Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.100
      1 /*	$NetBSD: sdhc.c,v 1.100 2017/04/22 21:49:41 jmcneill Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.100 2017/04/22 21:49:41 jmcneill Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kcondvar_t intr_cv;
     81 
     82 	callout_t tuning_timer;
     83 	int tuning_timing;
     84 	u_int tuning_timer_count;
     85 	u_int tuning_timer_pending;
     86 
     87 	int specver;			/* spec. version */
     88 
     89 	uint32_t flags;			/* flags for this host */
     90 #define SHF_USE_DMA		0x0001
     91 #define SHF_USE_4BIT_MODE	0x0002
     92 #define SHF_USE_8BIT_MODE	0x0004
     93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94 #define SHF_USE_ADMA2_32	0x0010
     95 #define SHF_USE_ADMA2_64	0x0020
     96 #define SHF_USE_ADMA2_MASK	0x0030
     97 
     98 	bus_dmamap_t		adma_map;
     99 	bus_dma_segment_t	adma_segs[1];
    100 	void			*adma2;
    101 };
    102 
    103 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    104 
    105 static uint8_t
    106 hread1(struct sdhc_host *hp, bus_size_t reg)
    107 {
    108 
    109 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    110 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    111 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    112 }
    113 
    114 static uint16_t
    115 hread2(struct sdhc_host *hp, bus_size_t reg)
    116 {
    117 
    118 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    119 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    120 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    121 }
    122 
    123 #define HREAD1(hp, reg)		hread1(hp, reg)
    124 #define HREAD2(hp, reg)		hread2(hp, reg)
    125 #define HREAD4(hp, reg)		\
    126 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    127 
    128 
    129 static void
    130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    131 {
    132 
    133 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    135 	} else {
    136 		const size_t shift = 8 * (o & 3);
    137 		o &= -4;
    138 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    140 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141 	}
    142 }
    143 
    144 static void
    145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    146 {
    147 
    148 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    149 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    150 	} else {
    151 		const size_t shift = 8 * (o & 2);
    152 		o &= -4;
    153 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    154 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    155 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    156 	}
    157 }
    158 
    159 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    160 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    161 #define HWRITE4(hp, reg, val)						\
    162 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    163 
    164 #define HCLR1(hp, reg, bits)						\
    165 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    166 #define HCLR2(hp, reg, bits)						\
    167 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    168 #define HCLR4(hp, reg, bits)						\
    169 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    170 #define HSET1(hp, reg, bits)						\
    171 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    172 #define HSET2(hp, reg, bits)						\
    173 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    174 #define HSET4(hp, reg, bits)						\
    175 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    176 
    177 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    178 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    179 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    180 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    181 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    182 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    183 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    184 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    185 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    186 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    187 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    188 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    189 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    190 		    struct sdmmc_command *);
    191 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    192 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    193 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    194 static void	sdhc_tuning_timer(void *);
    195 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    196 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    197 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    198 static int	sdhc_soft_reset(struct sdhc_host *, int);
    199 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    200 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    201 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    202 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    203 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    204 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    205 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    206 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    207 
    208 static struct sdmmc_chip_functions sdhc_functions = {
    209 	/* host controller reset */
    210 	.host_reset = sdhc_host_reset,
    211 
    212 	/* host controller capabilities */
    213 	.host_ocr = sdhc_host_ocr,
    214 	.host_maxblklen = sdhc_host_maxblklen,
    215 
    216 	/* card detection */
    217 	.card_detect = sdhc_card_detect,
    218 
    219 	/* write protect */
    220 	.write_protect = sdhc_write_protect,
    221 
    222 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    223 	.bus_power = sdhc_bus_power,
    224 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    225 	.bus_width = sdhc_bus_width,
    226 	.bus_rod = sdhc_bus_rod,
    227 
    228 	/* command execution */
    229 	.exec_command = sdhc_exec_command,
    230 
    231 	/* card interrupt */
    232 	.card_enable_intr = sdhc_card_enable_intr,
    233 	.card_intr_ack = sdhc_card_intr_ack,
    234 
    235 	/* UHS functions */
    236 	.signal_voltage = sdhc_signal_voltage,
    237 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    238 	.execute_tuning = sdhc_execute_tuning,
    239 	.hw_reset = sdhc_hw_reset,
    240 };
    241 
    242 static int
    243 sdhc_cfprint(void *aux, const char *pnp)
    244 {
    245 	const struct sdmmcbus_attach_args * const saa = aux;
    246 	const struct sdhc_host * const hp = saa->saa_sch;
    247 
    248 	if (pnp) {
    249 		aprint_normal("sdmmc at %s", pnp);
    250 	}
    251 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    252 		if (hp->sc->sc_host[host] == hp) {
    253 			aprint_normal(" slot %zu", host);
    254 		}
    255 	}
    256 
    257 	return UNCONF;
    258 }
    259 
    260 /*
    261  * Called by attachment driver.  For each SD card slot there is one SD
    262  * host controller standard register set. (1.3)
    263  */
    264 int
    265 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    266     bus_space_handle_t ioh, bus_size_t iosize)
    267 {
    268 	struct sdmmcbus_attach_args saa;
    269 	struct sdhc_host *hp;
    270 	uint32_t caps, caps2;
    271 	uint16_t sdhcver;
    272 	int error;
    273 
    274 	/* Allocate one more host structure. */
    275 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    276 	if (hp == NULL) {
    277 		aprint_error_dev(sc->sc_dev,
    278 		    "couldn't alloc memory (sdhc host)\n");
    279 		goto err1;
    280 	}
    281 	sc->sc_host[sc->sc_nhosts++] = hp;
    282 
    283 	/* Fill in the new host structure. */
    284 	hp->sc = sc;
    285 	hp->iot = iot;
    286 	hp->ioh = ioh;
    287 	hp->ios = iosize;
    288 	hp->dmat = sc->sc_dmat;
    289 
    290 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    291 	cv_init(&hp->intr_cv, "sdhcintr");
    292 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    293 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    294 
    295 	if (iosize <= SDHC_HOST_CTL_VERSION) {
    296 		aprint_normal_dev(sc->sc_dev, "SDHC NO-VERS");
    297 		hp->specver = -1;
    298 	} else {
    299 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    300 			sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    301 		} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    302 			sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    303 		} else
    304 			sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    305 		aprint_normal_dev(sc->sc_dev, "SDHC ");
    306 		hp->specver = SDHC_SPEC_VERSION(sdhcver);
    307 		switch (SDHC_SPEC_VERSION(sdhcver)) {
    308 		case SDHC_SPEC_VERS_100:
    309 			aprint_normal("1.0");
    310 			break;
    311 
    312 		case SDHC_SPEC_VERS_200:
    313 			aprint_normal("2.0");
    314 			break;
    315 
    316 		case SDHC_SPEC_VERS_300:
    317 			aprint_normal("3.0");
    318 			break;
    319 
    320 		case SDHC_SPEC_VERS_400:
    321 			aprint_normal("4.0");
    322 			break;
    323 
    324 		default:
    325 			aprint_normal("unknown version(0x%x)",
    326 			    SDHC_SPEC_VERSION(sdhcver));
    327 			break;
    328 		}
    329 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    330 	}
    331 
    332 	/*
    333 	 * Reset the host controller and enable interrupts.
    334 	 */
    335 	(void)sdhc_host_reset(hp);
    336 
    337 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    338 		/* init uSDHC registers */
    339 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    340 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    341 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    342 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    343 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    344 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    345 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    346 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    347 		HSET4(hp, SDHC_VEND_SPEC,
    348 		    SDHC_VEND_SPEC_MBO |
    349 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    350 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    351 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    352 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    353 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    354 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    355 	}
    356 
    357 	/* Determine host capabilities. */
    358 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    359 		caps = sc->sc_caps;
    360 		caps2 = sc->sc_caps2;
    361 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    362 		/* uSDHC capability register is little bit different */
    363 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    364 		caps |= SDHC_8BIT_SUPP;
    365 		if (caps & SDHC_ADMA1_SUPP)
    366 			caps |= SDHC_ADMA2_SUPP;
    367 		sc->sc_caps = caps;
    368 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    369 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    370 	} else {
    371 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    372 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    373 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    374 		} else {
    375 			caps2 = sc->sc_caps2 = 0;
    376 		}
    377 	}
    378 
    379 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    380 	    SDHC_RETUNING_MODES_MASK;
    381 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    382 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    383 		    SDHC_TIMER_COUNT_MASK;
    384 		if (hp->tuning_timer_count == 0xf)
    385 			hp->tuning_timer_count = 0;
    386 		if (hp->tuning_timer_count)
    387 			hp->tuning_timer_count =
    388 			    1 << (hp->tuning_timer_count - 1);
    389 	}
    390 
    391 	/*
    392 	 * Use DMA if the host system and the controller support it.
