Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.101.6.1
      1 /*	$NetBSD: sdhc.c,v 1.101.6.1 2019/06/10 22:07:32 christos Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.101.6.1 2019/06/10 22:07:32 christos Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kcondvar_t intr_cv;
     81 
     82 	callout_t tuning_timer;
     83 	int tuning_timing;
     84 	u_int tuning_timer_count;
     85 	u_int tuning_timer_pending;
     86 
     87 	int specver;			/* spec. version */
     88 
     89 	uint32_t flags;			/* flags for this host */
     90 #define SHF_USE_DMA		0x0001
     91 #define SHF_USE_4BIT_MODE	0x0002
     92 #define SHF_USE_8BIT_MODE	0x0004
     93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94 #define SHF_USE_ADMA2_32	0x0010
     95 #define SHF_USE_ADMA2_64	0x0020
     96 #define SHF_USE_ADMA2_MASK	0x0030
     97 
     98 	bus_dmamap_t		adma_map;
     99 	bus_dma_segment_t	adma_segs[1];
    100 	void			*adma2;
    101 };
    102 
    103 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    104 
    105 static uint8_t
    106 hread1(struct sdhc_host *hp, bus_size_t reg)
    107 {
    108 
    109 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    110 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    111 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    112 }
    113 
    114 static uint16_t
    115 hread2(struct sdhc_host *hp, bus_size_t reg)
    116 {
    117 
    118 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    119 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    120 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    121 }
    122 
    123 #define HREAD1(hp, reg)		hread1(hp, reg)
    124 #define HREAD2(hp, reg)		hread2(hp, reg)
    125 #define HREAD4(hp, reg)		\
    126 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    127 
    128 
    129 static void
    130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    131 {
    132 
    133 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    135 	} else {
    136 		const size_t shift = 8 * (o & 3);
    137 		o &= -4;
    138 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    140 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141 	}
    142 }
    143 
    144 static void
    145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    146 {
    147 
    148 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    149 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    150 	} else {
    151 		const size_t shift = 8 * (o & 2);
    152 		o &= -4;
    153 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    154 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    155 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    156 	}
    157 }
    158 
    159 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    160 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    161 #define HWRITE4(hp, reg, val)						\
    162 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    163 
    164 #define HCLR1(hp, reg, bits)						\
    165 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    166 #define HCLR2(hp, reg, bits)						\
    167 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    168 #define HCLR4(hp, reg, bits)						\
    169 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    170 #define HSET1(hp, reg, bits)						\
    171 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    172 #define HSET2(hp, reg, bits)						\
    173 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    174 #define HSET4(hp, reg, bits)						\
    175 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    176 
    177 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    178 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    179 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    180 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    181 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    182 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    183 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    184 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    185 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    186 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    187 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    188 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    189 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    190 		    struct sdmmc_command *);
    191 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    192 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    193 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    194 static void	sdhc_tuning_timer(void *);
    195 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    196 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    197 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    198 static int	sdhc_soft_reset(struct sdhc_host *, int);
    199 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    200 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    201 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    202 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    203 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    204 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    205 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    206 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    207 
    208 static struct sdmmc_chip_functions sdhc_functions = {
    209 	/* host controller reset */
    210 	.host_reset = sdhc_host_reset,
    211 
    212 	/* host controller capabilities */
    213 	.host_ocr = sdhc_host_ocr,
    214 	.host_maxblklen = sdhc_host_maxblklen,
    215 
    216 	/* card detection */
    217 	.card_detect = sdhc_card_detect,
    218 
    219 	/* write protect */
    220 	.write_protect = sdhc_write_protect,
    221 
    222 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    223 	.bus_power = sdhc_bus_power,
    224 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    225 	.bus_width = sdhc_bus_width,
    226 	.bus_rod = sdhc_bus_rod,
    227 
    228 	/* command execution */
    229 	.exec_command = sdhc_exec_command,
    230 
    231 	/* card interrupt */
    232 	.card_enable_intr = sdhc_card_enable_intr,
    233 	.card_intr_ack = sdhc_card_intr_ack,
    234 
    235 	/* UHS functions */
    236 	.signal_voltage = sdhc_signal_voltage,
    237 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    238 	.execute_tuning = sdhc_execute_tuning,
    239 	.hw_reset = sdhc_hw_reset,
    240 };
    241 
    242 static int
    243 sdhc_cfprint(void *aux, const char *pnp)
    244 {
    245 	const struct sdmmcbus_attach_args * const saa = aux;
    246 	const struct sdhc_host * const hp = saa->saa_sch;
    247 
    248 	if (pnp) {
    249 		aprint_normal("sdmmc at %s", pnp);
    250 	}
    251 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    252 		if (hp->sc->sc_host[host] == hp) {
    253 			aprint_normal(" slot %zu", host);
    254 		}
    255 	}
    256 
    257 	return UNCONF;
    258 }
    259 
    260 /*
    261  * Called by attachment driver.  For each SD card slot there is one SD
    262  * host controller standard register set. (1.3)
    263  */
    264 int
    265 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    266     bus_space_handle_t ioh, bus_size_t iosize)
    267 {
    268 	struct sdmmcbus_attach_args saa;
    269 	struct sdhc_host *hp;
    270 	uint32_t caps, caps2;
    271 	uint16_t sdhcver;
    272 	int error;
    273 
    274 	/* Allocate one more host structure. */
    275 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    276 	if (hp == NULL) {
    277 		aprint_error_dev(sc->sc_dev,
    278 		    "couldn't alloc memory (sdhc host)\n");
    279 		goto err1;
    280 	}
    281 	sc->sc_host[sc->sc_nhosts++] = hp;
    282 
    283 	/* Fill in the new host structure. */
    284 	hp->sc = sc;
    285 	hp->iot = iot;
    286 	hp->ioh = ioh;
    287 	hp->ios = iosize;
    288 	hp->dmat = sc->sc_dmat;
    289 
    290 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    291 	cv_init(&hp->intr_cv, "sdhcintr");
    292 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    293 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    294 
    295 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    296 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    297 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    298 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    299 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    300 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    301 	} else {
    302 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    303 	}
    304 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    305 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    306 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    307 	case SDHC_SPEC_VERS_100:
    308 		aprint_normal("1.0");
    309 		break;
    310 	case SDHC_SPEC_VERS_200:
    311 		aprint_normal("2.0");
    312 		break;
    313 	case SDHC_SPEC_VERS_300:
    314 		aprint_normal("3.0");
    315 		break;
    316 	case SDHC_SPEC_VERS_400:
    317 		aprint_normal("4.0");
    318 		break;
    319 	case SDHC_SPEC_NOVERS:
    320 		hp->specver = -1;
    321 		aprint_normal("NO-VERS");
    322 		break;
    323 	default:
    324 		aprint_normal("unknown version(0x%x)",
    325 		    SDHC_SPEC_VERSION(sdhcver));
    326 		break;
    327 	}
    328 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    329 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    330 
    331 	/*
    332 	 * Reset the host controller and enable interrupts.
    333 	 */
    334 	(void)sdhc_host_reset(hp);
    335 
    336 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    337 		/* init uSDHC registers */
    338 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    339 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    340 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    341 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    342 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    343 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    344 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    345 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    346 		HSET4(hp, SDHC_VEND_SPEC,
    347 		    SDHC_VEND_SPEC_MBO |
    348 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    349 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    350 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    351 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    352 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    353 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    354 	}
    355 
    356 	/* Determine host capabilities. */
    357 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    358 		caps = sc->sc_caps;
    359 		caps2 = sc->sc_caps2;
    360 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    361 		/* uSDHC capability register is little bit different */
    362 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    363 		caps |= SDHC_8BIT_SUPP;
    364 		if (caps & SDHC_ADMA1_SUPP)
    365 			caps |= SDHC_ADMA2_SUPP;
    366 		sc->sc_caps = caps;
    367 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    368 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    369 	} else {
    370 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    371 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    372 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    373 		} else {
    374 			caps2 = sc->sc_caps2 = 0;
    375 		}
    376 	}
    377 
    378 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    379 	    SDHC_RETUNING_MODES_MASK;
    380 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    381 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    382 		    SDHC_TIMER_COUNT_MASK;
    383 		if (hp->tuning_timer_count == 0xf)
    384 			hp->tuning_timer_count = 0;
    385 		if (hp->tuning_timer_count)
    386 			hp->tuning_timer_count =
    387 			    1 << (hp->tuning_timer_count - 1);
    388 	}
    389 
    390 	/*
    391 	 * Use DMA if the host system and the controller support it.
