sdhc.c revision 1.10 1 /* $NetBSD: sdhc.c,v 1.10 2012/02/02 22:49:17 nonaka Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.10 2012/02/02 22:49:17 nonaka Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 uint32_t flags; /* flags for this host */
83 #define SHF_USE_DMA 0x0001
84 #define SHF_USE_4BIT_MODE 0x0002
85 };
86
87 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
88
89 #define HREAD1(hp, reg) \
90 (bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
91 #define HREAD2(hp, reg) \
92 (bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
93 #define HREAD4(hp, reg) \
94 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
95 #define HWRITE1(hp, reg, val) \
96 bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HWRITE2(hp, reg, val) \
98 bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
99 #define HWRITE4(hp, reg, val) \
100 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
101 #define HCLR1(hp, reg, bits) \
102 HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
103 #define HCLR2(hp, reg, bits) \
104 HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
105 #define HSET1(hp, reg, bits) \
106 HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
107 #define HSET2(hp, reg, bits) \
108 HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
109
110 static int sdhc_host_reset(sdmmc_chipset_handle_t);
111 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
112 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
113 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
114 static int sdhc_card_detect(sdmmc_chipset_handle_t);
115 static int sdhc_write_protect(sdmmc_chipset_handle_t);
116 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
117 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
118 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
119 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
120 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
121 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
122 static void sdhc_exec_command(sdmmc_chipset_handle_t,
123 struct sdmmc_command *);
124 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
125 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
126 static int sdhc_soft_reset(struct sdhc_host *, int);
127 static int sdhc_wait_intr(struct sdhc_host *, int, int);
128 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
129 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
130 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
131 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
132 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
133
134 static struct sdmmc_chip_functions sdhc_functions = {
135 /* host controller reset */
136 sdhc_host_reset,
137
138 /* host controller capabilities */
139 sdhc_host_ocr,
140 sdhc_host_maxblklen,
141
142 /* card detection */
143 sdhc_card_detect,
144
145 /* write protect */
146 sdhc_write_protect,
147
148 /* bus power, clock frequency and width */
149 sdhc_bus_power,
150 sdhc_bus_clock,
151 sdhc_bus_width,
152 sdhc_bus_rod,
153
154 /* command execution */
155 sdhc_exec_command,
156
157 /* card interrupt */
158 sdhc_card_enable_intr,
159 sdhc_card_intr_ack
160 };
161
162 /*
163 * Called by attachment driver. For each SD card slot there is one SD
164 * host controller standard register set. (1.3)
165 */
166 int
167 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
168 bus_space_handle_t ioh, bus_size_t iosize)
169 {
170 struct sdmmcbus_attach_args saa;
171 struct sdhc_host *hp;
172 uint32_t caps;
173 #ifdef SDHC_DEBUG
174 uint16_t sdhcver;
175
176 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
177 aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
178 switch (SDHC_SPEC_VERSION(sdhcver)) {
179 case 0x00:
180 aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
181 break;
182
183 case 0x01:
184 aprint_normal("2.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
185 break;
186
187 default:
188 aprint_normal(">2.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
189 break;
190 }
191 #endif
192
193 /* Allocate one more host structure. */
194 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
195 if (hp == NULL) {
196 aprint_error_dev(sc->sc_dev,
197 "couldn't alloc memory (sdhc host)\n");
198 goto err1;
199 }
200 sc->sc_host[sc->sc_nhosts++] = hp;
201
202 /* Fill in the new host structure. */
203 hp->sc = sc;
204 hp->iot = iot;
205 hp->ioh = ioh;
206 hp->dmat = sc->sc_dmat;
207
208 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
209 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
210 cv_init(&hp->intr_cv, "sdhcintr");
211
212 /*
213 * Reset the host controller and enable interrupts.