    393 	 * Suports integrated or external DMA egine, with or without
    394 	 * SDHC_DMA_ENABLE in the command.
    395 	 */
    396 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    397 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    398 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    399 		SET(hp->flags, SHF_USE_DMA);
    400 
    401 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    402 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    403 			SET(hp->flags, SHF_MODE_DMAEN);
    404 			/*
    405 			 * 64-bit mode was present in the 2.00 spec, removed
    406 			 * from 3.00, and re-added in 4.00 with a different
    407 			 * descriptor layout. We only support 2.00 and 3.00
    408 			 * descriptors for now.
    409 			 */
    410 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    411 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    412 				SET(hp->flags, SHF_USE_ADMA2_64);
    413 				aprint_normal(", 64-bit ADMA2");
    414 			} else {
    415 				SET(hp->flags, SHF_USE_ADMA2_32);
    416 				aprint_normal(", 32-bit ADMA2");
    417 			}
    418 		} else {
    419 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    420 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    421 				SET(hp->flags, SHF_MODE_DMAEN);
    422 			if (sc->sc_vendor_transfer_data_dma) {
    423 				aprint_normal(", platform DMA");
    424 			} else {
    425 				aprint_normal(", SDMA");
    426 			}
    427 		}
    428 	} else {
    429 		aprint_normal(", PIO");
    430 	}
    431 
    432 	/*
    433 	 * Determine the base clock frequency. (2.2.24)
    434 	 */
    435 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    436 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    437 	} else {
    438 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    439 	}
    440 	if (hp->clkbase == 0 ||
    441 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    442 		if (sc->sc_clkbase == 0) {
    443 			/* The attachment driver must tell us. */
    444 			aprint_error_dev(sc->sc_dev,
    445 			    "unknown base clock frequency\n");
    446 			goto err;
    447 		}
    448 		hp->clkbase = sc->sc_clkbase;
    449 	}
    450 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    451 		/* SDHC 1.0 supports only 10-63 MHz. */
    452 		aprint_error_dev(sc->sc_dev,
    453 		    "base clock frequency out of range: %u MHz\n",
    454 		    hp->clkbase / 1000);
    455 		goto err;
    456 	}
    457 	aprint_normal(", %u kHz", hp->clkbase);
    458 
    459 	/*
    460 	 * XXX Set the data timeout counter value according to
    461 	 * capabilities. (2.2.15)
    462 	 */
    463 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    464 #if 1
    465 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    466 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    467 #endif
    468 
    469 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    470 		aprint_normal(", embedded slot");
    471 
    472 	/*
    473 	 * Determine SD bus voltage levels supported by the controller.
    474 	 */
    475 	aprint_normal(",");
    476 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    477 		SET(hp->ocr, MMC_OCR_HCS);
    478 		aprint_normal(" HS");
    479 	}
    480 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    481 		SET(hp->ocr, MMC_OCR_S18A);
    482 		aprint_normal(" SDR50");
    483 	}
    484 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    485 		SET(hp->ocr, MMC_OCR_S18A);
    486 		aprint_normal(" DDR50");
    487 	}
    488 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    489 		SET(hp->ocr, MMC_OCR_S18A);
    490 		aprint_normal(" SDR104 HS200");
    491 	}
    492 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    493 		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    494 		aprint_normal(" 1.8V");
    495 	}
    496 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    497 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    498 		aprint_normal(" 3.0V");
    499 	}
    500 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    501 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    502 		aprint_normal(" 3.3V");
    503 	}
    504 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    505 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    506 		if (hp->tuning_timer_count)
    507 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    508 	}
    509 
    510 	/*
    511 	 * Determine the maximum block length supported by the host
    512 	 * controller. (2.2.24)
    513 	 */
    514 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    515 	case SDHC_MAX_BLK_LEN_512:
    516 		hp->maxblklen = 512;
    517 		break;
    518 
    519 	case SDHC_MAX_BLK_LEN_1024:
    520 		hp->maxblklen = 1024;
    521 		break;
    522 
    523 	case SDHC_MAX_BLK_LEN_2048:
    524 		hp->maxblklen = 2048;
    525 		break;
    526 
    527 	case SDHC_MAX_BLK_LEN_4096:
    528 		hp->maxblklen = 4096;
    529 		break;
    530 
    531 	default:
    532 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    533 		goto err;
    534 	}
    535 	aprint_normal(", %u byte blocks", hp->maxblklen);
    536 	aprint_normal("\n");
    537 
    538 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    539 		int rseg;
    540 
    541 		/* Allocate ADMA2 descriptor memory */
    542 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    543 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    544 		if (error) {
    545 			aprint_error_dev(sc->sc_dev,
    546 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    547 			goto adma_done;
    548 		}
    549 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    550 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    551 		if (error) {
    552 			aprint_error_dev(sc->sc_dev,
    553 			    "ADMA2 dmamem_map failed (%d)\n", error);
    554 			goto adma_done;
    555 		}
    556 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    557 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    558 		if (error) {
    559 			aprint_error_dev(sc->sc_dev,
    560 			    "ADMA2 dmamap_create failed (%d)\n", error);
    561 			goto adma_done;
    562 		}
    563 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    564 		    hp->adma2, PAGE_SIZE, NULL,
    565 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    566 		if (error) {
    567 			aprint_error_dev(sc->sc_dev,
    568 			    "ADMA2 dmamap_load failed (%d)\n", error);
    569 			goto adma_done;
    570 		}
    571 
    572 		memset(hp->adma2, 0, PAGE_SIZE);
    573 
    574 adma_done:
    575 		if (error)
    576 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    577 	}
    578 
    579 	/*
    580 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    581 	 * not invoke any chipset functions before it is attached.)
