Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.10.2.4
      1 /*	$NetBSD: sdhc.c,v 1.10.2.4 2013/01/02 23:34:56 riz Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.10.2.4 2013/01/02 23:34:56 riz Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_dma_tag_t dmat;		/* host DMA tag */
     66 
     67 	device_t sdmmc;			/* generic SD/MMC device */
     68 
     69 	struct kmutex host_mtx;
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	struct kmutex intr_mtx;
     80 	struct kcondvar intr_cv;
     81 
     82 	int specver;			/* spec. version */
     83 
     84 	uint32_t flags;			/* flags for this host */
     85 #define SHF_USE_DMA		0x0001
     86 #define SHF_USE_4BIT_MODE	0x0002
     87 #define SHF_USE_8BIT_MODE	0x0004
     88 };
     89 
     90 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91 
     92 static uint8_t
     93 hread1(struct sdhc_host *hp, bus_size_t reg)
     94 {
     95 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     96 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     97 
     98 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
     99 }
    100 
    101 static uint16_t
    102 hread2(struct sdhc_host *hp, bus_size_t reg)
    103 {
    104 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    105 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    106 
    107 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    108 }
    109 
    110 #define HREAD1(hp, reg)		hread1(hp, reg)
    111 #define HREAD2(hp, reg)		hread2(hp, reg)
    112 #define HREAD4(hp, reg)		\
    113 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    114 
    115 
    116 static void
    117 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    118 {
    119 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    120 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    121 	} else {
    122 		const size_t shift = 8 * (o & 3);
    123 		o &= -4;
    124 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    125 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    126 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    127 	}
    128 }
    129 
    130 static void
    131 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    132 {
    133 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    135 	} else {
    136 		const size_t shift = 8 * (o & 2);
    137 		o &= -4;
    138 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    140 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141 	}
    142 }
    143 
    144 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    145 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    146 #define HWRITE4(hp, reg, val)						\
    147 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    148 
    149 #define HCLR1(hp, reg, bits)						\
    150 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    151 #define HCLR2(hp, reg, bits)						\
    152 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    153 #define HCLR4(hp, reg, bits)						\
    154 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    155 #define HSET1(hp, reg, bits)						\
    156 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    157 #define HSET2(hp, reg, bits)						\
    158 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    159 #define HSET4(hp, reg, bits)						\
    160 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    161 
    162 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    163 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    164 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    165 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    166 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    167 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    168 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    169 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    170 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    171 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    172 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    173 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    174 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    175 		    struct sdmmc_command *);
    176 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    177 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    178 static int	sdhc_soft_reset(struct sdhc_host *, int);
    179 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    180 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    181 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    182 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    183 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    184 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    185 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    186 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187 
    188 
    189 static struct sdmmc_chip_functions sdhc_functions = {
    190 	/* host controller reset */
    191 	sdhc_host_reset,
    192 
    193 	/* host controller capabilities */
    194 	sdhc_host_ocr,
    195 	sdhc_host_maxblklen,
    196 
    197 	/* card detection */
    198 	sdhc_card_detect,
    199 
    200 	/* write protect */
    201 	sdhc_write_protect,
    202 
    203 	/* bus power, clock frequency and width */
    204 	sdhc_bus_power,
    205 	sdhc_bus_clock,
    206 	sdhc_bus_width,
    207 	sdhc_bus_rod,
    208 
    209 	/* command execution */
    210 	sdhc_exec_command,
    211 
    212 	/* card interrupt */
    213 	sdhc_card_enable_intr,
    214 	sdhc_card_intr_ack
    215 };
    216 
    217 /*
    218  * Called by attachment driver.  For each SD card slot there is one SD
    219  * host controller standard register set. (1.3)
    220  */
    221 int
    222 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    223     bus_space_handle_t ioh, bus_size_t iosize)
    224 {
    225 	struct sdmmcbus_attach_args saa;
    226 	struct sdhc_host *hp;
    227 	uint32_t caps;
    228 	uint16_t sdhcver;
    229 
    230 	/* Allocate one more host structure. */
    231 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    232 	if (hp == NULL) {
    233 		aprint_error_dev(sc->sc_dev,
    234 		    "couldn't alloc memory (sdhc host)\n");
    235 		goto err1;
    236 	}
    237 	sc->sc_host[sc->sc_nhosts++] = hp;
    238 
    239 	/* Fill in the new host structure. */
    240 	hp->sc = sc;
    241 	hp->iot = iot;
    242 	hp->ioh = ioh;
    243 	hp->dmat = sc->sc_dmat;
    244 
    245 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    246 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    247 	cv_init(&hp->intr_cv, "sdhcintr");
    248 
    249 	sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    250 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    251 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    252 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    253 	case SDHC_SPEC_VERS_100:
    254 		aprint_normal("1.0");
    255 		break;
    256 
    257 	case SDHC_SPEC_VERS_200:
    258 		aprint_normal("2.0");
    259 		break;
    260 
    261 	case SDHC_SPEC_VERS_300:
    262 		aprint_normal("3.0");
    263 		break;
    264 
    265 	default:
    266 		aprint_normal("unknown version(0x%x)",
    267 		    SDHC_SPEC_VERSION(sdhcver));
    268 		break;
    269 	}
    270 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    271 
    272 	/*
    273 	 * Reset the host controller and enable interrupts.
