Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.105
      1 /*	$NetBSD: sdhc.c,v 1.105 2019/10/28 06:00:14 mlelstv Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.105 2019/10/28 06:00:14 mlelstv Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kcondvar_t intr_cv;
     81 
     82 	callout_t tuning_timer;
     83 	int tuning_timing;
     84 	u_int tuning_timer_count;
     85 	u_int tuning_timer_pending;
     86 
     87 	int specver;			/* spec. version */
     88 
     89 	uint32_t flags;			/* flags for this host */
     90 #define SHF_USE_DMA		0x0001
     91 #define SHF_USE_4BIT_MODE	0x0002
     92 #define SHF_USE_8BIT_MODE	0x0004
     93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94 #define SHF_USE_ADMA2_32	0x0010
     95 #define SHF_USE_ADMA2_64	0x0020
     96 #define SHF_USE_ADMA2_MASK	0x0030
     97 
     98 	bus_dmamap_t		adma_map;
     99 	bus_dma_segment_t	adma_segs[1];
    100 	void			*adma2;
    101 
    102 	uint8_t			vdd;	/* last vdd setting */
    103 };
    104 
    105 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    106 
    107 static uint8_t
    108 hread1(struct sdhc_host *hp, bus_size_t reg)
    109 {
    110 
    111 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    112 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    113 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    114 }
    115 
    116 static uint16_t
    117 hread2(struct sdhc_host *hp, bus_size_t reg)
    118 {
    119 
    120 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    121 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    122 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    123 }
    124 
    125 #define HREAD1(hp, reg)		hread1(hp, reg)
    126 #define HREAD2(hp, reg)		hread2(hp, reg)
    127 #define HREAD4(hp, reg)		\
    128 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    129 
    130 
    131 static void
    132 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    133 {
    134 
    135 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    136 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    137 	} else {
    138 		const size_t shift = 8 * (o & 3);
    139 		o &= -4;
    140 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    141 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    142 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    143 	}
    144 }
    145 
    146 static void
    147 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    148 {
    149 
    150 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    151 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    152 	} else {
    153 		const size_t shift = 8 * (o & 2);
    154 		o &= -4;
    155 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    156 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    157 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    158 	}
    159 }
    160 
    161 static void
    162 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
    163 {
    164 
    165 	bus_space_write_4(hp->iot, hp->ioh, o, val);
    166 }
    167 
    168 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    169 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    170 #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
    171 
    172 #define HCLR1(hp, reg, bits)						\
    173 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    174 #define HCLR2(hp, reg, bits)						\
    175 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    176 #define HCLR4(hp, reg, bits)						\
    177 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    178 #define HSET1(hp, reg, bits)						\
    179 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    180 #define HSET2(hp, reg, bits)						\
    181 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    182 #define HSET4(hp, reg, bits)						\
    183 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    184 
    185 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    186 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    187 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    188 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    189 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    190 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    191 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    192 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    193 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    194 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    195 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    196 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    197 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    198 		    struct sdmmc_command *);
    199 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    200 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    201 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    202 static void	sdhc_tuning_timer(void *);
    203 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    204 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    205 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    206 static int	sdhc_soft_reset(struct sdhc_host *, int);
    207 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    208 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    209 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    210 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    211 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    212 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    213 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    214 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    215 
    216 static struct sdmmc_chip_functions sdhc_functions = {
    217 	/* host controller reset */
    218 	.host_reset = sdhc_host_reset,
    219 
    220 	/* host controller capabilities */
    221 	.host_ocr = sdhc_host_ocr,
    222 	.host_maxblklen = sdhc_host_maxblklen,
    223 
    224 	/* card detection */
    225 	.card_detect = sdhc_card_detect,
    226 
    227 	/* write protect */
    228 	.write_protect = sdhc_write_protect,
    229 
    230 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    231 	.bus_power = sdhc_bus_power,
    232 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    233 	.bus_width = sdhc_bus_width,
    234 	.bus_rod = sdhc_bus_rod,
    235 
    236 	/* command execution */
    237 	.exec_command = sdhc_exec_command,
    238 
    239 	/* card interrupt */
    240 	.card_enable_intr = sdhc_card_enable_intr,
    241 	.card_intr_ack = sdhc_card_intr_ack,
    242 
    243 	/* UHS functions */
    244 	.signal_voltage = sdhc_signal_voltage,
    245 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    246 	.execute_tuning = sdhc_execute_tuning,
    247 	.hw_reset = sdhc_hw_reset,
    248 };
    249 
    250 static int
    251 sdhc_cfprint(void *aux, const char *pnp)
    252 {
    253 	const struct sdmmcbus_attach_args * const saa = aux;
    254 	const struct sdhc_host * const hp = saa->saa_sch;
    255 
    256 	if (pnp) {
    257 		aprint_normal("sdmmc at %s", pnp);
    258 	}
    259 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    260 		if (hp->sc->sc_host[host] == hp) {
    261 			aprint_normal(" slot %zu", host);
    262 		}
    263 	}
    264 
    265 	return UNCONF;
    266 }
    267 
    268 /*
    269  * Called by attachment driver.  For each SD card slot there is one SD
    270  * host controller standard register set. (1.3)
    271  */
    272 int
    273 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    274     bus_space_handle_t ioh, bus_size_t iosize)
    275 {
    276 	struct sdmmcbus_attach_args saa;
    277 	struct sdhc_host *hp;
    278 	uint32_t caps, caps2;
    279 	uint16_t sdhcver;
    280 	int error;
    281 
    282 	/* Allocate one more host structure. */
    283 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    284 	if (hp == NULL) {
    285 		aprint_error_dev(sc->sc_dev,
    286 		    "couldn't alloc memory (sdhc host)\n");
    287 		goto err1;
    288 	}
    289 	sc->sc_host[sc->sc_nhosts++] = hp;
    290 
    291 	/* Fill in the new host structure. */
    292 	hp->sc = sc;
    293 	hp->iot = iot;
    294 	hp->ioh = ioh;
    295 	hp->ios = iosize;
    296 	hp->dmat = sc->sc_dmat;
    297 
    298 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    299 	cv_init(&hp->intr_cv, "sdhcintr");
    300 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    301 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    302 
    303 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    304 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    305 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    306 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    307 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    308 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    309 	} else {
    310 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    311 	}
    312 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    313 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    314 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    315 	case SDHC_SPEC_VERS_100:
    316 		aprint_normal("1.0");
    317 		break;
    318 	case SDHC_SPEC_VERS_200:
    319 		aprint_normal("2.0");
    320 		break;
    321 	case SDHC_SPEC_VERS_300:
    322 		aprint_normal("3.0");
    323 		break;
    324 	case SDHC_SPEC_VERS_400:
    325 		aprint_normal("4.0");
    326 		break;
    327 	case SDHC_SPEC_NOVERS:
    328 		hp->specver = -1;
    329 		aprint_normal("NO-VERS");
    330 		break;
    331 	default:
    332 		aprint_normal("unknown version(0x%x)",
    333 		    SDHC_SPEC_VERSION(sdhcver));
    334 		break;
    335 	}
    336 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    337 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    338 
    339 	/*
    340 	 * Reset the host controller and enable interrupts.
    341 	 */
    342 	(void)sdhc_host_reset(hp);
    343 
    344 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    345 		/* init uSDHC registers */
    346 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    347 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    348 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    349 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    350 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    351 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    352 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    353 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    354 		HSET4(hp, SDHC_VEND_SPEC,
    355 		    SDHC_VEND_SPEC_MBO |
    356 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    357 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    358 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    359 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    360 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    361 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    362 	}
    363 
    364 	/* Determine host capabilities. */
    365 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    366 		caps = sc->sc_caps;
    367 		caps2 = sc->sc_caps2;
    368 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    369 		/* uSDHC capability register is little bit different */
    370 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    371 		caps |= SDHC_8BIT_SUPP;
    372 		if (caps & SDHC_ADMA1_SUPP)
    373 			caps |= SDHC_ADMA2_SUPP;
    374 		sc->sc_caps = caps;
    375 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    376 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    377 	} else {
    378 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    379 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    380 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    381 		} else {
    382 			caps2 = sc->sc_caps2 = 0;
    383 		}
    384 	}
    385 
    386 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    387 	    SDHC_RETUNING_MODES_MASK;
    388 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    389 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    390 		    SDHC_TIMER_COUNT_MASK;
    391 		if (hp->tuning_timer_count == 0xf)
    392 			hp->tuning_timer_count = 0;
    393 		if (hp->tuning_timer_count)
    394 			hp->tuning_timer_count =
    395 			    1 << (hp->tuning_timer_count - 1);
    396 	}
    397 
    398 	/*
    399 	 * Use DMA if the host system and the controller support it.