214 */
215 (void)sdhc_host_reset(hp);
216
217 /* Determine host capabilities. */
218 mutex_enter(&hp->host_mtx);
219 caps = HREAD4(hp, SDHC_CAPABILITIES);
220 mutex_exit(&hp->host_mtx);
221
222 #if notyet
223 /* Use DMA if the host system and the controller support it. */
224 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
225 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
226 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
227 SET(hp->flags, SHF_USE_DMA);
228 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
229 }
230 #endif
231
232 /*
233 * Determine the base clock frequency. (2.2.24)
234 */
235 if (SDHC_BASE_FREQ_KHZ(caps) != 0)
236 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
237 if (hp->clkbase == 0) {
238 if (sc->sc_clkbase == 0) {
239 /* The attachment driver must tell us. */
240 aprint_error_dev(sc->sc_dev,"unknown base clock frequency\n");
241 goto err;
242 }
243 hp->clkbase = sc->sc_clkbase;
244 }
245 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
246 /* SDHC 1.0 supports only 10-63 MHz. */
247 aprint_error_dev(sc->sc_dev,
248 "base clock frequency out of range: %u MHz\n",
249 hp->clkbase / 1000);
250 goto err;
251 }
252 DPRINTF(1,("%s: base clock frequency %u MHz\n",
253 device_xname(sc->sc_dev), hp->clkbase / 1000));
254
255 /*
256 * XXX Set the data timeout counter value according to
257 * capabilities. (2.2.15)
258 */
259 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
260
261 /*
262 * Determine SD bus voltage levels supported by the controller.
263 */
264 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
265 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
266 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
267 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
268 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
269 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
270
271 /*
272 * Determine the maximum block length supported by the host
273 * controller. (2.2.24)
274 */
275 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
276 case SDHC_MAX_BLK_LEN_512:
277 hp->maxblklen = 512;
278 break;
279
280 case SDHC_MAX_BLK_LEN_1024:
281 hp->maxblklen = 1024;
282 break;
283
284 case SDHC_MAX_BLK_LEN_2048:
285 hp->maxblklen = 2048;
286 break;
287
288 case SDHC_MAX_BLK_LEN_4096:
289 hp->maxblklen = 4096;
290 break;
291
292 default:
293 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
294 goto err;
295 }
296 DPRINTF(1, ("%s: max block length %u byte%s\n",
297 device_xname(sc->sc_dev), hp->maxblklen,
298 hp->maxblklen > 1 ? "s" : ""));
299
300 /*
301 * Attach the generic SD/MMC bus driver. (The bus driver must
302 * not invoke any chipset functions before it is attached.)
303 */
304 memset(&saa, 0, sizeof(saa));
305 saa.saa_busname = "sdmmc";
306 saa.saa_sct = &sdhc_functions;
307 saa.saa_sch = hp;
308 saa.saa_dmat = hp->dmat;
309 saa.saa_clkmin = hp->clkbase / 256;
310 saa.saa_clkmax = hp->clkbase;
311 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
312 saa.saa_clkmin /= 16;
313 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
314 #if notyet
315 if (ISSET(hp->flags, SHF_USE_DMA))
316 saa.saa_caps |= SMC_CAPS_DMA;
317 #endif
318 hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
319
320 return 0;
321
322 err:
323 cv_destroy(&hp->intr_cv);
324 mutex_destroy(&hp->intr_mtx);
325 mutex_destroy(&hp->host_mtx);
326 free(hp, M_DEVBUF);
327 sc->sc_host[--sc->sc_nhosts] = NULL;
328 err1:
329 return 1;
330 }
331
332 int
333 sdhc_detach(device_t dev, int flags)
334 {
335 struct sdhc_host *hp = (struct sdhc_host *)dev;
336 struct sdhc_softc *sc = hp->sc;
337 int rv = 0;
338
339 if (hp->sdmmc)
340 rv = config_detach(hp->sdmmc, flags);
341
342 cv_destroy(&hp->intr_cv);
343 mutex_destroy(&hp->intr_mtx);
344 mutex_destroy(&hp->host_mtx);
345 free(hp, M_DEVBUF);
346 sc->sc_host[--sc->sc_nhosts] = NULL;
347
348 return rv;
349 }
350
351 bool
352 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
353 {