    274 	 */
    275 	(void)sdhc_host_reset(hp);
    276 
    277 	/* Determine host capabilities. */
    278 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    279 		caps = sc->sc_caps;
    280 	} else {
    281 		mutex_enter(&hp->host_mtx);
    282 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    283 		mutex_exit(&hp->host_mtx);
    284 	}
    285 
    286 #if notyet
    287 	/* Use DMA if the host system and the controller support it. */
    288 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
    289 	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
    290 	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
    291 		SET(hp->flags, SHF_USE_DMA);
    292 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    293 	}
    294 #endif
    295 
    296 	/*
    297 	 * Determine the base clock frequency. (2.2.24)
    298 	 */
    299 	if (hp->specver == SDHC_SPEC_VERS_300) {
    300 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    301 	} else {
    302 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    303 	}
    304 	if (hp->clkbase == 0) {
    305 		if (sc->sc_clkbase == 0) {
    306 			/* The attachment driver must tell us. */
    307 			aprint_error_dev(sc->sc_dev,"unknown base clock frequency\n");
    308 			goto err;
    309 		}
    310 		hp->clkbase = sc->sc_clkbase;
    311 	}
    312 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    313 		/* SDHC 1.0 supports only 10-63 MHz. */
    314 		aprint_error_dev(sc->sc_dev,
    315 		    "base clock frequency out of range: %u MHz\n",
    316 		    hp->clkbase / 1000);
    317 		goto err;
    318 	}
    319 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    320 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    321 
    322 	/*
    323 	 * XXX Set the data timeout counter value according to
    324 	 * capabilities. (2.2.15)
    325 	 */
    326 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    327 #if 0
    328 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    329 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    330 #endif
    331 
    332 	/*
    333 	 * Determine SD bus voltage levels supported by the controller.
    334 	 */
    335 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    336 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    337 	}
    338 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    339 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    340 	}
    341 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    342 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    343 	}
    344 
    345 	/*
    346 	 * Determine the maximum block length supported by the host
    347 	 * controller. (2.2.24)
    348 	 */
    349 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    350 	case SDHC_MAX_BLK_LEN_512:
    351 		hp->maxblklen = 512;
    352 		break;
    353 
    354 	case SDHC_MAX_BLK_LEN_1024:
    355 		hp->maxblklen = 1024;
    356 		break;
    357 
    358 	case SDHC_MAX_BLK_LEN_2048:
    359 		hp->maxblklen = 2048;
    360 		break;
    361 
    362 	case SDHC_MAX_BLK_LEN_4096:
    363 		hp->maxblklen = 4096;
    364 		break;
    365 
    366 	default:
    367 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    368 		goto err;
    369 	}
    370 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    371 	    device_xname(sc->sc_dev), hp->maxblklen,
    372 	    hp->maxblklen > 1 ? "s" : ""));
    373 
    374 	/*
    375 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    376 	 * not invoke any chipset functions before it is attached.)
    377 	 */
    378 	memset(&saa, 0, sizeof(saa));
    379 	saa.saa_busname = "sdmmc";
    380 	saa.saa_sct = &sdhc_functions;
    381 	saa.saa_sch = hp;
    382 	saa.saa_dmat = hp->dmat;
    383 	saa.saa_clkmax = hp->clkbase;
    384 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    385 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    386 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    387 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    388 	else if (hp->specver == SDHC_SPEC_VERS_300)
    389 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    390 	else
    391 		saa.saa_clkmin = hp->clkbase / 256;
    392 
    393 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    394 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    395 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    396 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    397 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    398 #if notyet
    399 	if (ISSET(hp->flags, SHF_USE_DMA))
    400 		saa.saa_caps |= SMC_CAPS_DMA;
    401 #endif
    402 	hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
    403 
    404 	return 0;
    405 
    406 err:
    407 	cv_destroy(&hp->intr_cv);
    408 	mutex_destroy(&hp->intr_mtx);
    409 	mutex_destroy(&hp->host_mtx);
    410 	free(hp, M_DEVBUF);
    411 	sc->sc_host[--sc->sc_nhosts] = NULL;
    412 err1:
    413 	return 1;
    414 }
    415 
    416 int
    417 sdhc_detach(device_t dev, int flags)
    418 {
    419 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    420 	struct sdhc_softc *sc = hp->sc;
    421 	int rv = 0;
    422 
    423 	if (hp->sdmmc)
    424 		rv = config_detach(hp->sdmmc, flags);
    425 
    426 	cv_destroy(&hp->intr_cv);
    427 	mutex_destroy(&hp->intr_mtx);
    428 	mutex_destroy(&hp->host_mtx);
    429 	free(hp, M_DEVBUF);
    430 	sc->sc_host[--sc->sc_nhosts] = NULL;
    431 
    432 	return rv;
    433 }
    434 
    435 bool
    436 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    437 {
    438 	struct sdhc_softc *sc = device_private(dev);
    439 	struct sdhc_host *hp;
    440 
    441 	/* XXX poll for command completion or suspend command
    442 	 * in progress */
    443 
    444 	/* Save the host controller state. */
    445 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    446 		hp = sc->sc_host[n];
    447 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    448 			for (size_t i = 0; i < sizeof hp->regs; i += 4) {
    449 				uint32_t v = HREAD4(hp, i);
    450 				hp->regs[i + 0] = (v >> 0);
    451 				hp->regs[i + 1] = (v >> 8);
    452 				if (i + 3 < sizeof hp->regs) {
    453 					hp->regs[i + 2] = (v >> 16);
    454 					hp->regs[i + 3] = (v >> 24);
    455 				}
    456 			}
    457 		} else {
    458 			for (size_t i = 0; i < sizeof hp->regs; i++) {
    459 				hp->regs[i] = HREAD1(hp, i);
    460 			}
    461 		}
    462 	}
    463 	return true;
    464 }
    465 
    466 bool
    467 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    468 {
    469 	struct sdhc_softc *sc = device_private(dev);
    470 	struct sdhc_host *hp;
    471 
    472 	/* Restore the host controller state. */
