Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.111
      1 /*	$NetBSD: sdhc.c,v 1.111 2021/08/07 16:19:16 thorpej Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.111 2021/08/07 16:19:16 thorpej Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kcondvar_t intr_cv;
     81 
     82 	callout_t tuning_timer;
     83 	int tuning_timing;
     84 	u_int tuning_timer_count;
     85 	u_int tuning_timer_pending;
     86 
     87 	int specver;			/* spec. version */
     88 
     89 	uint32_t flags;			/* flags for this host */
     90 #define SHF_USE_DMA		0x0001
     91 #define SHF_USE_4BIT_MODE	0x0002
     92 #define SHF_USE_8BIT_MODE	0x0004
     93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94 #define SHF_USE_ADMA2_32	0x0010
     95 #define SHF_USE_ADMA2_64	0x0020
     96 #define SHF_USE_ADMA2_MASK	0x0030
     97 
     98 	bus_dmamap_t		adma_map;
     99 	bus_dma_segment_t	adma_segs[1];
    100 	void			*adma2;
    101 
    102 	uint8_t			vdd;	/* last vdd setting */
    103 };
    104 
    105 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    106 
    107 static uint8_t
    108 hread1(struct sdhc_host *hp, bus_size_t reg)
    109 {
    110 
    111 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    112 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    113 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    114 }
    115 
    116 static uint16_t
    117 hread2(struct sdhc_host *hp, bus_size_t reg)
    118 {
    119 
    120 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    121 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    122 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    123 }
    124 
    125 #define HREAD1(hp, reg)		hread1(hp, reg)
    126 #define HREAD2(hp, reg)		hread2(hp, reg)
    127 #define HREAD4(hp, reg)		\
    128 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    129 
    130 
    131 static void
    132 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    133 {
    134 
    135 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    136 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    137 	} else {
    138 		const size_t shift = 8 * (o & 3);
    139 		o &= -4;
    140 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    141 		tmp = (val << shift) | (tmp & ~(0xffU << shift));
    142 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    143 	}
    144 }
    145 
    146 static void
    147 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    148 {
    149 
    150 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    151 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    152 	} else {
    153 		const size_t shift = 8 * (o & 2);
    154 		o &= -4;
    155 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    156 		tmp = (val << shift) | (tmp & ~(0xffffU << shift));
    157 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    158 	}
    159 }
    160 
    161 static void
    162 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
    163 {
    164 
    165 	bus_space_write_4(hp->iot, hp->ioh, o, val);
    166 }
    167 
    168 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    169 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    170 #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
    171 
    172 #define HCLR1(hp, reg, bits)						\
    173 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    174 #define HCLR2(hp, reg, bits)						\
    175 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    176 #define HCLR4(hp, reg, bits)						\
    177 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    178 #define HSET1(hp, reg, bits)						\
    179 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    180 #define HSET2(hp, reg, bits)						\
    181 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    182 #define HSET4(hp, reg, bits)						\
    183 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    184 
    185 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    186 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    187 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    188 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    189 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    190 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    191 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    192 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    193 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    194 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    195 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    196 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    197 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    198 		    struct sdmmc_command *);
    199 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    200 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    201 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    202 static void	sdhc_tuning_timer(void *);
    203 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    204 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    205 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    206 static int	sdhc_soft_reset(struct sdhc_host *, int);
    207 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    208 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    209 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    210 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    211 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    212 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    213 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    214 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    215 
    216 static struct sdmmc_chip_functions sdhc_functions = {
    217 	/* host controller reset */
    218 	.host_reset = sdhc_host_reset,
    219 
    220 	/* host controller capabilities */
    221 	.host_ocr = sdhc_host_ocr,
    222 	.host_maxblklen = sdhc_host_maxblklen,
    223 
    224 	/* card detection */
    225 	.card_detect = sdhc_card_detect,
    226 
    227 	/* write protect */
    228 	.write_protect = sdhc_write_protect,
    229 
    230 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    231 	.bus_power = sdhc_bus_power,
    232 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    233 	.bus_width = sdhc_bus_width,
    234 	.bus_rod = sdhc_bus_rod,
    235 
    236 	/* command execution */
    237 	.exec_command = sdhc_exec_command,
    238 
    239 	/* card interrupt */
    240 	.card_enable_intr = sdhc_card_enable_intr,
    241 	.card_intr_ack = sdhc_card_intr_ack,
    242 
    243 	/* UHS functions */
    244 	.signal_voltage = sdhc_signal_voltage,
    245 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    246 	.execute_tuning = sdhc_execute_tuning,
    247 	.hw_reset = sdhc_hw_reset,
    248 };
    249 
    250 static int
    251 sdhc_cfprint(void *aux, const char *pnp)
    252 {
    253 	const struct sdmmcbus_attach_args * const saa = aux;
    254 	const struct sdhc_host * const hp = saa->saa_sch;
    255 
    256 	if (pnp) {
    257 		aprint_normal("sdmmc at %s", pnp);
    258 	}
    259 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    260 		if (hp->sc->sc_host[host] == hp) {
    261 			aprint_normal(" slot %zu", host);
    262 		}
    263 	}
    264 
    265 	return UNCONF;
    266 }
    267 
    268 /*
    269  * Called by attachment driver.  For each SD card slot there is one SD
    270  * host controller standard register set. (1.3)
    271  */
    272 int
    273 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    274     bus_space_handle_t ioh, bus_size_t iosize)
    275 {
    276 	struct sdmmcbus_attach_args saa;
    277 	struct sdhc_host *hp;
    278 	uint32_t caps, caps2;
    279 	uint16_t sdhcver;
    280 	int error;
    281 
    282 	/* Allocate one more host structure. */
    283 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    284 	if (hp == NULL) {
    285 		aprint_error_dev(sc->sc_dev,
    286 		    "couldn't alloc memory (sdhc host)\n");
    287 		goto err1;
    288 	}
    289 	sc->sc_host[sc->sc_nhosts++] = hp;
    290 
    291 	/* Fill in the new host structure. */
    292 	hp->sc = sc;
    293 	hp->iot = iot;
    294 	hp->ioh = ioh;
    295 	hp->ios = iosize;
    296 	hp->dmat = sc->sc_dmat;
    297 
    298 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    299 	cv_init(&hp->intr_cv, "sdhcintr");
    300 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    301 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    302 
    303 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    304 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    305 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    306 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    307 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    308 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    309 	} else {
    310 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    311 	}
    312 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    313 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    314 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    315 	case SDHC_SPEC_VERS_100:
    316 		aprint_normal("1.0");
    317 		break;
    318 	case SDHC_SPEC_VERS_200:
    319 		aprint_normal("2.0");
    320 		break;
    321 	case SDHC_SPEC_VERS_300:
    322 		aprint_normal("3.0");
    323 		break;
    324 	case SDHC_SPEC_VERS_400:
    325 		aprint_normal("4.0");
    326 		break;
    327 	case SDHC_SPEC_VERS_410:
    328 		aprint_normal("4.1");
    329 		break;
    330 	case SDHC_SPEC_VERS_420:
    331 		aprint_normal("4.2");
    332 		break;
    333 	case SDHC_SPEC_NOVERS:
    334 		hp->specver = -1;
    335 		aprint_normal("NO-VERS");
    336 		break;
    337 	default:
    338 		aprint_normal("unknown version(0x%x)",
    339 		    SDHC_SPEC_VERSION(sdhcver));
    340 		break;
    341 	}
    342 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    343 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    344 
    345 	/*
    346 	 * Reset the host controller and enable interrupts.