354 struct sdhc_softc *sc = device_private(dev);
355 struct sdhc_host *hp;
356 int n, i;
357
358 /* XXX poll for command completion or suspend command
359 * in progress */
360
361 /* Save the host controller state. */
362 for (n = 0; n < sc->sc_nhosts; n++) {
363 hp = sc->sc_host[n];
364 for (i = 0; i < sizeof hp->regs; i++)
365 hp->regs[i] = HREAD1(hp, i);
366 }
367 return true;
368 }
369
370 bool
371 sdhc_resume(device_t dev, const pmf_qual_t *qual)
372 {
373 struct sdhc_softc *sc = device_private(dev);
374 struct sdhc_host *hp;
375 int n, i;
376
377 /* Restore the host controller state. */
378 for (n = 0; n < sc->sc_nhosts; n++) {
379 hp = sc->sc_host[n];
380 (void)sdhc_host_reset(hp);
381 for (i = 0; i < sizeof hp->regs; i++)
382 HWRITE1(hp, i, hp->regs[i]);
383 }
384 return true;
385 }
386
387 bool
388 sdhc_shutdown(device_t dev, int flags)
389 {
390 struct sdhc_softc *sc = device_private(dev);
391 struct sdhc_host *hp;
392 int i;
393
394 /* XXX chip locks up if we don't disable it before reboot. */
395 for (i = 0; i < sc->sc_nhosts; i++) {
396 hp = sc->sc_host[i];
397 (void)sdhc_host_reset(hp);
398 }
399 return true;
400 }
401
402 /*
403 * Reset the host controller. Called during initialization, when
404 * cards are removed, upon resume, and during error recovery.
405 */
406 static int
407 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
408 {
409 struct sdhc_host *hp = (struct sdhc_host *)sch;
410 uint16_t sdhcimask;
411 int error;
412
413 /* Don't lock. */
414
415 /* Disable all interrupts. */
416 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
417
418 /*
419 * Reset the entire host controller and wait up to 100ms for
420 * the controller to clear the reset bit.
421 */
422 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
423 if (error)
424 goto out;
425
426 /* Set data timeout counter value to max for now. */
427 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
428
429 /* Enable interrupts. */
430 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
431 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
432 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
433 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
434 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
435 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
436 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
437 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
438
439 out:
440 return error;
441 }
442
443 static int
444 sdhc_host_reset(sdmmc_chipset_handle_t sch)
445 {
446 struct sdhc_host *hp = (struct sdhc_host *)sch;
447 int error;
448
449 mutex_enter(&hp->host_mtx);
450 error = sdhc_host_reset1(sch);
451 mutex_exit(&hp->host_mtx);
452
453 return error;
454 }
455
456 static uint32_t
457 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
458 {
459 struct sdhc_host *hp = (struct sdhc_host *)sch;
460
461 return hp->ocr;
462 }
463
464 static int
465 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
466 {
467 struct sdhc_host *hp = (struct sdhc_host *)sch;
468
469 return hp->maxblklen;
470 }
471
472 /*
473 * Return non-zero if the card is currently inserted.
474 */
475 static int
476 sdhc_card_detect(sdmmc_chipset_handle_t sch)
477 {
478 struct sdhc_host *hp = (struct sdhc_host *)sch;
479 int r;
480
481 mutex_enter(&hp->host_mtx);
482 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
483 mutex_exit(&hp->host_mtx);
484
485 if (r)
486 return 1;
487 return 0;
488 }
489
490 /*
491 * Return non-zero if the card is currently write-protected.
492 */
493 static int
494 sdhc_write_protect(sdmmc_chipset_handle_t sch)
495 {
496 struct sdhc_host *hp = (struct sdhc_host *)sch;
497 int r;
498
499 mutex_enter(&hp->host_mtx);
500 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
501 mutex_exit(&hp->host_mtx);
502
503 if (!r)
504 return 1;
505 return 0;
506 }
507
508 /*
509 * Set or change SD bus voltage and enable or disable SD bus power.
510 * Return zero on success.