    400 	 * Suports integrated or external DMA egine, with or without
    401 	 * SDHC_DMA_ENABLE in the command.
    402 	 */
    403 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    404 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    405 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    406 		SET(hp->flags, SHF_USE_DMA);
    407 
    408 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    409 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    410 			SET(hp->flags, SHF_MODE_DMAEN);
    411 			/*
    412 			 * 64-bit mode was present in the 2.00 spec, removed
    413 			 * from 3.00, and re-added in 4.00 with a different
    414 			 * descriptor layout. We only support 2.00 and 3.00
    415 			 * descriptors for now.
    416 			 */
    417 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    418 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    419 				SET(hp->flags, SHF_USE_ADMA2_64);
    420 				aprint_normal(", 64-bit ADMA2");
    421 			} else {
    422 				SET(hp->flags, SHF_USE_ADMA2_32);
    423 				aprint_normal(", 32-bit ADMA2");
    424 			}
    425 		} else {
    426 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    427 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    428 				SET(hp->flags, SHF_MODE_DMAEN);
    429 			if (sc->sc_vendor_transfer_data_dma) {
    430 				aprint_normal(", platform DMA");
    431 			} else {
    432 				aprint_normal(", SDMA");
    433 			}
    434 		}
    435 	} else {
    436 		aprint_normal(", PIO");
    437 	}
    438 
    439 	/*
    440 	 * Determine the base clock frequency. (2.2.24)
    441 	 */
    442 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    443 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    444 	} else {
    445 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    446 	}
    447 	if (hp->clkbase == 0 ||
    448 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    449 		if (sc->sc_clkbase == 0) {
    450 			/* The attachment driver must tell us. */
    451 			aprint_error_dev(sc->sc_dev,
    452 			    "unknown base clock frequency\n");
    453 			goto err;
    454 		}
    455 		hp->clkbase = sc->sc_clkbase;
    456 	}
    457 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    458 		/* SDHC 1.0 supports only 10-63 MHz. */
    459 		aprint_error_dev(sc->sc_dev,
    460 		    "base clock frequency out of range: %u MHz\n",
    461 		    hp->clkbase / 1000);
    462 		goto err;
    463 	}
    464 	aprint_normal(", %u kHz", hp->clkbase);
    465 
    466 	/*
    467 	 * XXX Set the data timeout counter value according to
    468 	 * capabilities. (2.2.15)
    469 	 */
    470 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    471 #if 1
    472 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    473 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    474 #endif
    475 
    476 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    477 		aprint_normal(", embedded slot");
    478 
    479 	/*
    480 	 * Determine SD bus voltage levels supported by the controller.
    481 	 */
    482 	aprint_normal(",");
    483 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    484 		SET(hp->ocr, MMC_OCR_HCS);
    485 		aprint_normal(" HS");
    486 	}
    487 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
    488 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    489 			SET(hp->ocr, MMC_OCR_S18A);
    490 			aprint_normal(" SDR50");
    491 		}
    492 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    493 			SET(hp->ocr, MMC_OCR_S18A);
    494 			aprint_normal(" DDR50");
    495 		}
    496 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    497 			SET(hp->ocr, MMC_OCR_S18A);
    498 			aprint_normal(" SDR104 HS200");
    499 		}
    500 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    501 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    502 			aprint_normal(" 1.8V");
    503 		}
    504 	}
    505 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    506 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    507 		aprint_normal(" 3.0V");
    508 	}
    509 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    510 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    511 		aprint_normal(" 3.3V");
    512 	}
    513 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    514 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    515 		if (hp->tuning_timer_count)
    516 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    517 	}
    518 
    519 	/*
    520 	 * Determine the maximum block length supported by the host
    521 	 * controller. (2.2.24)
    522 	 */
    523 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    524 	case SDHC_MAX_BLK_LEN_512:
    525 		hp->maxblklen = 512;
    526 		break;
    527 
    528 	case SDHC_MAX_BLK_LEN_1024:
    529 		hp->maxblklen = 1024;
    530 		break;
    531 
    532 	case SDHC_MAX_BLK_LEN_2048:
    533 		hp->maxblklen = 2048;
    534 		break;
    535 
    536 	case SDHC_MAX_BLK_LEN_4096:
    537 		hp->maxblklen = 4096;
    538 		break;
    539 
    540 	default:
    541 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    542 		goto err;
    543 	}
    544 	aprint_normal(", %u byte blocks", hp->maxblklen);
    545 	aprint_normal("\n");
    546 
    547 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    548 		int rseg;
    549 
    550 		/* Allocate ADMA2 descriptor memory */
    551 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    552 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    553 		if (error) {
    554 			aprint_error_dev(sc->sc_dev,
    555 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    556 			goto adma_done;
    557 		}
    558 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    559 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    560 		if (error) {
    561 			aprint_error_dev(sc->sc_dev,
    562 			    "ADMA2 dmamem_map failed (%d)\n", error);
    563 			goto adma_done;
    564 		}
    565 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    566 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    567 		if (error) {
    568 			aprint_error_dev(sc->sc_dev,
    569 			    "ADMA2 dmamap_create failed (%d)\n", error);
    570 			goto adma_done;
    571 		}
    572 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    573 		    hp->adma2, PAGE_SIZE, NULL,
    574 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    575 		if (error) {
    576 			aprint_error_dev(sc->sc_dev,
    577 			    "ADMA2 dmamap_load failed (%d)\n", error);
    578 			goto adma_done;
    579 		}
    580 
    581 		memset(hp->adma2, 0, PAGE_SIZE);
    582 
    583 adma_done:
    584 		if (error)
    585 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    586 	}
    587 
    588 	/*
    589 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    590 	 * not invoke any chipset functions before it is attached.)