    392 	 * Suports integrated or external DMA egine, with or without
    393 	 * SDHC_DMA_ENABLE in the command.
    394 	 */
    395 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    396 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    397 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    398 		SET(hp->flags, SHF_USE_DMA);
    399 
    400 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    401 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    402 			SET(hp->flags, SHF_MODE_DMAEN);
    403 			/*
    404 			 * 64-bit mode was present in the 2.00 spec, removed
    405 			 * from 3.00, and re-added in 4.00 with a different
    406 			 * descriptor layout. We only support 2.00 and 3.00
    407 			 * descriptors for now.
    408 			 */
    409 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    410 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    411 				SET(hp->flags, SHF_USE_ADMA2_64);
    412 				aprint_normal(", 64-bit ADMA2");
    413 			} else {
    414 				SET(hp->flags, SHF_USE_ADMA2_32);
    415 				aprint_normal(", 32-bit ADMA2");
    416 			}
    417 		} else {
    418 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    419 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    420 				SET(hp->flags, SHF_MODE_DMAEN);
    421 			if (sc->sc_vendor_transfer_data_dma) {
    422 				aprint_normal(", platform DMA");
    423 			} else {
    424 				aprint_normal(", SDMA");
    425 			}
    426 		}
    427 	} else {
    428 		aprint_normal(", PIO");
    429 	}
    430 
    431 	/*
    432 	 * Determine the base clock frequency. (2.2.24)
    433 	 */
    434 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    435 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    436 	} else {
    437 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    438 	}
    439 	if (hp->clkbase == 0 ||
    440 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    441 		if (sc->sc_clkbase == 0) {
    442 			/* The attachment driver must tell us. */
    443 			aprint_error_dev(sc->sc_dev,
    444 			    "unknown base clock frequency\n");
    445 			goto err;
    446 		}
    447 		hp->clkbase = sc->sc_clkbase;
    448 	}
    449 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    450 		/* SDHC 1.0 supports only 10-63 MHz. */
    451 		aprint_error_dev(sc->sc_dev,
    452 		    "base clock frequency out of range: %u MHz\n",
    453 		    hp->clkbase / 1000);
    454 		goto err;
    455 	}
    456 	aprint_normal(", %u kHz", hp->clkbase);
    457 
    458 	/*
    459 	 * XXX Set the data timeout counter value according to
    460 	 * capabilities. (2.2.15)
    461 	 */
    462 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    463 #if 1
    464 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    465 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    466 #endif
    467 
    468 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    469 		aprint_normal(", embedded slot");
    470 
    471 	/*
    472 	 * Determine SD bus voltage levels supported by the controller.
    473 	 */
    474 	aprint_normal(",");
    475 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    476 		SET(hp->ocr, MMC_OCR_HCS);
    477 		aprint_normal(" HS");
    478 	}
    479 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    480 		SET(hp->ocr, MMC_OCR_S18A);
    481 		aprint_normal(" SDR50");
    482 	}
    483 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    484 		SET(hp->ocr, MMC_OCR_S18A);
    485 		aprint_normal(" DDR50");
    486 	}
    487 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    488 		SET(hp->ocr, MMC_OCR_S18A);
    489 		aprint_normal(" SDR104 HS200");
    490 	}
    491 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    492 		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    493 		aprint_normal(" 1.8V");
    494 	}
    495 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    496 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    497 		aprint_normal(" 3.0V");
    498 	}
    499 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    500 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    501 		aprint_normal(" 3.3V");
    502 	}
    503 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    504 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    505 		if (hp->tuning_timer_count)
    506 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    507 	}
    508 
    509 	/*
    510 	 * Determine the maximum block length supported by the host
    511 	 * controller. (2.2.24)
    512 	 */
    513 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    514 	case SDHC_MAX_BLK_LEN_512:
    515 		hp->maxblklen = 512;
    516 		break;
    517 
    518 	case SDHC_MAX_BLK_LEN_1024:
    519 		hp->maxblklen = 1024;
    520 		break;
    521 
    522 	case SDHC_MAX_BLK_LEN_2048:
    523 		hp->maxblklen = 2048;
    524 		break;
    525 
    526 	case SDHC_MAX_BLK_LEN_4096:
    527 		hp->maxblklen = 4096;
    528 		break;
    529 
    530 	default:
    531 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    532 		goto err;
    533 	}
    534 	aprint_normal(", %u byte blocks", hp->maxblklen);
    535 	aprint_normal("\n");
    536 
    537 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    538 		int rseg;
    539 
    540 		/* Allocate ADMA2 descriptor memory */
    541 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    542 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    543 		if (error) {
    544 			aprint_error_dev(sc->sc_dev,
    545 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    546 			goto adma_done;
    547 		}
    548 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    549 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    550 		if (error) {
    551 			aprint_error_dev(sc->sc_dev,
    552 			    "ADMA2 dmamem_map failed (%d)\n", error);
    553 			goto adma_done;
    554 		}
    555 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    556 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    557 		if (error) {
    558 			aprint_error_dev(sc->sc_dev,
    559 			    "ADMA2 dmamap_create failed (%d)\n", error);
    560 			goto adma_done;
    561 		}
    562 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    563 		    hp->adma2, PAGE_SIZE, NULL,
    564 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    565 		if (error) {
    566 			aprint_error_dev(sc->sc_dev,
    567 			    "ADMA2 dmamap_load failed (%d)\n", error);
    568 			goto adma_done;
    569 		}
    570 
    571 		memset(hp->adma2, 0, PAGE_SIZE);
    572 
    573 adma_done:
    574 		if (error)
    575 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    576 	}
    577 
    578 	/*
    579 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    580 	 * not invoke any chipset functions before it is attached.)