511 */
512 static int
513 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
514 {
515 struct sdhc_host *hp = (struct sdhc_host *)sch;
516 uint8_t vdd;
517 int error = 0;
518
519 mutex_enter(&hp->host_mtx);
520
521 /*
522 * Disable bus power before voltage change.
523 */
524 if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
525 HWRITE1(hp, SDHC_POWER_CTL, 0);
526
527 /* If power is disabled, reset the host and return now. */
528 if (ocr == 0) {
529 (void)sdhc_host_reset1(hp);
530 goto out;
531 }
532
533 /*
534 * Select the lowest voltage according to capabilities.
535 */
536 ocr &= hp->ocr;
537 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
538 vdd = SDHC_VOLTAGE_1_8V;
539 else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
540 vdd = SDHC_VOLTAGE_3_0V;
541 else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
542 vdd = SDHC_VOLTAGE_3_3V;
543 else {
544 /* Unsupported voltage level requested. */
545 error = EINVAL;
546 goto out;
547 }
548
549 /*
550 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
551 * voltage ramp until power rises.
552 */
553 HWRITE1(hp, SDHC_POWER_CTL,
554 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
555 sdmmc_delay(10000);
556
557 /*
558 * The host system may not power the bus due to battery low,
559 * etc. In that case, the host controller should clear the
560 * bus power bit.
561 */
562 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
563 error = ENXIO;
564 goto out;
565 }
566
567 out:
568 mutex_exit(&hp->host_mtx);
569
570 return error;
571 }
572
573 /*
574 * Return the smallest possible base clock frequency divisor value
575 * for the CLOCK_CTL register to produce `freq' (KHz).
576 */
577 static int
578 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
579 {
580 int div;
581
582 if (hp->sc->sc_flags & SDHC_FLAG_HAVE_DVS) {
583 int dvs = (hp->clkbase + freq - 1) / freq;
584 div = 1;
585 for (div = 1; div <= 256; div <<= 1, dvs >>= 1) {
586 if (dvs <= 16) {
587 div <<= SDHC_SDCLK_DIV_SHIFT;
588 div |= (dvs - 1) << SDHC_SDCLK_DVS_SHIFT;
589 return div;
590 }
591 }
592 } else {
593 for (div = 1; div <= 256; div *= 2) {
594 if ((hp->clkbase / div) <= freq)
595 return (div / 2) << SDHC_SDCLK_DIV_SHIFT;
596 }
597 }
598
599 /* No divisor found. */
600 return -1;
601 }
602
603 /*
604 * Set or change SDCLK frequency or disable the SD clock.
605 * Return zero on success.
606 */
607 static int
608 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
609 {
610 struct sdhc_host *hp = (struct sdhc_host *)sch;
611 int div;
612 int timo;
613 int error = 0;
614 #ifdef DIAGNOSTIC
615 int ispresent;
616 #endif
617
618 #ifdef DIAGNOSTIC
619 mutex_enter(&hp->host_mtx);
620 ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
621 mutex_exit(&hp->host_mtx);
622
623 /* Must not stop the clock if commands are in progress. */
624 if (ispresent && sdhc_card_detect(hp))
625 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
626 device_xname(hp->sc->sc_dev));
627 #endif
628
629 mutex_enter(&hp->host_mtx);
630
631 /*
632 * Stop SD clock before changing the frequency.
633 */
634 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
635 if (freq == SDMMC_SDCLK_OFF)
636 goto out;
637
638 /*
639 * Set the minimum base clock frequency divisor.
640 */
641 if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
642 /* Invalid base clock frequency or `freq' value. */
643 error = EINVAL;
644 goto out;
645 }
646 HWRITE2(hp, SDHC_CLOCK_CTL, div);
647
648 /*
649 * Start internal clock. Wait 10ms for stabilization.
650 */
651 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
652 for (timo = 1000; timo > 0; timo--) {
653 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
654 break;
655 sdmmc_delay(10);
656 }
657 if (timo == 0) {
658 error = ETIMEDOUT;
659 goto out;
660 }
661
662 /*
663 * Enable SD clock.