    591 	 */
    592 	memset(&saa, 0, sizeof(saa));
    593 	saa.saa_busname = "sdmmc";
    594 	saa.saa_sct = &sdhc_functions;
    595 	saa.saa_sch = hp;
    596 	saa.saa_dmat = hp->dmat;
    597 	saa.saa_clkmax = hp->clkbase;
    598 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    599 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    600 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    601 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    602 	else if (hp->sc->sc_clkmsk != 0)
    603 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    604 		    (ffs(hp->sc->sc_clkmsk) - 1));
    605 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    606 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    607 	else
    608 		saa.saa_clkmin = hp->clkbase / 256;
    609 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    610 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    611 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    612 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    613 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    614 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    615 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    616 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    617 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    618 				SMC_CAPS_UHS_SDR50 |
    619 				SMC_CAPS_MMC_HS200;
    620 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    621 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    622 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    623 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    624 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    625 		saa.saa_caps |= SMC_CAPS_DMA;
    626 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    627 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    628 	}
    629 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    630 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    631 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    632 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    633 
    634 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
    635 		saa.saa_max_seg = 65535;
    636 
    637 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    638 
    639 	return 0;
    640 
    641 err:
    642 	callout_destroy(&hp->tuning_timer);
    643 	cv_destroy(&hp->intr_cv);
    644 	mutex_destroy(&hp->intr_lock);
    645 	free(hp, M_DEVBUF);
    646 	sc->sc_host[--sc->sc_nhosts] = NULL;
    647 err1:
    648 	return 1;
    649 }
    650 
    651 int
    652 sdhc_detach(struct sdhc_softc *sc, int flags)
    653 {
    654 	struct sdhc_host *hp;
    655 	int rv = 0;
    656 
    657 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    658 		hp = sc->sc_host[n];
    659 		if (hp == NULL)
    660 			continue;
    661 		if (hp->sdmmc != NULL) {
    662 			rv = config_detach(hp->sdmmc, flags);
    663 			if (rv)
    664 				break;
    665 			hp->sdmmc = NULL;
    666 		}
    667 		/* disable interrupts */
    668 		if ((flags & DETACH_FORCE) == 0) {
    669 			mutex_enter(&hp->intr_lock);
    670 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    671 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    672 			} else {
    673 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    674 			}
    675 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    676 			mutex_exit(&hp->intr_lock);
    677 		}
    678 		callout_halt(&hp->tuning_timer, NULL);
    679 		callout_destroy(&hp->tuning_timer);
    680 		cv_destroy(&hp->intr_cv);
    681 		mutex_destroy(&hp->intr_lock);
    682 		if (hp->ios > 0) {
    683 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    684 			hp->ios = 0;
    685 		}
    686 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    687 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    688 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    689 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    690 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    691 		}
    692 		free(hp, M_DEVBUF);
    693 		sc->sc_host[n] = NULL;
    694 	}
    695 
    696 	return rv;
    697 }
    698 
    699 bool
    700 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    701 {
    702 	struct sdhc_softc *sc = device_private(dev);
    703 	struct sdhc_host *hp;
    704 	size_t i;
    705 
    706 	/* XXX poll for command completion or suspend command
    707 	 * in progress */
    708 
    709 	/* Save the host controller state. */
    710 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    711 		hp = sc->sc_host[n];
    712 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    713 			for (i = 0; i < sizeof hp->regs; i += 4) {
    714 				uint32_t v = HREAD4(hp, i);
    715 				hp->regs[i + 0] = (v >> 0);
    716 				hp->regs[i + 1] = (v >> 8);
    717 				if (i + 3 < sizeof hp->regs) {
    718 					hp->regs[i + 2] = (v >> 16);
    719 					hp->regs[i + 3] = (v >> 24);
    720 				}
    721 			}
    722 		} else {
    723 			for (i = 0; i < sizeof hp->regs; i++) {
    724 				hp->regs[i] = HREAD1(hp, i);
    725 			}
    726 		}
    727 	}
    728 	return true;
    729 }
    730 
    731 bool
    732 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    733 {
    734 	struct sdhc_softc *sc = device_private(dev);
    735 	struct sdhc_host *hp;
    736 	size_t i;
    737 
    738 	/* Restore the host controller state. */
    739 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    740 		hp = sc->sc_host[n];
    741 		(void)sdhc_host_reset(hp);
    742 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    743 			for (i = 0; i < sizeof hp->regs; i += 4) {
    744 				if (i + 3 < sizeof hp->regs) {
    745 					HWRITE4(hp, i,
    746 					    (hp->regs[i + 0] << 0)
    747 					    | (hp->regs[i + 1] << 8)
    748 					    | (hp->regs[i + 2] << 16)
    749 					    | (hp->regs[i + 3] << 24));
    750 				} else {
    751 					HWRITE4(hp, i,
    752 					    (hp->regs[i + 0] << 0)
    753 					    | (hp->regs[i + 1] << 8));
    754 				}
    755 			}
    756 		} else {
    757 			for (i = 0; i < sizeof hp->regs; i++) {
    758 				HWRITE1(hp, i, hp->regs[i]);
    759 			}
    760 		}
    761 	}
    762 	return true;
    763 }
    764 
    765 bool
    766 sdhc_shutdown(device_t dev, int flags)
    767 {
    768 	struct sdhc_softc *sc = device_private(dev);
    769 	struct sdhc_host *hp;
    770 
    771 	/* XXX chip locks up if we don't disable it before reboot. */
    772 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    773 		hp = sc->sc_host[i];
    774 		(void)sdhc_host_reset(hp);
    775 	}
    776 	return true;
    777 }
    778 
    779 /*
    780  * Reset the host controller.  Called during initialization, when
    781  * cards are removed, upon resume, and during error recovery.
    782  */
    783 static int
    784 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    785 {
    786 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    787 	uint32_t sdhcimask;
    788 	int error;
    789 
    790 	KASSERT(mutex_owned(&hp->intr_lock));
    791 
    792 	/* Disable all interrupts. */
    793 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    794 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    795 	} else {
    796 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    797 	}
    798 
    799 	/* Let sdhc_bus_power restore power */
    800 	hp->vdd = 0;
    801 
    802 	/*
    803 	 * Reset the entire host controller and wait up to 100ms for
    804 	 * the controller to clear the reset bit.
    805 	 */
    806 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    807 	if (error)
    808 		goto out;
    809 
    810 	/* Set data timeout counter value to max for now. */
    811 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    812 #if 1
    813 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    814 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    815 #endif
    816 
    817 	/* Enable interrupts. */
    818 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    819 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    820 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    821 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    822 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    823 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    824 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    825 		sdhcimask ^=
    826 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    827 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    828 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    829 	} else {
    830 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    831 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    832 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    833 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    834 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    835 	}
    836 
    837 out:
    838 	return error;
    839 }
    840 
    841 static int
    842 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    843 {
    844 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    845 	int error;
    846 
    847 	mutex_enter(&hp->intr_lock);
    848 	error = sdhc_host_reset1(sch);
    849 	mutex_exit(&hp->intr_lock);
    850 
    851 	return error;
    852 }
    853 
    854 static uint32_t
    855 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    856 {
    857 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    858 
    859 	return hp->ocr;
    860 }
    861 
    862 static int
    863 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    864 {
    865 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    866 
    867 	return hp->maxblklen;
    868 }
    869 
    870 /*
    871  * Return non-zero if the card is currently inserted.
    872  */
    873 static int
    874 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    875 {
    876 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    877 	int r;
    878 
    879 	if (hp->sc->sc_vendor_card_detect)
    880 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    881 
    882 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    883 
    884 	return r ? 1 : 0;
    885 }
    886 
    887 /*
    888  * Return non-zero if the card is currently write-protected.
    889  */
    890 static int
    891 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    892 {
    893 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    894 	int r;
    895 
    896 	if (hp->sc->sc_vendor_write_protect)
    897 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    898 
    899 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    900 
    901 	return r ? 0 : 1;
    902 }
    903 
    904 /*
    905  * Set or change SD bus voltage and enable or disable SD bus power.
    906  * Return zero on success.
    907  */
    908 static int
    909 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    910 {
    911 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    912 	uint8_t vdd;
    913 	int error = 0;
    914 	const uint32_t pcmask =
    915 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    916 	uint32_t reg;
    917 
    918 	mutex_enter(&hp->intr_lock);
    919 
    920 	/*
    921 	 * Disable bus power before voltage change.
    922 	 */
    923 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    924 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
    925 		hp->vdd = 0;
    926 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    927 	}
    928 
    929 	/* If power is disabled, reset the host and return now. */
    930 	if (ocr == 0) {
    931 		(void)sdhc_host_reset1(hp);
    932 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    933 		goto out;
    934 	}
    935 
    936 	/*
    937 	 * Select the lowest voltage according to capabilities.
    938 	 */
    939 	ocr &= hp->ocr;
    940 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    941 		vdd = SDHC_VOLTAGE_1_8V;
    942 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    943 		vdd = SDHC_VOLTAGE_3_0V;
    944 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    945 		vdd = SDHC_VOLTAGE_3_3V;
    946 	} else {
    947 		/* Unsupported voltage level requested. */
    948 		error = EINVAL;
    949 		goto out;
    950 	}
    951 
    952 	/*
    953 	 * Did voltage change ?
    954 	 */
    955 	if (vdd == hp->vdd)
    956 		goto out;
    957 
    958 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    959 		/*
    960 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    961 		 * voltage ramp until power rises.
    962 		 */
    963 
    964 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    965 			HWRITE1(hp, SDHC_POWER_CTL,
    966 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    967 		} else {
    968 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
    969 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    970 			sdmmc_delay(1);
    971 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
    972 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    973 			sdmmc_delay(1);
    974 			reg |= SDHC_BUS_POWER;
    975 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    976 			sdmmc_delay(10000);
    977 		}
    978 
    979 		/*
    980 		 * The host system may not power the bus due to battery low,
    981 		 * etc.  In that case, the host controller should clear the
    982 		 * bus power bit.