    581 	 */
    582 	memset(&saa, 0, sizeof(saa));
    583 	saa.saa_busname = "sdmmc";
    584 	saa.saa_sct = &sdhc_functions;
    585 	saa.saa_sch = hp;
    586 	saa.saa_dmat = hp->dmat;
    587 	saa.saa_clkmax = hp->clkbase;
    588 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    589 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    590 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    591 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    592 	else if (hp->sc->sc_clkmsk != 0)
    593 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    594 		    (ffs(hp->sc->sc_clkmsk) - 1));
    595 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    596 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    597 	else
    598 		saa.saa_clkmin = hp->clkbase / 256;
    599 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    600 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    601 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    602 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    603 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    604 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    605 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    606 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    607 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    608 				SMC_CAPS_UHS_SDR50 |
    609 				SMC_CAPS_MMC_HS200;
    610 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    611 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    612 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    613 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    614 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    615 		saa.saa_caps |= SMC_CAPS_DMA;
    616 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    617 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    618 	}
    619 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    620 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    621 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    622 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    623 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    624 
    625 	return 0;
    626 
    627 err:
    628 	callout_destroy(&hp->tuning_timer);
    629 	cv_destroy(&hp->intr_cv);
    630 	mutex_destroy(&hp->intr_lock);
    631 	free(hp, M_DEVBUF);
    632 	sc->sc_host[--sc->sc_nhosts] = NULL;
    633 err1:
    634 	return 1;
    635 }
    636 
    637 int
    638 sdhc_detach(struct sdhc_softc *sc, int flags)
    639 {
    640 	struct sdhc_host *hp;
    641 	int rv = 0;
    642 
    643 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    644 		hp = sc->sc_host[n];
    645 		if (hp == NULL)
    646 			continue;
    647 		if (hp->sdmmc != NULL) {
    648 			rv = config_detach(hp->sdmmc, flags);
    649 			if (rv)
    650 				break;
    651 			hp->sdmmc = NULL;
    652 		}
    653 		/* disable interrupts */
    654 		if ((flags & DETACH_FORCE) == 0) {
    655 			mutex_enter(&hp->intr_lock);
    656 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    657 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    658 			} else {
    659 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    660 			}
    661 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    662 			mutex_exit(&hp->intr_lock);
    663 		}
    664 		callout_halt(&hp->tuning_timer, NULL);
    665 		callout_destroy(&hp->tuning_timer);
    666 		cv_destroy(&hp->intr_cv);
    667 		mutex_destroy(&hp->intr_lock);
    668 		if (hp->ios > 0) {
    669 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    670 			hp->ios = 0;
    671 		}
    672 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    673 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    674 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    675 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    676 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    677 		}
    678 		free(hp, M_DEVBUF);
    679 		sc->sc_host[n] = NULL;
    680 	}
    681 
    682 	return rv;
    683 }
    684 
    685 bool
    686 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    687 {
    688 	struct sdhc_softc *sc = device_private(dev);
    689 	struct sdhc_host *hp;
    690 	size_t i;
    691 
    692 	/* XXX poll for command completion or suspend command
    693 	 * in progress */
    694 
    695 	/* Save the host controller state. */
    696 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    697 		hp = sc->sc_host[n];
    698 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    699 			for (i = 0; i < sizeof hp->regs; i += 4) {
    700 				uint32_t v = HREAD4(hp, i);
    701 				hp->regs[i + 0] = (v >> 0);
    702 				hp->regs[i + 1] = (v >> 8);
    703 				if (i + 3 < sizeof hp->regs) {
    704 					hp->regs[i + 2] = (v >> 16);
    705 					hp->regs[i + 3] = (v >> 24);
    706 				}
    707 			}
    708 		} else {
    709 			for (i = 0; i < sizeof hp->regs; i++) {
    710 				hp->regs[i] = HREAD1(hp, i);
    711 			}
    712 		}
    713 	}
    714 	return true;
    715 }
    716 
    717 bool
    718 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    719 {
    720 	struct sdhc_softc *sc = device_private(dev);
    721 	struct sdhc_host *hp;
    722 	size_t i;
    723 
    724 	/* Restore the host controller state. */
    725 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    726 		hp = sc->sc_host[n];
    727 		(void)sdhc_host_reset(hp);
    728 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    729 			for (i = 0; i < sizeof hp->regs; i += 4) {
    730 				if (i + 3 < sizeof hp->regs) {
    731 					HWRITE4(hp, i,
    732 					    (hp->regs[i + 0] << 0)
    733 					    | (hp->regs[i + 1] << 8)
    734 					    | (hp->regs[i + 2] << 16)
    735 					    | (hp->regs[i + 3] << 24));
    736 				} else {
    737 					HWRITE4(hp, i,
    738 					    (hp->regs[i + 0] << 0)
    739 					    | (hp->regs[i + 1] << 8));
    740 				}
    741 			}
    742 		} else {
    743 			for (i = 0; i < sizeof hp->regs; i++) {
    744 				HWRITE1(hp, i, hp->regs[i]);
    745 			}
    746 		}
    747 	}
    748 	return true;
    749 }
    750 
    751 bool
    752 sdhc_shutdown(device_t dev, int flags)
    753 {
    754 	struct sdhc_softc *sc = device_private(dev);
    755 	struct sdhc_host *hp;
    756 
    757 	/* XXX chip locks up if we don't disable it before reboot. */
    758 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    759 		hp = sc->sc_host[i];
    760 		(void)sdhc_host_reset(hp);
    761 	}
    762 	return true;
    763 }
    764 
    765 /*
    766  * Reset the host controller.  Called during initialization, when
    767  * cards are removed, upon resume, and during error recovery.
    768  */
    769 static int
    770 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    771 {
    772 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    773 	uint32_t sdhcimask;
    774 	int error;
    775 
    776 	KASSERT(mutex_owned(&hp->intr_lock));
    777 
    778 	/* Disable all interrupts. */
    779 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    780 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    781 	} else {
    782 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    783 	}
    784 
    785 	/*
    786 	 * Reset the entire host controller and wait up to 100ms for
    787 	 * the controller to clear the reset bit.
    788 	 */
    789 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    790 	if (error)
    791 		goto out;
    792 
    793 	/* Set data timeout counter value to max for now. */
    794 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    795 #if 1
    796 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    797 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    798 #endif
    799 
    800 	/* Enable interrupts. */
    801 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    802 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    803 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    804 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    805 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    806 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    807 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    808 		sdhcimask ^=
    809 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    810 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    811 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    812 	} else {
    813 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    814 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    815 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    816 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    817 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    818 	}
    819 
    820 out:
    821 	return error;
    822 }
    823 
    824 static int
    825 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    826 {
    827 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    828 	int error;
    829 
    830 	mutex_enter(&hp->intr_lock);
    831 	error = sdhc_host_reset1(sch);
    832 	mutex_exit(&hp->intr_lock);
    833 
    834 	return error;
    835 }
    836 
    837 static uint32_t
    838 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    839 {
    840 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    841 
    842 	return hp->ocr;
    843 }
    844 
    845 static int
    846 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    847 {
    848 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    849 
    850 	return hp->maxblklen;
    851 }
    852 
    853 /*
    854  * Return non-zero if the card is currently inserted.
    855  */
    856 static int
    857 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    858 {
    859 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    860 	int r;
    861 
    862 	if (hp->sc->sc_vendor_card_detect)
    863 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    864 
    865 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    866 
    867 	return r ? 1 : 0;
    868 }
    869 
    870 /*
    871  * Return non-zero if the card is currently write-protected.
    872  */
    873 static int
    874 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    875 {
    876 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    877 	int r;
    878 
    879 	if (hp->sc->sc_vendor_write_protect)
    880 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    881 
    882 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    883 
    884 	return r ? 0 : 1;
    885 }
    886 
    887 /*
    888  * Set or change SD bus voltage and enable or disable SD bus power.
    889  * Return zero on success.
    890  */
    891 static int
    892 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    893 {
    894 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    895 	uint8_t vdd;
    896 	int error = 0;
    897 	const uint32_t pcmask =
    898 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    899 
    900 	mutex_enter(&hp->intr_lock);
    901 
    902 	/*
    903 	 * Disable bus power before voltage change.
    904 	 */
    905 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    906 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    907 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    908 
    909 	/* If power is disabled, reset the host and return now. */
    910 	if (ocr == 0) {
    911 		(void)sdhc_host_reset1(hp);
    912 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    913 		goto out;
    914 	}
    915 
    916 	/*
    917 	 * Select the lowest voltage according to capabilities.
    918 	 */
    919 	ocr &= hp->ocr;
    920 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    921 		vdd = SDHC_VOLTAGE_1_8V;
    922 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    923 		vdd = SDHC_VOLTAGE_3_0V;
    924 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    925 		vdd = SDHC_VOLTAGE_3_3V;
    926 	} else {
    927 		/* Unsupported voltage level requested. */
    928 		error = EINVAL;
    929 		goto out;
    930 	}
    931 
    932 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    933 		/*
    934 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    935 		 * voltage ramp until power rises.
    936 		 */
    937 
    938 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    939 			HWRITE1(hp, SDHC_POWER_CTL,
    940 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    941 		} else {
    942 			HWRITE1(hp, SDHC_POWER_CTL,
    943 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    944 			sdmmc_delay(1);
    945 			HWRITE1(hp, SDHC_POWER_CTL,
    946 			    (vdd << SDHC_VOLTAGE_SHIFT));
    947 			sdmmc_delay(1);
    948 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    949 			sdmmc_delay(10000);
    950 		}
    951 
    952 		/*
    953 		 * The host system may not power the bus due to battery low,
    954 		 * etc.  In that case, the host controller should clear the
    955 		 * bus power bit.
    956 		 */
    957 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    958 			error = ENXIO;
    959 			goto out;
    960 		}
    961 	}
    962 
    963 out:
    964 	mutex_exit(&hp->intr_lock);
    965 
    966 	return error;
    967 }
    968 
    969 /*
    970  * Return the smallest possible base clock frequency divisor value
    971  * for the CLOCK_CTL register to produce `freq' (KHz).