664 */
665 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
666
667 if (freq > 25000)
668 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
669 else
670 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
671
672 out:
673 mutex_exit(&hp->host_mtx);
674
675 return error;
676 }
677
678 static int
679 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
680 {
681 struct sdhc_host *hp = (struct sdhc_host *)sch;
682 int reg;
683
684 switch (width) {
685 case 1:
686 case 4:
687 break;
688
689 default:
690 DPRINTF(0,("%s: unsupported bus width (%d)\n",
691 HDEVNAME(hp), width));
692 return 1;
693 }
694
695 mutex_enter(&hp->host_mtx);
696 reg = HREAD1(hp, SDHC_HOST_CTL);
697 reg &= ~SDHC_4BIT_MODE;
698 if (width == 4)
699 reg |= SDHC_4BIT_MODE;
700 HWRITE1(hp, SDHC_HOST_CTL, reg);
701 mutex_exit(&hp->host_mtx);
702
703 return 0;
704 }
705
706 static int
707 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
708 {
709
710 /* Nothing ?? */
711 return 0;
712 }
713
714 static void
715 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
716 {
717 struct sdhc_host *hp = (struct sdhc_host *)sch;
718
719 mutex_enter(&hp->host_mtx);
720 if (enable) {
721 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
722 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
723 } else {
724 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
725 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
726 }
727 mutex_exit(&hp->host_mtx);
728 }
729
730 static void
731 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
732 {
733 struct sdhc_host *hp = (struct sdhc_host *)sch;
734
735 mutex_enter(&hp->host_mtx);
736 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
737 mutex_exit(&hp->host_mtx);
738 }
739
740 static int
741 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
742 {
743 uint32_t state;
744 int timeout;
745
746 for (timeout = 10; timeout > 0; timeout--) {
747 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
748 return 0;
749 sdmmc_delay(10000);
750 }
751 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
752 value, state));
753 return ETIMEDOUT;
754 }
755
756 static void
757 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
758 {
759 struct sdhc_host *hp = (struct sdhc_host *)sch;
760 int error;
761
762 /*
763 * Start the MMC command, or mark `cmd' as failed and return.
764 */
765 error = sdhc_start_command(hp, cmd);
766 if (error) {
767 cmd->c_error = error;
768 goto out;
769 }
770
771 /*
772 * Wait until the command phase is done, or until the command
773 * is marked done for any other reason.
774 */
775 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
776 cmd->c_error = ETIMEDOUT;
777 goto out;
778 }
779
780 /*
781 * The host controller removes bits [0:7] from the response
782 * data (CRC) and we pass the data up unchanged to the bus
783 * driver (without padding).
784 */
785 mutex_enter(&hp->host_mtx);
786 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
787 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
788 uint8_t *p = (uint8_t *)cmd->c_resp;
789 int i;
790
791 for (i = 0; i < 15; i++)
792 *p++ = HREAD1(hp, SDHC_RESPONSE + i);
793 } else {
794 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
795 }
796 }
797 mutex_exit(&hp->host_mtx);
798 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
799
800 /*
801 * If the command has data to transfer in any direction,
802 * execute the transfer now.
