3) {
926 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
927 data += 4;
928 datalen -= 4;
929 }
930 if (datalen > 1) {
931 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
932 data += 2;
933 datalen -= 2;
934 }
935 if (datalen > 0) {
936 *data = HREAD1(hp, SDHC_DATA);
937 data += 1;
938 datalen -= 1;
939 }
940 } else if (((__uintptr_t)data & 1) == 0) {
941 while (datalen > 1) {
942 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
943 data += 2;
944 datalen -= 2;
945 }
946 if (datalen > 0) {
947 *data = HREAD1(hp, SDHC_DATA);
948 data += 1;
949 datalen -= 1;
950 }
951 } else {
952 while (datalen > 0) {
953 *data = HREAD1(hp, SDHC_DATA);
954 data += 1;
955 datalen -= 1;
956 }
957 }
958 }
959
960 static void
961 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
962 {
963
964 if (((__uintptr_t)data & 3) == 0) {
965 while (datalen > 3) {
966 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
967 data += 4;
968 datalen -= 4;
969 }
970 if (datalen > 1) {
971 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
972 data += 2;
973 datalen -= 2;
974 }
975 if (datalen > 0) {
976 HWRITE1(hp, SDHC_DATA, *data);
977 data += 1;
978 datalen -= 1;
979 }
980 } else if (((__uintptr_t)data & 1) == 0) {
981 while (datalen > 1) {
982 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
983 data += 2;
984 datalen -= 2;
985 }
986 if (datalen > 0) {
987 HWRITE1(hp, SDHC_DATA, *data);
988 data += 1;
989 datalen -= 1;
990 }
991 } else {
992 while (datalen > 0) {
993 HWRITE1(hp, SDHC_DATA, *data);
994 data += 1;
995 datalen -= 1;
996 }
997 }
998 }
999
1000 /* Prepare for another command. */
1001 static int
1002 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1003 {
1004 int timo;
1005
1006 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1007
1008 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1009 for (timo = 10; timo > 0; timo--) {
1010 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1011 break;
1012 sdmmc_delay(10000);
1013 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1014 }
1015 if (timo == 0) {
1016 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1017 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1018 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1019 return ETIMEDOUT;
1020 }
1021
1022 return 0;
1023 }
1024
1025 static int
1026 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1027 {
1028 int status;
1029
1030 mask |= SDHC_ERROR_INTERRUPT;
1031
1032 mutex_enter(&hp->intr_mtx);
1033 status = hp->intr_status & mask;
1034 while (status == 0) {
1035 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1036 == EWOULDBLOCK) {
1037 status |= SDHC_ERROR_INTERRUPT;
1038 break;
1039 }
1040 status = hp->intr_status & mask;
1041 }
1042 hp->intr_status &= ~status;
1043
1044 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1045 hp->intr_error_status));
1046
1047 /* Command timeout has higher priority than command complete. */
1048 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1049 hp->intr_error_status = 0;
1050 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1051 status = 0;
1052 }
1053 mutex_exit(&hp->intr_mtx);
1054
1055 return status;
1056 }
1057
1058 /*
1059 * Established by attachment driver at interrupt priority IPL_SDMMC.
1060 */
1061 int
1062 sdhc_intr(void *arg)
1063 {
1064 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1065 struct sdhc_host *hp;
1066 int host;
1067 int done = 0;
1068 uint16_t status;
1069 uint16_t error;
1070
1071 /* We got an interrupt, but we don't know from which slot. */
1072 for (host = 0; host < sc->sc_nhosts; host++) {
1073 hp = sc->sc_host[host];
1074 if (hp == NULL)
1075 continue;
1076
1077 /* Find out which interrupts are pending. */
1078 status = HREAD2(hp, SDHC_NINTR_STATUS);
1079 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1080 continue; /* no interrupt for us */
1081
1082 /* Acknowledge the interrupts we are about to handle. */
1083 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1084 DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1085 status));
1086
1087 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1088 continue;
1089
1090 /* Claim this interrupt. */
1091 done = 1;
1092
1093 /*
1094 * Service error interrupts.
1095 */
1096 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1097 /* Acknowledge error interrupts. */
1098 error = HREAD2(hp, SDHC_EINTR_STATUS);
1099 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1100 DPRINTF(2,("%s: error interrupt, status=%x\n",
1101 HDEVNAME(hp), error));
1102
1103 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1104 SDHC_DATA_TIMEOUT_ERROR)) {
1105 hp->intr_error_status |= error;
1106 hp->intr_status |= status;
1107 cv_broadcast(&hp->intr_cv);
1108 }
1109 }
1110
1111 /*
1112 * Wake up the sdmmc event thread to scan for cards.
1113 */
1114 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1115 sdmmc_needs_discover(hp->sdmmc);
1116
1117 /*
1118 * Wake up the blocking process to service command
1119 * related interrupt(s).
1120 */
1121 if (ISSET(status, SDHC_BUFFER_READ_READY|
1122 SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1123 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1124 hp->intr_status |= status;
1125 cv_broadcast(&hp->intr_cv);
1126 }
1127
1128 /*
1129 * Service SD card interrupts.
1130 */
1131 if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1132 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1133 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1134 sdmmc_card_intr(hp->sdmmc);
1135 }
1136 }
1137
1138 return done;
1139 }
1140
1141 #ifdef SDHC_DEBUG
1142 void
1143 sdhc_dump_regs(struct sdhc_host *hp)
1144 {
1145
1146 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1147 HREAD4(hp, SDHC_PRESENT_STATE));
1148 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1149 HREAD1(hp, SDHC_POWER_CTL));
1150 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1151 HREAD2(hp, SDHC_NINTR_STATUS));
1152 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1153 HREAD2(hp, SDHC_EINTR_STATUS));
1154 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1155 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1156 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1157 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1158 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1159 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1160 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1161 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1162 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1163 HREAD4(hp, SDHC_CAPABILITIES));
1164 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1165 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1166 }
1167 #endif
1168