    582 	 */
    583 	memset(&saa, 0, sizeof(saa));
    584 	saa.saa_busname = "sdmmc";
    585 	saa.saa_sct = &sdhc_functions;
    586 	saa.saa_sch = hp;
    587 	saa.saa_dmat = hp->dmat;
    588 	saa.saa_clkmax = hp->clkbase;
    589 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    590 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    591 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    592 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    593 	else if (hp->sc->sc_clkmsk != 0)
    594 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    595 		    (ffs(hp->sc->sc_clkmsk) - 1));
    596 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    597 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    598 	else
    599 		saa.saa_clkmin = hp->clkbase / 256;
    600 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    601 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    602 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    603 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    604 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    605 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    606 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    607 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    608 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    609 				SMC_CAPS_UHS_SDR50 |
    610 				SMC_CAPS_MMC_HS200;
    611 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    612 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    613 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    614 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    615 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    616 		saa.saa_caps |= SMC_CAPS_DMA;
    617 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    618 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    619 	}
    620 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    621 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    622 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    623 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    624 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    625 
    626 	return 0;
    627 
    628 err:
    629 	callout_destroy(&hp->tuning_timer);
    630 	cv_destroy(&hp->intr_cv);
    631 	mutex_destroy(&hp->intr_lock);
    632 	free(hp, M_DEVBUF);
    633 	sc->sc_host[--sc->sc_nhosts] = NULL;
    634 err1:
    635 	return 1;
    636 }
    637 
    638 int
    639 sdhc_detach(struct sdhc_softc *sc, int flags)
    640 {
    641 	struct sdhc_host *hp;
    642 	int rv = 0;
    643 
    644 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    645 		hp = sc->sc_host[n];
    646 		if (hp == NULL)
    647 			continue;
    648 		if (hp->sdmmc != NULL) {
    649 			rv = config_detach(hp->sdmmc, flags);
    650 			if (rv)
    651 				break;
    652 			hp->sdmmc = NULL;
    653 		}
    654 		/* disable interrupts */
    655 		if ((flags & DETACH_FORCE) == 0) {
    656 			mutex_enter(&hp->intr_lock);
    657 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    658 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    659 			} else {
    660 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    661 			}
    662 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    663 			mutex_exit(&hp->intr_lock);
    664 		}
    665 		callout_halt(&hp->tuning_timer, NULL);
    666 		callout_destroy(&hp->tuning_timer);
    667 		cv_destroy(&hp->intr_cv);
    668 		mutex_destroy(&hp->intr_lock);
    669 		if (hp->ios > 0) {
    670 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    671 			hp->ios = 0;
    672 		}
    673 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    674 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    675 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    676 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    677 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    678 		}
    679 		free(hp, M_DEVBUF);
    680 		sc->sc_host[n] = NULL;
    681 	}
    682 
    683 	return rv;
    684 }
    685 
    686 bool
    687 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    688 {
    689 	struct sdhc_softc *sc = device_private(dev);
    690 	struct sdhc_host *hp;
    691 	size_t i;
    692 
    693 	/* XXX poll for command completion or suspend command
    694 	 * in progress */
    695 
    696 	/* Save the host controller state. */
    697 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    698 		hp = sc->sc_host[n];
    699 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    700 			for (i = 0; i < sizeof hp->regs; i += 4) {
    701 				uint32_t v = HREAD4(hp, i);
    702 				hp->regs[i + 0] = (v >> 0);
    703 				hp->regs[i + 1] = (v >> 8);
    704 				if (i + 3 < sizeof hp->regs) {
    705 					hp->regs[i + 2] = (v >> 16);
    706 					hp->regs[i + 3] = (v >> 24);
    707 				}
    708 			}
    709 		} else {
    710 			for (i = 0; i < sizeof hp->regs; i++) {
    711 				hp->regs[i] = HREAD1(hp, i);
    712 			}
    713 		}
    714 	}
    715 	return true;
    716 }
    717 
    718 bool
    719 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    720 {
    721 	struct sdhc_softc *sc = device_private(dev);
    722 	struct sdhc_host *hp;
    723 	size_t i;
    724 
    725 	/* Restore the host controller state. */
    726 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    727 		hp = sc->sc_host[n];
    728 		(void)sdhc_host_reset(hp);
    729 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    730 			for (i = 0; i < sizeof hp->regs; i += 4) {
    731 				if (i + 3 < sizeof hp->regs) {
    732 					HWRITE4(hp, i,
    733 					    (hp->regs[i + 0] << 0)
    734 					    | (hp->regs[i + 1] << 8)
    735 					    | (hp->regs[i + 2] << 16)
    736 					    | (hp->regs[i + 3] << 24));
    737 				} else {
    738 					HWRITE4(hp, i,
    739 					    (hp->regs[i + 0] << 0)
    740 					    | (hp->regs[i + 1] << 8));
    741 				}
    742 			}
    743 		} else {
    744 			for (i = 0; i < sizeof hp->regs; i++) {
    745 				HWRITE1(hp, i, hp->regs[i]);
    746 			}
    747 		}
    748 	}
    749 	return true;
    750 }
    751 
    752 bool
    753 sdhc_shutdown(device_t dev, int flags)
    754 {
    755 	struct sdhc_softc *sc = device_private(dev);
    756 	struct sdhc_host *hp;
    757 
    758 	/* XXX chip locks up if we don't disable it before reboot. */
    759 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    760 		hp = sc->sc_host[i];
    761 		(void)sdhc_host_reset(hp);
    762 	}
    763 	return true;
    764 }
    765 
    766 /*
    767  * Reset the host controller.  Called during initialization, when
    768  * cards are removed, upon resume, and during error recovery.
    769  */
    770 static int
    771 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    772 {
    773 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    774 	uint32_t sdhcimask;
    775 	int error;
    776 
    777 	KASSERT(mutex_owned(&hp->intr_lock));
    778 
    779 	/* Disable all interrupts. */
    780 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    781 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    782 	} else {
    783 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    784 	}
    785 
    786 	/*
    787 	 * Reset the entire host controller and wait up to 100ms for
    788 	 * the controller to clear the reset bit.
    789 	 */
    790 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    791 	if (error)
    792 		goto out;
    793 
    794 	/* Set data timeout counter value to max for now. */
    795 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    796 #if 1
    797 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    798 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    799 #endif
    800 
    801 	/* Enable interrupts. */
    802 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    803 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    804 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    805 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    806 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    807 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    808 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    809 		sdhcimask ^=
    810 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    811 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    812 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    813 	} else {
    814 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    815 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    816 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    817 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    818 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    819 	}
    820 
    821 out:
    822 	return error;
    823 }
    824 
    825 static int
    826 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    827 {
    828 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    829 	int error;
    830 
    831 	mutex_enter(&hp->intr_lock);
    832 	error = sdhc_host_reset1(sch);
    833 	mutex_exit(&hp->intr_lock);
    834 
    835 	return error;
    836 }
    837 
    838 static uint32_t
    839 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    840 {
    841 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    842 
    843 	return hp->ocr;
    844 }
    845 
    846 static int
    847 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    848 {
    849 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    850 
    851 	return hp->maxblklen;
    852 }
    853 
    854 /*
    855  * Return non-zero if the card is currently inserted.
    856  */
    857 static int
    858 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    859 {
    860 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    861 	int r;
    862 
    863 	if (hp->sc->sc_vendor_card_detect)
    864 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    865 
    866 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    867 
    868 	return r ? 1 : 0;
    869 }
    870 
    871 /*
    872  * Return non-zero if the card is currently write-protected.
    873  */
    874 static int
    875 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    876 {
    877 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    878 	int r;
    879 
    880 	if (hp->sc->sc_vendor_write_protect)
    881 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    882 
    883 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    884 
    885 	return r ? 0 : 1;
    886 }
    887 
    888 /*
    889  * Set or change SD bus voltage and enable or disable SD bus power.
    890  * Return zero on success.
    891  */
    892 static int
    893 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    894 {
    895 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    896 	uint8_t vdd;
    897 	int error = 0;
    898 	const uint32_t pcmask =
    899 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    900 
    901 	mutex_enter(&hp->intr_lock);
    902 
    903 	/*
    904 	 * Disable bus power before voltage change.
    905 	 */
    906 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    907 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    908 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    909 
    910 	/* If power is disabled, reset the host and return now. */
    911 	if (ocr == 0) {
    912 		(void)sdhc_host_reset1(hp);
    913 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    914 		goto out;
    915 	}
    916 
    917 	/*
    918 	 * Select the lowest voltage according to capabilities.
    919 	 */
    920 	ocr &= hp->ocr;
    921 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    922 		vdd = SDHC_VOLTAGE_1_8V;
    923 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    924 		vdd = SDHC_VOLTAGE_3_0V;
    925 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    926 		vdd = SDHC_VOLTAGE_3_3V;
    927 	} else {
    928 		/* Unsupported voltage level requested. */
    929 		error = EINVAL;
    930 		goto out;
    931 	}
    932 
    933 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    934 		/*
    935 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    936 		 * voltage ramp until power rises.
    937 		 */
    938 
    939 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    940 			HWRITE1(hp, SDHC_POWER_CTL,
    941 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    942 		} else {
    943 			HWRITE1(hp, SDHC_POWER_CTL,
    944 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    945 			sdmmc_delay(1);
    946 			HWRITE1(hp, SDHC_POWER_CTL,
    947 			    (vdd << SDHC_VOLTAGE_SHIFT));
    948 			sdmmc_delay(1);
    949 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    950 			sdmmc_delay(10000);
    951 		}
    952 
    953 		/*
    954 		 * The host system may not power the bus due to battery low,
    955 		 * etc.  In that case, the host controller should clear the
    956 		 * bus power bit.
    957 		 */
    958 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    959 			error = ENXIO;
    960 			goto out;
    961 		}
    962 	}
    963 
    964 out:
    965 	mutex_exit(&hp->intr_lock);
    966 
    967 	return error;
    968 }
    969 
    970 /*
    971  * Return the smallest possible base clock frequency divisor value
    972  * for the CLOCK_CTL register to produce `freq' (KHz).