    347 	 */
    348 	(void)sdhc_host_reset(hp);
    349 
    350 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    351 		/* init uSDHC registers */
    352 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    353 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    354 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    355 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    356 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    357 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    358 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    359 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    360 		HSET4(hp, SDHC_VEND_SPEC,
    361 		    SDHC_VEND_SPEC_MBO |
    362 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    363 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    364 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    365 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    366 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    367 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    368 	}
    369 
    370 	/* Determine host capabilities. */
    371 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    372 		caps = sc->sc_caps;
    373 		caps2 = sc->sc_caps2;
    374 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    375 		/* uSDHC capability register is little bit different */
    376 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    377 		caps |= SDHC_8BIT_SUPP;
    378 		if (caps & SDHC_ADMA1_SUPP)
    379 			caps |= SDHC_ADMA2_SUPP;
    380 		sc->sc_caps = caps;
    381 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    382 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    383 	} else {
    384 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    385 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    386 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    387 		} else {
    388 			caps2 = sc->sc_caps2 = 0;
    389 		}
    390 	}
    391 
    392 	aprint_verbose(", caps <%08x/%08x>", caps, caps2);
    393 
    394 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    395 	    SDHC_RETUNING_MODES_MASK;
    396 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    397 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    398 		    SDHC_TIMER_COUNT_MASK;
    399 		if (hp->tuning_timer_count == 0xf)
    400 			hp->tuning_timer_count = 0;
    401 		if (hp->tuning_timer_count)
    402 			hp->tuning_timer_count =
    403 			    1 << (hp->tuning_timer_count - 1);
    404 	}
    405 
    406 	/*
    407 	 * Use DMA if the host system and the controller support it.
    408 	 * Suports integrated or external DMA egine, with or without
    409 	 * SDHC_DMA_ENABLE in the command.
    410 	 */
    411 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    412 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    413 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    414 		SET(hp->flags, SHF_USE_DMA);
    415 
    416 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    417 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    418 			SET(hp->flags, SHF_MODE_DMAEN);
    419 			/*
    420 			 * 64-bit mode was present in the 2.00 spec, removed
    421 			 * from 3.00, and re-added in 4.00 with a different
    422 			 * descriptor layout. We only support 2.00 and 3.00
    423 			 * descriptors for now.
    424 			 */
    425 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    426 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    427 				SET(hp->flags, SHF_USE_ADMA2_64);
    428 				aprint_normal(", 64-bit ADMA2");
    429 			} else {
    430 				SET(hp->flags, SHF_USE_ADMA2_32);
    431 				aprint_normal(", 32-bit ADMA2");
    432 			}
    433 		} else {
    434 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    435 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    436 				SET(hp->flags, SHF_MODE_DMAEN);
    437 			if (sc->sc_vendor_transfer_data_dma) {
    438 				aprint_normal(", platform DMA");
    439 			} else {
    440 				aprint_normal(", SDMA");
    441 			}
    442 		}
    443 	} else {
    444 		aprint_normal(", PIO");
    445 	}
    446 
    447 	/*
    448 	 * Determine the base clock frequency. (2.2.24)
    449 	 */
    450 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    451 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    452 	} else {
    453 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    454 	}
    455 	if (hp->clkbase == 0 ||
    456 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    457 		if (sc->sc_clkbase == 0) {
    458 			/* The attachment driver must tell us. */
    459 			aprint_error_dev(sc->sc_dev,
    460 			    "unknown base clock frequency\n");
    461 			goto err;
    462 		}
    463 		hp->clkbase = sc->sc_clkbase;
    464 	}
    465 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    466 		/* SDHC 1.0 supports only 10-63 MHz. */
    467 		aprint_error_dev(sc->sc_dev,
    468 		    "base clock frequency out of range: %u MHz\n",
    469 		    hp->clkbase / 1000);
    470 		goto err;
    471 	}
    472 	aprint_normal(", %u kHz", hp->clkbase);
    473 
    474 	/*
    475 	 * XXX Set the data timeout counter value according to
    476 	 * capabilities. (2.2.15)
    477 	 */
    478 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    479 #if 1
    480 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    481 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    482 #endif
    483 
    484 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    485 		aprint_normal(", embedded slot");
    486 
    487 	/*
    488 	 * Determine SD bus voltage levels supported by the controller.
    489 	 */
    490 	aprint_normal(",");
    491 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    492 		SET(hp->ocr, MMC_OCR_HCS);
    493 		aprint_normal(" HS");
    494 	}
    495 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
    496 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    497 			SET(hp->ocr, MMC_OCR_S18A);
    498 			aprint_normal(" SDR50");
    499 		}
    500 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    501 			SET(hp->ocr, MMC_OCR_S18A);
    502 			aprint_normal(" DDR50");
    503 		}
    504 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    505 			SET(hp->ocr, MMC_OCR_S18A);
    506 			aprint_normal(" SDR104 HS200");
    507 		}
    508 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    509 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    510 			aprint_normal(" 1.8V");
    511 		}
    512 	}
    513 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    514 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    515 		aprint_normal(" 3.0V");
    516 	}
    517 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    518 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    519 		aprint_normal(" 3.3V");
    520 	}
    521 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    522 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    523 		if (hp->tuning_timer_count)
    524 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    525 	}
    526 
    527 	/*
    528 	 * Determine the maximum block length supported by the host
    529 	 * controller. (2.2.24)
    530 	 */
    531 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    532 	case SDHC_MAX_BLK_LEN_512:
    533 		hp->maxblklen = 512;
    534 		break;
    535 
    536 	case SDHC_MAX_BLK_LEN_1024:
    537 		hp->maxblklen = 1024;
    538 		break;
    539 
    540 	case SDHC_MAX_BLK_LEN_2048:
    541 		hp->maxblklen = 2048;
    542 		break;
    543 
    544 	case SDHC_MAX_BLK_LEN_4096:
    545 		hp->maxblklen = 4096;
    546 		break;
    547 
    548 	default:
    549 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    550 		goto err;
    551 	}
    552 	aprint_normal(", %u byte blocks", hp->maxblklen);
    553 	aprint_normal("\n");
    554 
    555 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    556 		int rseg;
    557 
    558 		/* Allocate ADMA2 descriptor memory */
    559 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    560 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    561 		if (error) {
    562 			aprint_error_dev(sc->sc_dev,
    563 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    564 			goto adma_done;
    565 		}
    566 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    567 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    568 		if (error) {
    569 			aprint_error_dev(sc->sc_dev,
    570 			    "ADMA2 dmamem_map failed (%d)\n", error);
    571 			goto adma_done;
    572 		}
    573 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    574 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    575 		if (error) {
    576 			aprint_error_dev(sc->sc_dev,
    577 			    "ADMA2 dmamap_create failed (%d)\n", error);
    578 			goto adma_done;
    579 		}
    580 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    581 		    hp->adma2, PAGE_SIZE, NULL,
    582 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    583 		if (error) {
    584 			aprint_error_dev(sc->sc_dev,
    585 			    "ADMA2 dmamap_load failed (%d)\n", error);
    586 			goto adma_done;
    587 		}
    588 
    589 		memset(hp->adma2, 0, PAGE_SIZE);
    590 
    591 adma_done:
    592 		if (error)
    593 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    594 	}
    595 
    596 	/*
    597 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    598 	 * not invoke any chipset functions before it is attached.)
