Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.100.4.3
      1 /*	$NetBSD: sdhc.c,v 1.100.4.3 2021/12/03 19:31:19 martin Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.100.4.3 2021/12/03 19:31:19 martin Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kcondvar_t intr_cv;
     81 
     82 	callout_t tuning_timer;
     83 	int tuning_timing;
     84 	u_int tuning_timer_count;
     85 	u_int tuning_timer_pending;
     86 
     87 	int specver;			/* spec. version */
     88 
     89 	uint32_t flags;			/* flags for this host */
     90 #define SHF_USE_DMA		0x0001
     91 #define SHF_USE_4BIT_MODE	0x0002
     92 #define SHF_USE_8BIT_MODE	0x0004
     93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94 #define SHF_USE_ADMA2_32	0x0010
     95 #define SHF_USE_ADMA2_64	0x0020
     96 #define SHF_USE_ADMA2_MASK	0x0030
     97 
     98 	bus_dmamap_t		adma_map;
     99 	bus_dma_segment_t	adma_segs[1];
    100 	void			*adma2;
    101 };
    102 
    103 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    104 
    105 static uint8_t
    106 hread1(struct sdhc_host *hp, bus_size_t reg)
    107 {
    108 
    109 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    110 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    111 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    112 }
    113 
    114 static uint16_t
    115 hread2(struct sdhc_host *hp, bus_size_t reg)
    116 {
    117 
    118 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    119 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    120 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    121 }
    122 
    123 #define HREAD1(hp, reg)		hread1(hp, reg)
    124 #define HREAD2(hp, reg)		hread2(hp, reg)
    125 #define HREAD4(hp, reg)		\
    126 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    127 
    128 
    129 static void
    130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    131 {
    132 
    133 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    135 	} else {
    136 		const size_t shift = 8 * (o & 3);
    137 		o &= -4;
    138 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139 		tmp = (val << shift) | (tmp & ~(0xffU << shift));
    140 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141 	}
    142 }
    143 
    144 static void
    145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    146 {
    147 
    148 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    149 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    150 	} else {
    151 		const size_t shift = 8 * (o & 2);
    152 		o &= -4;
    153 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    154 		tmp = (val << shift) | (tmp & ~(0xffffU << shift));
    155 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    156 	}
    157 }
    158 
    159 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    160 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    161 #define HWRITE4(hp, reg, val)						\
    162 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    163 
    164 #define HCLR1(hp, reg, bits)						\
    165 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    166 #define HCLR2(hp, reg, bits)						\
    167 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    168 #define HCLR4(hp, reg, bits)						\
    169 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    170 #define HSET1(hp, reg, bits)						\
    171 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    172 #define HSET2(hp, reg, bits)						\
    173 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    174 #define HSET4(hp, reg, bits)						\
    175 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    176 
    177 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    178 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    179 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    180 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    181 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    182 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    183 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    184 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    185 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    186 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    187 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    188 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    189 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    190 		    struct sdmmc_command *);
    191 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    192 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    193 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    194 static void	sdhc_tuning_timer(void *);
    195 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    196 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    197 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    198 static int	sdhc_soft_reset(struct sdhc_host *, int);
    199 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    200 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    201 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    202 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    203 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    204 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    205 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    206 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    207 
    208 static struct sdmmc_chip_functions sdhc_functions = {
    209 	/* host controller reset */
    210 	.host_reset = sdhc_host_reset,
    211 
    212 	/* host controller capabilities */
    213 	.host_ocr = sdhc_host_ocr,
    214 	.host_maxblklen = sdhc_host_maxblklen,
    215 
    216 	/* card detection */
    217 	.card_detect = sdhc_card_detect,
    218 
    219 	/* write protect */
    220 	.write_protect = sdhc_write_protect,
    221 
    222 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    223 	.bus_power = sdhc_bus_power,
    224 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    225 	.bus_width = sdhc_bus_width,
    226 	.bus_rod = sdhc_bus_rod,
    227 
    228 	/* command execution */
    229 	.exec_command = sdhc_exec_command,
    230 
    231 	/* card interrupt */
    232 	.card_enable_intr = sdhc_card_enable_intr,
    233 	.card_intr_ack = sdhc_card_intr_ack,
    234 
    235 	/* UHS functions */
    236 	.signal_voltage = sdhc_signal_voltage,
    237 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    238 	.execute_tuning = sdhc_execute_tuning,
    239 	.hw_reset = sdhc_hw_reset,
    240 };
    241 
    242 static int
    243 sdhc_cfprint(void *aux, const char *pnp)
    244 {
    245 	const struct sdmmcbus_attach_args * const saa = aux;
    246 	const struct sdhc_host * const hp = saa->saa_sch;
    247 
    248 	if (pnp) {
    249 		aprint_normal("sdmmc at %s", pnp);
    250 	}
    251 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    252 		if (hp->sc->sc_host[host] == hp) {
    253 			aprint_normal(" slot %zu", host);
    254 		}
    255 	}
    256 
    257 	return UNCONF;
    258 }
    259 
    260 /*
    261  * Called by attachment driver.  For each SD card slot there is one SD
    262  * host controller standard register set. (1.3)
    263  */
    264 int
    265 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    266     bus_space_handle_t ioh, bus_size_t iosize)
    267 {
    268 	struct sdmmcbus_attach_args saa;
    269 	struct sdhc_host *hp;
    270 	uint32_t caps, caps2;
    271 	uint16_t sdhcver;
    272 	int error;
    273 
    274 	/* Allocate one more host structure. */
    275 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    276 	if (hp == NULL) {
    277 		aprint_error_dev(sc->sc_dev,
    278 		    "couldn't alloc memory (sdhc host)\n");
    279 		goto err1;
    280 	}
    281 	sc->sc_host[sc->sc_nhosts++] = hp;
    282 
    283 	/* Fill in the new host structure. */
    284 	hp->sc = sc;
    285 	hp->iot = iot;
    286 	hp->ioh = ioh;
    287 	hp->ios = iosize;
    288 	hp->dmat = sc->sc_dmat;
    289 
    290 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    291 	cv_init(&hp->intr_cv, "sdhcintr");
    292 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    293 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    294 
    295 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    296 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    297 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    298 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    299 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    300 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    301 	} else {
    302 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    303 	}
    304 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    305 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    306 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    307 	case SDHC_SPEC_VERS_100:
    308 		aprint_normal("1.0");
    309 		break;
    310 	case SDHC_SPEC_VERS_200:
    311 		aprint_normal("2.0");
    312 		break;
    313 	case SDHC_SPEC_VERS_300:
    314 		aprint_normal("3.0");
    315 		break;
    316 	case SDHC_SPEC_VERS_400:
    317 		aprint_normal("4.0");
    318 		break;
    319 	case SDHC_SPEC_VERS_410:
    320 		aprint_normal("4.1");
    321 		break;
    322 	case SDHC_SPEC_VERS_420:
    323 		aprint_normal("4.2");
    324 		break;
    325 	case SDHC_SPEC_NOVERS:
    326 		hp->specver = -1;
    327 		aprint_normal("NO-VERS");
    328 		break;
    329 	default:
    330 		aprint_normal("unknown version(0x%x)",
    331 		    SDHC_SPEC_VERSION(sdhcver));
    332 		break;
    333 	}
    334 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    335 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    336 
    337 	/*
    338 	 * Reset the host controller and enable interrupts.
    339 	 */
    340 	(void)sdhc_host_reset(hp);
    341 
    342 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    343 		/* init uSDHC registers */
    344 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    345 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    346 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    347 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    348 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    349 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    350 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    351 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    352 		HSET4(hp, SDHC_VEND_SPEC,
    353 		    SDHC_VEND_SPEC_MBO |
    354 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    355 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    356 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    357 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    358 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    359 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    360 	}
    361 
    362 	/* Determine host capabilities. */
    363 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    364 		caps = sc->sc_caps;
    365 		caps2 = sc->sc_caps2;
    366 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    367 		/* uSDHC capability register is little bit different */
    368 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    369 		caps |= SDHC_8BIT_SUPP;
    370 		if (caps & SDHC_ADMA1_SUPP)
    371 			caps |= SDHC_ADMA2_SUPP;
    372 		sc->sc_caps = caps;
    373 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    374 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    375 	} else {
    376 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    377 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    378 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    379 		} else {
    380 			caps2 = sc->sc_caps2 = 0;
    381 		}
    382 	}
    383 
    384 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    385 	    SDHC_RETUNING_MODES_MASK;
    386 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    387 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    388 		    SDHC_TIMER_COUNT_MASK;
    389 		if (hp->tuning_timer_count == 0xf)
    390 			hp->tuning_timer_count = 0;
    391 		if (hp->tuning_timer_count)
    392 			hp->tuning_timer_count =
    393 			    1 << (hp->tuning_timer_count - 1);
    394 	}
    395 
    396 	/*
    397 	 * Use DMA if the host system and the controller support it.