    973  */
    974 static bool
    975 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    976 {
    977 	u_int div;
    978 
    979 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    980 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    981 			if ((hp->clkbase / div) <= freq) {
    982 				*divp = SDHC_SDCLK_CGM
    983 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    984 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    985 				//freq = hp->clkbase / div;
    986 				return true;
    987 			}
    988 		}
    989 		/* No divisor found. */
    990 		return false;
    991 	}
    992 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    993 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    994 		u_int roundup = dvs & 1;
    995 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    996 			if (dvs + roundup <= 16) {
    997 				dvs += roundup - 1;
    998 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    999 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1000 				DPRINTF(2,
   1001 				    ("%s: divisor for freq %u is %u * %u\n",
   1002 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1003 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1004 				return true;
   1005 			}
   1006 			/*
   1007 			 * If we drop bits, we need to round up the divisor.
   1008 			 */
   1009 			roundup |= dvs & 1;
   1010 		}
   1011 		/* No divisor found. */
   1012 		return false;
   1013 	}
   1014 	if (hp->sc->sc_clkmsk != 0) {
   1015 		div = howmany(hp->clkbase, freq);
   1016 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1017 			return false;
   1018 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1019 		//freq = hp->clkbase / div;
   1020 		return true;
   1021 	}
   1022 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1023 		div = howmany(hp->clkbase, freq);
   1024 		div = div > 1 ? howmany(div, 2) : 0;
   1025 		if (div > 0x3ff)
   1026 			return false;
   1027 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1028 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1029 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1030 			 << SDHC_SDCLK_DIV_SHIFT);
   1031 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1032 		return true;
   1033 	} else {
   1034 		for (div = 1; div <= 256; div *= 2) {
   1035 			if ((hp->clkbase / div) <= freq) {
   1036 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1037 				//freq = hp->clkbase / div;
   1038 				return true;
   1039 			}
   1040 		}
   1041 		/* No divisor found. */
   1042 		return false;
   1043 	}
   1044 	/* No divisor found. */
   1045 	return false;
   1046 }
   1047 
   1048 /*
   1049  * Set or change SDCLK frequency or disable the SD clock.
   1050  * Return zero on success.
   1051  */
   1052 static int
   1053 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1054 {
   1055 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1056 	u_int div;
   1057 	u_int timo;
   1058 	int16_t reg;
   1059 	int error = 0;
   1060 	bool present __diagused;
   1061 
   1062 	mutex_enter(&hp->intr_lock);
   1063 
   1064 #ifdef DIAGNOSTIC
   1065 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1066 
   1067 	/* Must not stop the clock if commands are in progress. */
   1068 	if (present && sdhc_card_detect(hp)) {
   1069 		aprint_normal_dev(hp->sc->sc_dev,
   1070 		    "%s: command in progress\n", __func__);
   1071 	}
   1072 #endif
   1073 
   1074 	if (hp->sc->sc_vendor_bus_clock) {
   1075 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1076 		if (error != 0)
   1077 			goto out;
   1078 	}
   1079 
   1080 	/*
   1081 	 * Stop SD clock before changing the frequency.
   1082 	 */
   1083 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1084 		HCLR4(hp, SDHC_VEND_SPEC,
   1085 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1086 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1087 		if (freq == SDMMC_SDCLK_OFF) {
   1088 			goto out;
   1089 		}
   1090 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1091 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1092 		if (freq == SDMMC_SDCLK_OFF) {
   1093 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1094 			goto out;
   1095 		}
   1096 	} else {
   1097 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1098 		if (freq == SDMMC_SDCLK_OFF)
   1099 			goto out;
   1100 	}
   1101 
   1102 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1103 		if (ddr)
   1104 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1105 		else
   1106 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1107 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1108 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1109 		if (freq > 100000) {
   1110 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1111 		} else if (freq > 50000) {
   1112 			if (ddr) {
   1113 				HSET2(hp, SDHC_HOST_CTL2,
   1114 				    SDHC_UHS_MODE_SELECT_DDR50);
   1115 			} else {
   1116 				HSET2(hp, SDHC_HOST_CTL2,
   1117 				    SDHC_UHS_MODE_SELECT_SDR50);
   1118 			}
   1119 		} else if (freq > 25000) {
   1120 			if (ddr) {
   1121 				HSET2(hp, SDHC_HOST_CTL2,
   1122 				    SDHC_UHS_MODE_SELECT_DDR50);
   1123 			} else {
   1124 				HSET2(hp, SDHC_HOST_CTL2,
   1125 				    SDHC_UHS_MODE_SELECT_SDR25);
   1126 			}
   1127 		} else if (freq > 400) {
   1128 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1129 		}
   1130 	}
   1131 
   1132 	/*
   1133 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1134 	 * at 100MHz bus clock.
   1135 	 */
   1136 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1137 		if (freq == 100000)
   1138 			--freq;
   1139 	}
   1140 
   1141 	/*
   1142 	 * Set the minimum base clock frequency divisor.
   1143 	 */
   1144 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1145 		/* Invalid base clock frequency or `freq' value. */
   1146 		aprint_error_dev(hp->sc->sc_dev,
   1147 			"Invalid bus clock %d kHz\n", freq);
   1148 		error = EINVAL;
   1149 		goto out;
   1150 	}
   1151 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1152 		if (ddr) {
   1153 			/* in ddr mode, divisor >>= 1 */
   1154 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1155 			    SDHC_SDCLK_DIV_SHIFT)) |
   1156 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1157 			    SDHC_SDCLK_DVS_SHIFT));
   1158 		}
   1159 		for (timo = 1000; timo > 0; timo--) {
   1160 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1161 				break;
   1162 			sdmmc_delay(10);
   1163 		}
   1164 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1165 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1166 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1167 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1168 		    div | (SDHC_TIMEOUT_MAX << 16));
   1169 	} else {
   1170 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1171 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1172 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1173 	}
   1174 
   1175 	/*
   1176 	 * Start internal clock.  Wait 10ms for stabilization.
   1177 	 */
   1178 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1179 		HSET4(hp, SDHC_VEND_SPEC,
   1180 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1181 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1182 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1183 		sdmmc_delay(10000);
   1184 		HSET4(hp, SDHC_CLOCK_CTL,
   1185 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1186 	} else {
   1187 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1188 		for (timo = 1000; timo > 0; timo--) {
   1189 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1190 			    SDHC_INTCLK_STABLE))
   1191 				break;
   1192 			sdmmc_delay(10);
   1193 		}
   1194 		if (timo == 0) {
   1195 			error = ETIMEDOUT;
   1196 			DPRINTF(1,("%s: timeout\n", __func__));
   1197 			goto out;
   1198 		}
   1199 	}
   1200 
   1201 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1202 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1203 		/*
   1204 		 * Sending 80 clocks at 400kHz takes 200us.
   1205 		 * So delay for that time + slop and then
   1206 		 * check a few times for completion.
   1207 		 */
   1208 		sdmmc_delay(210);
   1209 		for (timo = 10; timo > 0; timo--) {
   1210 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1211 			    SDHC_INIT_ACTIVE))
   1212 				break;
   1213 			sdmmc_delay(10);
   1214 		}
   1215 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1216 
   1217 		/*
   1218 		 * Enable SD clock.
   1219 		 */
   1220 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1221 			HSET4(hp, SDHC_VEND_SPEC,
   1222 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1223 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1224 		} else {
   1225 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1226 		}
   1227 	} else {
   1228 		/*
   1229 		 * Enable SD clock.