803 */
804 if (cmd->c_error == 0 && cmd->c_data != NULL)
805 sdhc_transfer_data(hp, cmd);
806
807 out:
808 mutex_enter(&hp->host_mtx);
809 /* Turn off the LED. */
810 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
811 mutex_exit(&hp->host_mtx);
812 SET(cmd->c_flags, SCF_ITSDONE);
813
814 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
815 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
816 cmd->c_flags, cmd->c_error));
817 }
818
819 static int
820 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
821 {
822 uint16_t blksize = 0;
823 uint16_t blkcount = 0;
824 uint16_t mode;
825 uint16_t command;
826 int error;
827
828 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x\n",
829 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
830 cmd->c_datalen, cmd->c_flags));
831
832 /*
833 * The maximum block length for commands should be the minimum
834 * of the host buffer size and the card buffer size. (1.7.2)
835 */
836
837 /* Fragment the data into proper blocks. */
838 if (cmd->c_datalen > 0) {
839 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
840 blkcount = cmd->c_datalen / blksize;
841 if (cmd->c_datalen % blksize > 0) {
842 /* XXX: Split this command. (1.7.4) */
843 aprint_error_dev(hp->sc->sc_dev,
844 "data not a multiple of %u bytes\n", blksize);
845 return EINVAL;
846 }
847 }
848
849 /* Check limit imposed by 9-bit block count. (1.7.2) */
850 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
851 aprint_error_dev(hp->sc->sc_dev, "too much data\n");
852 return EINVAL;
853 }
854
855 /* Prepare transfer mode register value. (2.2.5) */
856 mode = 0;
857 if (ISSET(cmd->c_flags, SCF_CMD_READ))
858 mode |= SDHC_READ_MODE;
859 if (blkcount > 0) {
860 mode |= SDHC_BLOCK_COUNT_ENABLE;
861 if (blkcount > 1) {
862 mode |= SDHC_MULTI_BLOCK_MODE;
863 /* XXX only for memory commands? */
864 mode |= SDHC_AUTO_CMD12_ENABLE;
865 }
866 }
867 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
868 if (cmd->c_dmamap->dm_nsegs == 1) {
869 mode |= SDHC_DMA_ENABLE;
870 } else {
871 cmd->c_dmamap = NULL;
872 }
873 }
874
875 /*
876 * Prepare command register value. (2.2.6)
877 */
878 command =
879 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
880
881 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
882 command |= SDHC_CRC_CHECK_ENABLE;
883 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
884 command |= SDHC_INDEX_CHECK_ENABLE;
885 if (cmd->c_data != NULL)
886 command |= SDHC_DATA_PRESENT_SELECT;
887
888 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
889 command |= SDHC_NO_RESPONSE;
890 else if (ISSET(cmd->c_flags, SCF_RSP_136))
891 command |= SDHC_RESP_LEN_136;
892 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
893 command |= SDHC_RESP_LEN_48_CHK_BUSY;
894 else
895 command |= SDHC_RESP_LEN_48;
896
897 /* Wait until command and data inhibit bits are clear. (1.5) */
898 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
899 if (error)
900 return error;
901
902 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
903 HDEVNAME(hp), blksize, blkcount, mode, command));
904
905 mutex_enter(&hp->host_mtx);
906
907 /* Alert the user not to remove the card. */
908 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
909
910 /* Set DMA start address. */
911 if (ISSET(mode, SDHC_DMA_ENABLE))
912 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
913
914 /*
915 * Start a CPU data transfer. Writing to the high order byte
916 * of the SDHC_COMMAND register triggers the SD command. (1.5)
917 */
918 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
919 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
920 if (blkcount > 1)
921 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
922 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
923 HWRITE2(hp, SDHC_COMMAND, command);
924
925 mutex_exit(&hp->host_mtx);
926
927 return 0;
928 }
929
930 static void
931 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
932 {
933 int error;
934
935 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
936 MMC_R1(cmd->c_resp), cmd->c_datalen));
937
938 #ifdef SDHC_DEBUG
939 /* XXX I forgot why I wanted to know when this happens :-( */
940 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
941 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
942 aprint_error_dev(hp->sc->sc_dev,
943 "CMD52/53 error response flags %#x\n",
944 MMC_R1(cmd->c_resp) & 0xff00);
945 }
946 #endif
947
948 if (cmd->c_dmamap != NULL)
949 error = sdhc_transfer_data_dma(hp, cmd);
950 else
951 error = sdhc_transfer_data_pio(hp, cmd);
952 if (error)
953 cmd->c_error = error;
954 SET(cmd->c_flags, SCF_ITSDONE);
955
956 DPRINTF(1,("%s: data transfer done (error=%d)\n",
957 HDEVNAME(hp), cmd->c_error));
958 }
959
960 static int
961 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
962 {
963 bus_dmamap_t dmap = cmd->c_dmamap;
964 uint16_t blklen = cmd->c_blklen;
965 uint16_t blkcnt = cmd->c_datalen / blklen;
966 uint16_t remain;
967 int error = 0;
968
969 for (;;) {
970 if (!sdhc_wait_intr(hp,