    398 	 * Supports integrated or external DMA egine, with or without
    399 	 * SDHC_DMA_ENABLE in the command.
    400 	 */
    401 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    402 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    403 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    404 		SET(hp->flags, SHF_USE_DMA);
    405 
    406 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    407 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    408 			SET(hp->flags, SHF_MODE_DMAEN);
    409 			/*
    410 			 * 64-bit mode was present in the 2.00 spec, removed
    411 			 * from 3.00, and re-added in 4.00 with a different
    412 			 * descriptor layout. We only support 2.00 and 3.00
    413 			 * descriptors for now.
    414 			 */
    415 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    416 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    417 				SET(hp->flags, SHF_USE_ADMA2_64);
    418 				aprint_normal(", 64-bit ADMA2");
    419 			} else {
    420 				SET(hp->flags, SHF_USE_ADMA2_32);
    421 				aprint_normal(", 32-bit ADMA2");
    422 			}
    423 		} else {
    424 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    425 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    426 				SET(hp->flags, SHF_MODE_DMAEN);
    427 			if (sc->sc_vendor_transfer_data_dma) {
    428 				aprint_normal(", platform DMA");
    429 			} else {
    430 				aprint_normal(", SDMA");
    431 			}
    432 		}
    433 	} else {
    434 		aprint_normal(", PIO");
    435 	}
    436 
    437 	/*
    438 	 * Determine the base clock frequency. (2.2.24)
    439 	 */
    440 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    441 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    442 	} else {
    443 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    444 	}
    445 	if (hp->clkbase == 0 ||
    446 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    447 		if (sc->sc_clkbase == 0) {
    448 			/* The attachment driver must tell us. */
    449 			aprint_error_dev(sc->sc_dev,
    450 			    "unknown base clock frequency\n");
    451 			goto err;
    452 		}
    453 		hp->clkbase = sc->sc_clkbase;
    454 	}
    455 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    456 		/* SDHC 1.0 supports only 10-63 MHz. */
    457 		aprint_error_dev(sc->sc_dev,
    458 		    "base clock frequency out of range: %u MHz\n",
    459 		    hp->clkbase / 1000);
    460 		goto err;
    461 	}
    462 	aprint_normal(", %u kHz", hp->clkbase);
    463 
    464 	/*
    465 	 * XXX Set the data timeout counter value according to
    466 	 * capabilities. (2.2.15)
    467 	 */
    468 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    469 #if 1
    470 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    471 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    472 #endif
    473 
    474 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    475 		aprint_normal(", embedded slot");
    476 
    477 	/*
    478 	 * Determine SD bus voltage levels supported by the controller.
    479 	 */
    480 	aprint_normal(",");
    481 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    482 		SET(hp->ocr, MMC_OCR_HCS);
    483 		aprint_normal(" HS");
    484 	}
    485 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    486 		SET(hp->ocr, MMC_OCR_S18A);
    487 		aprint_normal(" SDR50");
    488 	}
    489 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    490 		SET(hp->ocr, MMC_OCR_S18A);
    491 		aprint_normal(" DDR50");
    492 	}
    493 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    494 		SET(hp->ocr, MMC_OCR_S18A);
    495 		aprint_normal(" SDR104 HS200");
    496 	}
    497 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    498 		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    499 		aprint_normal(" 1.8V");
    500 	}
    501 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    502 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    503 		aprint_normal(" 3.0V");
    504 	}
    505 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    506 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    507 		aprint_normal(" 3.3V");
    508 	}
    509 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    510 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    511 		if (hp->tuning_timer_count)
    512 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    513 	}
    514 
    515 	/*
    516 	 * Determine the maximum block length supported by the host
    517 	 * controller. (2.2.24)
    518 	 */
    519 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    520 	case SDHC_MAX_BLK_LEN_512:
    521 		hp->maxblklen = 512;
    522 		break;
    523 
    524 	case SDHC_MAX_BLK_LEN_1024:
    525 		hp->maxblklen = 1024;
    526 		break;
    527 
    528 	case SDHC_MAX_BLK_LEN_2048:
    529 		hp->maxblklen = 2048;
    530 		break;
    531 
    532 	case SDHC_MAX_BLK_LEN_4096:
    533 		hp->maxblklen = 4096;
    534 		break;
    535 
    536 	default:
    537 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    538 		goto err;
    539 	}
    540 	aprint_normal(", %u byte blocks", hp->maxblklen);
    541 	aprint_normal("\n");
    542 
    543 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    544 		int rseg;
    545 
    546 		/* Allocate ADMA2 descriptor memory */
    547 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    548 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    549 		if (error) {
    550 			aprint_error_dev(sc->sc_dev,
    551 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    552 			goto adma_done;
    553 		}
    554 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    555 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    556 		if (error) {
    557 			aprint_error_dev(sc->sc_dev,
    558 			    "ADMA2 dmamem_map failed (%d)\n", error);
    559 			goto adma_done;
    560 		}
    561 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    562 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    563 		if (error) {
    564 			aprint_error_dev(sc->sc_dev,
    565 			    "ADMA2 dmamap_create failed (%d)\n", error);
    566 			goto adma_done;
    567 		}
    568 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    569 		    hp->adma2, PAGE_SIZE, NULL,
    570 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    571 		if (error) {
    572 			aprint_error_dev(sc->sc_dev,
    573 			    "ADMA2 dmamap_load failed (%d)\n", error);
    574 			goto adma_done;
    575 		}
    576 
    577 		memset(hp->adma2, 0, PAGE_SIZE);
    578 
    579 adma_done:
    580 		if (error)
    581 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    582 	}
    583 
    584 	/*
    585 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    586 	 * not invoke any chipset functions before it is attached.)