   1230 		 */
   1231 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1232 
   1233 		if (freq > 25000 &&
   1234 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1235 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1236 		else
   1237 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1238 	}
   1239 
   1240 out:
   1241 	mutex_exit(&hp->intr_lock);
   1242 
   1243 	return error;
   1244 }
   1245 
   1246 static int
   1247 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1248 {
   1249 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1250 	int reg;
   1251 
   1252 	switch (width) {
   1253 	case 1:
   1254 	case 4:
   1255 		break;
   1256 
   1257 	case 8:
   1258 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1259 			break;
   1260 		/* FALLTHROUGH */
   1261 	default:
   1262 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1263 		    HDEVNAME(hp), width));
   1264 		return 1;
   1265 	}
   1266 
   1267 	if (hp->sc->sc_vendor_bus_width) {
   1268 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1269 		if (error != 0)
   1270 			return error;
   1271 	}
   1272 
   1273 	mutex_enter(&hp->intr_lock);
   1274 
   1275 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1276 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1277 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1278 		if (width == 4)
   1279 			reg |= SDHC_4BIT_MODE;
   1280 		else if (width == 8)
   1281 			reg |= SDHC_ESDHC_8BIT_MODE;
   1282 	} else {
   1283 		reg &= ~SDHC_4BIT_MODE;
   1284 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1285 			reg &= ~SDHC_8BIT_MODE;
   1286 		}
   1287 		if (width == 4) {
   1288 			reg |= SDHC_4BIT_MODE;
   1289 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1290 			reg |= SDHC_8BIT_MODE;
   1291 		}
   1292 	}
   1293 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1294 
   1295 	mutex_exit(&hp->intr_lock);
   1296 
   1297 	return 0;
   1298 }
   1299 
   1300 static int
   1301 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1302 {
   1303 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1304 
   1305 	if (hp->sc->sc_vendor_rod)
   1306 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1307 
   1308 	return 0;
   1309 }
   1310 
   1311 static void
   1312 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1313 {
   1314 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1315 
   1316 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1317 		mutex_enter(&hp->intr_lock);
   1318 		if (enable) {
   1319 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1320 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1321 		} else {
   1322 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1323 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1324 		}
   1325 		mutex_exit(&hp->intr_lock);
   1326 	}
   1327 }
   1328 
   1329 static void
   1330 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1331 {
   1332 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1333 
   1334 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1335 		mutex_enter(&hp->intr_lock);
   1336 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1337 		mutex_exit(&hp->intr_lock);
   1338 	}
   1339 }
   1340 
   1341 static int
   1342 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1343 {
   1344 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1345 	int error = 0;
   1346 
   1347 	if (hp->specver < SDHC_SPEC_VERS_300)
   1348 		return EINVAL;
   1349 
   1350 	mutex_enter(&hp->intr_lock);
   1351 	switch (signal_voltage) {
   1352 	case SDMMC_SIGNAL_VOLTAGE_180:
   1353 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1354 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1355 			    signal_voltage);
   1356 			if (error != 0)
   1357 				break;
   1358 		}
   1359 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1360 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1361 		break;
   1362 	case SDMMC_SIGNAL_VOLTAGE_330:
   1363 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1364 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1365 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1366 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1367 			    signal_voltage);
   1368 			if (error != 0)
   1369 				break;
   1370 		}
   1371 		break;
   1372 	default:
   1373 		error = EINVAL;
   1374 		break;
   1375 	}
   1376 	mutex_exit(&hp->intr_lock);
   1377 
   1378 	return error;
   1379 }
   1380 
   1381 /*
   1382  * Sampling clock tuning procedure (UHS)
   1383  */
   1384 static int
   1385 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1386 {
   1387 	struct sdmmc_command cmd;
   1388 	uint8_t hostctl;
   1389 	int opcode, error, retry = 40;
   1390 
   1391 	KASSERT(mutex_owned(&hp->intr_lock));
   1392 
   1393 	hp->tuning_timing = timing;
   1394 
   1395 	switch (timing) {
   1396 	case SDMMC_TIMING_MMC_HS200:
   1397 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1398 		break;
   1399 	case SDMMC_TIMING_UHS_SDR50:
   1400 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1401 			return 0;
   1402 		/* FALLTHROUGH */
   1403 	case SDMMC_TIMING_UHS_SDR104:
   1404 		opcode = MMC_SEND_TUNING_BLOCK;
   1405 		break;
   1406 	default:
   1407 		return EINVAL;
   1408 	}
   1409 
   1410 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1411 
   1412 	/* enable buffer read ready interrupt */
   1413 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1414 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1415 
   1416 	/* disable DMA */
   1417 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1418 
   1419 	/* reset tuning circuit */
   1420 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1421 
   1422 	/* start of tuning */
   1423 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1424 
   1425 	do {
   1426 		memset(&cmd, 0, sizeof(cmd));
   1427 		cmd.c_opcode = opcode;
   1428 		cmd.c_arg = 0;
   1429 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1430 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1431 			cmd.c_blklen = cmd.c_datalen = 128;
   1432 		} else {
   1433 			cmd.c_blklen = cmd.c_datalen = 64;
   1434 		}
   1435 
   1436 		error = sdhc_start_command(hp, &cmd);
   1437 		if (error)
   1438 			break;
   1439 
   1440 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1441 		    SDHC_TUNING_TIMEOUT, false)) {
   1442 			break;
   1443 		}
   1444 
   1445 		delay(1000);
   1446 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1447 
   1448 	/* disable buffer read ready interrupt */
   1449 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1450 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1451 
   1452 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1453 		HCLR2(hp, SDHC_HOST_CTL2,
   1454 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1455 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1456 		aprint_error_dev(hp->sc->sc_dev,
   1457 		    "tuning did not complete, using fixed sampling clock\n");
   1458 		return EIO;		/* tuning did not complete */
   1459 	}
   1460 
   1461 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1462 		HCLR2(hp, SDHC_HOST_CTL2,
   1463 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1464 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1465 		aprint_error_dev(hp->sc->sc_dev,
   1466 		    "tuning failed, using fixed sampling clock\n");
   1467 		return EIO;		/* tuning failed */
   1468 	}
   1469 
   1470 	if (hp->tuning_timer_count) {
   1471 		callout_schedule(&hp->tuning_timer,
   1472 		    hz * hp->tuning_timer_count);
   1473 	}
   1474 
   1475 	return 0;		/* tuning completed */
   1476 }
   1477 
   1478 static int
   1479 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1480 {
   1481 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1482 	int error;
   1483 
   1484 	mutex_enter(&hp->intr_lock);
   1485 	error = sdhc_execute_tuning1(hp, timing);
   1486 	mutex_exit(&hp->intr_lock);
   1487 	return error;
   1488 }
   1489 
   1490 static void
   1491 sdhc_tuning_timer(void *arg)
   1492 {
   1493 	struct sdhc_host *hp = arg;
   1494 
   1495 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1496 }
   1497 
   1498 static void
   1499 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1500 {
   1501 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1502 	struct sdhc_softc *sc = hp->sc;
   1503 
   1504 	if (sc->sc_vendor_hw_reset != NULL)
   1505 		sc->sc_vendor_hw_reset(sc, hp);
   1506 }
   1507 
   1508 static int
   1509 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1510 {
   1511 	uint32_t state;
   1512 	int timeout;
   1513 
   1514 	for (timeout = 10000; timeout > 0; timeout--) {
   1515 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1516 			return 0;
   1517 		sdmmc_delay(10);
   1518 	}
   1519 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1520 	    mask, value, state);
   1521 	return ETIMEDOUT;
   1522 }
   1523 
   1524 static void
   1525 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1526 {
   1527 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1528 	int error;
   1529 	bool probing;
   1530 
   1531 	mutex_enter(&hp->intr_lock);
   1532 
   1533 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1534 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1535 	}
   1536 
   1537 	if (cmd->c_data &&
   1538 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1539 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1540 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1541 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1542 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1543 		} else {
   1544 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1545 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1546 		}
   1547 	}
   1548 
   1549 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1550 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1551 		if (cmd->c_data != NULL) {
   1552 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1553 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1554 		} else {
   1555 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1556 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1557 		}
   1558 	}
   1559 
   1560 	/*
   1561 	 * Start the MMC command, or mark `cmd' as failed and return.
   1562 	 */
   1563 	error = sdhc_start_command(hp, cmd);
   1564 	if (error) {
   1565 		cmd->c_error = error;
   1566 		goto out;
   1567 	}
   1568 
   1569 	/*
   1570 	 * Wait until the command phase is done, or until the command
   1571 	 * is marked done for any other reason.