971 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
972 SDHC_DMA_TIMEOUT)) {
973 error = ETIMEDOUT;
974 break;
975 }
976
977 /* single block mode */
978 if (blkcnt == 1)
979 break;
980
981 /* multi block mode */
982 remain = HREAD2(hp, SDHC_BLOCK_COUNT);
983 if (remain == 0)
984 break;
985
986 HWRITE4(hp, SDHC_DMA_ADDR,
987 dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
988 }
989
990 #if 0
991 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
992 SDHC_TRANSFER_TIMEOUT))
993 error = ETIMEDOUT;
994 #endif
995
996 return error;
997 }
998
999 static int
1000 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1001 {
1002 uint8_t *data = cmd->c_data;
1003 int len, datalen;
1004 int mask;
1005 int error = 0;
1006
1007 mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
1008 SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
1009 datalen = cmd->c_datalen;
1010
1011 while (datalen > 0) {
1012 if (!sdhc_wait_intr(hp,
1013 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
1014 SDHC_BUFFER_TIMEOUT)) {
1015 error = ETIMEDOUT;
1016 break;
1017 }
1018
1019 error = sdhc_wait_state(hp, mask, mask);
1020 if (error)
1021 break;
1022
1023 len = MIN(datalen, cmd->c_blklen);
1024 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1025 sdhc_read_data_pio(hp, data, len);
1026 else
1027 sdhc_write_data_pio(hp, data, len);
1028
1029 data += len;
1030 datalen -= len;
1031 }
1032
1033 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1034 SDHC_TRANSFER_TIMEOUT))
1035 error = ETIMEDOUT;
1036
1037 return error;
1038 }
1039
1040 static void
1041 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1042 {
1043
1044 if (((__uintptr_t)data & 3) == 0) {
1045 while (datalen > 3) {
1046 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1047 data += 4;
1048 datalen -= 4;
1049 }
1050 if (datalen > 1) {
1051 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1052 data += 2;
1053 datalen -= 2;
1054 }
1055 if (datalen > 0) {
1056 *data = HREAD1(hp, SDHC_DATA);
1057 data += 1;
1058 datalen -= 1;
1059 }
1060 } else if (((__uintptr_t)data & 1) == 0) {
1061 while (datalen > 1) {
1062 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1063 data += 2;
1064 datalen -= 2;
1065 }
1066 if (datalen > 0) {
1067 *data = HREAD1(hp, SDHC_DATA);
1068 data += 1;
1069 datalen -= 1;
1070 }
1071 } else {
1072 while (datalen > 0) {
1073 *data = HREAD1(hp, SDHC_DATA);
1074 data += 1;
1075 datalen -= 1;
1076 }
1077 }
1078 }
1079
1080 static void
1081 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1082 {
1083
1084 if (((__uintptr_t)data & 3) == 0) {
1085 while (datalen > 3) {
1086 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1087 data += 4;
1088 datalen -= 4;
1089 }
1090 if (datalen > 1) {
1091 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1092 data += 2;
1093 datalen -= 2;
1094 }
1095 if (datalen > 0) {
1096 HWRITE1(hp, SDHC_DATA, *data);
1097 data += 1;
1098 datalen -= 1;
1099 }
1100 } else if (((__uintptr_t)data & 1) == 0) {
1101 while (datalen > 1) {
1102 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1103 data += 2;
1104 datalen -= 2;
1105 }
1106 if (datalen > 0) {
1107 HWRITE1(hp, SDHC_DATA, *data);
1108 data += 1;
1109 datalen -= 1;
1110 }
1111 } else {
1112 while (datalen > 0) {
1113 HWRITE1(hp, SDHC_DATA, *data);
1114 data += 1;
1115 datalen -= 1;
1116 }
1117 }
1118 }
1119
1120 /* Prepare for another command. */
1121 static int
1122 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1123 {
1124 int timo;
1125
1126 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1127
1128 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1129 for (timo = 10; timo > 0; timo--) {
1130 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1131 break;
1132 sdmmc_delay(10000);
1133 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1134 }
1135 if (timo == 0) {
1136 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1137 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1138 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1139 return ETIMEDOUT;
1140 }
1141
1142 return 0;
1143 }
1144
1145 static int
1146 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1147 {
1148 int status;
1149
1150 mask |= SDHC_ERROR_INTERRUPT;
1151
1152 mutex_enter(&hp->intr_mtx);
1153 status = hp->intr_status & mask;
1154 while (status == 0) {
1155 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1156 == EWOULDBLOCK) {
1157 status |= SDHC_ERROR_INTERRUPT;
1158 break;
1159 }
1160 status = hp->intr_status & mask;
1161 }
1162 hp->intr_status &= ~status;
1163
1164 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1165 hp->intr_error_status));
1166
1167 /* Command timeout has higher priority than command complete. */
1168 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1169 hp->intr_error_status = 0;
1170 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1171 status = 0;
1172 }
1173 mutex_exit(&hp->intr_mtx);
1174
1175 return status;
1176 }
1177
1178 /*
1179 * Established by attachment driver at interrupt priority IPL_SDMMC.