    587 	 */
    588 	memset(&saa, 0, sizeof(saa));
    589 	saa.saa_busname = "sdmmc";
    590 	saa.saa_sct = &sdhc_functions;
    591 	saa.saa_sch = hp;
    592 	saa.saa_dmat = hp->dmat;
    593 	saa.saa_clkmax = hp->clkbase;
    594 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    595 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    596 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    597 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    598 	else if (hp->sc->sc_clkmsk != 0)
    599 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    600 		    (ffs(hp->sc->sc_clkmsk) - 1));
    601 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    602 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    603 	else
    604 		saa.saa_clkmin = hp->clkbase / 256;
    605 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    606 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    607 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    608 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    609 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    610 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    611 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    612 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    613 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    614 				SMC_CAPS_UHS_SDR50 |
    615 				SMC_CAPS_MMC_HS200;
    616 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    617 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    618 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    619 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    620 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    621 		saa.saa_caps |= SMC_CAPS_DMA;
    622 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    623 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    624 	}
    625 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    626 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    627 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    628 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    629 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    630 
    631 	return 0;
    632 
    633 err:
    634 	callout_destroy(&hp->tuning_timer);
    635 	cv_destroy(&hp->intr_cv);
    636 	mutex_destroy(&hp->intr_lock);
    637 	free(hp, M_DEVBUF);
    638 	sc->sc_host[--sc->sc_nhosts] = NULL;
    639 err1:
    640 	return 1;
    641 }
    642 
    643 int
    644 sdhc_detach(struct sdhc_softc *sc, int flags)
    645 {
    646 	struct sdhc_host *hp;
    647 	int rv = 0;
    648 
    649 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    650 		hp = sc->sc_host[n];
    651 		if (hp == NULL)
    652 			continue;
    653 		if (hp->sdmmc != NULL) {
    654 			rv = config_detach(hp->sdmmc, flags);
    655 			if (rv)
    656 				break;
    657 			hp->sdmmc = NULL;
    658 		}
    659 		/* disable interrupts */
    660 		if ((flags & DETACH_FORCE) == 0) {
    661 			mutex_enter(&hp->intr_lock);
    662 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    663 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    664 			} else {
    665 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    666 			}
    667 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    668 			mutex_exit(&hp->intr_lock);
    669 		}
    670 		callout_halt(&hp->tuning_timer, NULL);
    671 		callout_destroy(&hp->tuning_timer);
    672 		cv_destroy(&hp->intr_cv);
    673 		mutex_destroy(&hp->intr_lock);
    674 		if (hp->ios > 0) {
    675 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    676 			hp->ios = 0;
    677 		}
    678 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    679 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    680 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    681 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    682 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    683 		}
    684 		free(hp, M_DEVBUF);
    685 		sc->sc_host[n] = NULL;
    686 	}
    687 
    688 	return rv;
    689 }
    690 
    691 bool
    692 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    693 {
    694 	struct sdhc_softc *sc = device_private(dev);
    695 	struct sdhc_host *hp;
    696 	size_t i;
    697 
    698 	/* XXX poll for command completion or suspend command
    699 	 * in progress */
    700 
    701 	/* Save the host controller state. */
    702 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    703 		hp = sc->sc_host[n];
    704 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    705 			for (i = 0; i < sizeof hp->regs; i += 4) {
    706 				uint32_t v = HREAD4(hp, i);
    707 				hp->regs[i + 0] = (v >> 0);
    708 				hp->regs[i + 1] = (v >> 8);
    709 				if (i + 3 < sizeof hp->regs) {
    710 					hp->regs[i + 2] = (v >> 16);
    711 					hp->regs[i + 3] = (v >> 24);
    712 				}
    713 			}
    714 		} else {
    715 			for (i = 0; i < sizeof hp->regs; i++) {
    716 				hp->regs[i] = HREAD1(hp, i);
    717 			}
    718 		}
    719 	}
    720 	return true;
    721 }
    722 
    723 bool
    724 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    725 {
    726 	struct sdhc_softc *sc = device_private(dev);
    727 	struct sdhc_host *hp;
    728 	size_t i;
    729 
    730 	/* Restore the host controller state. */
    731 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    732 		hp = sc->sc_host[n];
    733 		(void)sdhc_host_reset(hp);
    734 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    735 			for (i = 0; i < sizeof hp->regs; i += 4) {
    736 				if (i + 3 < sizeof hp->regs) {
    737 					HWRITE4(hp, i,
    738 					    (hp->regs[i + 0] << 0)
    739 					    | (hp->regs[i + 1] << 8)
    740 					    | (hp->regs[i + 2] << 16)
    741 					    | (hp->regs[i + 3] << 24));
    742 				} else {
    743 					HWRITE4(hp, i,
    744 					    (hp->regs[i + 0] << 0)
    745 					    | (hp->regs[i + 1] << 8));
    746 				}
    747 			}
    748 		} else {
    749 			for (i = 0; i < sizeof hp->regs; i++) {
    750 				HWRITE1(hp, i, hp->regs[i]);
    751 			}
    752 		}
    753 	}
    754 	return true;
    755 }
    756 
    757 bool
    758 sdhc_shutdown(device_t dev, int flags)
    759 {
    760 	struct sdhc_softc *sc = device_private(dev);
    761 	struct sdhc_host *hp;
    762 
    763 	/* XXX chip locks up if we don't disable it before reboot. */
    764 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    765 		hp = sc->sc_host[i];
    766 		(void)sdhc_host_reset(hp);
    767 	}
    768 	return true;
    769 }
    770 
    771 /*
    772  * Reset the host controller.  Called during initialization, when
    773  * cards are removed, upon resume, and during error recovery.
    774  */
    775 static int
    776 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    777 {
    778 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    779 	uint32_t sdhcimask;
    780 	int error;
    781 
    782 	KASSERT(mutex_owned(&hp->intr_lock));
    783 
    784 	/* Disable all interrupts. */
    785 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    786 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    787 	} else {
    788 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    789 	}
    790 
    791 	/*
    792 	 * Reset the entire host controller and wait up to 100ms for
    793 	 * the controller to clear the reset bit.
    794 	 */
    795 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    796 	if (error)
    797 		goto out;
    798 
    799 	/* Set data timeout counter value to max for now. */
    800 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    801 #if 1
    802 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    803 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    804 #endif
    805 
    806 	/* Enable interrupts. */
    807 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    808 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    809 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    810 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    811 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    812 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    813 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    814 		sdhcimask ^=
    815 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    816 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    817 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    818 	} else {
    819 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    820 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    821 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    822 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    823 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    824 	}
    825 
    826 out:
    827 	return error;
    828 }
    829 
    830 static int
    831 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    832 {
    833 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    834 	int error;
    835 
    836 	mutex_enter(&hp->intr_lock);
    837 	error = sdhc_host_reset1(sch);
    838 	mutex_exit(&hp->intr_lock);
    839 
    840 	return error;
    841 }
    842 
    843 static uint32_t
    844 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    845 {
    846 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    847 
    848 	return hp->ocr;
    849 }
    850 
    851 static int
    852 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    853 {
    854 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    855 
    856 	return hp->maxblklen;
    857 }
    858 
    859 /*
    860  * Return non-zero if the card is currently inserted.
    861  */
    862 static int
    863 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    864 {
    865 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    866 	int r;
    867 
    868 	if (hp->sc->sc_vendor_card_detect)
    869 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    870 
    871 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    872 
    873 	return r ? 1 : 0;
    874 }
    875 
    876 /*
    877  * Return non-zero if the card is currently write-protected.
    878  */
    879 static int
    880 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    881 {
    882 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    883 	int r;
    884 
    885 	if (hp->sc->sc_vendor_write_protect)
    886 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    887 
    888 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    889 
    890 	return r ? 0 : 1;
    891 }
    892 
    893 /*
    894  * Set or change SD bus voltage and enable or disable SD bus power.
    895  * Return zero on success.
    896  */
    897 static int
    898 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    899 {
    900 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    901 	uint8_t vdd;
    902 	int error = 0;
    903 	const uint32_t pcmask =
    904 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    905 
    906 	mutex_enter(&hp->intr_lock);
    907 
    908 	/*
    909 	 * Disable bus power before voltage change.
    910 	 */
    911 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    912 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    913 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    914 
    915 	/* If power is disabled, reset the host and return now. */
    916 	if (ocr == 0) {
    917 		(void)sdhc_host_reset1(hp);
    918 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    919 		goto out;
    920 	}
    921 
    922 	/*
    923 	 * Select the lowest voltage according to capabilities.
    924 	 */
    925 	ocr &= hp->ocr;
    926 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    927 		vdd = SDHC_VOLTAGE_1_8V;
    928 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    929 		vdd = SDHC_VOLTAGE_3_0V;
    930 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    931 		vdd = SDHC_VOLTAGE_3_3V;
    932 	} else {
    933 		/* Unsupported voltage level requested. */
    934 		error = EINVAL;
    935 		goto out;
    936 	}
    937 
    938 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    939 		/*
    940 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    941 		 * voltage ramp until power rises.
    942 		 */
    943 
    944 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    945 			HWRITE1(hp, SDHC_POWER_CTL,
    946 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    947 		} else {
    948 			HWRITE1(hp, SDHC_POWER_CTL,
    949 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    950 			sdmmc_delay(1);
    951 			HWRITE1(hp, SDHC_POWER_CTL,
    952 			    (vdd << SDHC_VOLTAGE_SHIFT));
    953 			sdmmc_delay(1);
    954 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    955 			sdmmc_delay(10000);
    956 		}
    957 
    958 		/*
    959 		 * The host system may not power the bus due to battery low,
    960 		 * etc.  In that case, the host controller should clear the
    961 		 * bus power bit.