    599 	 */
    600 	memset(&saa, 0, sizeof(saa));
    601 	saa.saa_busname = "sdmmc";
    602 	saa.saa_sct = &sdhc_functions;
    603 	saa.saa_sch = hp;
    604 	saa.saa_dmat = hp->dmat;
    605 	saa.saa_clkmax = hp->clkbase;
    606 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    607 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    608 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    609 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    610 	else if (hp->sc->sc_clkmsk != 0)
    611 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    612 		    (ffs(hp->sc->sc_clkmsk) - 1));
    613 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    614 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    615 	else
    616 		saa.saa_clkmin = hp->clkbase / 256;
    617 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    618 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    619 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    620 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    621 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    622 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    623 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    624 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    625 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    626 				SMC_CAPS_UHS_SDR50 |
    627 				SMC_CAPS_MMC_HS200;
    628 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    629 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    630 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    631 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    632 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    633 		saa.saa_caps |= SMC_CAPS_DMA;
    634 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    635 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    636 	}
    637 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    638 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    639 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    640 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    641 
    642 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
    643 		saa.saa_max_seg = 65535;
    644 
    645 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
    646 
    647 	return 0;
    648 
    649 err:
    650 	callout_destroy(&hp->tuning_timer);
    651 	cv_destroy(&hp->intr_cv);
    652 	mutex_destroy(&hp->intr_lock);
    653 	free(hp, M_DEVBUF);
    654 	sc->sc_host[--sc->sc_nhosts] = NULL;
    655 err1:
    656 	return 1;
    657 }
    658 
    659 int
    660 sdhc_detach(struct sdhc_softc *sc, int flags)
    661 {
    662 	struct sdhc_host *hp;
    663 	int rv = 0;
    664 
    665 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    666 		hp = sc->sc_host[n];
    667 		if (hp == NULL)
    668 			continue;
    669 		if (hp->sdmmc != NULL) {
    670 			rv = config_detach(hp->sdmmc, flags);
    671 			if (rv)
    672 				break;
    673 			hp->sdmmc = NULL;
    674 		}
    675 		/* disable interrupts */
    676 		if ((flags & DETACH_FORCE) == 0) {
    677 			mutex_enter(&hp->intr_lock);
    678 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    679 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    680 			} else {
    681 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    682 			}
    683 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    684 			mutex_exit(&hp->intr_lock);
    685 		}
    686 		callout_halt(&hp->tuning_timer, NULL);
    687 		callout_destroy(&hp->tuning_timer);
    688 		cv_destroy(&hp->intr_cv);
    689 		mutex_destroy(&hp->intr_lock);
    690 		if (hp->ios > 0) {
    691 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    692 			hp->ios = 0;
    693 		}
    694 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    695 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    696 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    697 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    698 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    699 		}
    700 		free(hp, M_DEVBUF);
    701 		sc->sc_host[n] = NULL;
    702 	}
    703 
    704 	return rv;
    705 }
    706 
    707 bool
    708 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    709 {
    710 	struct sdhc_softc *sc = device_private(dev);
    711 	struct sdhc_host *hp;
    712 	size_t i;
    713 
    714 	/* XXX poll for command completion or suspend command
    715 	 * in progress */
    716 
    717 	/* Save the host controller state. */
    718 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    719 		hp = sc->sc_host[n];
    720 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    721 			for (i = 0; i < sizeof hp->regs; i += 4) {
    722 				uint32_t v = HREAD4(hp, i);
    723 				hp->regs[i + 0] = (v >> 0);
    724 				hp->regs[i + 1] = (v >> 8);
    725 				if (i + 3 < sizeof hp->regs) {
    726 					hp->regs[i + 2] = (v >> 16);
    727 					hp->regs[i + 3] = (v >> 24);
    728 				}
    729 			}
    730 		} else {
    731 			for (i = 0; i < sizeof hp->regs; i++) {
    732 				hp->regs[i] = HREAD1(hp, i);
    733 			}
    734 		}
    735 	}
    736 	return true;
    737 }
    738 
    739 bool
    740 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    741 {
    742 	struct sdhc_softc *sc = device_private(dev);
    743 	struct sdhc_host *hp;
    744 	size_t i;
    745 
    746 	/* Restore the host controller state. */
    747 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    748 		hp = sc->sc_host[n];
    749 		(void)sdhc_host_reset(hp);
    750 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    751 			for (i = 0; i < sizeof hp->regs; i += 4) {
    752 				if (i + 3 < sizeof hp->regs) {
    753 					HWRITE4(hp, i,
    754 					    (hp->regs[i + 0] << 0)
    755 					    | (hp->regs[i + 1] << 8)
    756 					    | (hp->regs[i + 2] << 16)
    757 					    | (hp->regs[i + 3] << 24));
    758 				} else {
    759 					HWRITE4(hp, i,
    760 					    (hp->regs[i + 0] << 0)
    761 					    | (hp->regs[i + 1] << 8));
    762 				}
    763 			}
    764 		} else {
    765 			for (i = 0; i < sizeof hp->regs; i++) {
    766 				HWRITE1(hp, i, hp->regs[i]);
    767 			}
    768 		}
    769 	}
    770 	return true;
    771 }
    772 
    773 bool
    774 sdhc_shutdown(device_t dev, int flags)
    775 {
    776 	struct sdhc_softc *sc = device_private(dev);
    777 	struct sdhc_host *hp;
    778 
    779 	/* XXX chip locks up if we don't disable it before reboot. */
    780 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    781 		hp = sc->sc_host[i];
    782 		(void)sdhc_host_reset(hp);
    783 	}
    784 	return true;
    785 }
    786 
    787 /*
    788  * Reset the host controller.  Called during initialization, when
    789  * cards are removed, upon resume, and during error recovery.
    790  */
    791 static int
    792 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    793 {
    794 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    795 	uint32_t sdhcimask;
    796 	int error;
    797 
    798 	KASSERT(mutex_owned(&hp->intr_lock));
    799 
    800 	/* Disable all interrupts. */
    801 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    802 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    803 	} else {
    804 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    805 	}
    806 
    807 	/* Let sdhc_bus_power restore power */
    808 	hp->vdd = 0;
    809 
    810 	/*
    811 	 * Reset the entire host controller and wait up to 100ms for
    812 	 * the controller to clear the reset bit.
    813 	 */
    814 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    815 	if (error)
    816 		goto out;
    817 
    818 	/* Set data timeout counter value to max for now. */
    819 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    820 #if 1
    821 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    822 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    823 #endif
    824 
    825 	/* Enable interrupts. */
    826 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    827 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    828 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    829 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    830 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    831 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    832 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    833 		sdhcimask ^=
    834 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    835 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    836 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    837 	} else {
    838 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    839 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    840 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    841 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    842 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    843 	}
    844 
    845 out:
    846 	return error;
    847 }
    848 
    849 static int
    850 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    851 {
    852 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    853 	int error;
    854 
    855 	mutex_enter(&hp->intr_lock);
    856 	error = sdhc_host_reset1(sch);
    857 	mutex_exit(&hp->intr_lock);
    858 
    859 	return error;
    860 }
    861 
    862 static uint32_t
    863 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    864 {
    865 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    866 
    867 	return hp->ocr;
    868 }
    869 
    870 static int
    871 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    872 {
    873 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    874 
    875 	return hp->maxblklen;
    876 }
    877 
    878 /*
    879  * Return non-zero if the card is currently inserted.
    880  */
    881 static int
    882 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    883 {
    884 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    885 	int r;
    886 
    887 	if (hp->sc->sc_vendor_card_detect)
    888 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    889 
    890 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    891 
    892 	return r ? 1 : 0;
    893 }
    894 
    895 /*
    896  * Return non-zero if the card is currently write-protected.
    897  */
    898 static int
    899 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    900 {
    901 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    902 	int r;
    903 
    904 	if (hp->sc->sc_vendor_write_protect)
    905 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    906 
    907 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    908 
    909 	return r ? 0 : 1;
    910 }
    911 
    912 /*
    913  * Set or change SD bus voltage and enable or disable SD bus power.
    914  * Return zero on success.
    915  */
    916 static int
    917 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    918 {
    919 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    920 	uint8_t vdd;
    921 	int error = 0;
    922 	const uint32_t pcmask =
    923 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    924 	uint32_t reg;
    925 
    926 	mutex_enter(&hp->intr_lock);
    927 
    928 	/*
    929 	 * Disable bus power before voltage change.