    972  */
    973 static bool
    974 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    975 {
    976 	u_int div;
    977 
    978 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    979 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    980 			if ((hp->clkbase / div) <= freq) {
    981 				*divp = SDHC_SDCLK_CGM
    982 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    983 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    984 				//freq = hp->clkbase / div;
    985 				return true;
    986 			}
    987 		}
    988 		/* No divisor found. */
    989 		return false;
    990 	}
    991 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    992 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    993 		u_int roundup = dvs & 1;
    994 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    995 			if (dvs + roundup <= 16) {
    996 				dvs += roundup - 1;
    997 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    998 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    999 				DPRINTF(2,
   1000 				    ("%s: divisor for freq %u is %u * %u\n",
   1001 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1002 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1003 				return true;
   1004 			}
   1005 			/*
   1006 			 * If we drop bits, we need to round up the divisor.
   1007 			 */
   1008 			roundup |= dvs & 1;
   1009 		}
   1010 		/* No divisor found. */
   1011 		return false;
   1012 	}
   1013 	if (hp->sc->sc_clkmsk != 0) {
   1014 		div = howmany(hp->clkbase, freq);
   1015 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1016 			return false;
   1017 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1018 		//freq = hp->clkbase / div;
   1019 		return true;
   1020 	}
   1021 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1022 		div = howmany(hp->clkbase, freq);
   1023 		div = div > 1 ? howmany(div, 2) : 0;
   1024 		if (div > 0x3ff)
   1025 			return false;
   1026 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1027 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1028 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1029 			 << SDHC_SDCLK_DIV_SHIFT);
   1030 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1031 		return true;
   1032 	} else {
   1033 		for (div = 1; div <= 256; div *= 2) {
   1034 			if ((hp->clkbase / div) <= freq) {
   1035 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1036 				//freq = hp->clkbase / div;
   1037 				return true;
   1038 			}
   1039 		}
   1040 		/* No divisor found. */
   1041 		return false;
   1042 	}
   1043 	/* No divisor found. */
   1044 	return false;
   1045 }
   1046 
   1047 /*
   1048  * Set or change SDCLK frequency or disable the SD clock.
   1049  * Return zero on success.
   1050  */
   1051 static int
   1052 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1053 {
   1054 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1055 	u_int div;
   1056 	u_int timo;
   1057 	int16_t reg;
   1058 	int error = 0;
   1059 	bool present __diagused;
   1060 
   1061 	mutex_enter(&hp->intr_lock);
   1062 
   1063 #ifdef DIAGNOSTIC
   1064 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1065 
   1066 	/* Must not stop the clock if commands are in progress. */
   1067 	if (present && sdhc_card_detect(hp)) {
   1068 		aprint_normal_dev(hp->sc->sc_dev,
   1069 		    "%s: command in progress\n", __func__);
   1070 	}
   1071 #endif
   1072 
   1073 	if (hp->sc->sc_vendor_bus_clock) {
   1074 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1075 		if (error != 0)
   1076 			goto out;
   1077 	}
   1078 
   1079 	/*
   1080 	 * Stop SD clock before changing the frequency.
   1081 	 */
   1082 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1083 		HCLR4(hp, SDHC_VEND_SPEC,
   1084 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1085 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1086 		if (freq == SDMMC_SDCLK_OFF) {
   1087 			goto out;
   1088 		}
   1089 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1090 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1091 		if (freq == SDMMC_SDCLK_OFF) {
   1092 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1093 			goto out;
   1094 		}
   1095 	} else {
   1096 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1097 		if (freq == SDMMC_SDCLK_OFF)
   1098 			goto out;
   1099 	}
   1100 
   1101 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1102 		if (ddr)
   1103 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1104 		else
   1105 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1106 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1107 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1108 		if (freq > 100000) {
   1109 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1110 		} else if (freq > 50000) {
   1111 			if (ddr) {
   1112 				HSET2(hp, SDHC_HOST_CTL2,
   1113 				    SDHC_UHS_MODE_SELECT_DDR50);
   1114 			} else {
   1115 				HSET2(hp, SDHC_HOST_CTL2,
   1116 				    SDHC_UHS_MODE_SELECT_SDR50);
   1117 			}
   1118 		} else if (freq > 25000) {
   1119 			if (ddr) {
   1120 				HSET2(hp, SDHC_HOST_CTL2,
   1121 				    SDHC_UHS_MODE_SELECT_DDR50);
   1122 			} else {
   1123 				HSET2(hp, SDHC_HOST_CTL2,
   1124 				    SDHC_UHS_MODE_SELECT_SDR25);
   1125 			}
   1126 		} else if (freq > 400) {
   1127 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1128 		}
   1129 	}
   1130 
   1131 	/*
   1132 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1133 	 * at 100MHz bus clock.
   1134 	 */
   1135 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1136 		if (freq == 100000)
   1137 			--freq;
   1138 	}
   1139 
   1140 	/*
   1141 	 * Set the minimum base clock frequency divisor.
   1142 	 */
   1143 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1144 		/* Invalid base clock frequency or `freq' value. */
   1145 		aprint_error_dev(hp->sc->sc_dev,
   1146 			"Invalid bus clock %d kHz\n", freq);
   1147 		error = EINVAL;
   1148 		goto out;
   1149 	}
   1150 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1151 		if (ddr) {
   1152 			/* in ddr mode, divisor >>= 1 */
   1153 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1154 			    SDHC_SDCLK_DIV_SHIFT)) |
   1155 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1156 			    SDHC_SDCLK_DVS_SHIFT));
   1157 		}
   1158 		for (timo = 1000; timo > 0; timo--) {
   1159 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1160 				break;
   1161 			sdmmc_delay(10);
   1162 		}
   1163 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1164 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1165 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1166 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1167 		    div | (SDHC_TIMEOUT_MAX << 16));
   1168 	} else {
   1169 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1170 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1171 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1172 	}
   1173 
   1174 	/*
   1175 	 * Start internal clock.  Wait 10ms for stabilization.
   1176 	 */
   1177 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1178 		HSET4(hp, SDHC_VEND_SPEC,
   1179 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1180 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1181 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1182 		sdmmc_delay(10000);
   1183 		HSET4(hp, SDHC_CLOCK_CTL,
   1184 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1185 	} else {
   1186 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1187 		for (timo = 1000; timo > 0; timo--) {
   1188 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1189 			    SDHC_INTCLK_STABLE))
   1190 				break;
   1191 			sdmmc_delay(10);
   1192 		}
   1193 		if (timo == 0) {
   1194 			error = ETIMEDOUT;
   1195 			DPRINTF(1,("%s: timeout\n", __func__));
   1196 			goto out;
   1197 		}
   1198 	}
   1199 
   1200 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1201 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1202 		/*
   1203 		 * Sending 80 clocks at 400kHz takes 200us.
   1204 		 * So delay for that time + slop and then
   1205 		 * check a few times for completion.
   1206 		 */
   1207 		sdmmc_delay(210);
   1208 		for (timo = 10; timo > 0; timo--) {
   1209 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1210 			    SDHC_INIT_ACTIVE))
   1211 				break;
   1212 			sdmmc_delay(10);
   1213 		}
   1214 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1215 
   1216 		/*
   1217 		 * Enable SD clock.
   1218 		 */
   1219 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1220 			HSET4(hp, SDHC_VEND_SPEC,
   1221 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1222 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1223 		} else {
   1224 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1225 		}
   1226 	} else {
   1227 		/*
   1228 		 * Enable SD clock.