    962 		 */
    963 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    964 			error = ENXIO;
    965 			goto out;
    966 		}
    967 	}
    968 
    969 out:
    970 	mutex_exit(&hp->intr_lock);
    971 
    972 	return error;
    973 }
    974 
    975 /*
    976  * Return the smallest possible base clock frequency divisor value
    977  * for the CLOCK_CTL register to produce `freq' (KHz).
    978  */
    979 static bool
    980 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    981 {
    982 	u_int div;
    983 
    984 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    985 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    986 			if ((hp->clkbase / div) <= freq) {
    987 				*divp = SDHC_SDCLK_CGM
    988 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    989 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    990 				//freq = hp->clkbase / div;
    991 				return true;
    992 			}
    993 		}
    994 		/* No divisor found. */
    995 		return false;
    996 	}
    997 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    998 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    999 		u_int roundup = dvs & 1;
   1000 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
   1001 			if (dvs + roundup <= 16) {
   1002 				dvs += roundup - 1;
   1003 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
   1004 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1005 				DPRINTF(2,
   1006 				    ("%s: divisor for freq %u is %u * %u\n",
   1007 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1008 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1009 				return true;
   1010 			}
   1011 			/*
   1012 			 * If we drop bits, we need to round up the divisor.
   1013 			 */
   1014 			roundup |= dvs & 1;
   1015 		}
   1016 		/* No divisor found. */
   1017 		return false;
   1018 	}
   1019 	if (hp->sc->sc_clkmsk != 0) {
   1020 		div = howmany(hp->clkbase, freq);
   1021 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1022 			return false;
   1023 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1024 		//freq = hp->clkbase / div;
   1025 		return true;
   1026 	}
   1027 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1028 		div = howmany(hp->clkbase, freq);
   1029 		div = div > 1 ? howmany(div, 2) : 0;
   1030 		if (div > 0x3ff)
   1031 			return false;
   1032 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1033 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1034 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1035 			 << SDHC_SDCLK_DIV_SHIFT);
   1036 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1037 		return true;
   1038 	} else {
   1039 		for (div = 1; div <= 256; div *= 2) {
   1040 			if ((hp->clkbase / div) <= freq) {
   1041 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1042 				//freq = hp->clkbase / div;
   1043 				return true;
   1044 			}
   1045 		}
   1046 		/* No divisor found. */
   1047 		return false;
   1048 	}
   1049 	/* No divisor found. */
   1050 	return false;
   1051 }
   1052 
   1053 /*
   1054  * Set or change SDCLK frequency or disable the SD clock.
   1055  * Return zero on success.
   1056  */
   1057 static int
   1058 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1059 {
   1060 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1061 	u_int div;
   1062 	u_int timo;
   1063 	int16_t reg;
   1064 	int error = 0;
   1065 	bool present __diagused;
   1066 
   1067 	mutex_enter(&hp->intr_lock);
   1068 
   1069 #ifdef DIAGNOSTIC
   1070 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1071 
   1072 	/* Must not stop the clock if commands are in progress. */
   1073 	if (present && sdhc_card_detect(hp)) {
   1074 		aprint_normal_dev(hp->sc->sc_dev,
   1075 		    "%s: command in progress\n", __func__);
   1076 	}
   1077 #endif
   1078 
   1079 	if (hp->sc->sc_vendor_bus_clock) {
   1080 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1081 		if (error != 0)
   1082 			goto out;
   1083 	}
   1084 
   1085 	/*
   1086 	 * Stop SD clock before changing the frequency.
   1087 	 */
   1088 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1089 		HCLR4(hp, SDHC_VEND_SPEC,
   1090 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1091 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1092 		if (freq == SDMMC_SDCLK_OFF) {
   1093 			goto out;
   1094 		}
   1095 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1096 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1097 		if (freq == SDMMC_SDCLK_OFF) {
   1098 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1099 			goto out;
   1100 		}
   1101 	} else {
   1102 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1103 		if (freq == SDMMC_SDCLK_OFF)
   1104 			goto out;
   1105 	}
   1106 
   1107 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1108 		if (ddr)
   1109 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1110 		else
   1111 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1112 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1113 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1114 		if (freq > 100000) {
   1115 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1116 		} else if (freq > 50000) {
   1117 			if (ddr) {
   1118 				HSET2(hp, SDHC_HOST_CTL2,
   1119 				    SDHC_UHS_MODE_SELECT_DDR50);
   1120 			} else {
   1121 				HSET2(hp, SDHC_HOST_CTL2,
   1122 				    SDHC_UHS_MODE_SELECT_SDR50);
   1123 			}
   1124 		} else if (freq > 25000) {
   1125 			if (ddr) {
   1126 				HSET2(hp, SDHC_HOST_CTL2,
   1127 				    SDHC_UHS_MODE_SELECT_DDR50);
   1128 			} else {
   1129 				HSET2(hp, SDHC_HOST_CTL2,
   1130 				    SDHC_UHS_MODE_SELECT_SDR25);
   1131 			}
   1132 		} else if (freq > 400) {
   1133 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1134 		}
   1135 	}
   1136 
   1137 	/*
   1138 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1139 	 * at 100MHz bus clock.
   1140 	 */
   1141 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1142 		if (freq == 100000)
   1143 			--freq;
   1144 	}
   1145 
   1146 	/*
   1147 	 * Set the minimum base clock frequency divisor.
   1148 	 */
   1149 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1150 		/* Invalid base clock frequency or `freq' value. */
   1151 		aprint_error_dev(hp->sc->sc_dev,
   1152 			"Invalid bus clock %d kHz\n", freq);
   1153 		error = EINVAL;
   1154 		goto out;
   1155 	}
   1156 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1157 		if (ddr) {
   1158 			/* in ddr mode, divisor >>= 1 */
   1159 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1160 			    SDHC_SDCLK_DIV_SHIFT)) |
   1161 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1162 			    SDHC_SDCLK_DVS_SHIFT));
   1163 		}
   1164 		for (timo = 1000; timo > 0; timo--) {
   1165 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1166 				break;
   1167 			sdmmc_delay(10);
   1168 		}
   1169 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1170 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1171 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1172 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1173 		    div | (SDHC_TIMEOUT_MAX << 16));
   1174 	} else {
   1175 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1176 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1177 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1178 	}
   1179 
   1180 	/*
   1181 	 * Start internal clock.  Wait 10ms for stabilization.
   1182 	 */
   1183 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1184 		HSET4(hp, SDHC_VEND_SPEC,
   1185 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1186 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1187 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1188 		sdmmc_delay(10000);
   1189 		HSET4(hp, SDHC_CLOCK_CTL,
   1190 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1191 	} else {
   1192 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1193 		for (timo = 1000; timo > 0; timo--) {
   1194 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1195 			    SDHC_INTCLK_STABLE))
   1196 				break;
   1197 			sdmmc_delay(10);
   1198 		}
   1199 		if (timo == 0) {
   1200 			error = ETIMEDOUT;
   1201 			DPRINTF(1,("%s: timeout\n", __func__));
   1202 			goto out;
   1203 		}
   1204 	}
   1205 
   1206 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1207 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1208 		/*
   1209 		 * Sending 80 clocks at 400kHz takes 200us.
   1210 		 * So delay for that time + slop and then
   1211 		 * check a few times for completion.
   1212 		 */
   1213 		sdmmc_delay(210);
   1214 		for (timo = 10; timo > 0; timo--) {
   1215 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1216 			    SDHC_INIT_ACTIVE))
   1217 				break;
   1218 			sdmmc_delay(10);
   1219 		}
   1220 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1221 
   1222 		/*
   1223 		 * Enable SD clock.
   1224 		 */
   1225 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1226 			HSET4(hp, SDHC_VEND_SPEC,
   1227 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1228 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1229 		} else {
   1230 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1231 		}
   1232 	} else {
   1233 		/*
   1234 		 * Enable SD clock.