    473 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    474 		hp = sc->sc_host[n];
    475 		(void)sdhc_host_reset(hp);
    476 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    477 			for (size_t i = 0; i < sizeof hp->regs; i += 4) {
    478 				if (i + 3 < sizeof hp->regs) {
    479 					HWRITE4(hp, i,
    480 					    (hp->regs[i + 0] << 0)
    481 					    | (hp->regs[i + 1] << 8)
    482 					    | (hp->regs[i + 2] << 16)
    483 					    | (hp->regs[i + 3] << 24));
    484 				} else {
    485 					HWRITE4(hp, i,
    486 					    (hp->regs[i + 0] << 0)
    487 					    | (hp->regs[i + 1] << 8));
    488 				}
    489 			}
    490 		} else {
    491 			for (size_t i = 0; i < sizeof hp->regs; i++) {
    492 				HWRITE1(hp, i, hp->regs[i]);
    493 			}
    494 		}
    495 	}
    496 	return true;
    497 }
    498 
    499 bool
    500 sdhc_shutdown(device_t dev, int flags)
    501 {
    502 	struct sdhc_softc *sc = device_private(dev);
    503 	struct sdhc_host *hp;
    504 
    505 	/* XXX chip locks up if we don't disable it before reboot. */
    506 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    507 		hp = sc->sc_host[i];
    508 		(void)sdhc_host_reset(hp);
    509 	}
    510 	return true;
    511 }
    512 
    513 /*
    514  * Reset the host controller.  Called during initialization, when
    515  * cards are removed, upon resume, and during error recovery.
    516  */
    517 static int
    518 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    519 {
    520 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    521 	uint32_t sdhcimask;
    522 	int error;
    523 
    524 	/* Don't lock. */
    525 
    526 	/* Disable all interrupts. */
    527 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    528 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    529 	} else {
    530 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    531 	}
    532 
    533 	/*
    534 	 * Reset the entire host controller and wait up to 100ms for
    535 	 * the controller to clear the reset bit.
    536 	 */
    537 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    538 	if (error)
    539 		goto out;
    540 
    541 	/* Set data timeout counter value to max for now. */
    542 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    543 #if 0
    544 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    545 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    546 #endif
    547 
    548 	/* Enable interrupts. */
    549 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    550 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    551 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    552 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    553 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    554 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    555 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    556 		sdhcimask ^=
    557 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    558 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    559 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    560 	} else {
    561 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    562 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    563 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    564 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    565 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    566 	}
    567 
    568 out:
    569 	return error;
    570 }
    571 
    572 static int
    573 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    574 {
    575 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    576 	int error;
    577 
    578 	mutex_enter(&hp->host_mtx);
    579 	error = sdhc_host_reset1(sch);
    580 	mutex_exit(&hp->host_mtx);
    581 
    582 	return error;
    583 }
    584 
    585 static uint32_t
    586 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    587 {
    588 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    589 
    590 	return hp->ocr;
    591 }
    592 
    593 static int
    594 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    595 {
    596 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    597 
    598 	return hp->maxblklen;
    599 }
    600 
    601 /*
    602  * Return non-zero if the card is currently inserted.
    603  */
    604 static int
    605 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    606 {
    607 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    608 	int r;
    609 
    610 	mutex_enter(&hp->host_mtx);
    611 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    612 	mutex_exit(&hp->host_mtx);
    613 
    614 	return r ? 1 : 0;
    615 }
    616 
    617 /*
    618  * Return non-zero if the card is currently write-protected.
    619  */
    620 static int
    621 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    622 {
    623 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    624 	int r;
    625 
    626 	mutex_enter(&hp->host_mtx);
    627 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    628 	mutex_exit(&hp->host_mtx);
    629 
    630 	if (!r)
    631 		return 1;
    632 	return 0;
    633 }
    634 
    635 /*
    636  * Set or change SD bus voltage and enable or disable SD bus power.
    637  * Return zero on success.
    638  */
    639 static int
    640 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    641 {
    642 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    643 	uint8_t vdd;
    644 	int error = 0;
    645 
    646 	mutex_enter(&hp->host_mtx);
    647 
    648 	/*
    649 	 * Disable bus power before voltage change.
    650 	 */
    651 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    652 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    653 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    654 
    655 	/* If power is disabled, reset the host and return now. */
    656 	if (ocr == 0) {
    657 		(void)sdhc_host_reset1(hp);
    658 		goto out;
    659 	}
    660 
    661 	/*
    662 	 * Select the lowest voltage according to capabilities.
    663 	 */
    664 	ocr &= hp->ocr;
    665 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    666 		vdd = SDHC_VOLTAGE_1_8V;
    667 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    668 		vdd = SDHC_VOLTAGE_3_0V;
    669 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    670 		vdd = SDHC_VOLTAGE_3_3V;
    671 	} else {
    672 		/* Unsupported voltage level requested. */
    673 		error = EINVAL;
    674 		goto out;
    675 	}
    676 
    677 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    678 		/*
    679 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    680 		 * voltage ramp until power rises.