    930 	 */
    931 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    932 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
    933 		hp->vdd = 0;
    934 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    935 	}
    936 
    937 	/* If power is disabled, reset the host and return now. */
    938 	if (ocr == 0) {
    939 		(void)sdhc_host_reset1(hp);
    940 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    941 		goto out;
    942 	}
    943 
    944 	/*
    945 	 * Select the lowest voltage according to capabilities.
    946 	 */
    947 	ocr &= hp->ocr;
    948 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    949 		vdd = SDHC_VOLTAGE_1_8V;
    950 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    951 		vdd = SDHC_VOLTAGE_3_0V;
    952 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    953 		vdd = SDHC_VOLTAGE_3_3V;
    954 	} else {
    955 		/* Unsupported voltage level requested. */
    956 		error = EINVAL;
    957 		goto out;
    958 	}
    959 
    960 	/*
    961 	 * Did voltage change ?
    962 	 */
    963 	if (vdd == hp->vdd)
    964 		goto out;
    965 
    966 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    967 		/*
    968 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    969 		 * voltage ramp until power rises.
    970 		 */
    971 
    972 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    973 			HWRITE1(hp, SDHC_POWER_CTL,
    974 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    975 		} else {
    976 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
    977 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    978 			sdmmc_delay(1);
    979 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
    980 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    981 			sdmmc_delay(1);
    982 			reg |= SDHC_BUS_POWER;
    983 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    984 			sdmmc_delay(10000);
    985 		}
    986 
    987 		/*
    988 		 * The host system may not power the bus due to battery low,
    989 		 * etc.  In that case, the host controller should clear the
    990 		 * bus power bit.
    991 		 */
    992 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    993 			error = ENXIO;
    994 			goto out;
    995 		}
    996 	}
    997 
    998 	/* power successfully changed */
    999 	hp->vdd = vdd;
   1000 
   1001 out:
   1002 	mutex_exit(&hp->intr_lock);
   1003 
   1004 	return error;
   1005 }
   1006 
   1007 /*
   1008  * Return the smallest possible base clock frequency divisor value
   1009  * for the CLOCK_CTL register to produce `freq' (KHz).
   1010  */
   1011 static bool
   1012 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
   1013 {
   1014 	u_int div;
   1015 
   1016 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
   1017 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
   1018 			if ((hp->clkbase / div) <= freq) {
   1019 				*divp = SDHC_SDCLK_CGM
   1020 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
   1021 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
   1022 				//freq = hp->clkbase / div;
   1023 				return true;
   1024 			}
   1025 		}
   1026 		/* No divisor found. */
   1027 		return false;
   1028 	}
   1029 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
   1030 		u_int dvs = (hp->clkbase + freq - 1) / freq;
   1031 		u_int roundup = dvs & 1;
   1032 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
   1033 			if (dvs + roundup <= 16) {
   1034 				dvs += roundup - 1;
   1035 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
   1036 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1037 				DPRINTF(2,
   1038 				    ("%s: divisor for freq %u is %u * %u\n",
   1039 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1040 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1041 				return true;
   1042 			}
   1043 			/*
   1044 			 * If we drop bits, we need to round up the divisor.
   1045 			 */
   1046 			roundup |= dvs & 1;
   1047 		}
   1048 		/* No divisor found. */
   1049 		return false;
   1050 	}
   1051 	if (hp->sc->sc_clkmsk != 0) {
   1052 		div = howmany(hp->clkbase, freq);
   1053 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1054 			return false;
   1055 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1056 		//freq = hp->clkbase / div;
   1057 		return true;
   1058 	}
   1059 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1060 		div = howmany(hp->clkbase, freq);
   1061 		div = div > 1 ? howmany(div, 2) : 0;
   1062 		if (div > 0x3ff)
   1063 			return false;
   1064 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1065 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1066 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1067 			 << SDHC_SDCLK_DIV_SHIFT);
   1068 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1069 		return true;
   1070 	} else {
   1071 		for (div = 1; div <= 256; div *= 2) {
   1072 			if ((hp->clkbase / div) <= freq) {
   1073 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1074 				//freq = hp->clkbase / div;
   1075 				return true;
   1076 			}
   1077 		}
   1078 		/* No divisor found. */
   1079 		return false;
   1080 	}
   1081 	/* No divisor found. */
   1082 	return false;
   1083 }
   1084 
   1085 /*
   1086  * Set or change SDCLK frequency or disable the SD clock.
   1087  * Return zero on success.
   1088  */
   1089 static int
   1090 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1091 {
   1092 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1093 	u_int div;
   1094 	u_int timo;
   1095 	int16_t reg;
   1096 	int error = 0;
   1097 	bool present __diagused;
   1098 
   1099 	mutex_enter(&hp->intr_lock);
   1100 
   1101 #ifdef DIAGNOSTIC
   1102 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1103 
   1104 	/* Must not stop the clock if commands are in progress. */
   1105 	if (present && sdhc_card_detect(hp)) {
   1106 		aprint_normal_dev(hp->sc->sc_dev,
   1107 		    "%s: command in progress\n", __func__);
   1108 	}
   1109 #endif
   1110 
   1111 	if (hp->sc->sc_vendor_bus_clock) {
   1112 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1113 		if (error != 0)
   1114 			goto out;
   1115 	}
   1116 
   1117 	/*
   1118 	 * Stop SD clock before changing the frequency.
   1119 	 */
   1120 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1121 		HCLR4(hp, SDHC_VEND_SPEC,
   1122 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1123 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1124 		if (freq == SDMMC_SDCLK_OFF) {
   1125 			goto out;
   1126 		}
   1127 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1128 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1129 		if (freq == SDMMC_SDCLK_OFF) {
   1130 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1131 			goto out;
   1132 		}
   1133 	} else {
   1134 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1135 		if (freq == SDMMC_SDCLK_OFF)
   1136 			goto out;
   1137 	}
   1138 
   1139 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1140 		if (ddr)
   1141 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1142 		else
   1143 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1144 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1145 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1146 		if (freq > 100000) {
   1147 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1148 		} else if (freq > 50000) {
   1149 			if (ddr) {
   1150 				HSET2(hp, SDHC_HOST_CTL2,
   1151 				    SDHC_UHS_MODE_SELECT_DDR50);
   1152 			} else {
   1153 				HSET2(hp, SDHC_HOST_CTL2,
   1154 				    SDHC_UHS_MODE_SELECT_SDR50);
   1155 			}
   1156 		} else if (freq > 25000) {
   1157 			if (ddr) {
   1158 				HSET2(hp, SDHC_HOST_CTL2,
   1159 				    SDHC_UHS_MODE_SELECT_DDR50);
   1160 			} else {
   1161 				HSET2(hp, SDHC_HOST_CTL2,
   1162 				    SDHC_UHS_MODE_SELECT_SDR25);
   1163 			}
   1164 		} else if (freq > 400) {
   1165 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1166 		}
   1167 	}
   1168 
   1169 	/*
   1170 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1171 	 * at 100MHz bus clock.
   1172 	 */
   1173 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1174 		if (freq == 100000)
   1175 			--freq;
   1176 	}
   1177 
   1178 	/*
   1179 	 * Set the minimum base clock frequency divisor.
   1180 	 */
   1181 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1182 		/* Invalid base clock frequency or `freq' value. */
   1183 		aprint_error_dev(hp->sc->sc_dev,
   1184 			"Invalid bus clock %d kHz\n", freq);
   1185 		error = EINVAL;
   1186 		goto out;
   1187 	}
   1188 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1189 		if (ddr) {
   1190 			/* in ddr mode, divisor >>= 1 */
   1191 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1192 			    SDHC_SDCLK_DIV_SHIFT)) |
   1193 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1194 			    SDHC_SDCLK_DVS_SHIFT));
   1195 		}
   1196 		for (timo = 1000; timo > 0; timo--) {
   1197 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1198 				break;
   1199 			sdmmc_delay(10);
   1200 		}
   1201 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1202 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1203 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1204 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1205 		    div | (SDHC_TIMEOUT_MAX << 16));
   1206 	} else {
   1207 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1208 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1209 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1210 	}
   1211 
   1212 	/*
   1213 	 * Start internal clock.  Wait 10ms for stabilization.