   1572 	 */
   1573 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1574 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) {
   1575 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1576 		sdmmc_delay(50);
   1577 		cmd->c_error = ETIMEDOUT;
   1578 		goto out;
   1579 	}
   1580 
   1581 	/*
   1582 	 * The host controller removes bits [0:7] from the response
   1583 	 * data (CRC) and we pass the data up unchanged to the bus
   1584 	 * driver (without padding).
   1585 	 */
   1586 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1587 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1588 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1589 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1590 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1591 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1592 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1593 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1594 				    (cmd->c_resp[1] << 24);
   1595 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1596 				    (cmd->c_resp[2] << 24);
   1597 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1598 				    (cmd->c_resp[3] << 24);
   1599 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1600 			}
   1601 		}
   1602 	}
   1603 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1604 
   1605 	/*
   1606 	 * If the command has data to transfer in any direction,
   1607 	 * execute the transfer now.
   1608 	 */
   1609 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1610 		sdhc_transfer_data(hp, cmd);
   1611 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1612 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1613 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1614 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1615 			    HDEVNAME(hp)));
   1616 			cmd->c_error = ETIMEDOUT;
   1617 			goto out;
   1618 		}
   1619 	}
   1620 
   1621 out:
   1622 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1623 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1624 		/* Turn off the LED. */
   1625 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1626 	}
   1627 	SET(cmd->c_flags, SCF_ITSDONE);
   1628 
   1629 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1630 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1631 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1632 
   1633 	mutex_exit(&hp->intr_lock);
   1634 
   1635 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1636 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1637 	    cmd->c_flags, cmd->c_error));
   1638 }
   1639 
   1640 static int
   1641 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1642 {
   1643 	struct sdhc_softc * const sc = hp->sc;
   1644 	uint16_t blksize = 0;
   1645 	uint16_t blkcount = 0;
   1646 	uint16_t mode;
   1647 	uint16_t command;
   1648 	uint32_t pmask;
   1649 	int error;
   1650 
   1651 	KASSERT(mutex_owned(&hp->intr_lock));
   1652 
   1653 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1654 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1655 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1656 
   1657 	/*
   1658 	 * The maximum block length for commands should be the minimum
   1659 	 * of the host buffer size and the card buffer size. (1.7.2)
   1660 	 */
   1661 
   1662 	/* Fragment the data into proper blocks. */
   1663 	if (cmd->c_datalen > 0) {
   1664 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1665 		blkcount = cmd->c_datalen / blksize;
   1666 		if (cmd->c_datalen % blksize > 0) {
   1667 			/* XXX: Split this command. (1.7.4) */
   1668 			aprint_error_dev(sc->sc_dev,
   1669 			    "data not a multiple of %u bytes\n", blksize);
   1670 			return EINVAL;
   1671 		}
   1672 	}
   1673 
   1674 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1675 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1676 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1677 		return EINVAL;
   1678 	}
   1679 
   1680 	/* Prepare transfer mode register value. (2.2.5) */
   1681 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1682 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1683 		mode |= SDHC_READ_MODE;
   1684 	if (blkcount > 1) {
   1685 		mode |= SDHC_MULTI_BLOCK_MODE;
   1686 		/* XXX only for memory commands? */
   1687 		if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
   1688 			mode |= SDHC_AUTO_CMD12_ENABLE;
   1689 	}
   1690 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1691 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1692 		mode |= SDHC_DMA_ENABLE;
   1693 	}
   1694 
   1695 	/*
   1696 	 * Prepare command register value. (2.2.6)
   1697 	 */
   1698 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1699 
   1700 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1701 		command |= SDHC_CRC_CHECK_ENABLE;
   1702 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1703 		command |= SDHC_INDEX_CHECK_ENABLE;
   1704 	if (cmd->c_datalen > 0)
   1705 		command |= SDHC_DATA_PRESENT_SELECT;
   1706 
   1707 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1708 		command |= SDHC_NO_RESPONSE;
   1709 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1710 		command |= SDHC_RESP_LEN_136;
   1711 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1712 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1713 	else
   1714 		command |= SDHC_RESP_LEN_48;
   1715 
   1716 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1717 	pmask = SDHC_CMD_INHIBIT_CMD;
   1718 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1719 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1720 	error = sdhc_wait_state(hp, pmask, 0);
   1721 	if (error) {
   1722 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1723 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1724 		return error;
   1725 	}
   1726 
   1727 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1728 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1729 
   1730 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1731 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1732 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1733 	}
   1734 
   1735 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1736 		/* Alert the user not to remove the card. */
   1737 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1738 	}
   1739 
   1740 	/* Set DMA start address. */
   1741 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1742 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1743 			bus_addr_t paddr =
   1744 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1745 			uint16_t len =
   1746 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1747 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1748 			uint16_t attr =
   1749 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1750 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1751 				attr |= SDHC_ADMA2_END;
   1752 			}
   1753 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1754 				struct sdhc_adma2_descriptor32 *desc =
   1755 				    hp->adma2;
   1756 				desc[seg].attribute = htole16(attr);
   1757 				desc[seg].length = htole16(len);
   1758 				desc[seg].address = htole32(paddr);
   1759 			} else {
   1760 				struct sdhc_adma2_descriptor64 *desc =
   1761 				    hp->adma2;
   1762 				desc[seg].attribute = htole16(attr);
   1763 				desc[seg].length = htole16(len);
   1764 				desc[seg].address = htole32(paddr & 0xffffffff);
   1765 				desc[seg].address_hi = htole32(
   1766 				    (uint64_t)paddr >> 32);
   1767 			}
   1768 		}
   1769 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1770 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1771 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1772 		} else {
   1773 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1774 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1775 		}
   1776 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1777 		    BUS_DMASYNC_PREWRITE);
   1778 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1779 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1780 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1781 		} else {
   1782 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1783 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1784 		}
   1785 
   1786 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1787 
   1788 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1789 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1790 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1791 			    (uint64_t)desc_addr >> 32);
   1792 		}
   1793 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1794 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1795 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1796 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1797 		}
   1798 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1799 	}
   1800 
   1801 	/*
   1802 	 * Start a CPU data transfer.  Writing to the high order byte
   1803 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1804 	 */
   1805 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1806 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1807 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1808 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1809 			/* mode bits is in MIX_CTRL register on uSDHC */
   1810 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1811 			    (HREAD4(hp, SDHC_MIX_CTRL) &
   1812 			    ~(SDHC_MULTI_BLOCK_MODE |
   1813 			    SDHC_READ_MODE |
   1814 			    SDHC_AUTO_CMD12_ENABLE |
   1815 			    SDHC_BLOCK_COUNT_ENABLE |
   1816 			    SDHC_DMA_ENABLE)));
   1817 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1818 		} else {
   1819 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1820 		}
   1821 	} else {
   1822 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1823 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1824 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1825 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1826 		HWRITE2(hp, SDHC_COMMAND, command);
   1827 	}
   1828 
   1829 	return 0;
   1830 }
   1831 
   1832 static void
   1833 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1834 {
   1835 	struct sdhc_softc *sc = hp->sc;
   1836 	int error;
   1837 
   1838 	KASSERT(mutex_owned(&hp->intr_lock));