    681 		 */
    682 		HWRITE1(hp, SDHC_POWER_CTL,
    683 		    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    684 		sdmmc_delay(10000);
    685 
    686 		/*
    687 		 * The host system may not power the bus due to battery low,
    688 		 * etc.  In that case, the host controller should clear the
    689 		 * bus power bit.
    690 		 */
    691 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    692 			error = ENXIO;
    693 			goto out;
    694 		}
    695 	}
    696 
    697 out:
    698 	mutex_exit(&hp->host_mtx);
    699 
    700 	return error;
    701 }
    702 
    703 /*
    704  * Return the smallest possible base clock frequency divisor value
    705  * for the CLOCK_CTL register to produce `freq' (KHz).
    706  */
    707 static bool
    708 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    709 {
    710 	u_int div;
    711 
    712 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    713 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    714 			if ((hp->clkbase / div) <= freq) {
    715 				*divp = SDHC_SDCLK_CGM
    716 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    717 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    718 				return true;
    719 			}
    720 		}
    721 		/* No divisor found. */
    722 		return false;
    723 	}
    724 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    725 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    726 		u_int roundup = dvs & 1;
    727 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    728 			if (dvs + roundup <= 16) {
    729 				dvs += roundup - 1;
    730 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    731 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    732 				DPRINTF(2,
    733 				    ("%s: divisor for freq %u is %u * %u\n",
    734 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    735 				return true;
    736 			}
    737 			/*
    738 			 * If we drop bits, we need to round up the divisor.
    739 			 */
    740 			roundup |= dvs & 1;
    741 		}
    742 		/* No divisor found. */
    743 		return false;
    744 	}
    745 	if (hp->specver == SDHC_SPEC_VERS_300) {
    746 		div = howmany(hp->clkbase, freq);
    747 		if (div > 0x3ff)
    748 			return false;
    749 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    750 			 << SDHC_SDCLK_XDIV_SHIFT) |
    751 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    752 			 << SDHC_SDCLK_DIV_SHIFT);
    753 		return true;
    754 	} else {
    755 		for (div = 1; div <= 256; div *= 2) {
    756 			if ((hp->clkbase / div) <= freq) {
    757 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    758 				//freq = hp->clkbase / div;
    759 				return true;
    760 			}
    761 		}
    762 		/* No divisor found. */
    763 		return false;
    764 	}
    765 	/* No divisor found. */
    766 	return false;
    767 }
    768 
    769 /*
    770  * Set or change SDCLK frequency or disable the SD clock.
    771  * Return zero on success.
    772  */
    773 static int
    774 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    775 {
    776 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    777 	u_int div;
    778 	u_int timo;
    779 	int error = 0;
    780 #ifdef DIAGNOSTIC
    781 	bool ispresent;
    782 #endif
    783 
    784 #ifdef DIAGNOSTIC
    785 	mutex_enter(&hp->host_mtx);
    786 	ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    787 	mutex_exit(&hp->host_mtx);
    788 
    789 	/* Must not stop the clock if commands are in progress. */
    790 	if (ispresent && sdhc_card_detect(hp))
    791 		printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
    792 		    device_xname(hp->sc->sc_dev));
    793 #endif
    794 
    795 	mutex_enter(&hp->host_mtx);
    796 
    797 	/*
    798 	 * Stop SD clock before changing the frequency.
    799 	 */
    800 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    801 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    802 		if (freq == SDMMC_SDCLK_OFF) {
    803 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    804 			goto out;
    805 		}
    806 	} else {
    807 		HWRITE2(hp, SDHC_CLOCK_CTL, 0);
    808 		if (freq == SDMMC_SDCLK_OFF)
    809 			goto out;
    810 	}
    811 
    812 	/*
    813 	 * Set the minimum base clock frequency divisor.
    814 	 */
    815 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    816 		/* Invalid base clock frequency or `freq' value. */
    817 		error = EINVAL;
    818 		goto out;
    819 	}
    820 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    821 		HWRITE4(hp, SDHC_CLOCK_CTL,
    822 		    div | (SDHC_TIMEOUT_MAX << 16));
    823 	} else {
    824 		HWRITE2(hp, SDHC_CLOCK_CTL, div);
    825 	}
    826 
    827 	/*
    828 	 * Start internal clock.  Wait 10ms for stabilization.
    829 	 */
    830 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    831 		sdmmc_delay(10000);
    832 		HSET4(hp, SDHC_CLOCK_CTL, 8|SDHC_INTCLK_ENABLE|SDHC_INTCLK_STABLE);
    833 	} else {
    834 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    835 		for (timo = 1000; timo > 0; timo--) {
    836 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
    837 				break;
    838 			sdmmc_delay(10);
    839 		}
    840 		if (timo == 0) {
    841 			error = ETIMEDOUT;
    842 			goto out;
    843 		}
    844 	}
    845 
    846 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    847 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    848 		/*
    849 		 * Sending 80 clocks at 400kHz takes 200us.
    850 		 * So delay for that time + slop and then
    851 		 * check a few times for completion.
    852 		 */
    853 		sdmmc_delay(210);
    854 		for (timo = 10; timo > 0; timo--) {
    855 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    856 			    SDHC_INIT_ACTIVE))
    857 				break;
    858 			sdmmc_delay(10);
    859 		}
    860 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    861 		/*
    862 		 * Enable SD clock.
    863 		 */
    864 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    865 	} else {
    866 		/*
    867 		 * Enable SD clock.