   1214 	 */
   1215 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1216 		HSET4(hp, SDHC_VEND_SPEC,
   1217 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1218 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1219 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1220 		sdmmc_delay(10000);
   1221 		HSET4(hp, SDHC_CLOCK_CTL,
   1222 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1223 	} else {
   1224 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1225 		for (timo = 1000; timo > 0; timo--) {
   1226 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1227 			    SDHC_INTCLK_STABLE))
   1228 				break;
   1229 			sdmmc_delay(10);
   1230 		}
   1231 		if (timo == 0) {
   1232 			error = ETIMEDOUT;
   1233 			DPRINTF(1,("%s: timeout\n", __func__));
   1234 			goto out;
   1235 		}
   1236 	}
   1237 
   1238 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1239 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1240 		/*
   1241 		 * Sending 80 clocks at 400kHz takes 200us.
   1242 		 * So delay for that time + slop and then
   1243 		 * check a few times for completion.
   1244 		 */
   1245 		sdmmc_delay(210);
   1246 		for (timo = 10; timo > 0; timo--) {
   1247 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1248 			    SDHC_INIT_ACTIVE))
   1249 				break;
   1250 			sdmmc_delay(10);
   1251 		}
   1252 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1253 
   1254 		/*
   1255 		 * Enable SD clock.
   1256 		 */
   1257 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1258 			HSET4(hp, SDHC_VEND_SPEC,
   1259 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1260 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1261 		} else {
   1262 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1263 		}
   1264 	} else {
   1265 		/*
   1266 		 * Enable SD clock.
   1267 		 */
   1268 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1269 
   1270 		if (freq > 25000 &&
   1271 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1272 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1273 		else
   1274 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1275 	}
   1276 
   1277 	if (hp->sc->sc_vendor_bus_clock_post) {
   1278 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
   1279 		if (error != 0)
   1280 			goto out;
   1281 	}
   1282 
   1283 out:
   1284 	mutex_exit(&hp->intr_lock);
   1285 
   1286 	return error;
   1287 }
   1288 
   1289 static int
   1290 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1291 {
   1292 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1293 	int reg;
   1294 
   1295 	switch (width) {
   1296 	case 1:
   1297 	case 4:
   1298 		break;
   1299 
   1300 	case 8:
   1301 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1302 			break;
   1303 		/* FALLTHROUGH */
   1304 	default:
   1305 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1306 		    HDEVNAME(hp), width));
   1307 		return 1;
   1308 	}
   1309 
   1310 	if (hp->sc->sc_vendor_bus_width) {
   1311 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1312 		if (error != 0)
   1313 			return error;
   1314 	}
   1315 
   1316 	mutex_enter(&hp->intr_lock);
   1317 
   1318 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1319 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1320 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1321 		if (width == 4)
   1322 			reg |= SDHC_4BIT_MODE;
   1323 		else if (width == 8)
   1324 			reg |= SDHC_ESDHC_8BIT_MODE;
   1325 	} else {
   1326 		reg &= ~SDHC_4BIT_MODE;
   1327 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1328 			reg &= ~SDHC_8BIT_MODE;
   1329 		}
   1330 		if (width == 4) {
   1331 			reg |= SDHC_4BIT_MODE;
   1332 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1333 			reg |= SDHC_8BIT_MODE;
   1334 		}
   1335 	}
   1336 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1337 
   1338 	mutex_exit(&hp->intr_lock);
   1339 
   1340 	return 0;
   1341 }
   1342 
   1343 static int
   1344 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1345 {
   1346 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1347 
   1348 	if (hp->sc->sc_vendor_rod)
   1349 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1350 
   1351 	return 0;
   1352 }
   1353 
   1354 static void
   1355 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1356 {
   1357 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1358 
   1359 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1360 		mutex_enter(&hp->intr_lock);
   1361 		if (enable) {
   1362 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1363 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1364 		} else {
   1365 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1366 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1367 		}
   1368 		mutex_exit(&hp->intr_lock);
   1369 	}
   1370 }
   1371 
   1372 static void
   1373 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1374 {
   1375 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1376 
   1377 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1378 		mutex_enter(&hp->intr_lock);
   1379 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1380 		mutex_exit(&hp->intr_lock);
   1381 	}
   1382 }
   1383 
   1384 static int
   1385 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1386 {
   1387 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1388 	int error = 0;
   1389 
   1390 	if (hp->specver < SDHC_SPEC_VERS_300)
   1391 		return EINVAL;
   1392 
   1393 	mutex_enter(&hp->intr_lock);
   1394 	switch (signal_voltage) {
   1395 	case SDMMC_SIGNAL_VOLTAGE_180:
   1396 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1397 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1398 			    signal_voltage);
   1399 			if (error != 0)
   1400 				break;
   1401 		}
   1402 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1403 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1404 		break;
   1405 	case SDMMC_SIGNAL_VOLTAGE_330:
   1406 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1407 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1408 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1409 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1410 			    signal_voltage);
   1411 			if (error != 0)
   1412 				break;
   1413 		}
   1414 		break;
   1415 	default:
   1416 		error = EINVAL;
   1417 		break;
   1418 	}
   1419 	mutex_exit(&hp->intr_lock);
   1420 
   1421 	return error;
   1422 }
   1423 
   1424 /*
   1425  * Sampling clock tuning procedure (UHS)
   1426  */
   1427 static int
   1428 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1429 {
   1430 	struct sdmmc_command cmd;
   1431 	uint8_t hostctl;
   1432 	int opcode, error, retry = 40;
   1433 
   1434 	KASSERT(mutex_owned(&hp->intr_lock));
   1435 
   1436 	hp->tuning_timing = timing;
   1437 
   1438 	switch (timing) {
   1439 	case SDMMC_TIMING_MMC_HS200:
   1440 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1441 		break;
   1442 	case SDMMC_TIMING_UHS_SDR50:
   1443 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1444 			return 0;
   1445 		/* FALLTHROUGH */
   1446 	case SDMMC_TIMING_UHS_SDR104:
   1447 		opcode = MMC_SEND_TUNING_BLOCK;
   1448 		break;
   1449 	default:
   1450 		return EINVAL;
   1451 	}
   1452 
   1453 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1454 
   1455 	/* enable buffer read ready interrupt */
   1456 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1457 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1458 
   1459 	/* disable DMA */
   1460 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1461 
   1462 	/* reset tuning circuit */
   1463 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1464 
   1465 	/* start of tuning */
   1466 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1467 
   1468 	do {
   1469 		memset(&cmd, 0, sizeof(cmd));
   1470 		cmd.c_opcode = opcode;
   1471 		cmd.c_arg = 0;
   1472 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1473 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1474 			cmd.c_blklen = cmd.c_datalen = 128;
   1475 		} else {
   1476 			cmd.c_blklen = cmd.c_datalen = 64;
   1477 		}
   1478 
   1479 		error = sdhc_start_command(hp, &cmd);
   1480 		if (error)
   1481 			break;
   1482 
   1483 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1484 		    SDHC_TUNING_TIMEOUT, false)) {
   1485 			break;
   1486 		}
   1487 
   1488 		delay(1000);
   1489 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1490 
   1491 	/* disable buffer read ready interrupt */
   1492 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1493 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1494 
   1495 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1496 		HCLR2(hp, SDHC_HOST_CTL2,
   1497 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1498 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1499 		aprint_error_dev(hp->sc->sc_dev,
   1500 		    "tuning did not complete, using fixed sampling clock\n");
   1501 		return 0;		/* tuning did not complete */
   1502 	}
   1503 
   1504 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1505 		HCLR2(hp, SDHC_HOST_CTL2,
   1506 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1507 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1508 		aprint_error_dev(hp->sc->sc_dev,
   1509 		    "tuning failed, using fixed sampling clock\n");
   1510 		return 0;		/* tuning failed */
   1511 	}
   1512 
   1513 	if (hp->tuning_timer_count) {
   1514 		callout_schedule(&hp->tuning_timer,
   1515 		    hz * hp->tuning_timer_count);
   1516 	}
   1517 
   1518 	return 0;		/* tuning completed */
   1519 }
   1520 
   1521 static int
   1522 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1523 {
   1524 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1525 	int error;
   1526 
   1527 	mutex_enter(&hp->intr_lock);
   1528 	error = sdhc_execute_tuning1(hp, timing);
   1529 	mutex_exit(&hp->intr_lock);
   1530 	return error;
   1531 }
   1532 
   1533 static void
   1534 sdhc_tuning_timer(void *arg)
   1535 {
   1536 	struct sdhc_host *hp = arg;
   1537 
   1538 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1539 }
   1540 
   1541 static void
   1542 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1543 {
   1544 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1545 	struct sdhc_softc *sc = hp->sc;
   1546 
   1547 	if (sc->sc_vendor_hw_reset != NULL)
   1548 		sc->sc_vendor_hw_reset(sc, hp);
   1549 }
   1550 