   1839 
   1840 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1841 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1842 
   1843 #ifdef SDHC_DEBUG
   1844 	/* XXX I forgot why I wanted to know when this happens :-( */
   1845 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1846 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1847 		aprint_error_dev(hp->sc->sc_dev,
   1848 		    "CMD52/53 error response flags %#x\n",
   1849 		    MMC_R1(cmd->c_resp) & 0xff00);
   1850 	}
   1851 #endif
   1852 
   1853 	if (cmd->c_dmamap != NULL) {
   1854 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1855 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1856 			if (error == 0 && !sdhc_wait_intr(hp,
   1857 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1858 				DPRINTF(1,("%s: timeout\n", __func__));
   1859 				error = ETIMEDOUT;
   1860 			}
   1861 		} else {
   1862 			error = sdhc_transfer_data_dma(hp, cmd);
   1863 		}
   1864 	} else
   1865 		error = sdhc_transfer_data_pio(hp, cmd);
   1866 	if (error)
   1867 		cmd->c_error = error;
   1868 	SET(cmd->c_flags, SCF_ITSDONE);
   1869 
   1870 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1871 	    HDEVNAME(hp), cmd->c_error));
   1872 }
   1873 
   1874 static int
   1875 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1876 {
   1877 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1878 	bus_addr_t posaddr;
   1879 	bus_addr_t segaddr;
   1880 	bus_size_t seglen;
   1881 	u_int seg = 0;
   1882 	int error = 0;
   1883 	int status;
   1884 
   1885 	KASSERT(mutex_owned(&hp->intr_lock));
   1886 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1887 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1888 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1889 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1890 
   1891 	for (;;) {
   1892 		status = sdhc_wait_intr(hp,
   1893 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1894 		    SDHC_DMA_TIMEOUT, false);
   1895 
   1896 		if (status & SDHC_TRANSFER_COMPLETE) {
   1897 			break;
   1898 		}
   1899 		if (!status) {
   1900 			DPRINTF(1,("%s: timeout\n", __func__));
   1901 			error = ETIMEDOUT;
   1902 			break;
   1903 		}
   1904 
   1905 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1906 			continue;
   1907 		}
   1908 
   1909 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1910 			continue;
   1911 		}
   1912 
   1913 		/* DMA Interrupt (boundary crossing) */
   1914 
   1915 		segaddr = dm_segs[seg].ds_addr;
   1916 		seglen = dm_segs[seg].ds_len;
   1917 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1918 
   1919 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1920 			continue;
   1921 		}
   1922 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1923 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1924 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1925 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1926 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1927 	}
   1928 
   1929 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1930 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1931 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1932 	}
   1933 
   1934 	return error;
   1935 }
   1936 
   1937 static int
   1938 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1939 {
   1940 	uint8_t *data = cmd->c_data;
   1941 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1942 	u_int len, datalen;
   1943 	u_int imask;
   1944 	u_int pmask;
   1945 	int error = 0;
   1946 
   1947 	KASSERT(mutex_owned(&hp->intr_lock));
   1948 
   1949 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1950 		imask = SDHC_BUFFER_READ_READY;
   1951 		pmask = SDHC_BUFFER_READ_ENABLE;
   1952 		if (ISSET(hp->sc->sc_flags,
   1953 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1954 			pio_func = esdhc_read_data_pio;
   1955 		} else {
   1956 			pio_func = sdhc_read_data_pio;
   1957 		}
   1958 	} else {
   1959 		imask = SDHC_BUFFER_WRITE_READY;
   1960 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1961 		if (ISSET(hp->sc->sc_flags,
   1962 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1963 			pio_func = esdhc_write_data_pio;
   1964 		} else {
   1965 			pio_func = sdhc_write_data_pio;
   1966 		}
   1967 	}
   1968 	datalen = cmd->c_datalen;
   1969 
   1970 	KASSERT(mutex_owned(&hp->intr_lock));
   1971 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1972 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1973 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1974 
   1975 	while (datalen > 0) {
   1976 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   1977 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1978 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1979 			} else {
   1980 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1981 			}
   1982 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   1983 				DPRINTF(1,("%s: timeout\n", __func__));
   1984 				error = ETIMEDOUT;
   1985 				break;
   1986 			}
   1987 
   1988 			error = sdhc_wait_state(hp, pmask, pmask);
   1989 			if (error)
   1990 				break;
   1991 		}
   1992 
   1993 		len = MIN(datalen, cmd->c_blklen);
   1994 		(*pio_func)(hp, data, len);
   1995 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1996 		    HDEVNAME(hp), len, data));
   1997 
   1998 		data += len;
   1999 		datalen -= len;
   2000 	}
   2001 
   2002 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2003 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2004 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2005 		error = ETIMEDOUT;
   2006 	}
   2007 
   2008 	return error;
   2009 }
   2010 
   2011 static void
   2012 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2013 {
   2014 
   2015 	if (((__uintptr_t)data & 3) == 0) {
   2016 		while (datalen > 3) {
   2017 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2018 			data += 4;
   2019 			datalen -= 4;
   2020 		}
   2021 		if (datalen > 1) {
   2022 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2023 			data += 2;
   2024 			datalen -= 2;
   2025 		}
   2026 		if (datalen > 0) {
   2027 			*data = HREAD1(hp, SDHC_DATA);
   2028 			data += 1;
   2029 			datalen -= 1;
   2030 		}
   2031 	} else if (((__uintptr_t)data & 1) == 0) {
   2032 		while (datalen > 1) {
   2033 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2034 			data += 2;
   2035 			datalen -= 2;
   2036 		}
   2037 		if (datalen > 0) {
   2038 			*data = HREAD1(hp, SDHC_DATA);
   2039 			data += 1;
   2040 			datalen -= 1;
   2041 		}
   2042 	} else {
   2043 		while (datalen > 0) {
   2044 			*data = HREAD1(hp, SDHC_DATA);
   2045 			data += 1;
   2046 			datalen -= 1;
   2047 		}
   2048 	}
   2049 }
   2050 
   2051 static void
   2052 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2053 {
   2054 
   2055 	if (((__uintptr_t)data & 3) == 0) {
   2056 		while (datalen > 3) {
   2057 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2058 			data += 4;
   2059 			datalen -= 4;
   2060 		}
   2061 		if (datalen > 1) {
   2062 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2063 			data += 2;
   2064 			datalen -= 2;
   2065 		}
   2066 		if (datalen > 0) {
   2067 			HWRITE1(hp, SDHC_DATA, *data);
   2068 			data += 1;
   2069 			datalen -= 1;
   2070 		}
   2071 	} else if (((__uintptr_t)data & 1) == 0) {
   2072 		while (datalen > 1) {
   2073 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2074 			data += 2;
   2075 			datalen -= 2;
   2076 		}
   2077 		if (datalen > 0) {
   2078 			HWRITE1(hp, SDHC_DATA, *data);
   2079 			data += 1;
   2080 			datalen -= 1;
   2081 		}
   2082 	} else {
   2083 		while (datalen > 0) {
   2084 			HWRITE1(hp, SDHC_DATA, *data);
   2085 			data += 1;
   2086 			datalen -= 1;
   2087 		}
   2088 	}
   2089 }
   2090 
   2091 static void
   2092 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2093 {
   2094 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2095 	uint32_t v;
   2096 
   2097 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2098 	size_t count = 0;
   2099 
   2100 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2101 		if (count == 0) {
   2102 			/*
   2103 			 * If we've drained "watermark" words, we need to wait
   2104 			 * a little bit so the read FIFO can refill.
   2105 			 */
   2106 			sdmmc_delay(10);
   2107 			count = watermark;
   2108 		}
   2109 		v = HREAD4(hp, SDHC_DATA);
   2110 		v = le32toh(v);
   2111 		*(uint32_t *)data = v;
   2112 		data += 4;
   2113 		datalen -= 4;
   2114 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2115 		count--;
   2116 	}
   2117 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2118 		if (count == 0) {
   2119 			sdmmc_delay(10);
   2120 		}
   2121 		v = HREAD4(hp, SDHC_DATA);
   2122 		v = le32toh(v);
   2123 		do {
   2124 			*data++ = v;
   2125 			v >>= 8;
   2126 		} while (--datalen > 0);
   2127 	}
   2128 }
   2129 
   2130 static void
   2131 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2132 {
   2133 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2134 	uint32_t v;
   2135 
   2136 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2137 	size_t count = watermark;
   2138 
   2139 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2140 		if (count == 0) {
   2141 			sdmmc_delay(10);
   2142 			count = watermark;
   2143 		}
   2144 		v = *(uint32_t *)data;
   2145 		v = htole32(v);
   2146 		HWRITE4(hp, SDHC_DATA, v);
   2147 		data += 4;
   2148 		datalen -= 4;
   2149 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2150 		count--;
   2151 	}
   2152 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2153 		if (count == 0) {
   2154 			sdmmc_delay(10);
   2155 		}
   2156 		v = *(uint32_t *)data;
   2157 		v = htole32(v);
   2158 		HWRITE4(hp, SDHC_DATA, v);
   2159 	}
   2160 }
   2161 
   2162 /* Prepare for another command. */
   2163 static int
   2164 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2165 {
   2166 	int timo;
   2167 
   2168 	KASSERT(mutex_owned(&hp->intr_lock));
   2169 
   2170 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2171 
   2172 	/* Request the reset.  */
   2173 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2174 
   2175 	/*
   2176 	 * If necessary, wait for the controller to set the bits to
   2177 	 * acknowledge the reset.