   1229 		 */
   1230 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1231 
   1232 		if (freq > 25000 &&
   1233 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1234 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1235 		else
   1236 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1237 	}
   1238 
   1239 	if (hp->sc->sc_vendor_bus_clock_post) {
   1240 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
   1241 		if (error != 0)
   1242 			goto out;
   1243 	}
   1244 
   1245 out:
   1246 	mutex_exit(&hp->intr_lock);
   1247 
   1248 	return error;
   1249 }
   1250 
   1251 static int
   1252 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1253 {
   1254 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1255 	int reg;
   1256 
   1257 	switch (width) {
   1258 	case 1:
   1259 	case 4:
   1260 		break;
   1261 
   1262 	case 8:
   1263 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1264 			break;
   1265 		/* FALLTHROUGH */
   1266 	default:
   1267 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1268 		    HDEVNAME(hp), width));
   1269 		return 1;
   1270 	}
   1271 
   1272 	if (hp->sc->sc_vendor_bus_width) {
   1273 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1274 		if (error != 0)
   1275 			return error;
   1276 	}
   1277 
   1278 	mutex_enter(&hp->intr_lock);
   1279 
   1280 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1281 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1282 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1283 		if (width == 4)
   1284 			reg |= SDHC_4BIT_MODE;
   1285 		else if (width == 8)
   1286 			reg |= SDHC_ESDHC_8BIT_MODE;
   1287 	} else {
   1288 		reg &= ~SDHC_4BIT_MODE;
   1289 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1290 			reg &= ~SDHC_8BIT_MODE;
   1291 		}
   1292 		if (width == 4) {
   1293 			reg |= SDHC_4BIT_MODE;
   1294 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1295 			reg |= SDHC_8BIT_MODE;
   1296 		}
   1297 	}
   1298 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1299 
   1300 	mutex_exit(&hp->intr_lock);
   1301 
   1302 	return 0;
   1303 }
   1304 
   1305 static int
   1306 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1307 {
   1308 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1309 
   1310 	if (hp->sc->sc_vendor_rod)
   1311 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1312 
   1313 	return 0;
   1314 }
   1315 
   1316 static void
   1317 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1318 {
   1319 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1320 
   1321 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1322 		mutex_enter(&hp->intr_lock);
   1323 		if (enable) {
   1324 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1325 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1326 		} else {
   1327 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1328 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1329 		}
   1330 		mutex_exit(&hp->intr_lock);
   1331 	}
   1332 }
   1333 
   1334 static void
   1335 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1336 {
   1337 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1338 
   1339 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1340 		mutex_enter(&hp->intr_lock);
   1341 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1342 		mutex_exit(&hp->intr_lock);
   1343 	}
   1344 }
   1345 
   1346 static int
   1347 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1348 {
   1349 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1350 	int error = 0;
   1351 
   1352 	if (hp->specver < SDHC_SPEC_VERS_300)
   1353 		return EINVAL;
   1354 
   1355 	mutex_enter(&hp->intr_lock);
   1356 	switch (signal_voltage) {
   1357 	case SDMMC_SIGNAL_VOLTAGE_180:
   1358 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1359 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1360 			    signal_voltage);
   1361 			if (error != 0)
   1362 				break;
   1363 		}
   1364 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1365 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1366 		break;
   1367 	case SDMMC_SIGNAL_VOLTAGE_330:
   1368 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1369 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1370 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1371 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1372 			    signal_voltage);
   1373 			if (error != 0)
   1374 				break;
   1375 		}
   1376 		break;
   1377 	default:
   1378 		error = EINVAL;
   1379 		break;
   1380 	}
   1381 	mutex_exit(&hp->intr_lock);
   1382 
   1383 	return error;
   1384 }
   1385 
   1386 /*
   1387  * Sampling clock tuning procedure (UHS)
   1388  */
   1389 static int
   1390 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1391 {
   1392 	struct sdmmc_command cmd;
   1393 	uint8_t hostctl;
   1394 	int opcode, error, retry = 40;
   1395 
   1396 	KASSERT(mutex_owned(&hp->intr_lock));
   1397 
   1398 	hp->tuning_timing = timing;
   1399 
   1400 	switch (timing) {
   1401 	case SDMMC_TIMING_MMC_HS200:
   1402 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1403 		break;
   1404 	case SDMMC_TIMING_UHS_SDR50:
   1405 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1406 			return 0;
   1407 		/* FALLTHROUGH */
   1408 	case SDMMC_TIMING_UHS_SDR104:
   1409 		opcode = MMC_SEND_TUNING_BLOCK;
   1410 		break;
   1411 	default:
   1412 		return EINVAL;
   1413 	}
   1414 
   1415 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1416 
   1417 	/* enable buffer read ready interrupt */
   1418 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1419 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1420 
   1421 	/* disable DMA */
   1422 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1423 
   1424 	/* reset tuning circuit */
   1425 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1426 
   1427 	/* start of tuning */
   1428 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1429 
   1430 	do {
   1431 		memset(&cmd, 0, sizeof(cmd));
   1432 		cmd.c_opcode = opcode;
   1433 		cmd.c_arg = 0;
   1434 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1435 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1436 			cmd.c_blklen = cmd.c_datalen = 128;
   1437 		} else {
   1438 			cmd.c_blklen = cmd.c_datalen = 64;
   1439 		}
   1440 
   1441 		error = sdhc_start_command(hp, &cmd);
   1442 		if (error)
   1443 			break;
   1444 
   1445 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1446 		    SDHC_TUNING_TIMEOUT, false)) {
   1447 			break;
   1448 		}
   1449 
   1450 		delay(1000);
   1451 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1452 
   1453 	/* disable buffer read ready interrupt */
   1454 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1455 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1456 
   1457 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1458 		HCLR2(hp, SDHC_HOST_CTL2,
   1459 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1460 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1461 		aprint_error_dev(hp->sc->sc_dev,
   1462 		    "tuning did not complete, using fixed sampling clock\n");
   1463 		return EIO;		/* tuning did not complete */
   1464 	}
   1465 
   1466 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1467 		HCLR2(hp, SDHC_HOST_CTL2,
   1468 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1469 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1470 		aprint_error_dev(hp->sc->sc_dev,
   1471 		    "tuning failed, using fixed sampling clock\n");
   1472 		return EIO;		/* tuning failed */
   1473 	}
   1474 
   1475 	if (hp->tuning_timer_count) {
   1476 		callout_schedule(&hp->tuning_timer,
   1477 		    hz * hp->tuning_timer_count);
   1478 	}
   1479 
   1480 	return 0;		/* tuning completed */
   1481 }
   1482 
   1483 static int
   1484 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1485 {
   1486 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1487 	int error;
   1488 
   1489 	mutex_enter(&hp->intr_lock);
   1490 	error = sdhc_execute_tuning1(hp, timing);
   1491 	mutex_exit(&hp->intr_lock);
   1492 	return error;
   1493 }
   1494 
   1495 static void
   1496 sdhc_tuning_timer(void *arg)
   1497 {
   1498 	struct sdhc_host *hp = arg;
   1499 
   1500 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1501 }
   1502 
   1503 static void
   1504 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1505 {
   1506 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1507 	struct sdhc_softc *sc = hp->sc;
   1508 
   1509 	if (sc->sc_vendor_hw_reset != NULL)
   1510 		sc->sc_vendor_hw_reset(sc, hp);
   1511 }
   1512 
   1513 static int
   1514 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1515 {
   1516 	uint32_t state;
   1517 	int timeout;
   1518 
   1519 	for (timeout = 10000; timeout > 0; timeout--) {
   1520 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1521 			return 0;
   1522 		sdmmc_delay(10);
   1523 	}
   1524 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1525 	    mask, value, state);
   1526 	return ETIMEDOUT;
   1527 }
   1528 
   1529 static void
   1530 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1531 {
   1532 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1533 	int error;
   1534 	bool probing;
   1535 
   1536 	mutex_enter(&hp->intr_lock);
   1537 
   1538 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1539 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1540 	}
   1541 
   1542 	if (cmd->c_data &&
   1543 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1544 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1545 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1546 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1547 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1548 		} else {
   1549 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1550 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1551 		}
   1552 	}
   1553 
   1554 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1555 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1556 		if (cmd->c_data != NULL) {
   1557 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1558 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1559 		} else {
   1560 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1561 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1562 		}
   1563 	}
   1564 
   1565 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
   1566 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1567 			SET(cmd->c_flags, SCF_RSP_BSY);
   1568 	}
   1569 
   1570 	/*
   1571 	 * Start the MMC command, or mark `cmd' as failed and return.
   1572 	 */
   1573 	error = sdhc_start_command(hp, cmd);
   1574 	if (error) {
   1575 		cmd->c_error = error;
   1576 		goto out;
   1577 	}
   1578 
   1579 	/*
   1580 	 * Wait until the command phase is done, or until the command
   1581 	 * is marked done for any other reason.