   1551 static int
   1552 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1553 {
   1554 	uint32_t state;
   1555 	int timeout;
   1556 
   1557 	for (timeout = 100000; timeout > 0; timeout--) {
   1558 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1559 			return 0;
   1560 		sdmmc_delay(10);
   1561 	}
   1562 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1563 	    mask, value, state);
   1564 	return ETIMEDOUT;
   1565 }
   1566 
   1567 static void
   1568 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1569 {
   1570 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1571 	int error;
   1572 	bool probing;
   1573 
   1574 	mutex_enter(&hp->intr_lock);
   1575 
   1576 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1577 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1578 	}
   1579 
   1580 	if (cmd->c_data &&
   1581 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1582 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1583 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1584 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1585 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1586 		} else {
   1587 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1588 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1589 		}
   1590 	}
   1591 
   1592 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1593 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1594 		if (cmd->c_data != NULL) {
   1595 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1596 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1597 		} else {
   1598 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1599 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1600 		}
   1601 	}
   1602 
   1603 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
   1604 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1605 			SET(cmd->c_flags, SCF_RSP_BSY);
   1606 	}
   1607 
   1608 	/*
   1609 	 * Start the MMC command, or mark `cmd' as failed and return.
   1610 	 */
   1611 	error = sdhc_start_command(hp, cmd);
   1612 	if (error) {
   1613 		cmd->c_error = error;
   1614 		goto out;
   1615 	}
   1616 
   1617 	/*
   1618 	 * Wait until the command phase is done, or until the command
   1619 	 * is marked done for any other reason.
   1620 	 */
   1621 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1622 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
   1623 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1624 		sdmmc_delay(50);
   1625 		cmd->c_error = ETIMEDOUT;
   1626 		goto out;
   1627 	}
   1628 
   1629 	/*
   1630 	 * The host controller removes bits [0:7] from the response
   1631 	 * data (CRC) and we pass the data up unchanged to the bus
   1632 	 * driver (without padding).
   1633 	 */
   1634 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1635 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1636 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1637 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1638 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1639 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1640 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1641 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1642 				    (cmd->c_resp[1] << 24);
   1643 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1644 				    (cmd->c_resp[2] << 24);
   1645 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1646 				    (cmd->c_resp[3] << 24);
   1647 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1648 			}
   1649 		}
   1650 	}
   1651 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1652 
   1653 	/*
   1654 	 * If the command has data to transfer in any direction,
   1655 	 * execute the transfer now.
   1656 	 */
   1657 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1658 		sdhc_transfer_data(hp, cmd);
   1659 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1660 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1661 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1662 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1663 			    HDEVNAME(hp)));
   1664 			cmd->c_error = ETIMEDOUT;
   1665 			goto out;
   1666 		}
   1667 	}
   1668 
   1669 out:
   1670 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1671 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1672 		/* Turn off the LED. */
   1673 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1674 	}
   1675 	SET(cmd->c_flags, SCF_ITSDONE);
   1676 
   1677 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1678 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1679 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1680 
   1681 	mutex_exit(&hp->intr_lock);
   1682 
   1683 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1684 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1685 	    cmd->c_flags, cmd->c_error));
   1686 }
   1687 
   1688 static int
   1689 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1690 {
   1691 	struct sdhc_softc * const sc = hp->sc;
   1692 	uint16_t blksize = 0;
   1693 	uint16_t blkcount = 0;
   1694 	uint16_t mode;
   1695 	uint16_t command;
   1696 	uint32_t pmask;
   1697 	int error;
   1698 
   1699 	KASSERT(mutex_owned(&hp->intr_lock));
   1700 
   1701 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1702 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1703 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1704 
   1705 	/*
   1706 	 * The maximum block length for commands should be the minimum
   1707 	 * of the host buffer size and the card buffer size. (1.7.2)
   1708 	 */
   1709 
   1710 	/* Fragment the data into proper blocks. */
   1711 	if (cmd->c_datalen > 0) {
   1712 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1713 		blkcount = cmd->c_datalen / blksize;
   1714 		if (cmd->c_datalen % blksize > 0) {
   1715 			/* XXX: Split this command. (1.7.4) */
   1716 			aprint_error_dev(sc->sc_dev,
   1717 			    "data not a multiple of %u bytes\n", blksize);
   1718 			return EINVAL;
   1719 		}
   1720 	}
   1721 
   1722 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1723 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1724 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1725 		return EINVAL;
   1726 	}
   1727 
   1728 	/* Prepare transfer mode register value. (2.2.5) */
   1729 	mode = 0;
   1730 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1731 		mode |= SDHC_READ_MODE;
   1732 	if (blkcount > 0) {
   1733 		mode |= SDHC_BLOCK_COUNT_ENABLE;
   1734 		if (blkcount > 1) {
   1735 			mode |= SDHC_MULTI_BLOCK_MODE;
   1736 			if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
   1737 			    && !ISSET(cmd->c_flags, SCF_NO_STOP))
   1738 				mode |= SDHC_AUTO_CMD12_ENABLE;
   1739 		}
   1740 	}
   1741 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1742 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1743 		mode |= SDHC_DMA_ENABLE;
   1744 	}
   1745 
   1746 	/*
   1747 	 * Prepare command register value. (2.2.6)
   1748 	 */
   1749 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1750 
   1751 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1752 		command |= SDHC_CRC_CHECK_ENABLE;
   1753 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1754 		command |= SDHC_INDEX_CHECK_ENABLE;
   1755 	if (cmd->c_datalen > 0)
   1756 		command |= SDHC_DATA_PRESENT_SELECT;
   1757 
   1758 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1759 		command |= SDHC_NO_RESPONSE;
   1760 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1761 		command |= SDHC_RESP_LEN_136;
   1762 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1763 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1764 	else
   1765 		command |= SDHC_RESP_LEN_48;
   1766 
   1767 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1768 	pmask = SDHC_CMD_INHIBIT_CMD;
   1769 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1770 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1771 	error = sdhc_wait_state(hp, pmask, 0);
   1772 	if (error) {
   1773 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1774 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1775 		return error;
   1776 	}
   1777 
   1778 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1779 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1780 
   1781 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1782 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1783 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1784 	}
   1785 
   1786 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1787 		/* Alert the user not to remove the card. */
   1788 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1789 	}
   1790 
   1791 	/* Set DMA start address. */
   1792 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1793 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1794 			bus_addr_t paddr =
   1795 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1796 			uint16_t len =
   1797 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1798 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1799 			uint16_t attr =
   1800 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1801 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1802 				attr |= SDHC_ADMA2_END;
   1803 			}
   1804 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1805 				struct sdhc_adma2_descriptor32 *desc =
   1806 				    hp->adma2;
   1807 				desc[seg].attribute = htole16(attr);
   1808 				desc[seg].length = htole16(len);
   1809 				desc[seg].address = htole32(paddr);
   1810 			} else {
   1811 				struct sdhc_adma2_descriptor64 *desc =
   1812 				    hp->adma2;
   1813 				desc[seg].attribute = htole16(attr);
   1814 				desc[seg].length = htole16(len);
   1815 				desc[seg].address = htole32(paddr & 0xffffffff);
   1816 				desc[seg].address_hi = htole32(
   1817 				    (uint64_t)paddr >> 32);
   1818 			}
   1819 		}
   1820 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1821 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1822 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1823 		} else {
   1824 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1825 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1826 		}
   1827 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1828 		    BUS_DMASYNC_PREWRITE);
   1829 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1830 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1831 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1832 		} else {