    868 		 */
    869 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    870 
    871 		if (freq > 25000)
    872 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    873 		else
    874 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    875 	}
    876 
    877 out:
    878 	mutex_exit(&hp->host_mtx);
    879 
    880 	return error;
    881 }
    882 
    883 static int
    884 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    885 {
    886 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    887 	int reg;
    888 
    889 	switch (width) {
    890 	case 1:
    891 	case 4:
    892 		break;
    893 
    894 	case 8:
    895 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    896 			break;
    897 		/* FALLTHROUGH */
    898 	default:
    899 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    900 		    HDEVNAME(hp), width));
    901 		return 1;
    902 	}
    903 
    904 	mutex_enter(&hp->host_mtx);
    905 	reg = HREAD1(hp, SDHC_HOST_CTL);
    906 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    907 		reg &= ~(SDHC_4BIT_MODE|SDHC_8BIT_MODE);
    908 		if (width == 4)
    909 			reg |= SDHC_4BIT_MODE;
    910 		else if (width == 8)
    911 			reg |= SDHC_8BIT_MODE;
    912 	} else {
    913 		reg &= ~SDHC_4BIT_MODE;
    914 		if (width == 4)
    915 			reg |= SDHC_4BIT_MODE;
    916 	}
    917 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    918 	mutex_exit(&hp->host_mtx);
    919 
    920 	return 0;
    921 }
    922 
    923 static int
    924 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    925 {
    926 
    927 	/* Nothing ?? */
    928 	return 0;
    929 }
    930 
    931 static void
    932 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    933 {
    934 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    935 
    936 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    937 		mutex_enter(&hp->host_mtx);
    938 		if (enable) {
    939 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    940 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    941 		} else {
    942 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    943 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    944 		}
    945 		mutex_exit(&hp->host_mtx);
    946 	}
    947 }
    948 
    949 static void
    950 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    951 {
    952 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    953 
    954 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    955 		mutex_enter(&hp->host_mtx);
    956 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    957 		mutex_exit(&hp->host_mtx);
    958 	}
    959 }
    960 
    961 static int
    962 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    963 {
    964 	uint32_t state;
    965 	int timeout;
    966 
    967 	for (timeout = 10; timeout > 0; timeout--) {
    968 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
    969 			return 0;
    970 		sdmmc_delay(10000);
    971 	}
    972 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
    973 	    value, state));
    974 	return ETIMEDOUT;
    975 }
    976 
    977 static void
    978 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
    979 {
    980 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    981 	int error;
    982 
    983 #if 0
    984 	if (cmd->c_data) {
    985 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
    986 		if (ISSET(hp->flags, SHF_USE_DMA)) {
    987 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    988 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
    989 		} else {
    990 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    991 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
    992 		}
    993 	}
    994 #endif
    995 
    996 	/*
    997 	 * Start the MMC command, or mark `cmd' as failed and return.
    998 	 */
    999 	error = sdhc_start_command(hp, cmd);
   1000 	if (error) {
   1001 		cmd->c_error = error;
   1002 		goto out;
   1003 	}
   1004 
   1005 	/*
   1006 	 * Wait until the command phase is done, or until the command
   1007 	 * is marked done for any other reason.
   1008 	 */
   1009 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1010 		cmd->c_error = ETIMEDOUT;
   1011 		goto out;
   1012 	}
   1013 
   1014 	/*
   1015 	 * The host controller removes bits [0:7] from the response
   1016 	 * data (CRC) and we pass the data up unchanged to the bus
   1017 	 * driver (without padding).
   1018 	 */
   1019 	mutex_enter(&hp->host_mtx);
   1020 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1021 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1022 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1023 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1024 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1025 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1026 		}
   1027 	}
   1028 	mutex_exit(&hp->host_mtx);
   1029 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1030 
   1031 	/*
   1032 	 * If the command has data to transfer in any direction,
   1033 	 * execute the transfer now.