   1235 		 */
   1236 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1237 
   1238 		if (freq > 25000 &&
   1239 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1240 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1241 		else
   1242 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1243 	}
   1244 
   1245 out:
   1246 	mutex_exit(&hp->intr_lock);
   1247 
   1248 	return error;
   1249 }
   1250 
   1251 static int
   1252 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1253 {
   1254 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1255 	int reg;
   1256 
   1257 	switch (width) {
   1258 	case 1:
   1259 	case 4:
   1260 		break;
   1261 
   1262 	case 8:
   1263 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1264 			break;
   1265 		/* FALLTHROUGH */
   1266 	default:
   1267 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1268 		    HDEVNAME(hp), width));
   1269 		return 1;
   1270 	}
   1271 
   1272 	if (hp->sc->sc_vendor_bus_width) {
   1273 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1274 		if (error != 0)
   1275 			return error;
   1276 	}
   1277 
   1278 	mutex_enter(&hp->intr_lock);
   1279 
   1280 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1281 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1282 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1283 		if (width == 4)
   1284 			reg |= SDHC_4BIT_MODE;
   1285 		else if (width == 8)
   1286 			reg |= SDHC_ESDHC_8BIT_MODE;
   1287 	} else {
   1288 		reg &= ~SDHC_4BIT_MODE;
   1289 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1290 			reg &= ~SDHC_8BIT_MODE;
   1291 		}
   1292 		if (width == 4) {
   1293 			reg |= SDHC_4BIT_MODE;
   1294 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1295 			reg |= SDHC_8BIT_MODE;
   1296 		}
   1297 	}
   1298 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1299 
   1300 	mutex_exit(&hp->intr_lock);
   1301 
   1302 	return 0;
   1303 }
   1304 
   1305 static int
   1306 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1307 {
   1308 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1309 
   1310 	if (hp->sc->sc_vendor_rod)
   1311 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1312 
   1313 	return 0;
   1314 }
   1315 
   1316 static void
   1317 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1318 {
   1319 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1320 
   1321 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1322 		mutex_enter(&hp->intr_lock);
   1323 		if (enable) {
   1324 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1325 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1326 		} else {
   1327 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1328 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1329 		}
   1330 		mutex_exit(&hp->intr_lock);
   1331 	}
   1332 }
   1333 
   1334 static void
   1335 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1336 {
   1337 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1338 
   1339 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1340 		mutex_enter(&hp->intr_lock);
   1341 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1342 		mutex_exit(&hp->intr_lock);
   1343 	}
   1344 }
   1345 
   1346 static int
   1347 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1348 {
   1349 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1350 	int error = 0;
   1351 
   1352 	if (hp->specver < SDHC_SPEC_VERS_300)
   1353 		return EINVAL;
   1354 
   1355 	mutex_enter(&hp->intr_lock);
   1356 	switch (signal_voltage) {
   1357 	case SDMMC_SIGNAL_VOLTAGE_180:
   1358 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1359 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1360 			    signal_voltage);
   1361 			if (error != 0)
   1362 				break;
   1363 		}
   1364 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1365 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1366 		break;
   1367 	case SDMMC_SIGNAL_VOLTAGE_330:
   1368 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1369 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1370 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1371 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1372 			    signal_voltage);
   1373 			if (error != 0)
   1374 				break;
   1375 		}
   1376 		break;
   1377 	default:
   1378 		error = EINVAL;
   1379 		break;
   1380 	}
   1381 	mutex_exit(&hp->intr_lock);
   1382 
   1383 	return error;
   1384 }
   1385 
   1386 /*
   1387  * Sampling clock tuning procedure (UHS)
   1388  */
   1389 static int
   1390 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1391 {
   1392 	struct sdmmc_command cmd;
   1393 	uint8_t hostctl;
   1394 	int opcode, error, retry = 40;
   1395 
   1396 	KASSERT(mutex_owned(&hp->intr_lock));
   1397 
   1398 	hp->tuning_timing = timing;
   1399 
   1400 	switch (timing) {
   1401 	case SDMMC_TIMING_MMC_HS200:
   1402 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1403 		break;
   1404 	case SDMMC_TIMING_UHS_SDR50:
   1405 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1406 			return 0;
   1407 		/* FALLTHROUGH */
   1408 	case SDMMC_TIMING_UHS_SDR104:
   1409 		opcode = MMC_SEND_TUNING_BLOCK;
   1410 		break;
   1411 	default:
   1412 		return EINVAL;
   1413 	}
   1414 
   1415 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1416 
   1417 	/* enable buffer read ready interrupt */
   1418 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1419 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1420 
   1421 	/* disable DMA */
   1422 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1423 
   1424 	/* reset tuning circuit */
   1425 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1426 
   1427 	/* start of tuning */
   1428 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1429 
   1430 	do {
   1431 		memset(&cmd, 0, sizeof(cmd));
   1432 		cmd.c_opcode = opcode;
   1433 		cmd.c_arg = 0;
   1434 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1435 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1436 			cmd.c_blklen = cmd.c_datalen = 128;
   1437 		} else {
   1438 			cmd.c_blklen = cmd.c_datalen = 64;
   1439 		}
   1440 
   1441 		error = sdhc_start_command(hp, &cmd);
   1442 		if (error)
   1443 			break;
   1444 
   1445 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1446 		    SDHC_TUNING_TIMEOUT, false)) {
   1447 			break;
   1448 		}
   1449 
   1450 		delay(1000);
   1451 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1452 
   1453 	/* disable buffer read ready interrupt */
   1454 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1455 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1456 
   1457 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1458 		HCLR2(hp, SDHC_HOST_CTL2,
   1459 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1460 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1461 		aprint_error_dev(hp->sc->sc_dev,
   1462 		    "tuning did not complete, using fixed sampling clock\n");
   1463 		return EIO;		/* tuning did not complete */
   1464 	}
   1465 
   1466 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1467 		HCLR2(hp, SDHC_HOST_CTL2,
   1468 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1469 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1470 		aprint_error_dev(hp->sc->sc_dev,
   1471 		    "tuning failed, using fixed sampling clock\n");
   1472 		return EIO;		/* tuning failed */
   1473 	}
   1474 
   1475 	if (hp->tuning_timer_count) {
   1476 		callout_schedule(&hp->tuning_timer,
   1477 		    hz * hp->tuning_timer_count);
   1478 	}
   1479 
   1480 	return 0;		/* tuning completed */
   1481 }
   1482 
   1483 static int
   1484 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1485 {
   1486 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1487 	int error;
   1488 
   1489 	mutex_enter(&hp->intr_lock);
   1490 	error = sdhc_execute_tuning1(hp, timing);
   1491 	mutex_exit(&hp->intr_lock);
   1492 	return error;
   1493 }
   1494 
   1495 static void
   1496 sdhc_tuning_timer(void *arg)
   1497 {
   1498 	struct sdhc_host *hp = arg;
   1499 
   1500 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1501 }
   1502 
   1503 static void
   1504 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1505 {
   1506 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1507 	struct sdhc_softc *sc = hp->sc;
   1508 
   1509 	if (sc->sc_vendor_hw_reset != NULL)
   1510 		sc->sc_vendor_hw_reset(sc, hp);
   1511 }
   1512 
   1513 static int
   1514 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1515 {
   1516 	uint32_t state;
   1517 	int timeout;
   1518 
   1519 	for (timeout = 10000; timeout > 0; timeout--) {
   1520 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1521 			return 0;
   1522 		sdmmc_delay(10);
   1523 	}
   1524 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1525 	    mask, value, state);
   1526 	return ETIMEDOUT;
   1527 }
   1528 
   1529 static void
   1530 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1531 {
   1532 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1533 	int error;
   1534 	bool probing;
   1535 
   1536 	mutex_enter(&hp->intr_lock);
   1537 
   1538 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1539 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1540 	}
   1541 
   1542 	if (cmd->c_data &&
   1543 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1544 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1545 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1546 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1547 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1548 		} else {
   1549 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1550 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1551 		}
   1552 	}
   1553 
   1554 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1555 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1556 		if (cmd->c_data != NULL) {
   1557 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1558 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1559 		} else {
   1560 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1561 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1562 		}
   1563 	}
   1564 
   1565 	/*
   1566 	 * Start the MMC command, or mark `cmd' as failed and return.
   1567 	 */
   1568 	error = sdhc_start_command(hp, cmd);
   1569 	if (error) {
   1570 		cmd->c_error = error;
   1571 		goto out;
   1572 	}
   1573 
   1574 	/*
   1575 	 * Wait until the command phase is done, or until the command
   1576 	 * is marked done for any other reason.