   1833 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1834 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1835 		}
   1836 
   1837 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1838 
   1839 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1840 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1841 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1842 			    (uint64_t)desc_addr >> 32);
   1843 		}
   1844 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1845 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1846 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1847 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1848 		}
   1849 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1850 	}
   1851 
   1852 	/*
   1853 	 * Start a CPU data transfer.  Writing to the high order byte
   1854 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1855 	 */
   1856 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1857 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1858 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1859 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1860 			/* mode bits is in MIX_CTRL register on uSDHC */
   1861 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1862 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
   1863 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1864 				command |= SDHC_COMMAND_TYPE_ABORT;
   1865 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1866 		} else {
   1867 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1868 		}
   1869 	} else {
   1870 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1871 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1872 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1873 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1874 		HWRITE2(hp, SDHC_COMMAND, command);
   1875 	}
   1876 
   1877 	return 0;
   1878 }
   1879 
   1880 static void
   1881 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1882 {
   1883 	struct sdhc_softc *sc = hp->sc;
   1884 	int error;
   1885 
   1886 	KASSERT(mutex_owned(&hp->intr_lock));
   1887 
   1888 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1889 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1890 
   1891 #ifdef SDHC_DEBUG
   1892 	/* XXX I forgot why I wanted to know when this happens :-( */
   1893 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1894 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1895 		aprint_error_dev(hp->sc->sc_dev,
   1896 		    "CMD52/53 error response flags %#x\n",
   1897 		    MMC_R1(cmd->c_resp) & 0xff00);
   1898 	}
   1899 #endif
   1900 
   1901 	if (cmd->c_dmamap != NULL) {
   1902 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1903 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1904 			if (error == 0 && !sdhc_wait_intr(hp,
   1905 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1906 				DPRINTF(1,("%s: timeout\n", __func__));
   1907 				error = ETIMEDOUT;
   1908 			}
   1909 		} else {
   1910 			error = sdhc_transfer_data_dma(hp, cmd);
   1911 		}
   1912 	} else
   1913 		error = sdhc_transfer_data_pio(hp, cmd);
   1914 	if (error)
   1915 		cmd->c_error = error;
   1916 	SET(cmd->c_flags, SCF_ITSDONE);
   1917 
   1918 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1919 	    HDEVNAME(hp), cmd->c_error));
   1920 }
   1921 
   1922 static int
   1923 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1924 {
   1925 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1926 	bus_addr_t posaddr;
   1927 	bus_addr_t segaddr;
   1928 	bus_size_t seglen;
   1929 	u_int seg = 0;
   1930 	int error = 0;
   1931 	int status;
   1932 
   1933 	KASSERT(mutex_owned(&hp->intr_lock));
   1934 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1935 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1936 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1937 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1938 
   1939 	for (;;) {
   1940 		status = sdhc_wait_intr(hp,
   1941 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1942 		    SDHC_DMA_TIMEOUT, false);
   1943 
   1944 		if (status & SDHC_TRANSFER_COMPLETE) {
   1945 			break;
   1946 		}
   1947 		if (!status) {
   1948 			DPRINTF(1,("%s: timeout\n", __func__));
   1949 			error = ETIMEDOUT;
   1950 			break;
   1951 		}
   1952 
   1953 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1954 			continue;
   1955 		}
   1956 
   1957 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1958 			continue;
   1959 		}
   1960 
   1961 		/* DMA Interrupt (boundary crossing) */
   1962 
   1963 		segaddr = dm_segs[seg].ds_addr;
   1964 		seglen = dm_segs[seg].ds_len;
   1965 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1966 
   1967 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1968 			continue;
   1969 		}
   1970 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1971 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1972 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1973 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1974 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1975 	}
   1976 
   1977 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1978 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1979 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1980 	}
   1981 
   1982 	return error;
   1983 }
   1984 
   1985 static int
   1986 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1987 {
   1988 	uint8_t *data = cmd->c_data;
   1989 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1990 	u_int len, datalen;
   1991 	u_int imask;
   1992 	u_int pmask;
   1993 	int error = 0;
   1994 
   1995 	KASSERT(mutex_owned(&hp->intr_lock));
   1996 
   1997 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1998 		imask = SDHC_BUFFER_READ_READY;
   1999 		pmask = SDHC_BUFFER_READ_ENABLE;
   2000 		if (ISSET(hp->sc->sc_flags,
   2001 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2002 			pio_func = esdhc_read_data_pio;
   2003 		} else {
   2004 			pio_func = sdhc_read_data_pio;
   2005 		}
   2006 	} else {
   2007 		imask = SDHC_BUFFER_WRITE_READY;
   2008 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   2009 		if (ISSET(hp->sc->sc_flags,
   2010 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2011 			pio_func = esdhc_write_data_pio;
   2012 		} else {
   2013 			pio_func = sdhc_write_data_pio;
   2014 		}
   2015 	}
   2016 	datalen = cmd->c_datalen;
   2017 
   2018 	KASSERT(mutex_owned(&hp->intr_lock));
   2019 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   2020 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   2021 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   2022 
   2023 	while (datalen > 0) {
   2024 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   2025 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2026 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2027 			} else {
   2028 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2029 			}
   2030 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   2031 				DPRINTF(1,("%s: timeout\n", __func__));
   2032 				error = ETIMEDOUT;
   2033 				break;
   2034 			}
   2035 
   2036 			error = sdhc_wait_state(hp, pmask, pmask);
   2037 			if (error)
   2038 				break;
   2039 		}
   2040 
   2041 		len = MIN(datalen, cmd->c_blklen);
   2042 		(*pio_func)(hp, data, len);
   2043 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2044 		    HDEVNAME(hp), len, data));
   2045 
   2046 		data += len;
   2047 		datalen -= len;
   2048 	}
   2049 
   2050 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2051 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2052 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2053 		error = ETIMEDOUT;
   2054 	}
   2055 
   2056 	return error;
   2057 }
   2058 
   2059 static void
   2060 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2061 {
   2062 
   2063 	if (((__uintptr_t)data & 3) == 0) {
   2064 		while (datalen > 3) {
   2065 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2066 			data += 4;
   2067 			datalen -= 4;
   2068 		}
   2069 		if (datalen > 1) {
   2070 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2071 			data += 2;
   2072 			datalen -= 2;
   2073 		}
   2074 		if (datalen > 0) {
   2075 			*data = HREAD1(hp, SDHC_DATA);
   2076 			data += 1;
   2077 			datalen -= 1;
   2078 		}
   2079 	} else if (((__uintptr_t)data & 1) == 0) {
   2080 		while (datalen > 1) {
   2081 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2082 			data += 2;
   2083 			datalen -= 2;
   2084 		}
   2085 		if (datalen > 0) {
   2086 			*data = HREAD1(hp, SDHC_DATA);
   2087 			data += 1;
   2088 			datalen -= 1;
   2089 		}
   2090 	} else {
   2091 		while (datalen > 0) {
   2092 			*data = HREAD1(hp, SDHC_DATA);
   2093 			data += 1;
   2094 			datalen -= 1;
   2095 		}
   2096 	}
   2097 }
   2098 
   2099 static void
   2100 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2101 {
   2102 
   2103 	if (((__uintptr_t)data & 3) == 0) {
   2104 		while (datalen > 3) {
   2105 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2106 			data += 4;
   2107 			datalen -= 4;
   2108 		}
   2109 		if (datalen > 1) {
   2110 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2111 			data += 2;
   2112 			datalen -= 2;
   2113 		}
   2114 		if (datalen > 0) {
   2115 			HWRITE1(hp, SDHC_DATA, *data);
   2116 			data += 1;
   2117 			datalen -= 1;
   2118 		}
   2119 	} else if (((__uintptr_t)data & 1) == 0) {
   2120 		while (datalen > 1) {
   2121 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2122 			data += 2;
   2123 			datalen -= 2;
   2124 		}
   2125 		if (datalen > 0) {
   2126 			HWRITE1(hp, SDHC_DATA, *data);
   2127 			data += 1;
   2128 			datalen -= 1;
   2129 		}
   2130 	} else {
   2131 		while (datalen > 0) {
   2132 			HWRITE1(hp, SDHC_DATA, *data);
   2133 			data += 1;
   2134 			datalen -= 1;
   2135 		}
   2136 	}
   2137 }
   2138 
   2139 static void
   2140 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2141 {
   2142 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2143 	uint32_t v;
   2144 
   2145 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2146 	size_t count = 0;
   2147 
   2148 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2149 		if (count == 0) {
   2150 			/*
   2151 			 * If we've drained "watermark" words, we need to wait
   2152 			 * a little bit so the read FIFO can refill.