   1034 	 */
   1035 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1036 		sdhc_transfer_data(hp, cmd);
   1037 
   1038 out:
   1039 #if 0
   1040 	if (cmd->c_dmamap != NULL && cmd->c_error == 0
   1041 	    && ISSET(hp->flags, SHF_USE_DMA)
   1042 	    && ISSET(cmd->c_flags, SCF_CMD_READ) {
   1043 		if (((uintptr_t)cmd->c_data & PAGE_MASK) + cmd->c_datalen > PAGE_SIZE) {
   1044 			memcpy(cmd->c_data,
   1045 			    (void *)hp->sc->dma_map->dm_segs[0].ds_addr,
   1046 			    cmd->c_datalen);
   1047 		}
   1048 		bus_dmamap_unload(hp->sc->dt, hp->sc->dma_map);
   1049 	}
   1050 #endif
   1051 
   1052 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1053 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1054 		mutex_enter(&hp->host_mtx);
   1055 		/* Turn off the LED. */
   1056 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1057 		mutex_exit(&hp->host_mtx);
   1058 	}
   1059 	SET(cmd->c_flags, SCF_ITSDONE);
   1060 
   1061 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1062 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1063 	    cmd->c_flags, cmd->c_error));
   1064 }
   1065 
   1066 static int
   1067 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1068 {
   1069 	struct sdhc_softc * const sc = hp->sc;
   1070 	uint16_t blksize = 0;
   1071 	uint16_t blkcount = 0;
   1072 	uint16_t mode;
   1073 	uint16_t command;
   1074 	int error;
   1075 
   1076 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1077 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1078 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1079 
   1080 	/*
   1081 	 * The maximum block length for commands should be the minimum
   1082 	 * of the host buffer size and the card buffer size. (1.7.2)
   1083 	 */
   1084 
   1085 	/* Fragment the data into proper blocks. */
   1086 	if (cmd->c_datalen > 0) {
   1087 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1088 		blkcount = cmd->c_datalen / blksize;
   1089 		if (cmd->c_datalen % blksize > 0) {
   1090 			/* XXX: Split this command. (1.7.4) */
   1091 			aprint_error_dev(sc->sc_dev,
   1092 			    "data not a multiple of %u bytes\n", blksize);
   1093 			return EINVAL;
   1094 		}
   1095 	}
   1096 
   1097 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1098 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1099 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1100 		return EINVAL;
   1101 	}
   1102 
   1103 	/* Prepare transfer mode register value. (2.2.5) */
   1104 	mode = 0;
   1105 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1106 		mode |= SDHC_READ_MODE;
   1107 	if (blkcount > 0) {
   1108 		mode |= SDHC_BLOCK_COUNT_ENABLE;
   1109 		if (blkcount > 1) {
   1110 			mode |= SDHC_MULTI_BLOCK_MODE;
   1111 			/* XXX only for memory commands? */
   1112 			mode |= SDHC_AUTO_CMD12_ENABLE;
   1113 		}
   1114 	}
   1115 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1116 		if (cmd->c_dmamap->dm_nsegs == 1) {
   1117 			mode |= SDHC_DMA_ENABLE;
   1118 		} else {
   1119 			cmd->c_dmamap = NULL;
   1120 		}
   1121 	}
   1122 
   1123 	/*
   1124 	 * Prepare command register value. (2.2.6)
   1125 	 */
   1126 	command =
   1127 	 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1128 
   1129 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1130 		command |= SDHC_CRC_CHECK_ENABLE;
   1131 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1132 		command |= SDHC_INDEX_CHECK_ENABLE;
   1133 	if (cmd->c_data != NULL)
   1134 		command |= SDHC_DATA_PRESENT_SELECT;
   1135 
   1136 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1137 		command |= SDHC_NO_RESPONSE;
   1138 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1139 		command |= SDHC_RESP_LEN_136;
   1140 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1141 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1142 	else
   1143 		command |= SDHC_RESP_LEN_48;
   1144 
   1145 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1146 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1147 	if (error)
   1148 		return error;
   1149 
   1150 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1151 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1152 
   1153 	mutex_enter(&hp->host_mtx);
   1154 
   1155 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1156 		/* Alert the user not to remove the card. */
   1157 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1158 	}
   1159 
   1160 	/* Set DMA start address. */
   1161 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1162 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1163 
   1164 	/*
   1165 	 * Start a CPU data transfer.  Writing to the high order byte
   1166 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1167 	 */
   1168 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1169 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1170 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1171 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1172 	} else {
   1173 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1174 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1175 		if (blkcount > 1)
   1176 			HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1177 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1178 		HWRITE2(hp, SDHC_COMMAND, command);
   1179 	}
   1180 
   1181 	mutex_exit(&hp->host_mtx);
   1182 
   1183 	return 0;
   1184 }
   1185 
   1186 static void
   1187 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1188 {
   1189 	int error;
   1190 
   1191 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1192 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1193 
   1194 #ifdef SDHC_DEBUG
   1195 	/* XXX I forgot why I wanted to know when this happens :-( */
   1196 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1197 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1198 		aprint_error_dev(hp->sc->sc_dev,
   1199 		    "CMD52/53 error response flags %#x\n",
   1200 		    MMC_R1(cmd->c_resp) & 0xff00);
   1201 	}
   1202 #endif
   1203 
   1204 	if (cmd->c_dmamap != NULL)
   1205 		error = sdhc_transfer_data_dma(hp, cmd);
   1206 	else
   1207 		error = sdhc_transfer_data_pio(hp, cmd);
   1208 	if (error)
   1209 		cmd->c_error = error;