1180 */
1181 int
1182 sdhc_intr(void *arg)
1183 {
1184 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1185 struct sdhc_host *hp;
1186 int host;
1187 int done = 0;
1188 uint16_t status;
1189 uint16_t error;
1190
1191 /* We got an interrupt, but we don't know from which slot. */
1192 for (host = 0; host < sc->sc_nhosts; host++) {
1193 hp = sc->sc_host[host];
1194 if (hp == NULL)
1195 continue;
1196
1197 /* Find out which interrupts are pending. */
1198 status = HREAD2(hp, SDHC_NINTR_STATUS);
1199 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1200 continue; /* no interrupt for us */
1201
1202 /* Acknowledge the interrupts we are about to handle. */
1203 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1204 DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1205 status));
1206
1207 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1208 continue;
1209
1210 /* Claim this interrupt. */
1211 done = 1;
1212
1213 /*
1214 * Service error interrupts.
1215 */
1216 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1217 /* Acknowledge error interrupts. */
1218 error = HREAD2(hp, SDHC_EINTR_STATUS);
1219 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1220 DPRINTF(2,("%s: error interrupt, status=%x\n",
1221 HDEVNAME(hp), error));
1222
1223 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1224 SDHC_DATA_TIMEOUT_ERROR)) {
1225 hp->intr_error_status |= error;
1226 hp->intr_status |= status;
1227 cv_broadcast(&hp->intr_cv);
1228 }
1229 }
1230
1231 /*
1232 * Wake up the sdmmc event thread to scan for cards.
1233 */
1234 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1235 sdmmc_needs_discover(hp->sdmmc);
1236 #if 0
1237 HCLR2(hp, SDHC_NINTR_STATUS_EN,
1238 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1239 #endif
1240 }
1241
1242 /*
1243 * Wake up the blocking process to service command
1244 * related interrupt(s).
1245 */
1246 if (ISSET(status, SDHC_BUFFER_READ_READY|
1247 SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1248 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1249 hp->intr_status |= status;
1250 cv_broadcast(&hp->intr_cv);
1251 }
1252
1253 /*
1254 * Service SD card interrupts.
1255 */
1256 if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1257 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1258 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1259 sdmmc_card_intr(hp->sdmmc);
1260 }
1261 }
1262
1263 return done;
1264 }
1265
1266 #ifdef SDHC_DEBUG
1267 void
1268 sdhc_dump_regs(struct sdhc_host *hp)
1269 {
1270
1271 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1272 HREAD4(hp, SDHC_PRESENT_STATE));
1273 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1274 HREAD1(hp, SDHC_POWER_CTL));
1275 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1276 HREAD2(hp, SDHC_NINTR_STATUS));
1277 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1278 HREAD2(hp, SDHC_EINTR_STATUS));
1279 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1280 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1281 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1282 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1283 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1284 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1285 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1286 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1287 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1288 HREAD4(hp, SDHC_CAPABILITIES));
1289 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1290 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1291 }
1292 #endif
1293