   2178 	 */
   2179 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2180 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2181 		for (timo = 10000; timo > 0; timo--) {
   2182 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2183 				break;
   2184 			/* Short delay because I worry we may miss it...  */
   2185 			sdmmc_delay(1);
   2186 		}
   2187 		if (timo == 0) {
   2188 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2189 			return ETIMEDOUT;
   2190 		}
   2191 	}
   2192 
   2193 	/*
   2194 	 * Wait for the controller to clear the bits to indicate that
   2195 	 * the reset has completed.
   2196 	 */
   2197 	for (timo = 10; timo > 0; timo--) {
   2198 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2199 			break;
   2200 		sdmmc_delay(10000);
   2201 	}
   2202 	if (timo == 0) {
   2203 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2204 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2205 		return ETIMEDOUT;
   2206 	}
   2207 
   2208 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2209 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2210 	}
   2211 
   2212 	return 0;
   2213 }
   2214 
   2215 static int
   2216 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2217 {
   2218 	int status, error, nointr;
   2219 
   2220 	KASSERT(mutex_owned(&hp->intr_lock));
   2221 
   2222 	mask |= SDHC_ERROR_INTERRUPT;
   2223 
   2224 	nointr = 0;
   2225 	status = hp->intr_status & mask;
   2226 	while (status == 0) {
   2227 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2228 		    == EWOULDBLOCK) {
   2229 			nointr = 1;
   2230 			break;
   2231 		}
   2232 		status = hp->intr_status & mask;
   2233 	}
   2234 	error = hp->intr_error_status;
   2235 
   2236 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2237 	    error));
   2238 
   2239 	hp->intr_status &= ~status;
   2240 	hp->intr_error_status &= ~error;
   2241 
   2242 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2243 		if (ISSET(error, SDHC_DMA_ERROR))
   2244 			device_printf(hp->sc->sc_dev,"dma error\n");
   2245 		if (ISSET(error, SDHC_ADMA_ERROR))
   2246 			device_printf(hp->sc->sc_dev,"adma error\n");
   2247 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2248 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2249 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2250 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2251 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2252 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2253 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2254 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2255 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2256 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2257 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2258 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2259 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2260 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2261 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2262 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2263 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2264 			if (!probing)
   2265 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2266 #ifdef SDHC_DEBUG
   2267 			else if (sdhcdebug > 0)
   2268 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2269 #endif
   2270 		}
   2271 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2272 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2273 				(error & ~SDHC_EINTR_STATUS_MASK));
   2274 		if (error == 0)
   2275 			device_printf(hp->sc->sc_dev,"no error\n");
   2276 
   2277 		/* Command timeout has higher priority than command complete. */
   2278 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2279 			CLR(status, SDHC_COMMAND_COMPLETE);
   2280 
   2281 		/* Transfer complete has higher priority than data timeout. */
   2282 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2283 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2284 	}
   2285 
   2286 	if (nointr ||
   2287 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2288 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2289 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2290 		hp->intr_error_status = 0;
   2291 		status = 0;
   2292 	}
   2293 
   2294 	return status;
   2295 }
   2296 
   2297 /*
   2298  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2299  */
   2300 int
   2301 sdhc_intr(void *arg)
   2302 {
   2303 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2304 	struct sdhc_host *hp;
   2305 	int done = 0;
   2306 	uint16_t status;
   2307 	uint16_t error;
   2308 
   2309 	/* We got an interrupt, but we don't know from which slot. */
   2310 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2311 		hp = sc->sc_host[host];
   2312 		if (hp == NULL)
   2313 			continue;
   2314 
   2315 		mutex_enter(&hp->intr_lock);
   2316 
   2317 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2318 			/* Find out which interrupts are pending. */
   2319 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2320 			status = xstatus;
   2321 			error = xstatus >> 16;
   2322 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2323 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2324 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2325 				/* read again due to uSDHC errata */
   2326 				status = xstatus = HREAD4(hp,
   2327 				    SDHC_NINTR_STATUS);
   2328 				error = xstatus >> 16;
   2329 			}
   2330 			if (ISSET(sc->sc_flags,
   2331 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2332 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2333 					SET(status, SDHC_ERROR_INTERRUPT);
   2334 			}
   2335 			if (error)
   2336 				xstatus |= SDHC_ERROR_INTERRUPT;
   2337 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2338 				goto next_port; /* no interrupt for us */
   2339 			/* Acknowledge the interrupts we are about to handle. */
   2340 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2341 		} else {
   2342 			/* Find out which interrupts are pending. */
   2343 			error = 0;
   2344 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2345 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2346 				goto next_port; /* no interrupt for us */
   2347 			/* Acknowledge the interrupts we are about to handle. */
   2348 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2349 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2350 				/* Acknowledge error interrupts. */
   2351 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2352 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2353 			}
   2354 		}
   2355 
   2356 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2357 		    status, error));
   2358 
   2359 		/* Claim this interrupt. */
   2360 		done = 1;
   2361 
   2362 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2363 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2364 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2365 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2366 			    adma_err);
   2367 		}
   2368 
   2369 		/*
   2370 		 * Wake up the sdmmc event thread to scan for cards.
   2371 		 */
   2372 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2373 			if (hp->sdmmc != NULL) {
   2374 				sdmmc_needs_discover(hp->sdmmc);
   2375 			}
   2376 			if (ISSET(sc->sc_flags,
   2377 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2378 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2379 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2380 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2381 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2382 			}
   2383 		}
   2384 
   2385 		/*
   2386 		 * Schedule re-tuning process (UHS).
   2387 		 */
   2388 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2389 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2390 		}
   2391 
   2392 		/*
   2393 		 * Wake up the blocking process to service command
   2394 		 * related interrupt(s).
   2395 		 */
   2396 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2397 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2398 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2399 			hp->intr_error_status |= error;
   2400 			hp->intr_status |= status;
   2401 			if (ISSET(sc->sc_flags,
   2402 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2403 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2404 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2405 			}
   2406 			cv_broadcast(&hp->intr_cv);
   2407 		}
   2408 
   2409 		/*
   2410 		 * Service SD card interrupts.
   2411 		 */
   2412 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2413 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2414 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2415 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2416 			sdmmc_card_intr(hp->sdmmc);
   2417 		}
   2418 next_port:
   2419 		mutex_exit(&hp->intr_lock);
   2420 	}
   2421 
   2422 	return done;
   2423 }
   2424 
   2425 kmutex_t *
   2426 sdhc_host_lock(struct sdhc_host *hp)
   2427 {
   2428 	return &hp->intr_lock;
   2429 }
   2430 
   2431 uint8_t
   2432 sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2433 {
   2434 	return HREAD1(hp, reg);
   2435 }
   2436 
   2437 uint16_t
   2438 sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2439 {
   2440 	return HREAD2(hp, reg);
   2441 }
   2442 
   2443 uint32_t
   2444 sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2445 {
   2446 	return HREAD4(hp, reg);
   2447 }
   2448 
   2449 void
   2450 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2451 {
   2452 	HWRITE1(hp, reg, val);
   2453 }
   2454 
   2455 void
   2456 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2457 {
   2458 	HWRITE2(hp, reg, val);
   2459 }
   2460 
   2461 void
   2462 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2463 {
   2464 	HWRITE4(hp, reg, val);
   2465 }
   2466 
   2467 #ifdef SDHC_DEBUG
   2468 void
   2469 sdhc_dump_regs(struct sdhc_host *hp)
   2470 {
   2471 
   2472 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2473 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2474 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2475 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2476 		    HREAD1(hp, SDHC_POWER_CTL));
   2477 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2478 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2479 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2480 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2481 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2482 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2483 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2484 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2485 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2486 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2487 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2488 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2489 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2490 	    HREAD4(hp, SDHC_CAPABILITIES));
   2491 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2492 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2493 }
   2494 #endif
   2495