    983 		 */
    984 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    985 			error = ENXIO;
    986 			goto out;
    987 		}
    988 	}
    989 
    990 	/* power successfully changed */
    991 	hp->vdd = vdd;
    992 
    993 out:
    994 	mutex_exit(&hp->intr_lock);
    995 
    996 	return error;
    997 }
    998 
    999 /*
   1000  * Return the smallest possible base clock frequency divisor value
   1001  * for the CLOCK_CTL register to produce `freq' (KHz).
   1002  */
   1003 static bool
   1004 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
   1005 {
   1006 	u_int div;
   1007 
   1008 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
   1009 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
   1010 			if ((hp->clkbase / div) <= freq) {
   1011 				*divp = SDHC_SDCLK_CGM
   1012 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
   1013 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
   1014 				//freq = hp->clkbase / div;
   1015 				return true;
   1016 			}
   1017 		}
   1018 		/* No divisor found. */
   1019 		return false;
   1020 	}
   1021 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
   1022 		u_int dvs = (hp->clkbase + freq - 1) / freq;
   1023 		u_int roundup = dvs & 1;
   1024 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
   1025 			if (dvs + roundup <= 16) {
   1026 				dvs += roundup - 1;
   1027 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
   1028 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1029 				DPRINTF(2,
   1030 				    ("%s: divisor for freq %u is %u * %u\n",
   1031 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1032 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1033 				return true;
   1034 			}
   1035 			/*
   1036 			 * If we drop bits, we need to round up the divisor.
   1037 			 */
   1038 			roundup |= dvs & 1;
   1039 		}
   1040 		/* No divisor found. */
   1041 		return false;
   1042 	}
   1043 	if (hp->sc->sc_clkmsk != 0) {
   1044 		div = howmany(hp->clkbase, freq);
   1045 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1046 			return false;
   1047 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1048 		//freq = hp->clkbase / div;
   1049 		return true;
   1050 	}
   1051 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1052 		div = howmany(hp->clkbase, freq);
   1053 		div = div > 1 ? howmany(div, 2) : 0;
   1054 		if (div > 0x3ff)
   1055 			return false;
   1056 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1057 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1058 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1059 			 << SDHC_SDCLK_DIV_SHIFT);
   1060 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1061 		return true;
   1062 	} else {
   1063 		for (div = 1; div <= 256; div *= 2) {
   1064 			if ((hp->clkbase / div) <= freq) {
   1065 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1066 				//freq = hp->clkbase / div;
   1067 				return true;
   1068 			}
   1069 		}
   1070 		/* No divisor found. */
   1071 		return false;
   1072 	}
   1073 	/* No divisor found. */
   1074 	return false;
   1075 }
   1076 
   1077 /*
   1078  * Set or change SDCLK frequency or disable the SD clock.
   1079  * Return zero on success.
   1080  */
   1081 static int
   1082 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1083 {
   1084 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1085 	u_int div;
   1086 	u_int timo;
   1087 	int16_t reg;
   1088 	int error = 0;
   1089 	bool present __diagused;
   1090 
   1091 	mutex_enter(&hp->intr_lock);
   1092 
   1093 #ifdef DIAGNOSTIC
   1094 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1095 
   1096 	/* Must not stop the clock if commands are in progress. */
   1097 	if (present && sdhc_card_detect(hp)) {
   1098 		aprint_normal_dev(hp->sc->sc_dev,
   1099 		    "%s: command in progress\n", __func__);
   1100 	}
   1101 #endif
   1102 
   1103 	if (hp->sc->sc_vendor_bus_clock) {
   1104 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1105 		if (error != 0)
   1106 			goto out;
   1107 	}
   1108 
   1109 	/*
   1110 	 * Stop SD clock before changing the frequency.
   1111 	 */
   1112 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1113 		HCLR4(hp, SDHC_VEND_SPEC,
   1114 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1115 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1116 		if (freq == SDMMC_SDCLK_OFF) {
   1117 			goto out;
   1118 		}
   1119 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1120 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1121 		if (freq == SDMMC_SDCLK_OFF) {
   1122 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1123 			goto out;
   1124 		}
   1125 	} else {
   1126 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1127 		if (freq == SDMMC_SDCLK_OFF)
   1128 			goto out;
   1129 	}
   1130 
   1131 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1132 		if (ddr)
   1133 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1134 		else
   1135 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1136 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1137 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1138 		if (freq > 100000) {
   1139 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1140 		} else if (freq > 50000) {
   1141 			if (ddr) {
   1142 				HSET2(hp, SDHC_HOST_CTL2,
   1143 				    SDHC_UHS_MODE_SELECT_DDR50);
   1144 			} else {
   1145 				HSET2(hp, SDHC_HOST_CTL2,
   1146 				    SDHC_UHS_MODE_SELECT_SDR50);
   1147 			}
   1148 		} else if (freq > 25000) {
   1149 			if (ddr) {
   1150 				HSET2(hp, SDHC_HOST_CTL2,
   1151 				    SDHC_UHS_MODE_SELECT_DDR50);
   1152 			} else {
   1153 				HSET2(hp, SDHC_HOST_CTL2,
   1154 				    SDHC_UHS_MODE_SELECT_SDR25);
   1155 			}
   1156 		} else if (freq > 400) {
   1157 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1158 		}
   1159 	}
   1160 
   1161 	/*
   1162 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1163 	 * at 100MHz bus clock.
   1164 	 */
   1165 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1166 		if (freq == 100000)
   1167 			--freq;
   1168 	}
   1169 
   1170 	/*
   1171 	 * Set the minimum base clock frequency divisor.
   1172 	 */
   1173 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1174 		/* Invalid base clock frequency or `freq' value. */
   1175 		aprint_error_dev(hp->sc->sc_dev,
   1176 			"Invalid bus clock %d kHz\n", freq);
   1177 		error = EINVAL;
   1178 		goto out;
   1179 	}
   1180 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1181 		if (ddr) {
   1182 			/* in ddr mode, divisor >>= 1 */
   1183 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1184 			    SDHC_SDCLK_DIV_SHIFT)) |
   1185 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1186 			    SDHC_SDCLK_DVS_SHIFT));
   1187 		}
   1188 		for (timo = 1000; timo > 0; timo--) {
   1189 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1190 				break;
   1191 			sdmmc_delay(10);
   1192 		}
   1193 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1194 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1195 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1196 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1197 		    div | (SDHC_TIMEOUT_MAX << 16));
   1198 	} else {
   1199 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1200 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1201 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1202 	}
   1203 
   1204 	/*
   1205 	 * Start internal clock.  Wait 10ms for stabilization.
   1206 	 */
   1207 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1208 		HSET4(hp, SDHC_VEND_SPEC,
   1209 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1210 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1211 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1212 		sdmmc_delay(10000);
   1213 		HSET4(hp, SDHC_CLOCK_CTL,
   1214 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1215 	} else {
   1216 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1217 		for (timo = 1000; timo > 0; timo--) {
   1218 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1219 			    SDHC_INTCLK_STABLE))
   1220 				break;
   1221 			sdmmc_delay(10);
   1222 		}
   1223 		if (timo == 0) {
   1224 			error = ETIMEDOUT;
   1225 			DPRINTF(1,("%s: timeout\n", __func__));
   1226 			goto out;
   1227 		}
   1228 	}
   1229 
   1230 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1231 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1232 		/*
   1233 		 * Sending 80 clocks at 400kHz takes 200us.
   1234 		 * So delay for that time + slop and then
   1235 		 * check a few times for completion.
   1236 		 */
   1237 		sdmmc_delay(210);
   1238 		for (timo = 10; timo > 0; timo--) {
   1239 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1240 			    SDHC_INIT_ACTIVE))
   1241 				break;
   1242 			sdmmc_delay(10);
   1243 		}
   1244 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1245 
   1246 		/*
   1247 		 * Enable SD clock.
   1248 		 */
   1249 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1250 			HSET4(hp, SDHC_VEND_SPEC,
   1251 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1252 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1253 		} else {
   1254 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1255 		}
   1256 	} else {
   1257 		/*
   1258 		 * Enable SD clock.