   1582 	 */
   1583 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1584 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) {
   1585 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1586 		sdmmc_delay(50);
   1587 		cmd->c_error = ETIMEDOUT;
   1588 		goto out;
   1589 	}
   1590 
   1591 	/*
   1592 	 * The host controller removes bits [0:7] from the response
   1593 	 * data (CRC) and we pass the data up unchanged to the bus
   1594 	 * driver (without padding).
   1595 	 */
   1596 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1597 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1598 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1599 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1600 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1601 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1602 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1603 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1604 				    (cmd->c_resp[1] << 24);
   1605 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1606 				    (cmd->c_resp[2] << 24);
   1607 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1608 				    (cmd->c_resp[3] << 24);
   1609 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1610 			}
   1611 		}
   1612 	}
   1613 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1614 
   1615 	/*
   1616 	 * If the command has data to transfer in any direction,
   1617 	 * execute the transfer now.
   1618 	 */
   1619 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1620 		sdhc_transfer_data(hp, cmd);
   1621 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1622 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1623 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1624 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1625 			    HDEVNAME(hp)));
   1626 			cmd->c_error = ETIMEDOUT;
   1627 			goto out;
   1628 		}
   1629 	}
   1630 
   1631 out:
   1632 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1633 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1634 		/* Turn off the LED. */
   1635 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1636 	}
   1637 	SET(cmd->c_flags, SCF_ITSDONE);
   1638 
   1639 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1640 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1641 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1642 
   1643 	mutex_exit(&hp->intr_lock);
   1644 
   1645 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1646 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1647 	    cmd->c_flags, cmd->c_error));
   1648 }
   1649 
   1650 static int
   1651 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1652 {
   1653 	struct sdhc_softc * const sc = hp->sc;
   1654 	uint16_t blksize = 0;
   1655 	uint16_t blkcount = 0;
   1656 	uint16_t mode;
   1657 	uint16_t command;
   1658 	uint32_t pmask;
   1659 	int error;
   1660 
   1661 	KASSERT(mutex_owned(&hp->intr_lock));
   1662 
   1663 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1664 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1665 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1666 
   1667 	/*
   1668 	 * The maximum block length for commands should be the minimum
   1669 	 * of the host buffer size and the card buffer size. (1.7.2)
   1670 	 */
   1671 
   1672 	/* Fragment the data into proper blocks. */
   1673 	if (cmd->c_datalen > 0) {
   1674 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1675 		blkcount = cmd->c_datalen / blksize;
   1676 		if (cmd->c_datalen % blksize > 0) {
   1677 			/* XXX: Split this command. (1.7.4) */
   1678 			aprint_error_dev(sc->sc_dev,
   1679 			    "data not a multiple of %u bytes\n", blksize);
   1680 			return EINVAL;
   1681 		}
   1682 	}
   1683 
   1684 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1685 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1686 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1687 		return EINVAL;
   1688 	}
   1689 
   1690 	/* Prepare transfer mode register value. (2.2.5) */
   1691 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1692 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1693 		mode |= SDHC_READ_MODE;
   1694 	if (blkcount > 1) {
   1695 		mode |= SDHC_MULTI_BLOCK_MODE;
   1696 		/* XXX only for memory commands? */
   1697 		if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
   1698 			mode |= SDHC_AUTO_CMD12_ENABLE;
   1699 	}
   1700 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1701 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1702 		mode |= SDHC_DMA_ENABLE;
   1703 	}
   1704 
   1705 	/*
   1706 	 * Prepare command register value. (2.2.6)
   1707 	 */
   1708 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1709 
   1710 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1711 		command |= SDHC_CRC_CHECK_ENABLE;
   1712 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1713 		command |= SDHC_INDEX_CHECK_ENABLE;
   1714 	if (cmd->c_datalen > 0)
   1715 		command |= SDHC_DATA_PRESENT_SELECT;
   1716 
   1717 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1718 		command |= SDHC_NO_RESPONSE;
   1719 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1720 		command |= SDHC_RESP_LEN_136;
   1721 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1722 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1723 	else
   1724 		command |= SDHC_RESP_LEN_48;
   1725 
   1726 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1727 	pmask = SDHC_CMD_INHIBIT_CMD;
   1728 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1729 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1730 	error = sdhc_wait_state(hp, pmask, 0);
   1731 	if (error) {
   1732 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1733 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1734 		return error;
   1735 	}
   1736 
   1737 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1738 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1739 
   1740 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1741 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1742 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1743 	}
   1744 
   1745 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1746 		/* Alert the user not to remove the card. */
   1747 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1748 	}
   1749 
   1750 	/* Set DMA start address. */
   1751 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1752 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1753 			bus_addr_t paddr =
   1754 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1755 			uint16_t len =
   1756 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1757 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1758 			uint16_t attr =
   1759 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1760 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1761 				attr |= SDHC_ADMA2_END;
   1762 			}
   1763 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1764 				struct sdhc_adma2_descriptor32 *desc =
   1765 				    hp->adma2;
   1766 				desc[seg].attribute = htole16(attr);
   1767 				desc[seg].length = htole16(len);
   1768 				desc[seg].address = htole32(paddr);
   1769 			} else {
   1770 				struct sdhc_adma2_descriptor64 *desc =
   1771 				    hp->adma2;
   1772 				desc[seg].attribute = htole16(attr);
   1773 				desc[seg].length = htole16(len);
   1774 				desc[seg].address = htole32(paddr & 0xffffffff);
   1775 				desc[seg].address_hi = htole32(
   1776 				    (uint64_t)paddr >> 32);
   1777 			}
   1778 		}
   1779 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1780 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1781 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1782 		} else {
   1783 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1784 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1785 		}
   1786 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1787 		    BUS_DMASYNC_PREWRITE);
   1788 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1789 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1790 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1791 		} else {
   1792 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1793 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1794 		}
   1795 
   1796 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1797 
   1798 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1799 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1800 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1801 			    (uint64_t)desc_addr >> 32);
   1802 		}
   1803 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1804 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1805 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1806 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1807 		}
   1808 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1809 	}
   1810 
   1811 	/*
   1812 	 * Start a CPU data transfer.  Writing to the high order byte
   1813 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1814 	 */
   1815 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1816 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1817 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1818 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1819 			/* mode bits is in MIX_CTRL register on uSDHC */
   1820 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1821 			    (HREAD4(hp, SDHC_MIX_CTRL) &
   1822 			    ~(SDHC_MULTI_BLOCK_MODE |
   1823 			    SDHC_READ_MODE |
   1824 			    SDHC_AUTO_CMD12_ENABLE |
   1825 			    SDHC_BLOCK_COUNT_ENABLE |
   1826 			    SDHC_DMA_ENABLE)));
   1827 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1828 		} else {
   1829 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1830 		}
   1831 	} else {
   1832 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1833 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1834 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1835 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1836 		HWRITE2(hp, SDHC_COMMAND, command);
   1837 	}
   1838 
   1839 	return 0;
   1840 }
   1841 
   1842 static void
   1843 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1844 {
   1845 	struct sdhc_softc *sc = hp->sc;
   1846 	int error;
   1847 
   1848 	KASSERT(mutex_owned(&hp->intr_lock));