   1577 	 */
   1578 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1579 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) {
   1580 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1581 		sdmmc_delay(50);
   1582 		cmd->c_error = ETIMEDOUT;
   1583 		goto out;
   1584 	}
   1585 
   1586 	/*
   1587 	 * The host controller removes bits [0:7] from the response
   1588 	 * data (CRC) and we pass the data up unchanged to the bus
   1589 	 * driver (without padding).
   1590 	 */
   1591 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1592 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1593 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1594 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1595 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1596 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1597 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1598 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1599 				    (cmd->c_resp[1] << 24);
   1600 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1601 				    (cmd->c_resp[2] << 24);
   1602 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1603 				    (cmd->c_resp[3] << 24);
   1604 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1605 			}
   1606 		}
   1607 	}
   1608 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1609 
   1610 	/*
   1611 	 * If the command has data to transfer in any direction,
   1612 	 * execute the transfer now.
   1613 	 */
   1614 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1615 		sdhc_transfer_data(hp, cmd);
   1616 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1617 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1618 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1619 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1620 			    HDEVNAME(hp)));
   1621 			cmd->c_error = ETIMEDOUT;
   1622 			goto out;
   1623 		}
   1624 	}
   1625 
   1626 out:
   1627 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1628 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1629 		/* Turn off the LED. */
   1630 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1631 	}
   1632 	SET(cmd->c_flags, SCF_ITSDONE);
   1633 
   1634 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1635 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1636 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1637 
   1638 	mutex_exit(&hp->intr_lock);
   1639 
   1640 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1641 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1642 	    cmd->c_flags, cmd->c_error));
   1643 }
   1644 
   1645 static int
   1646 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1647 {
   1648 	struct sdhc_softc * const sc = hp->sc;
   1649 	uint16_t blksize = 0;
   1650 	uint16_t blkcount = 0;
   1651 	uint16_t mode;
   1652 	uint16_t command;
   1653 	uint32_t pmask;
   1654 	int error;
   1655 
   1656 	KASSERT(mutex_owned(&hp->intr_lock));
   1657 
   1658 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1659 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1660 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1661 
   1662 	/*
   1663 	 * The maximum block length for commands should be the minimum
   1664 	 * of the host buffer size and the card buffer size. (1.7.2)
   1665 	 */
   1666 
   1667 	/* Fragment the data into proper blocks. */
   1668 	if (cmd->c_datalen > 0) {
   1669 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1670 		blkcount = cmd->c_datalen / blksize;
   1671 		if (cmd->c_datalen % blksize > 0) {
   1672 			/* XXX: Split this command. (1.7.4) */
   1673 			aprint_error_dev(sc->sc_dev,
   1674 			    "data not a multiple of %u bytes\n", blksize);
   1675 			return EINVAL;
   1676 		}
   1677 	}
   1678 
   1679 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1680 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1681 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1682 		return EINVAL;
   1683 	}
   1684 
   1685 	/* Prepare transfer mode register value. (2.2.5) */
   1686 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1687 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1688 		mode |= SDHC_READ_MODE;
   1689 	if (blkcount > 1) {
   1690 		mode |= SDHC_MULTI_BLOCK_MODE;
   1691 		/* XXX only for memory commands? */
   1692 		if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
   1693 			mode |= SDHC_AUTO_CMD12_ENABLE;
   1694 	}
   1695 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1696 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1697 		mode |= SDHC_DMA_ENABLE;
   1698 	}
   1699 
   1700 	/*
   1701 	 * Prepare command register value. (2.2.6)
   1702 	 */
   1703 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1704 
   1705 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1706 		command |= SDHC_CRC_CHECK_ENABLE;
   1707 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1708 		command |= SDHC_INDEX_CHECK_ENABLE;
   1709 	if (cmd->c_datalen > 0)
   1710 		command |= SDHC_DATA_PRESENT_SELECT;
   1711 
   1712 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1713 		command |= SDHC_NO_RESPONSE;
   1714 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1715 		command |= SDHC_RESP_LEN_136;
   1716 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1717 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1718 	else
   1719 		command |= SDHC_RESP_LEN_48;
   1720 
   1721 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1722 	pmask = SDHC_CMD_INHIBIT_CMD;
   1723 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1724 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1725 	error = sdhc_wait_state(hp, pmask, 0);
   1726 	if (error) {
   1727 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1728 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1729 		return error;
   1730 	}
   1731 
   1732 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1733 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1734 
   1735 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1736 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1737 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1738 	}
   1739 
   1740 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1741 		/* Alert the user not to remove the card. */
   1742 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1743 	}
   1744 
   1745 	/* Set DMA start address. */
   1746 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1747 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1748 			bus_addr_t paddr =
   1749 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1750 			uint16_t len =
   1751 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1752 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1753 			uint16_t attr =
   1754 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1755 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1756 				attr |= SDHC_ADMA2_END;
   1757 			}
   1758 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1759 				struct sdhc_adma2_descriptor32 *desc =
   1760 				    hp->adma2;
   1761 				desc[seg].attribute = htole16(attr);
   1762 				desc[seg].length = htole16(len);
   1763 				desc[seg].address = htole32(paddr);
   1764 			} else {
   1765 				struct sdhc_adma2_descriptor64 *desc =
   1766 				    hp->adma2;
   1767 				desc[seg].attribute = htole16(attr);
   1768 				desc[seg].length = htole16(len);
   1769 				desc[seg].address = htole32(paddr & 0xffffffff);
   1770 				desc[seg].address_hi = htole32(
   1771 				    (uint64_t)paddr >> 32);
   1772 			}
   1773 		}
   1774 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1775 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1776 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1777 		} else {
   1778 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1779 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1780 		}
   1781 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1782 		    BUS_DMASYNC_PREWRITE);
   1783 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1784 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1785 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1786 		} else {
   1787 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1788 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1789 		}
   1790 
   1791 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1792 
   1793 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1794 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1795 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1796 			    (uint64_t)desc_addr >> 32);
   1797 		}
   1798 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1799 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1800 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1801 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1802 		}
   1803 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1804 	}
   1805 
   1806 	/*
   1807 	 * Start a CPU data transfer.  Writing to the high order byte
   1808 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1809 	 */
   1810 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1811 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1812 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1813 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1814 			/* mode bits is in MIX_CTRL register on uSDHC */
   1815 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1816 			    (HREAD4(hp, SDHC_MIX_CTRL) &
   1817 			    ~(SDHC_MULTI_BLOCK_MODE |
   1818 			    SDHC_READ_MODE |
   1819 			    SDHC_AUTO_CMD12_ENABLE |
   1820 			    SDHC_BLOCK_COUNT_ENABLE |
   1821 			    SDHC_DMA_ENABLE)));
   1822 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1823 		} else {
   1824 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1825 		}
   1826 	} else {
   1827 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1828 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1829 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1830 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1831 		HWRITE2(hp, SDHC_COMMAND, command);
   1832 	}
   1833 
   1834 	return 0;
   1835 }
   1836 
   1837 static void
   1838 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1839 {
   1840 	struct sdhc_softc *sc = hp->sc;
   1841 	int error;
   1842 
   1843 	KASSERT(mutex_owned(&hp->intr_lock));