   1259 		 */
   1260 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1261 
   1262 		if (freq > 25000 &&
   1263 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1264 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1265 		else
   1266 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1267 	}
   1268 
   1269 	if (hp->sc->sc_vendor_bus_clock_post) {
   1270 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
   1271 		if (error != 0)
   1272 			goto out;
   1273 	}
   1274 
   1275 out:
   1276 	mutex_exit(&hp->intr_lock);
   1277 
   1278 	return error;
   1279 }
   1280 
   1281 static int
   1282 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1283 {
   1284 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1285 	int reg;
   1286 
   1287 	switch (width) {
   1288 	case 1:
   1289 	case 4:
   1290 		break;
   1291 
   1292 	case 8:
   1293 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1294 			break;
   1295 		/* FALLTHROUGH */
   1296 	default:
   1297 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1298 		    HDEVNAME(hp), width));
   1299 		return 1;
   1300 	}
   1301 
   1302 	if (hp->sc->sc_vendor_bus_width) {
   1303 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1304 		if (error != 0)
   1305 			return error;
   1306 	}
   1307 
   1308 	mutex_enter(&hp->intr_lock);
   1309 
   1310 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1311 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1312 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1313 		if (width == 4)
   1314 			reg |= SDHC_4BIT_MODE;
   1315 		else if (width == 8)
   1316 			reg |= SDHC_ESDHC_8BIT_MODE;
   1317 	} else {
   1318 		reg &= ~SDHC_4BIT_MODE;
   1319 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1320 			reg &= ~SDHC_8BIT_MODE;
   1321 		}
   1322 		if (width == 4) {
   1323 			reg |= SDHC_4BIT_MODE;
   1324 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1325 			reg |= SDHC_8BIT_MODE;
   1326 		}
   1327 	}
   1328 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1329 
   1330 	mutex_exit(&hp->intr_lock);
   1331 
   1332 	return 0;
   1333 }
   1334 
   1335 static int
   1336 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1337 {
   1338 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1339 
   1340 	if (hp->sc->sc_vendor_rod)
   1341 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1342 
   1343 	return 0;
   1344 }
   1345 
   1346 static void
   1347 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1348 {
   1349 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1350 
   1351 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1352 		mutex_enter(&hp->intr_lock);
   1353 		if (enable) {
   1354 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1355 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1356 		} else {
   1357 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1358 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1359 		}
   1360 		mutex_exit(&hp->intr_lock);
   1361 	}
   1362 }
   1363 
   1364 static void
   1365 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1366 {
   1367 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1368 
   1369 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1370 		mutex_enter(&hp->intr_lock);
   1371 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1372 		mutex_exit(&hp->intr_lock);
   1373 	}
   1374 }
   1375 
   1376 static int
   1377 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1378 {
   1379 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1380 	int error = 0;
   1381 
   1382 	if (hp->specver < SDHC_SPEC_VERS_300)
   1383 		return EINVAL;
   1384 
   1385 	mutex_enter(&hp->intr_lock);
   1386 	switch (signal_voltage) {
   1387 	case SDMMC_SIGNAL_VOLTAGE_180:
   1388 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1389 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1390 			    signal_voltage);
   1391 			if (error != 0)
   1392 				break;
   1393 		}
   1394 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1395 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1396 		break;
   1397 	case SDMMC_SIGNAL_VOLTAGE_330:
   1398 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1399 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1400 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1401 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1402 			    signal_voltage);
   1403 			if (error != 0)
   1404 				break;
   1405 		}
   1406 		break;
   1407 	default:
   1408 		error = EINVAL;
   1409 		break;
   1410 	}
   1411 	mutex_exit(&hp->intr_lock);
   1412 
   1413 	return error;
   1414 }
   1415 
   1416 /*
   1417  * Sampling clock tuning procedure (UHS)
   1418  */
   1419 static int
   1420 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1421 {
   1422 	struct sdmmc_command cmd;
   1423 	uint8_t hostctl;
   1424 	int opcode, error, retry = 40;
   1425 
   1426 	KASSERT(mutex_owned(&hp->intr_lock));
   1427 
   1428 	hp->tuning_timing = timing;
   1429 
   1430 	switch (timing) {
   1431 	case SDMMC_TIMING_MMC_HS200:
   1432 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1433 		break;
   1434 	case SDMMC_TIMING_UHS_SDR50:
   1435 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1436 			return 0;
   1437 		/* FALLTHROUGH */
   1438 	case SDMMC_TIMING_UHS_SDR104:
   1439 		opcode = MMC_SEND_TUNING_BLOCK;
   1440 		break;
   1441 	default:
   1442 		return EINVAL;
   1443 	}
   1444 
   1445 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1446 
   1447 	/* enable buffer read ready interrupt */
   1448 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1449 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1450 
   1451 	/* disable DMA */
   1452 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1453 
   1454 	/* reset tuning circuit */
   1455 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1456 
   1457 	/* start of tuning */
   1458 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1459 
   1460 	do {
   1461 		memset(&cmd, 0, sizeof(cmd));
   1462 		cmd.c_opcode = opcode;
   1463 		cmd.c_arg = 0;
   1464 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1465 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1466 			cmd.c_blklen = cmd.c_datalen = 128;
   1467 		} else {
   1468 			cmd.c_blklen = cmd.c_datalen = 64;
   1469 		}
   1470 
   1471 		error = sdhc_start_command(hp, &cmd);
   1472 		if (error)
   1473 			break;
   1474 
   1475 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1476 		    SDHC_TUNING_TIMEOUT, false)) {
   1477 			break;
   1478 		}
   1479 
   1480 		delay(1000);
   1481 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1482 
   1483 	/* disable buffer read ready interrupt */
   1484 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1485 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1486 
   1487 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1488 		HCLR2(hp, SDHC_HOST_CTL2,
   1489 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1490 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1491 		aprint_error_dev(hp->sc->sc_dev,
   1492 		    "tuning did not complete, using fixed sampling clock\n");
   1493 		return 0;		/* tuning did not complete */
   1494 	}
   1495 
   1496 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1497 		HCLR2(hp, SDHC_HOST_CTL2,
   1498 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1499 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1500 		aprint_error_dev(hp->sc->sc_dev,
   1501 		    "tuning failed, using fixed sampling clock\n");
   1502 		return 0;		/* tuning failed */
   1503 	}
   1504 
   1505 	if (hp->tuning_timer_count) {
   1506 		callout_schedule(&hp->tuning_timer,
   1507 		    hz * hp->tuning_timer_count);
   1508 	}
   1509 
   1510 	return 0;		/* tuning completed */
   1511 }
   1512 
   1513 static int
   1514 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1515 {
   1516 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1517 	int error;
   1518 
   1519 	mutex_enter(&hp->intr_lock);
   1520 	error = sdhc_execute_tuning1(hp, timing);
   1521 	mutex_exit(&hp->intr_lock);
   1522 	return error;
   1523 }
   1524 
   1525 static void
   1526 sdhc_tuning_timer(void *arg)
   1527 {
   1528 	struct sdhc_host *hp = arg;
   1529 
   1530 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1531 }
   1532 
   1533 static void
   1534 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1535 {
   1536 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1537 	struct sdhc_softc *sc = hp->sc;
   1538 
   1539 	if (sc->sc_vendor_hw_reset != NULL)
   1540 		sc->sc_vendor_hw_reset(sc, hp);
   1541 }
   1542 
   1543 static int
   1544 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1545 {
   1546 	uint32_t state;
   1547 	int timeout;
   1548 
   1549 	for (timeout = 100000; timeout > 0; timeout--) {
   1550 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1551 			return 0;
   1552 		sdmmc_delay(10);
   1553 	}
   1554 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1555 	    mask, value, state);
   1556 	return ETIMEDOUT;
   1557 }
   1558 
   1559 static void
   1560 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1561 {
   1562 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1563 	int error;
   1564 	bool probing;
   1565 
   1566 	mutex_enter(&hp->intr_lock);
   1567 
   1568 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1569 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1570 	}
   1571 
   1572 	if (cmd->c_data &&
   1573 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1574 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1575 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1576 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1577 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1578 		} else {
   1579 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1580 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1581 		}
   1582 	}
   1583 
   1584 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1585 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1586 		if (cmd->c_data != NULL) {
   1587 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1588 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1589 		} else {
   1590 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1591 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1592 		}
   1593 	}
   1594 
   1595 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
   1596 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1597 			SET(cmd->c_flags, SCF_RSP_BSY);
   1598 	}
   1599 
   1600 	/*
   1601 	 * Start the MMC command, or mark `cmd' as failed and return.