   1849 
   1850 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1851 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1852 
   1853 #ifdef SDHC_DEBUG
   1854 	/* XXX I forgot why I wanted to know when this happens :-( */
   1855 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1856 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1857 		aprint_error_dev(hp->sc->sc_dev,
   1858 		    "CMD52/53 error response flags %#x\n",
   1859 		    MMC_R1(cmd->c_resp) & 0xff00);
   1860 	}
   1861 #endif
   1862 
   1863 	if (cmd->c_dmamap != NULL) {
   1864 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1865 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1866 			if (error == 0 && !sdhc_wait_intr(hp,
   1867 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1868 				DPRINTF(1,("%s: timeout\n", __func__));
   1869 				error = ETIMEDOUT;
   1870 			}
   1871 		} else {
   1872 			error = sdhc_transfer_data_dma(hp, cmd);
   1873 		}
   1874 	} else
   1875 		error = sdhc_transfer_data_pio(hp, cmd);
   1876 	if (error)
   1877 		cmd->c_error = error;
   1878 	SET(cmd->c_flags, SCF_ITSDONE);
   1879 
   1880 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1881 	    HDEVNAME(hp), cmd->c_error));
   1882 }
   1883 
   1884 static int
   1885 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1886 {
   1887 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1888 	bus_addr_t posaddr;
   1889 	bus_addr_t segaddr;
   1890 	bus_size_t seglen;
   1891 	u_int seg = 0;
   1892 	int error = 0;
   1893 	int status;
   1894 
   1895 	KASSERT(mutex_owned(&hp->intr_lock));
   1896 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1897 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1898 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1899 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1900 
   1901 	for (;;) {
   1902 		status = sdhc_wait_intr(hp,
   1903 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1904 		    SDHC_DMA_TIMEOUT, false);
   1905 
   1906 		if (status & SDHC_TRANSFER_COMPLETE) {
   1907 			break;
   1908 		}
   1909 		if (!status) {
   1910 			DPRINTF(1,("%s: timeout\n", __func__));
   1911 			error = ETIMEDOUT;
   1912 			break;
   1913 		}
   1914 
   1915 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1916 			continue;
   1917 		}
   1918 
   1919 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1920 			continue;
   1921 		}
   1922 
   1923 		/* DMA Interrupt (boundary crossing) */
   1924 
   1925 		segaddr = dm_segs[seg].ds_addr;
   1926 		seglen = dm_segs[seg].ds_len;
   1927 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1928 
   1929 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1930 			continue;
   1931 		}
   1932 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1933 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1934 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1935 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1936 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1937 	}
   1938 
   1939 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1940 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1941 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1942 	}
   1943 
   1944 	return error;
   1945 }
   1946 
   1947 static int
   1948 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1949 {
   1950 	uint8_t *data = cmd->c_data;
   1951 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1952 	u_int len, datalen;
   1953 	u_int imask;
   1954 	u_int pmask;
   1955 	int error = 0;
   1956 
   1957 	KASSERT(mutex_owned(&hp->intr_lock));
   1958 
   1959 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1960 		imask = SDHC_BUFFER_READ_READY;
   1961 		pmask = SDHC_BUFFER_READ_ENABLE;
   1962 		if (ISSET(hp->sc->sc_flags,
   1963 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1964 			pio_func = esdhc_read_data_pio;
   1965 		} else {
   1966 			pio_func = sdhc_read_data_pio;
   1967 		}
   1968 	} else {
   1969 		imask = SDHC_BUFFER_WRITE_READY;
   1970 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1971 		if (ISSET(hp->sc->sc_flags,
   1972 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1973 			pio_func = esdhc_write_data_pio;
   1974 		} else {
   1975 			pio_func = sdhc_write_data_pio;
   1976 		}
   1977 	}
   1978 	datalen = cmd->c_datalen;
   1979 
   1980 	KASSERT(mutex_owned(&hp->intr_lock));
   1981 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1982 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1983 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1984 
   1985 	while (datalen > 0) {
   1986 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   1987 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1988 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1989 			} else {
   1990 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1991 			}
   1992 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   1993 				DPRINTF(1,("%s: timeout\n", __func__));
   1994 				error = ETIMEDOUT;
   1995 				break;
   1996 			}
   1997 
   1998 			error = sdhc_wait_state(hp, pmask, pmask);
   1999 			if (error)
   2000 				break;
   2001 		}
   2002 
   2003 		len = MIN(datalen, cmd->c_blklen);
   2004 		(*pio_func)(hp, data, len);
   2005 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2006 		    HDEVNAME(hp), len, data));
   2007 
   2008 		data += len;
   2009 		datalen -= len;
   2010 	}
   2011 
   2012 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2013 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2014 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2015 		error = ETIMEDOUT;
   2016 	}
   2017 
   2018 	return error;
   2019 }
   2020 
   2021 static void
   2022 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2023 {
   2024 
   2025 	if (((__uintptr_t)data & 3) == 0) {
   2026 		while (datalen > 3) {
   2027 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2028 			data += 4;
   2029 			datalen -= 4;
   2030 		}
   2031 		if (datalen > 1) {
   2032 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2033 			data += 2;
   2034 			datalen -= 2;
   2035 		}
   2036 		if (datalen > 0) {
   2037 			*data = HREAD1(hp, SDHC_DATA);
   2038 			data += 1;
   2039 			datalen -= 1;
   2040 		}
   2041 	} else if (((__uintptr_t)data & 1) == 0) {
   2042 		while (datalen > 1) {
   2043 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2044 			data += 2;
   2045 			datalen -= 2;
   2046 		}
   2047 		if (datalen > 0) {
   2048 			*data = HREAD1(hp, SDHC_DATA);
   2049 			data += 1;
   2050 			datalen -= 1;
   2051 		}
   2052 	} else {
   2053 		while (datalen > 0) {
   2054 			*data = HREAD1(hp, SDHC_DATA);
   2055 			data += 1;
   2056 			datalen -= 1;
   2057 		}
   2058 	}
   2059 }
   2060 
   2061 static void
   2062 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2063 {
   2064 
   2065 	if (((__uintptr_t)data & 3) == 0) {
   2066 		while (datalen > 3) {
   2067 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2068 			data += 4;
   2069 			datalen -= 4;
   2070 		}
   2071 		if (datalen > 1) {
   2072 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2073 			data += 2;
   2074 			datalen -= 2;
   2075 		}
   2076 		if (datalen > 0) {
   2077 			HWRITE1(hp, SDHC_DATA, *data);
   2078 			data += 1;
   2079 			datalen -= 1;
   2080 		}
   2081 	} else if (((__uintptr_t)data & 1) == 0) {
   2082 		while (datalen > 1) {
   2083 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2084 			data += 2;
   2085 			datalen -= 2;
   2086 		}
   2087 		if (datalen > 0) {
   2088 			HWRITE1(hp, SDHC_DATA, *data);
   2089 			data += 1;
   2090 			datalen -= 1;
   2091 		}
   2092 	} else {
   2093 		while (datalen > 0) {
   2094 			HWRITE1(hp, SDHC_DATA, *data);
   2095 			data += 1;
   2096 			datalen -= 1;
   2097 		}
   2098 	}
   2099 }
   2100 
   2101 static void
   2102 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2103 {
   2104 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2105 	uint32_t v;
   2106 
   2107 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2108 	size_t count = 0;
   2109 
   2110 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2111 		if (count == 0) {
   2112 			/*
   2113 			 * If we've drained "watermark" words, we need to wait
   2114 			 * a little bit so the read FIFO can refill.
   2115 			 */
   2116 			sdmmc_delay(10);
   2117 			count = watermark;
   2118 		}
   2119 		v = HREAD4(hp, SDHC_DATA);
   2120 		v = le32toh(v);
   2121 		*(uint32_t *)data = v;
   2122 		data += 4;
   2123 		datalen -= 4;
   2124 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2125 		count--;
   2126 	}
   2127 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2128 		if (count == 0) {
   2129 			sdmmc_delay(10);
   2130 		}
   2131 		v = HREAD4(hp, SDHC_DATA);
   2132 		v = le32toh(v);
   2133 		do {
   2134 			*data++ = v;
   2135 			v >>= 8;
   2136 		} while (--datalen > 0);
   2137 	}
   2138 }
   2139 
   2140 static void
   2141 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2142 {
   2143 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2144 	uint32_t v;
   2145 
   2146 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2147 	size_t count = watermark;
   2148 
   2149 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2150 		if (count == 0) {
   2151 			sdmmc_delay(10);
   2152 			count = watermark;
   2153 		}
   2154 		v = *(uint32_t *)data;
   2155 		v = htole32(v);
   2156 		HWRITE4(hp, SDHC_DATA, v);
   2157 		data += 4;
   2158 		datalen -= 4;
   2159 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2160 		count--;
   2161 	}
   2162 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2163 		if (count == 0) {
   2164 			sdmmc_delay(10);
   2165 		}
   2166 		v = *(uint32_t *)data;
   2167 		v = htole32(v);
   2168 		HWRITE4(hp, SDHC_DATA, v);
   2169 	}
   2170 }
   2171 
   2172 /* Prepare for another command. */
   2173 static int
   2174 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2175 {
   2176 	int timo;
   2177 
   2178 	KASSERT(mutex_owned(&hp->intr_lock));
   2179 
   2180 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2181 
   2182 	/* Request the reset.  */
   2183 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2184 
   2185 	/*
   2186 	 * If necessary, wait for the controller to set the bits to
   2187 	 * acknowledge the reset.