   1844 
   1845 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1846 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1847 
   1848 #ifdef SDHC_DEBUG
   1849 	/* XXX I forgot why I wanted to know when this happens :-( */
   1850 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1851 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1852 		aprint_error_dev(hp->sc->sc_dev,
   1853 		    "CMD52/53 error response flags %#x\n",
   1854 		    MMC_R1(cmd->c_resp) & 0xff00);
   1855 	}
   1856 #endif
   1857 
   1858 	if (cmd->c_dmamap != NULL) {
   1859 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1860 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1861 			if (error == 0 && !sdhc_wait_intr(hp,
   1862 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1863 				DPRINTF(1,("%s: timeout\n", __func__));
   1864 				error = ETIMEDOUT;
   1865 			}
   1866 		} else {
   1867 			error = sdhc_transfer_data_dma(hp, cmd);
   1868 		}
   1869 	} else
   1870 		error = sdhc_transfer_data_pio(hp, cmd);
   1871 	if (error)
   1872 		cmd->c_error = error;
   1873 	SET(cmd->c_flags, SCF_ITSDONE);
   1874 
   1875 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1876 	    HDEVNAME(hp), cmd->c_error));
   1877 }
   1878 
   1879 static int
   1880 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1881 {
   1882 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1883 	bus_addr_t posaddr;
   1884 	bus_addr_t segaddr;
   1885 	bus_size_t seglen;
   1886 	u_int seg = 0;
   1887 	int error = 0;
   1888 	int status;
   1889 
   1890 	KASSERT(mutex_owned(&hp->intr_lock));
   1891 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1892 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1893 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1894 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1895 
   1896 	for (;;) {
   1897 		status = sdhc_wait_intr(hp,
   1898 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1899 		    SDHC_DMA_TIMEOUT, false);
   1900 
   1901 		if (status & SDHC_TRANSFER_COMPLETE) {
   1902 			break;
   1903 		}
   1904 		if (!status) {
   1905 			DPRINTF(1,("%s: timeout\n", __func__));
   1906 			error = ETIMEDOUT;
   1907 			break;
   1908 		}
   1909 
   1910 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1911 			continue;
   1912 		}
   1913 
   1914 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1915 			continue;
   1916 		}
   1917 
   1918 		/* DMA Interrupt (boundary crossing) */
   1919 
   1920 		segaddr = dm_segs[seg].ds_addr;
   1921 		seglen = dm_segs[seg].ds_len;
   1922 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1923 
   1924 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1925 			continue;
   1926 		}
   1927 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1928 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1929 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1930 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1931 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1932 	}
   1933 
   1934 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1935 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1936 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1937 	}
   1938 
   1939 	return error;
   1940 }
   1941 
   1942 static int
   1943 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1944 {
   1945 	uint8_t *data = cmd->c_data;
   1946 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1947 	u_int len, datalen;
   1948 	u_int imask;
   1949 	u_int pmask;
   1950 	int error = 0;
   1951 
   1952 	KASSERT(mutex_owned(&hp->intr_lock));
   1953 
   1954 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1955 		imask = SDHC_BUFFER_READ_READY;
   1956 		pmask = SDHC_BUFFER_READ_ENABLE;
   1957 		if (ISSET(hp->sc->sc_flags,
   1958 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1959 			pio_func = esdhc_read_data_pio;
   1960 		} else {
   1961 			pio_func = sdhc_read_data_pio;
   1962 		}
   1963 	} else {
   1964 		imask = SDHC_BUFFER_WRITE_READY;
   1965 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1966 		if (ISSET(hp->sc->sc_flags,
   1967 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1968 			pio_func = esdhc_write_data_pio;
   1969 		} else {
   1970 			pio_func = sdhc_write_data_pio;
   1971 		}
   1972 	}
   1973 	datalen = cmd->c_datalen;
   1974 
   1975 	KASSERT(mutex_owned(&hp->intr_lock));
   1976 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1977 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1978 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1979 
   1980 	while (datalen > 0) {
   1981 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   1982 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1983 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1984 			} else {
   1985 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1986 			}
   1987 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   1988 				DPRINTF(1,("%s: timeout\n", __func__));
   1989 				error = ETIMEDOUT;
   1990 				break;
   1991 			}
   1992 
   1993 			error = sdhc_wait_state(hp, pmask, pmask);
   1994 			if (error)
   1995 				break;
   1996 		}
   1997 
   1998 		len = MIN(datalen, cmd->c_blklen);
   1999 		(*pio_func)(hp, data, len);
   2000 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2001 		    HDEVNAME(hp), len, data));
   2002 
   2003 		data += len;
   2004 		datalen -= len;
   2005 	}
   2006 
   2007 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2008 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2009 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2010 		error = ETIMEDOUT;
   2011 	}
   2012 
   2013 	return error;
   2014 }
   2015 
   2016 static void
   2017 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2018 {
   2019 
   2020 	if (((__uintptr_t)data & 3) == 0) {
   2021 		while (datalen > 3) {
   2022 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2023 			data += 4;
   2024 			datalen -= 4;
   2025 		}
   2026 		if (datalen > 1) {
   2027 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2028 			data += 2;
   2029 			datalen -= 2;
   2030 		}
   2031 		if (datalen > 0) {
   2032 			*data = HREAD1(hp, SDHC_DATA);
   2033 			data += 1;
   2034 			datalen -= 1;
   2035 		}
   2036 	} else if (((__uintptr_t)data & 1) == 0) {
   2037 		while (datalen > 1) {
   2038 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2039 			data += 2;
   2040 			datalen -= 2;
   2041 		}
   2042 		if (datalen > 0) {
   2043 			*data = HREAD1(hp, SDHC_DATA);
   2044 			data += 1;
   2045 			datalen -= 1;
   2046 		}
   2047 	} else {
   2048 		while (datalen > 0) {
   2049 			*data = HREAD1(hp, SDHC_DATA);
   2050 			data += 1;
   2051 			datalen -= 1;
   2052 		}
   2053 	}
   2054 }
   2055 
   2056 static void
   2057 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2058 {
   2059 
   2060 	if (((__uintptr_t)data & 3) == 0) {
   2061 		while (datalen > 3) {
   2062 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2063 			data += 4;
   2064 			datalen -= 4;
   2065 		}
   2066 		if (datalen > 1) {
   2067 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2068 			data += 2;
   2069 			datalen -= 2;
   2070 		}
   2071 		if (datalen > 0) {
   2072 			HWRITE1(hp, SDHC_DATA, *data);
   2073 			data += 1;
   2074 			datalen -= 1;
   2075 		}
   2076 	} else if (((__uintptr_t)data & 1) == 0) {
   2077 		while (datalen > 1) {
   2078 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2079 			data += 2;
   2080 			datalen -= 2;
   2081 		}
   2082 		if (datalen > 0) {
   2083 			HWRITE1(hp, SDHC_DATA, *data);
   2084 			data += 1;
   2085 			datalen -= 1;
   2086 		}
   2087 	} else {
   2088 		while (datalen > 0) {
   2089 			HWRITE1(hp, SDHC_DATA, *data);
   2090 			data += 1;
   2091 			datalen -= 1;
   2092 		}
   2093 	}
   2094 }
   2095 
   2096 static void
   2097 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2098 {
   2099 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2100 	uint32_t v;
   2101 
   2102 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2103 	size_t count = 0;
   2104 
   2105 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2106 		if (count == 0) {
   2107 			/*
   2108 			 * If we've drained "watermark" words, we need to wait
   2109 			 * a little bit so the read FIFO can refill.
   2110 			 */
   2111 			sdmmc_delay(10);
   2112 			count = watermark;
   2113 		}
   2114 		v = HREAD4(hp, SDHC_DATA);
   2115 		v = le32toh(v);
   2116 		*(uint32_t *)data = v;
   2117 		data += 4;
   2118 		datalen -= 4;
   2119 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2120 		count--;
   2121 	}
   2122 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2123 		if (count == 0) {
   2124 			sdmmc_delay(10);
   2125 		}
   2126 		v = HREAD4(hp, SDHC_DATA);
   2127 		v = le32toh(v);
   2128 		do {
   2129 			*data++ = v;
   2130 			v >>= 8;
   2131 		} while (--datalen > 0);
   2132 	}
   2133 }
   2134 
   2135 static void
   2136 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2137 {
   2138 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2139 	uint32_t v;
   2140 
   2141 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2142 	size_t count = watermark;
   2143 
   2144 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2145 		if (count == 0) {
   2146 			sdmmc_delay(10);
   2147 			count = watermark;
   2148 		}
   2149 		v = *(uint32_t *)data;
   2150 		v = htole32(v);
   2151 		HWRITE4(hp, SDHC_DATA, v);
   2152 		data += 4;
   2153 		datalen -= 4;
   2154 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2155 		count--;
   2156 	}
   2157 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2158 		if (count == 0) {
   2159 			sdmmc_delay(10);
   2160 		}
   2161 		v = *(uint32_t *)data;
   2162 		v = htole32(v);
   2163 		HWRITE4(hp, SDHC_DATA, v);
   2164 	}
   2165 }
   2166 
   2167 /* Prepare for another command. */
   2168 static int
   2169 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2170 {
   2171 	int timo;
   2172 
   2173 	KASSERT(mutex_owned(&hp->intr_lock));
   2174 
   2175 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2176 
   2177 	/* Request the reset.  */
   2178 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2179 
   2180 	/*
   2181 	 * If necessary, wait for the controller to set the bits to
   2182 	 * acknowledge the reset.