   1602 	 */
   1603 	error = sdhc_start_command(hp, cmd);
   1604 	if (error) {
   1605 		cmd->c_error = error;
   1606 		goto out;
   1607 	}
   1608 
   1609 	/*
   1610 	 * Wait until the command phase is done, or until the command
   1611 	 * is marked done for any other reason.
   1612 	 */
   1613 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1614 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
   1615 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1616 		sdmmc_delay(50);
   1617 		cmd->c_error = ETIMEDOUT;
   1618 		goto out;
   1619 	}
   1620 
   1621 	/*
   1622 	 * The host controller removes bits [0:7] from the response
   1623 	 * data (CRC) and we pass the data up unchanged to the bus
   1624 	 * driver (without padding).
   1625 	 */
   1626 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1627 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1628 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1629 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1630 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1631 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1632 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1633 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1634 				    (cmd->c_resp[1] << 24);
   1635 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1636 				    (cmd->c_resp[2] << 24);
   1637 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1638 				    (cmd->c_resp[3] << 24);
   1639 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1640 			}
   1641 		}
   1642 	}
   1643 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1644 
   1645 	/*
   1646 	 * If the command has data to transfer in any direction,
   1647 	 * execute the transfer now.
   1648 	 */
   1649 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1650 		sdhc_transfer_data(hp, cmd);
   1651 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1652 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1653 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1654 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1655 			    HDEVNAME(hp)));
   1656 			cmd->c_error = ETIMEDOUT;
   1657 			goto out;
   1658 		}
   1659 	}
   1660 
   1661 out:
   1662 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1663 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1664 		/* Turn off the LED. */
   1665 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1666 	}
   1667 	SET(cmd->c_flags, SCF_ITSDONE);
   1668 
   1669 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1670 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1671 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1672 
   1673 	mutex_exit(&hp->intr_lock);
   1674 
   1675 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1676 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1677 	    cmd->c_flags, cmd->c_error));
   1678 }
   1679 
   1680 static int
   1681 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1682 {
   1683 	struct sdhc_softc * const sc = hp->sc;
   1684 	uint16_t blksize = 0;
   1685 	uint16_t blkcount = 0;
   1686 	uint16_t mode;
   1687 	uint16_t command;
   1688 	uint32_t pmask;
   1689 	int error;
   1690 
   1691 	KASSERT(mutex_owned(&hp->intr_lock));
   1692 
   1693 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1694 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1695 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1696 
   1697 	/*
   1698 	 * The maximum block length for commands should be the minimum
   1699 	 * of the host buffer size and the card buffer size. (1.7.2)
   1700 	 */
   1701 
   1702 	/* Fragment the data into proper blocks. */
   1703 	if (cmd->c_datalen > 0) {
   1704 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1705 		blkcount = cmd->c_datalen / blksize;
   1706 		if (cmd->c_datalen % blksize > 0) {
   1707 			/* XXX: Split this command. (1.7.4) */
   1708 			aprint_error_dev(sc->sc_dev,
   1709 			    "data not a multiple of %u bytes\n", blksize);
   1710 			return EINVAL;
   1711 		}
   1712 	}
   1713 
   1714 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1715 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1716 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1717 		return EINVAL;
   1718 	}
   1719 
   1720 	/* Prepare transfer mode register value. (2.2.5) */
   1721 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1722 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1723 		mode |= SDHC_READ_MODE;
   1724 	if (blkcount > 1) {
   1725 		mode |= SDHC_MULTI_BLOCK_MODE;
   1726 		/* XXX only for memory commands? */
   1727 		if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
   1728 			mode |= SDHC_AUTO_CMD12_ENABLE;
   1729 	}
   1730 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1731 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1732 		mode |= SDHC_DMA_ENABLE;
   1733 	}
   1734 
   1735 	/*
   1736 	 * Prepare command register value. (2.2.6)
   1737 	 */
   1738 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1739 
   1740 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1741 		command |= SDHC_CRC_CHECK_ENABLE;
   1742 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1743 		command |= SDHC_INDEX_CHECK_ENABLE;
   1744 	if (cmd->c_datalen > 0)
   1745 		command |= SDHC_DATA_PRESENT_SELECT;
   1746 
   1747 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1748 		command |= SDHC_NO_RESPONSE;
   1749 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1750 		command |= SDHC_RESP_LEN_136;
   1751 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1752 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1753 	else
   1754 		command |= SDHC_RESP_LEN_48;
   1755 
   1756 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1757 	pmask = SDHC_CMD_INHIBIT_CMD;
   1758 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1759 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1760 	error = sdhc_wait_state(hp, pmask, 0);
   1761 	if (error) {
   1762 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1763 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1764 		return error;
   1765 	}
   1766 
   1767 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1768 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1769 
   1770 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1771 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1772 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1773 	}
   1774 
   1775 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1776 		/* Alert the user not to remove the card. */
   1777 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1778 	}
   1779 
   1780 	/* Set DMA start address. */
   1781 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1782 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1783 			bus_addr_t paddr =
   1784 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1785 			uint16_t len =
   1786 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1787 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1788 			uint16_t attr =
   1789 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1790 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1791 				attr |= SDHC_ADMA2_END;
   1792 			}
   1793 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1794 				struct sdhc_adma2_descriptor32 *desc =
   1795 				    hp->adma2;
   1796 				desc[seg].attribute = htole16(attr);
   1797 				desc[seg].length = htole16(len);
   1798 				desc[seg].address = htole32(paddr);
   1799 			} else {
   1800 				struct sdhc_adma2_descriptor64 *desc =
   1801 				    hp->adma2;
   1802 				desc[seg].attribute = htole16(attr);
   1803 				desc[seg].length = htole16(len);
   1804 				desc[seg].address = htole32(paddr & 0xffffffff);
   1805 				desc[seg].address_hi = htole32(
   1806 				    (uint64_t)paddr >> 32);
   1807 			}
   1808 		}
   1809 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1810 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1811 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1812 		} else {
   1813 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1814 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1815 		}
   1816 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1817 		    BUS_DMASYNC_PREWRITE);
   1818 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1819 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1820 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1821 		} else {
   1822 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1823 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1824 		}
   1825 
   1826 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1827 
   1828 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1829 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1830 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1831 			    (uint64_t)desc_addr >> 32);
   1832 		}
   1833 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1834 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1835 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1836 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1837 		}
   1838 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1839 	}
   1840 
   1841 	/*
   1842 	 * Start a CPU data transfer.  Writing to the high order byte
   1843 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1844 	 */
   1845 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1846 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1847 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1848 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1849 			/* mode bits is in MIX_CTRL register on uSDHC */
   1850 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1851 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
   1852 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1853 				command |= SDHC_COMMAND_TYPE_ABORT;
   1854 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1855 		} else {
   1856 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1857 		}
   1858 	} else {
   1859 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1860 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1861 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1862 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1863 		HWRITE2(hp, SDHC_COMMAND, command);
   1864 	}
   1865 
   1866 	return 0;
   1867 }
   1868 
   1869 static void
   1870 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1871 {