   2188 	 */
   2189 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2190 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2191 		for (timo = 10000; timo > 0; timo--) {
   2192 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2193 				break;
   2194 			/* Short delay because I worry we may miss it...  */
   2195 			sdmmc_delay(1);
   2196 		}
   2197 		if (timo == 0) {
   2198 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2199 			return ETIMEDOUT;
   2200 		}
   2201 	}
   2202 
   2203 	/*
   2204 	 * Wait for the controller to clear the bits to indicate that
   2205 	 * the reset has completed.
   2206 	 */
   2207 	for (timo = 10; timo > 0; timo--) {
   2208 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2209 			break;
   2210 		sdmmc_delay(10000);
   2211 	}
   2212 	if (timo == 0) {
   2213 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2214 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2215 		return ETIMEDOUT;
   2216 	}
   2217 
   2218 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2219 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2220 	}
   2221 
   2222 	return 0;
   2223 }
   2224 
   2225 static int
   2226 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2227 {
   2228 	int status, error, nointr;
   2229 
   2230 	KASSERT(mutex_owned(&hp->intr_lock));
   2231 
   2232 	mask |= SDHC_ERROR_INTERRUPT;
   2233 
   2234 	nointr = 0;
   2235 	status = hp->intr_status & mask;
   2236 	while (status == 0) {
   2237 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2238 		    == EWOULDBLOCK) {
   2239 			nointr = 1;
   2240 			break;
   2241 		}
   2242 		status = hp->intr_status & mask;
   2243 	}
   2244 	error = hp->intr_error_status;
   2245 
   2246 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2247 	    error));
   2248 
   2249 	hp->intr_status &= ~status;
   2250 	hp->intr_error_status &= ~error;
   2251 
   2252 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2253 		if (ISSET(error, SDHC_DMA_ERROR))
   2254 			device_printf(hp->sc->sc_dev,"dma error\n");
   2255 		if (ISSET(error, SDHC_ADMA_ERROR))
   2256 			device_printf(hp->sc->sc_dev,"adma error\n");
   2257 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2258 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2259 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2260 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2261 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2262 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2263 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2264 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2265 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2266 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2267 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2268 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2269 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2270 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2271 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2272 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2273 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2274 			if (!probing)
   2275 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2276 #ifdef SDHC_DEBUG
   2277 			else if (sdhcdebug > 0)
   2278 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2279 #endif
   2280 		}
   2281 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2282 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2283 				(error & ~SDHC_EINTR_STATUS_MASK));
   2284 		if (error == 0)
   2285 			device_printf(hp->sc->sc_dev,"no error\n");
   2286 
   2287 		/* Command timeout has higher priority than command complete. */
   2288 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2289 			CLR(status, SDHC_COMMAND_COMPLETE);
   2290 
   2291 		/* Transfer complete has higher priority than data timeout. */
   2292 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2293 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2294 	}
   2295 
   2296 	if (nointr ||
   2297 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2298 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2299 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2300 		hp->intr_error_status = 0;
   2301 		status = 0;
   2302 	}
   2303 
   2304 	return status;
   2305 }
   2306 
   2307 /*
   2308  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2309  */
   2310 int
   2311 sdhc_intr(void *arg)
   2312 {
   2313 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2314 	struct sdhc_host *hp;
   2315 	int done = 0;
   2316 	uint16_t status;
   2317 	uint16_t error;
   2318 
   2319 	/* We got an interrupt, but we don't know from which slot. */
   2320 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2321 		hp = sc->sc_host[host];
   2322 		if (hp == NULL)
   2323 			continue;
   2324 
   2325 		mutex_enter(&hp->intr_lock);
   2326 
   2327 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2328 			/* Find out which interrupts are pending. */
   2329 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2330 			status = xstatus;
   2331 			error = xstatus >> 16;
   2332 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2333 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2334 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2335 				/* read again due to uSDHC errata */
   2336 				status = xstatus = HREAD4(hp,
   2337 				    SDHC_NINTR_STATUS);
   2338 				error = xstatus >> 16;
   2339 			}
   2340 			if (ISSET(sc->sc_flags,
   2341 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2342 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2343 					SET(status, SDHC_ERROR_INTERRUPT);
   2344 			}
   2345 			if (error)
   2346 				xstatus |= SDHC_ERROR_INTERRUPT;
   2347 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2348 				goto next_port; /* no interrupt for us */
   2349 			/* Acknowledge the interrupts we are about to handle. */
   2350 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2351 		} else {
   2352 			/* Find out which interrupts are pending. */
   2353 			error = 0;
   2354 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2355 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2356 				goto next_port; /* no interrupt for us */
   2357 			/* Acknowledge the interrupts we are about to handle. */
   2358 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2359 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2360 				/* Acknowledge error interrupts. */
   2361 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2362 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2363 			}
   2364 		}
   2365 
   2366 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2367 		    status, error));
   2368 
   2369 		/* Claim this interrupt. */
   2370 		done = 1;
   2371 
   2372 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2373 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2374 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2375 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2376 			    adma_err);
   2377 		}
   2378 
   2379 		/*
   2380 		 * Wake up the sdmmc event thread to scan for cards.
   2381 		 */
   2382 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2383 			if (hp->sdmmc != NULL) {
   2384 				sdmmc_needs_discover(hp->sdmmc);
   2385 			}
   2386 			if (ISSET(sc->sc_flags,
   2387 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2388 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2389 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2390 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2391 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2392 			}
   2393 		}
   2394 
   2395 		/*
   2396 		 * Schedule re-tuning process (UHS).
   2397 		 */
   2398 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2399 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2400 		}
   2401 
   2402 		/*
   2403 		 * Wake up the blocking process to service command
   2404 		 * related interrupt(s).
   2405 		 */
   2406 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2407 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2408 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2409 			hp->intr_error_status |= error;
   2410 			hp->intr_status |= status;
   2411 			if (ISSET(sc->sc_flags,
   2412 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2413 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2414 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2415 			}
   2416 			cv_broadcast(&hp->intr_cv);
   2417 		}
   2418 
   2419 		/*
   2420 		 * Service SD card interrupts.
   2421 		 */
   2422 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2423 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2424 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2425 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2426 			sdmmc_card_intr(hp->sdmmc);
   2427 		}
   2428 next_port:
   2429 		mutex_exit(&hp->intr_lock);
   2430 	}
   2431 
   2432 	return done;
   2433 }
   2434 
   2435 kmutex_t *
   2436 sdhc_host_lock(struct sdhc_host *hp)
   2437 {
   2438 	return &hp->intr_lock;
   2439 }
   2440 
   2441 uint8_t
   2442 sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2443 {
   2444 	return HREAD1(hp, reg);
   2445 }
   2446 
   2447 uint16_t
   2448 sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2449 {
   2450 	return HREAD2(hp, reg);
   2451 }
   2452 
   2453 uint32_t
   2454 sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2455 {
   2456 	return HREAD4(hp, reg);
   2457 }
   2458 
   2459 void
   2460 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2461 {
   2462 	HWRITE1(hp, reg, val);
   2463 }
   2464 
   2465 void
   2466 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2467 {
   2468 	HWRITE2(hp, reg, val);
   2469 }
   2470 
   2471 void
   2472 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2473 {
   2474 	HWRITE4(hp, reg, val);
   2475 }
   2476 
   2477 #ifdef SDHC_DEBUG
   2478 void
   2479 sdhc_dump_regs(struct sdhc_host *hp)
   2480 {
   2481 
   2482 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2483 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2484 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2485 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2486 		    HREAD1(hp, SDHC_POWER_CTL));
   2487 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2488 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2489 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2490 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2491 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2492 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2493 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2494 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2495 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2496 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2497 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2498 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2499 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2500 	    HREAD4(hp, SDHC_CAPABILITIES));
   2501 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2502 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2503 }
   2504 #endif
   2505