   2183 	 */
   2184 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2185 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2186 		for (timo = 10000; timo > 0; timo--) {
   2187 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2188 				break;
   2189 			/* Short delay because I worry we may miss it...  */
   2190 			sdmmc_delay(1);
   2191 		}
   2192 		if (timo == 0) {
   2193 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2194 			return ETIMEDOUT;
   2195 		}
   2196 	}
   2197 
   2198 	/*
   2199 	 * Wait for the controller to clear the bits to indicate that
   2200 	 * the reset has completed.
   2201 	 */
   2202 	for (timo = 10; timo > 0; timo--) {
   2203 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2204 			break;
   2205 		sdmmc_delay(10000);
   2206 	}
   2207 	if (timo == 0) {
   2208 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2209 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2210 		return ETIMEDOUT;
   2211 	}
   2212 
   2213 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2214 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2215 	}
   2216 
   2217 	return 0;
   2218 }
   2219 
   2220 static int
   2221 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2222 {
   2223 	int status, error, nointr;
   2224 
   2225 	KASSERT(mutex_owned(&hp->intr_lock));
   2226 
   2227 	mask |= SDHC_ERROR_INTERRUPT;
   2228 
   2229 	nointr = 0;
   2230 	status = hp->intr_status & mask;
   2231 	while (status == 0) {
   2232 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2233 		    == EWOULDBLOCK) {
   2234 			nointr = 1;
   2235 			break;
   2236 		}
   2237 		status = hp->intr_status & mask;
   2238 	}
   2239 	error = hp->intr_error_status;
   2240 
   2241 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2242 	    error));
   2243 
   2244 	hp->intr_status &= ~status;
   2245 	hp->intr_error_status &= ~error;
   2246 
   2247 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2248 		if (ISSET(error, SDHC_DMA_ERROR))
   2249 			device_printf(hp->sc->sc_dev,"dma error\n");
   2250 		if (ISSET(error, SDHC_ADMA_ERROR))
   2251 			device_printf(hp->sc->sc_dev,"adma error\n");
   2252 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2253 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2254 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2255 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2256 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2257 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2258 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2259 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2260 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2261 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2262 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2263 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2264 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2265 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2266 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2267 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2268 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2269 			if (!probing)
   2270 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2271 #ifdef SDHC_DEBUG
   2272 			else if (sdhcdebug > 0)
   2273 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2274 #endif
   2275 		}
   2276 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2277 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2278 				(error & ~SDHC_EINTR_STATUS_MASK));
   2279 		if (error == 0)
   2280 			device_printf(hp->sc->sc_dev,"no error\n");
   2281 
   2282 		/* Command timeout has higher priority than command complete. */
   2283 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2284 			CLR(status, SDHC_COMMAND_COMPLETE);
   2285 
   2286 		/* Transfer complete has higher priority than data timeout. */
   2287 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2288 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2289 	}
   2290 
   2291 	if (nointr ||
   2292 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2293 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2294 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2295 		hp->intr_error_status = 0;
   2296 		status = 0;
   2297 	}
   2298 
   2299 	return status;
   2300 }
   2301 
   2302 /*
   2303  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2304  */
   2305 int
   2306 sdhc_intr(void *arg)
   2307 {
   2308 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2309 	struct sdhc_host *hp;
   2310 	int done = 0;
   2311 	uint16_t status;
   2312 	uint16_t error;
   2313 
   2314 	/* We got an interrupt, but we don't know from which slot. */
   2315 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2316 		hp = sc->sc_host[host];
   2317 		if (hp == NULL)
   2318 			continue;
   2319 
   2320 		mutex_enter(&hp->intr_lock);
   2321 
   2322 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2323 			/* Find out which interrupts are pending. */
   2324 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2325 			status = xstatus;
   2326 			error = xstatus >> 16;
   2327 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2328 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2329 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2330 				/* read again due to uSDHC errata */
   2331 				status = xstatus = HREAD4(hp,
   2332 				    SDHC_NINTR_STATUS);
   2333 				error = xstatus >> 16;
   2334 			}
   2335 			if (ISSET(sc->sc_flags,
   2336 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2337 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2338 					SET(status, SDHC_ERROR_INTERRUPT);
   2339 			}
   2340 			if (error)
   2341 				xstatus |= SDHC_ERROR_INTERRUPT;
   2342 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2343 				goto next_port; /* no interrupt for us */
   2344 			/* Acknowledge the interrupts we are about to handle. */
   2345 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2346 		} else {
   2347 			/* Find out which interrupts are pending. */
   2348 			error = 0;
   2349 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2350 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2351 				goto next_port; /* no interrupt for us */
   2352 			/* Acknowledge the interrupts we are about to handle. */
   2353 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2354 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2355 				/* Acknowledge error interrupts. */
   2356 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2357 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2358 			}
   2359 		}
   2360 
   2361 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2362 		    status, error));
   2363 
   2364 		/* Claim this interrupt. */
   2365 		done = 1;
   2366 
   2367 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2368 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2369 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2370 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2371 			    adma_err);
   2372 		}
   2373 
   2374 		/*
   2375 		 * Wake up the sdmmc event thread to scan for cards.
   2376 		 */
   2377 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2378 			if (hp->sdmmc != NULL) {
   2379 				sdmmc_needs_discover(hp->sdmmc);
   2380 			}
   2381 			if (ISSET(sc->sc_flags,
   2382 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2383 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2384 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2385 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2386 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2387 			}
   2388 		}
   2389 
   2390 		/*
   2391 		 * Schedule re-tuning process (UHS).
   2392 		 */
   2393 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2394 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2395 		}
   2396 
   2397 		/*
   2398 		 * Wake up the blocking process to service command
   2399 		 * related interrupt(s).
   2400 		 */
   2401 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2402 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2403 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2404 			hp->intr_error_status |= error;
   2405 			hp->intr_status |= status;
   2406 			if (ISSET(sc->sc_flags,
   2407 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2408 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2409 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2410 			}
   2411 			cv_broadcast(&hp->intr_cv);
   2412 		}
   2413 
   2414 		/*
   2415 		 * Service SD card interrupts.
   2416 		 */
   2417 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2418 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2419 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2420 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2421 			sdmmc_card_intr(hp->sdmmc);
   2422 		}
   2423 next_port:
   2424 		mutex_exit(&hp->intr_lock);
   2425 	}
   2426 
   2427 	return done;
   2428 }
   2429 
   2430 kmutex_t *
   2431 sdhc_host_lock(struct sdhc_host *hp)
   2432 {
   2433 	return &hp->intr_lock;
   2434 }
   2435 
   2436 uint8_t
   2437 sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2438 {
   2439 	return HREAD1(hp, reg);
   2440 }
   2441 
   2442 uint16_t
   2443 sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2444 {
   2445 	return HREAD2(hp, reg);
   2446 }
   2447 
   2448 uint32_t
   2449 sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2450 {
   2451 	return HREAD4(hp, reg);
   2452 }
   2453 
   2454 void
   2455 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2456 {
   2457 	HWRITE1(hp, reg, val);
   2458 }
   2459 
   2460 void
   2461 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2462 {
   2463 	HWRITE2(hp, reg, val);
   2464 }
   2465 
   2466 void
   2467 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2468 {
   2469 	HWRITE4(hp, reg, val);
   2470 }
   2471 
   2472 #ifdef SDHC_DEBUG
   2473 void
   2474 sdhc_dump_regs(struct sdhc_host *hp)
   2475 {
   2476 
   2477 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2478 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2479 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2480 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2481 		    HREAD1(hp, SDHC_POWER_CTL));
   2482 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2483 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2484 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2485 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2486 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2487 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2488 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2489 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2490 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2491 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2492 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2493 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2494 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2495 	    HREAD4(hp, SDHC_CAPABILITIES));
   2496 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2497 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2498 }
   2499 #endif
   2500