   1872 	struct sdhc_softc *sc = hp->sc;
   1873 	int error;
   1874 
   1875 	KASSERT(mutex_owned(&hp->intr_lock));
   1876 
   1877 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1878 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1879 
   1880 #ifdef SDHC_DEBUG
   1881 	/* XXX I forgot why I wanted to know when this happens :-( */
   1882 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1883 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1884 		aprint_error_dev(hp->sc->sc_dev,
   1885 		    "CMD52/53 error response flags %#x\n",
   1886 		    MMC_R1(cmd->c_resp) & 0xff00);
   1887 	}
   1888 #endif
   1889 
   1890 	if (cmd->c_dmamap != NULL) {
   1891 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1892 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1893 			if (error == 0 && !sdhc_wait_intr(hp,
   1894 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1895 				DPRINTF(1,("%s: timeout\n", __func__));
   1896 				error = ETIMEDOUT;
   1897 			}
   1898 		} else {
   1899 			error = sdhc_transfer_data_dma(hp, cmd);
   1900 		}
   1901 	} else
   1902 		error = sdhc_transfer_data_pio(hp, cmd);
   1903 	if (error)
   1904 		cmd->c_error = error;
   1905 	SET(cmd->c_flags, SCF_ITSDONE);
   1906 
   1907 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1908 	    HDEVNAME(hp), cmd->c_error));
   1909 }
   1910 
   1911 static int
   1912 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1913 {
   1914 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1915 	bus_addr_t posaddr;
   1916 	bus_addr_t segaddr;
   1917 	bus_size_t seglen;
   1918 	u_int seg = 0;
   1919 	int error = 0;
   1920 	int status;
   1921 
   1922 	KASSERT(mutex_owned(&hp->intr_lock));
   1923 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1924 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1925 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1926 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1927 
   1928 	for (;;) {
   1929 		status = sdhc_wait_intr(hp,
   1930 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1931 		    SDHC_DMA_TIMEOUT, false);
   1932 
   1933 		if (status & SDHC_TRANSFER_COMPLETE) {
   1934 			break;
   1935 		}
   1936 		if (!status) {
   1937 			DPRINTF(1,("%s: timeout\n", __func__));
   1938 			error = ETIMEDOUT;
   1939 			break;
   1940 		}
   1941 
   1942 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1943 			continue;
   1944 		}
   1945 
   1946 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1947 			continue;
   1948 		}
   1949 
   1950 		/* DMA Interrupt (boundary crossing) */
   1951 
   1952 		segaddr = dm_segs[seg].ds_addr;
   1953 		seglen = dm_segs[seg].ds_len;
   1954 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1955 
   1956 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1957 			continue;
   1958 		}
   1959 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1960 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1961 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1962 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1963 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1964 	}
   1965 
   1966 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1967 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1968 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1969 	}
   1970 
   1971 	return error;
   1972 }
   1973 
   1974 static int
   1975 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1976 {
   1977 	uint8_t *data = cmd->c_data;
   1978 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1979 	u_int len, datalen;
   1980 	u_int imask;
   1981 	u_int pmask;
   1982 	int error = 0;
   1983 
   1984 	KASSERT(mutex_owned(&hp->intr_lock));
   1985 
   1986 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1987 		imask = SDHC_BUFFER_READ_READY;
   1988 		pmask = SDHC_BUFFER_READ_ENABLE;
   1989 		if (ISSET(hp->sc->sc_flags,
   1990 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1991 			pio_func = esdhc_read_data_pio;
   1992 		} else {
   1993 			pio_func = sdhc_read_data_pio;
   1994 		}
   1995 	} else {
   1996 		imask = SDHC_BUFFER_WRITE_READY;
   1997 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1998 		if (ISSET(hp->sc->sc_flags,
   1999 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2000 			pio_func = esdhc_write_data_pio;
   2001 		} else {
   2002 			pio_func = sdhc_write_data_pio;
   2003 		}
   2004 	}
   2005 	datalen = cmd->c_datalen;
   2006 
   2007 	KASSERT(mutex_owned(&hp->intr_lock));
   2008 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   2009 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   2010 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   2011 
   2012 	while (datalen > 0) {
   2013 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   2014 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2015 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2016 			} else {
   2017 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2018 			}
   2019 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   2020 				DPRINTF(1,("%s: timeout\n", __func__));
   2021 				error = ETIMEDOUT;
   2022 				break;
   2023 			}
   2024 
   2025 			error = sdhc_wait_state(hp, pmask, pmask);
   2026 			if (error)
   2027 				break;
   2028 		}
   2029 
   2030 		len = MIN(datalen, cmd->c_blklen);
   2031 		(*pio_func)(hp, data, len);
   2032 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2033 		    HDEVNAME(hp), len, data));
   2034 
   2035 		data += len;
   2036 		datalen -= len;
   2037 	}
   2038 
   2039 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2040 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2041 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2042 		error = ETIMEDOUT;
   2043 	}
   2044 
   2045 	return error;
   2046 }
   2047 
   2048 static void
   2049 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2050 {
   2051 
   2052 	if (((__uintptr_t)data & 3) == 0) {
   2053 		while (datalen > 3) {
   2054 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2055 			data += 4;
   2056 			datalen -= 4;
   2057 		}
   2058 		if (datalen > 1) {
   2059 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2060 			data += 2;
   2061 			datalen -= 2;
   2062 		}
   2063 		if (datalen > 0) {
   2064 			*data = HREAD1(hp, SDHC_DATA);
   2065 			data += 1;
   2066 			datalen -= 1;
   2067 		}
   2068 	} else if (((__uintptr_t)data & 1) == 0) {
   2069 		while (datalen > 1) {
   2070 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2071 			data += 2;
   2072 			datalen -= 2;
   2073 		}
   2074 		if (datalen > 0) {
   2075 			*data = HREAD1(hp, SDHC_DATA);
   2076 			data += 1;
   2077 			datalen -= 1;
   2078 		}
   2079 	} else {
   2080 		while (datalen > 0) {
   2081 			*data = HREAD1(hp, SDHC_DATA);
   2082 			data += 1;
   2083 			datalen -= 1;
   2084 		}
   2085 	}
   2086 }
   2087 
   2088 static void
   2089 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2090 {
   2091 
   2092 	if (((__uintptr_t)data & 3) == 0) {
   2093 		while (datalen > 3) {
   2094 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2095 			data += 4;
   2096 			datalen -= 4;
   2097 		}
   2098 		if (datalen > 1) {
   2099 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2100 			data += 2;
   2101 			datalen -= 2;
   2102 		}
   2103 		if (datalen > 0) {
   2104 			HWRITE1(hp, SDHC_DATA, *data);
   2105 			data += 1;
   2106 			datalen -= 1;
   2107 		}
   2108 	} else if (((__uintptr_t)data & 1) == 0) {
   2109 		while (datalen > 1) {
   2110 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2111 			data += 2;
   2112 			datalen -= 2;
   2113 		}
   2114 		if (datalen > 0) {
   2115 			HWRITE1(hp, SDHC_DATA, *data);
   2116 			data += 1;
   2117 			datalen -= 1;
   2118 		}
   2119 	} else {
   2120 		while (datalen > 0) {
   2121 			HWRITE1(hp, SDHC_DATA, *data);
   2122 			data += 1;
   2123 			datalen -= 1;
   2124 		}
   2125 	}
   2126 }
   2127 
   2128 static void
   2129 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2130 {
   2131 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2132 	uint32_t v;
   2133 
   2134 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2135 	size_t count = 0;
   2136 
   2137 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2138 		if (count == 0) {
   2139 			/*
   2140 			 * If we've drained "watermark" words, we need to wait
   2141 			 * a little bit so the read FIFO can refill.
   2142 			 */
   2143 			sdmmc_delay(10);
   2144 			count = watermark;
   2145 		}
   2146 		v = HREAD4(hp, SDHC_DATA);
   2147 		v = le32toh(v);
   2148 		*(uint32_t *)data = v;
   2149 		data += 4;
   2150 		datalen -= 4;
   2151 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2152 		count--;
   2153 	}
   2154 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2155 		if (count == 0) {
   2156 			sdmmc_delay(10);
   2157 		}
   2158 		v = HREAD4(hp, SDHC_DATA);
   2159 		v = le32toh(v);
   2160 		do {
   2161 			*data++ = v;
   2162 			v >>= 8;
   2163 		} while (--datalen > 0);
   2164 	}
   2165 }
   2166 
   2167 static void
   2168 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2169 {
   2170 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2171 	uint32_t v;
   2172 
   2173 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2174 	size_t count = watermark;
   2175 
   2176 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2177 		if (count == 0) {
   2178 			sdmmc_delay(10);
   2179 			count = watermark;
   2180 		}
   2181 		v = *(uint32_t *)data;
   2182 		v = htole32(v);
   2183 		HWRITE4(hp, SDHC_DATA, v);
   2184 		data += 4;
   2185 		datalen -= 4;
   2186 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2187 		count--;
   2188 	}
   2189 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2190 		if (count == 0) {
   2191 			sdmmc_delay(10);
   2192 		}
   2193 		v = *(uint32_t *)data;
   2194 		v = htole32(v);
   2195 		HWRITE4(hp, SDHC_DATA, v);
   2196 	}
   2197 }
   2198 
   2199 /* Prepare for another command. */
   2200 static int
   2201 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2202 {
   2203 	int timo;
   2204 
   2205 	KASSERT(mutex_owned(&hp->intr_lock));
   2206 
   2207 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2208 
   2209 	/* Request the reset.  */
   2210 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2211 
   2212 	/*
   2213 	 * If necessary, wait for the controller to set the bits to
   2214 	 * acknowledge the reset.