   1210 	SET(cmd->c_flags, SCF_ITSDONE);
   1211 
   1212 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1213 	    HDEVNAME(hp), cmd->c_error));
   1214 }
   1215 
   1216 static int
   1217 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1218 {
   1219 	bus_dmamap_t dmap = cmd->c_dmamap;
   1220 	uint16_t blklen = cmd->c_blklen;
   1221 	uint16_t blkcnt = cmd->c_datalen / blklen;
   1222 	uint16_t remain;
   1223 	int error = 0;
   1224 
   1225 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1226 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1227 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1228 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1229 
   1230 	for (;;) {
   1231 		if (!sdhc_wait_intr(hp,
   1232 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1233 		    SDHC_DMA_TIMEOUT)) {
   1234 			error = ETIMEDOUT;
   1235 			break;
   1236 		}
   1237 
   1238 		/* single block mode */
   1239 		if (blkcnt == 1)
   1240 			break;
   1241 
   1242 		/* multi block mode */
   1243 		remain = HREAD2(hp, SDHC_BLOCK_COUNT);
   1244 		if (remain == 0)
   1245 			break;
   1246 
   1247 		HWRITE4(hp, SDHC_DMA_ADDR,
   1248 		    dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
   1249 	}
   1250 
   1251 #if 0
   1252 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1253 	    SDHC_TRANSFER_TIMEOUT))
   1254 		error = ETIMEDOUT;
   1255 #endif
   1256 
   1257 	return error;
   1258 }
   1259 
   1260 static int
   1261 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1262 {
   1263 	uint8_t *data = cmd->c_data;
   1264 	u_int len, datalen;
   1265 	u_int imask;
   1266 	u_int pmask;
   1267 	int error = 0;
   1268 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1269 
   1270 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1271 		imask = SDHC_BUFFER_READ_READY;
   1272 		pmask = SDHC_BUFFER_READ_ENABLE;
   1273 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1274 			pio_func = esdhc_read_data_pio;
   1275 		} else {
   1276 			pio_func = sdhc_read_data_pio;
   1277 		}
   1278 	} else {
   1279 		imask = SDHC_BUFFER_WRITE_READY;
   1280 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1281 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1282 			pio_func = esdhc_write_data_pio;
   1283 		} else {
   1284 			pio_func = sdhc_write_data_pio;
   1285 		}
   1286 	}
   1287 	datalen = cmd->c_datalen;
   1288 
   1289 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1290 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1291 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1292 
   1293 	while (datalen > 0) {
   1294 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1295 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1296 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1297 			} else {
   1298 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1299 			}
   1300 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1301 				error = ETIMEDOUT;
   1302 				break;
   1303 			}
   1304 
   1305 			error = sdhc_wait_state(hp, pmask, pmask);
   1306 			if (error)
   1307 				break;
   1308 		}
   1309 
   1310 		len = MIN(datalen, cmd->c_blklen);
   1311 		(*pio_func)(hp, data, len);
   1312 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1313 		    HDEVNAME(hp), len, data));
   1314 
   1315 		data += len;
   1316 		datalen -= len;
   1317 	}
   1318 
   1319 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1320 	    SDHC_TRANSFER_TIMEOUT))
   1321 		error = ETIMEDOUT;
   1322 
   1323 	return error;
   1324 }
   1325 
   1326 static void
   1327 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1328 {
   1329 
   1330 	if (((__uintptr_t)data & 3) == 0) {
   1331 		while (datalen > 3) {
   1332 			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
   1333 			data += 4;
   1334 			datalen -= 4;
   1335 		}
   1336 		if (datalen > 1) {
   1337 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1338 			data += 2;
   1339 			datalen -= 2;
   1340 		}
   1341 		if (datalen > 0) {
   1342 			*data = HREAD1(hp, SDHC_DATA);
   1343 			data += 1;
   1344 			datalen -= 1;
   1345 		}
   1346 	} else if (((__uintptr_t)data & 1) == 0) {
   1347 		while (datalen > 1) {
   1348 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1349 			data += 2;
   1350 			datalen -= 2;
   1351 		}
   1352 		if (datalen > 0) {
   1353 			*data = HREAD1(hp, SDHC_DATA);
   1354 			data += 1;
   1355 			datalen -= 1;
   1356 		}
   1357 	} else {
   1358 		while (datalen > 0) {
   1359 			*data = HREAD1(hp, SDHC_DATA);
   1360 			data += 1;
   1361 			datalen -= 1;
   1362 		}
   1363 	}
   1364 }
   1365 
   1366 static void
   1367 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1368 {
   1369 
   1370 	if (((__uintptr_t)data & 3) == 0) {
   1371 		while (datalen > 3) {
   1372 			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
   1373 			data += 4;
   1374 			datalen -= 4;
   1375 		}
   1376 		if (datalen > 1) {
   1377 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1378 			data += 2;
   1379 			datalen -= 2;
   1380 		}
   1381 		if (datalen > 0) {
   1382 			HWRITE1(hp, SDHC_DATA, *data);
   1383 			data += 1;
   1384 			datalen -= 1;
   1385 		}
   1386 	} else if (((__uintptr_t)data & 1) == 0) {
   1387 		while (datalen > 1) {
   1388 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1389 			data += 2;
   1390 			datalen -= 2;
   1391 		}
   1392 		if (datalen > 0) {
   1393 			HWRITE1(hp, SDHC_DATA, *data);
   1394 			data += 1;
   1395 			datalen -= 1;
   1396 		}
   1397 	} else {
   1398 		while (datalen > 0) {
   1399 			HWRITE1(hp, SDHC_DATA, *data);
   1400 			data += 1;
   1401 			datalen -= 1;
   1402 		}
   1403 	}
   1404 }
   1405 
   1406 
   1407 static void
   1408 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1409 {
   1410 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1411 	uint32_t v;
   1412 
   1413 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1414 	size_t count = 0;
   1415 
   1416 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1417 		if (count == 0) {
   1418 			/*
   1419 			 * If we've drained "watermark" words, we need to wait
   1420 			 * a little bit so the read FIFO can refill.