   2215 	 */
   2216 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2217 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2218 		for (timo = 10000; timo > 0; timo--) {
   2219 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2220 				break;
   2221 			/* Short delay because I worry we may miss it...  */
   2222 			sdmmc_delay(1);
   2223 		}
   2224 		if (timo == 0) {
   2225 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2226 			return ETIMEDOUT;
   2227 		}
   2228 	}
   2229 
   2230 	/*
   2231 	 * Wait for the controller to clear the bits to indicate that
   2232 	 * the reset has completed.
   2233 	 */
   2234 	for (timo = 10; timo > 0; timo--) {
   2235 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2236 			break;
   2237 		sdmmc_delay(10000);
   2238 	}
   2239 	if (timo == 0) {
   2240 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2241 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2242 		return ETIMEDOUT;
   2243 	}
   2244 
   2245 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2246 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2247 	}
   2248 
   2249 	return 0;
   2250 }
   2251 
   2252 static int
   2253 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2254 {
   2255 	int status, error, nointr;
   2256 
   2257 	KASSERT(mutex_owned(&hp->intr_lock));
   2258 
   2259 	mask |= SDHC_ERROR_INTERRUPT;
   2260 
   2261 	nointr = 0;
   2262 	status = hp->intr_status & mask;
   2263 	while (status == 0) {
   2264 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2265 		    == EWOULDBLOCK) {
   2266 			nointr = 1;
   2267 			break;
   2268 		}
   2269 		status = hp->intr_status & mask;
   2270 	}
   2271 	error = hp->intr_error_status;
   2272 
   2273 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2274 	    error));
   2275 
   2276 	hp->intr_status &= ~status;
   2277 	hp->intr_error_status &= ~error;
   2278 
   2279 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2280 		if (ISSET(error, SDHC_DMA_ERROR))
   2281 			device_printf(hp->sc->sc_dev,"dma error\n");
   2282 		if (ISSET(error, SDHC_ADMA_ERROR))
   2283 			device_printf(hp->sc->sc_dev,"adma error\n");
   2284 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2285 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2286 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2287 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2288 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2289 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2290 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2291 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2292 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2293 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2294 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2295 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2296 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2297 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2298 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2299 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2300 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2301 			if (!probing)
   2302 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2303 #ifdef SDHC_DEBUG
   2304 			else if (sdhcdebug > 0)
   2305 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2306 #endif
   2307 		}
   2308 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2309 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2310 				(error & ~SDHC_EINTR_STATUS_MASK));
   2311 		if (error == 0)
   2312 			device_printf(hp->sc->sc_dev,"no error\n");
   2313 
   2314 		/* Command timeout has higher priority than command complete. */
   2315 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2316 			CLR(status, SDHC_COMMAND_COMPLETE);
   2317 
   2318 		/* Transfer complete has higher priority than data timeout. */
   2319 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2320 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2321 	}
   2322 
   2323 	if (nointr ||
   2324 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2325 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2326 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2327 		hp->intr_error_status = 0;
   2328 		status = 0;
   2329 	}
   2330 
   2331 	return status;
   2332 }
   2333 
   2334 /*
   2335  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2336  */
   2337 int
   2338 sdhc_intr(void *arg)
   2339 {
   2340 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2341 	struct sdhc_host *hp;
   2342 	int done = 0;
   2343 	uint16_t status;
   2344 	uint16_t error;
   2345 
   2346 	/* We got an interrupt, but we don't know from which slot. */
   2347 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2348 		hp = sc->sc_host[host];
   2349 		if (hp == NULL)
   2350 			continue;
   2351 
   2352 		mutex_enter(&hp->intr_lock);
   2353 
   2354 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2355 			/* Find out which interrupts are pending. */
   2356 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2357 			status = xstatus;
   2358 			error = xstatus >> 16;
   2359 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2360 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2361 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2362 				/* read again due to uSDHC errata */
   2363 				status = xstatus = HREAD4(hp,
   2364 				    SDHC_NINTR_STATUS);
   2365 				error = xstatus >> 16;
   2366 			}
   2367 			if (ISSET(sc->sc_flags,
   2368 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2369 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2370 					SET(status, SDHC_ERROR_INTERRUPT);
   2371 			}
   2372 			if (error)
   2373 				xstatus |= SDHC_ERROR_INTERRUPT;
   2374 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2375 				goto next_port; /* no interrupt for us */
   2376 			/* Acknowledge the interrupts we are about to handle. */
   2377 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2378 		} else {
   2379 			/* Find out which interrupts are pending. */
   2380 			error = 0;
   2381 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2382 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2383 				goto next_port; /* no interrupt for us */
   2384 			/* Acknowledge the interrupts we are about to handle. */
   2385 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2386 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2387 				/* Acknowledge error interrupts. */
   2388 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2389 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2390 			}
   2391 		}
   2392 
   2393 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2394 		    status, error));
   2395 
   2396 		/* Claim this interrupt. */
   2397 		done = 1;
   2398 
   2399 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2400 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2401 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2402 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2403 			    adma_err);
   2404 		}
   2405 
   2406 		/*
   2407 		 * Wake up the sdmmc event thread to scan for cards.
   2408 		 */
   2409 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2410 			if (hp->sdmmc != NULL) {
   2411 				sdmmc_needs_discover(hp->sdmmc);
   2412 			}
   2413 			if (ISSET(sc->sc_flags,
   2414 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2415 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2416 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2417 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2418 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2419 			}
   2420 		}
   2421 
   2422 		/*
   2423 		 * Schedule re-tuning process (UHS).
   2424 		 */
   2425 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2426 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2427 		}
   2428 
   2429 		/*
   2430 		 * Wake up the blocking process to service command
   2431 		 * related interrupt(s).
   2432 		 */
   2433 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2434 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2435 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2436 			hp->intr_error_status |= error;
   2437 			hp->intr_status |= status;
   2438 			if (ISSET(sc->sc_flags,
   2439 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2440 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2441 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2442 			}
   2443 			cv_broadcast(&hp->intr_cv);
   2444 		}
   2445 
   2446 		/*
   2447 		 * Service SD card interrupts.
   2448 		 */
   2449 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2450 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2451 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2452 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2453 			sdmmc_card_intr(hp->sdmmc);
   2454 		}
   2455 next_port:
   2456 		mutex_exit(&hp->intr_lock);
   2457 	}
   2458 
   2459 	return done;
   2460 }
   2461 
   2462 kmutex_t *
   2463 sdhc_host_lock(struct sdhc_host *hp)
   2464 {
   2465 	return &hp->intr_lock;
   2466 }
   2467 
   2468 uint8_t
   2469 sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2470 {
   2471 	return HREAD1(hp, reg);
   2472 }
   2473 
   2474 uint16_t
   2475 sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2476 {
   2477 	return HREAD2(hp, reg);
   2478 }
   2479 
   2480 uint32_t
   2481 sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2482 {
   2483 	return HREAD4(hp, reg);
   2484 }
   2485 
   2486 void
   2487 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2488 {
   2489 	HWRITE1(hp, reg, val);
   2490 }
   2491 
   2492 void
   2493 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2494 {
   2495 	HWRITE2(hp, reg, val);
   2496 }
   2497 
   2498 void
   2499 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2500 {
   2501 	HWRITE4(hp, reg, val);
   2502 }
   2503 
   2504 #ifdef SDHC_DEBUG
   2505 void
   2506 sdhc_dump_regs(struct sdhc_host *hp)
   2507 {
   2508 
   2509 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2510 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2511 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2512 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2513 		    HREAD1(hp, SDHC_POWER_CTL));
   2514 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2515 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2516 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2517 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2518 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2519 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2520 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2521 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2522 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2523 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2524 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2525 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2526 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2527 	    HREAD4(hp, SDHC_CAPABILITIES));
   2528 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2529 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2530 }
   2531 #endif
   2532