   1421 			 */
   1422 			sdmmc_delay(10);
   1423 			count = watermark;
   1424 		}
   1425 		v = HREAD4(hp, SDHC_DATA);
   1426 		v = le32toh(v);
   1427 		*(uint32_t *)data = v;
   1428 		data += 4;
   1429 		datalen -= 4;
   1430 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1431 		count--;
   1432 	}
   1433 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1434 		if (count == 0) {
   1435 			sdmmc_delay(10);
   1436 		}
   1437 		v = HREAD4(hp, SDHC_DATA);
   1438 		v = le32toh(v);
   1439 		do {
   1440 			*data++ = v;
   1441 			v >>= 8;
   1442 		} while (--datalen > 0);
   1443 	}
   1444 }
   1445 
   1446 static void
   1447 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1448 {
   1449 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1450 	uint32_t v;
   1451 
   1452 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1453 	size_t count = watermark;
   1454 
   1455 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1456 		if (count == 0) {
   1457 			sdmmc_delay(10);
   1458 			count = watermark;
   1459 		}
   1460 		v = *(uint32_t *)data;
   1461 		v = htole32(v);
   1462 		HWRITE4(hp, SDHC_DATA, v);
   1463 		data += 4;
   1464 		datalen -= 4;
   1465 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1466 		count--;
   1467 	}
   1468 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1469 		if (count == 0) {
   1470 			sdmmc_delay(10);
   1471 		}
   1472 		v = *(uint32_t *)data;
   1473 		v = htole32(v);
   1474 		HWRITE4(hp, SDHC_DATA, v);
   1475 	}
   1476 }
   1477 
   1478 /* Prepare for another command. */
   1479 static int
   1480 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1481 {
   1482 	int timo;
   1483 
   1484 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1485 
   1486 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1487 	for (timo = 10; timo > 0; timo--) {
   1488 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1489 			break;
   1490 		sdmmc_delay(10000);
   1491 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1492 	}
   1493 	if (timo == 0) {
   1494 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1495 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1496 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1497 		return ETIMEDOUT;
   1498 	}
   1499 
   1500 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1501 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1502 	}
   1503 
   1504 	return 0;
   1505 }
   1506 
   1507 static int
   1508 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1509 {
   1510 	int status;
   1511 
   1512 	mask |= SDHC_ERROR_INTERRUPT;
   1513 
   1514 	mutex_enter(&hp->intr_mtx);
   1515 	status = hp->intr_status & mask;
   1516 	while (status == 0) {
   1517 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1518 		    == EWOULDBLOCK) {
   1519 			status |= SDHC_ERROR_INTERRUPT;
   1520 			break;
   1521 		}
   1522 		status = hp->intr_status & mask;
   1523 	}
   1524 	hp->intr_status &= ~status;
   1525 
   1526 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1527 	    hp->intr_error_status));
   1528 
   1529 	/* Command timeout has higher priority than command complete. */
   1530 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1531 		hp->intr_error_status = 0;
   1532 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1533 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1534 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1535 		}
   1536 		status = 0;
   1537 	}
   1538 	mutex_exit(&hp->intr_mtx);
   1539 
   1540 	return status;
   1541 }
   1542 
   1543 /*
   1544  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1545  */
   1546 int
   1547 sdhc_intr(void *arg)
   1548 {
   1549 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1550 	struct sdhc_host *hp;
   1551 	int done = 0;
   1552 	uint16_t status;
   1553 	uint16_t error;
   1554 
   1555 	/* We got an interrupt, but we don't know from which slot. */
   1556 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1557 		hp = sc->sc_host[host];
   1558 		if (hp == NULL)
   1559 			continue;
   1560 
   1561 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1562 			/* Find out which interrupts are pending. */
   1563 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1564 			status = xstatus;
   1565 			error = xstatus >> 16;
   1566 			if (error)
   1567 				xstatus |= SDHC_ERROR_INTERRUPT;
   1568 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1569 				continue; /* no interrupt for us */
   1570 			/* Acknowledge the interrupts we are about to handle. */
   1571 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1572 		} else {
   1573 			/* Find out which interrupts are pending. */
   1574 			error = 0;
   1575 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1576 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1577 				continue; /* no interrupt for us */
   1578 			/* Acknowledge the interrupts we are about to handle. */
   1579 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1580 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1581 				/* Acknowledge error interrupts. */
   1582 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1583 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1584 			}
   1585 		}
   1586 
   1587 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1588 		    status, error));
   1589 
   1590 		/* Claim this interrupt. */
   1591 		done = 1;
   1592 
   1593 		/*
   1594 		 * Service error interrupts.
   1595 		 */
   1596 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1597 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1598 			hp->intr_error_status |= error;
   1599 			hp->intr_status |= status;
   1600 			cv_broadcast(&hp->intr_cv);
   1601 		}
   1602 
   1603 		/*
   1604 		 * Wake up the sdmmc event thread to scan for cards.
   1605 		 */
   1606 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1607 			sdmmc_needs_discover(hp->sdmmc);
   1608 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1609 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1610 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1611 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1612 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1613 			}
   1614 		}
   1615 
   1616 		/*
   1617 		 * Wake up the blocking process to service command
   1618 		 * related interrupt(s).
   1619 		 */
   1620 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1621 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1622 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1623 			hp->intr_status |= status;
   1624 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1625 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1626 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1627 			}
   1628 			cv_broadcast(&hp->intr_cv);
   1629 		}
   1630 
   1631 		/*
   1632 		 * Service SD card interrupts.
   1633 		 */
   1634 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1635 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1636 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1637 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1638 			sdmmc_card_intr(hp->sdmmc);
   1639 		}
   1640 	}
   1641 
   1642 	return done;
   1643 }
   1644 
   1645 #ifdef SDHC_DEBUG
   1646 void
   1647 sdhc_dump_regs(struct sdhc_host *hp)
   1648 {
   1649 
   1650 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1651 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1652 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1653 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1654 		    HREAD1(hp, SDHC_POWER_CTL));
   1655 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1656 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1657 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1658 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1659 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1660 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1661 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1662 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1663 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1664 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1665 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1666 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1667 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1668 	    HREAD4(hp, SDHC_CAPABILITIES));
   1669 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1670 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1671 }
   1672 #endif
   1673