   2153 			 */
   2154 			sdmmc_delay(10);
   2155 			count = watermark;
   2156 		}
   2157 		v = HREAD4(hp, SDHC_DATA);
   2158 		v = le32toh(v);
   2159 		*(uint32_t *)data = v;
   2160 		data += 4;
   2161 		datalen -= 4;
   2162 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2163 		count--;
   2164 	}
   2165 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2166 		if (count == 0) {
   2167 			sdmmc_delay(10);
   2168 		}
   2169 		v = HREAD4(hp, SDHC_DATA);
   2170 		v = le32toh(v);
   2171 		do {
   2172 			*data++ = v;
   2173 			v >>= 8;
   2174 		} while (--datalen > 0);
   2175 	}
   2176 }
   2177 
   2178 static void
   2179 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2180 {
   2181 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2182 	uint32_t v;
   2183 
   2184 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2185 	size_t count = watermark;
   2186 
   2187 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2188 		if (count == 0) {
   2189 			sdmmc_delay(10);
   2190 			count = watermark;
   2191 		}
   2192 		v = *(uint32_t *)data;
   2193 		v = htole32(v);
   2194 		HWRITE4(hp, SDHC_DATA, v);
   2195 		data += 4;
   2196 		datalen -= 4;
   2197 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2198 		count--;
   2199 	}
   2200 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2201 		if (count == 0) {
   2202 			sdmmc_delay(10);
   2203 		}
   2204 		v = *(uint32_t *)data;
   2205 		v = htole32(v);
   2206 		HWRITE4(hp, SDHC_DATA, v);
   2207 	}
   2208 }
   2209 
   2210 /* Prepare for another command. */
   2211 static int
   2212 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2213 {
   2214 	int timo;
   2215 
   2216 	KASSERT(mutex_owned(&hp->intr_lock));
   2217 
   2218 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2219 
   2220 	/* Request the reset.  */
   2221 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2222 
   2223 	/*
   2224 	 * If necessary, wait for the controller to set the bits to
   2225 	 * acknowledge the reset.
   2226 	 */
   2227 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2228 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2229 		for (timo = 10000; timo > 0; timo--) {
   2230 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2231 				break;
   2232 			/* Short delay because I worry we may miss it...  */
   2233 			sdmmc_delay(1);
   2234 		}
   2235 		if (timo == 0) {
   2236 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2237 			return ETIMEDOUT;
   2238 		}
   2239 	}
   2240 
   2241 	/*
   2242 	 * Wait for the controller to clear the bits to indicate that
   2243 	 * the reset has completed.
   2244 	 */
   2245 	for (timo = 10; timo > 0; timo--) {
   2246 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2247 			break;
   2248 		sdmmc_delay(10000);
   2249 	}
   2250 	if (timo == 0) {
   2251 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2252 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2253 		return ETIMEDOUT;
   2254 	}
   2255 
   2256 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2257 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2258 	}
   2259 
   2260 	return 0;
   2261 }
   2262 
   2263 static int
   2264 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2265 {
   2266 	int status, error, nointr;
   2267 
   2268 	KASSERT(mutex_owned(&hp->intr_lock));
   2269 
   2270 	mask |= SDHC_ERROR_INTERRUPT;
   2271 
   2272 	nointr = 0;
   2273 	status = hp->intr_status & mask;
   2274 	while (status == 0) {
   2275 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2276 		    == EWOULDBLOCK) {
   2277 			nointr = 1;
   2278 			break;
   2279 		}
   2280 		status = hp->intr_status & mask;
   2281 	}
   2282 	error = hp->intr_error_status;
   2283 
   2284 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2285 	    error));
   2286 
   2287 	hp->intr_status &= ~status;
   2288 	hp->intr_error_status &= ~error;
   2289 
   2290 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2291 		if (ISSET(error, SDHC_DMA_ERROR))
   2292 			device_printf(hp->sc->sc_dev,"dma error\n");
   2293 		if (ISSET(error, SDHC_ADMA_ERROR))
   2294 			device_printf(hp->sc->sc_dev,"adma error\n");
   2295 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2296 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2297 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2298 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2299 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2300 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2301 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2302 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2303 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2304 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2305 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2306 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2307 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2308 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2309 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2310 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2311 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2312 			if (!probing)
   2313 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2314 #ifdef SDHC_DEBUG
   2315 			else if (sdhcdebug > 0)
   2316 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2317 #endif
   2318 		}
   2319 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2320 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2321 				(error & ~SDHC_EINTR_STATUS_MASK));
   2322 		if (error == 0)
   2323 			device_printf(hp->sc->sc_dev,"no error\n");
   2324 
   2325 		/* Command timeout has higher priority than command complete. */
   2326 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2327 			CLR(status, SDHC_COMMAND_COMPLETE);
   2328 
   2329 		/* Transfer complete has higher priority than data timeout. */
   2330 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2331 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2332 	}
   2333 
   2334 	if (nointr ||
   2335 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2336 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2337 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2338 		hp->intr_error_status = 0;
   2339 		status = 0;
   2340 	}
   2341 
   2342 	return status;
   2343 }
   2344 
   2345 /*
   2346  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2347  */
   2348 int
   2349 sdhc_intr(void *arg)
   2350 {
   2351 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2352 	struct sdhc_host *hp;
   2353 	int done = 0;
   2354 	uint16_t status;
   2355 	uint16_t error;
   2356 
   2357 	/* We got an interrupt, but we don't know from which slot. */
   2358 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2359 		hp = sc->sc_host[host];
   2360 		if (hp == NULL)
   2361 			continue;
   2362 
   2363 		mutex_enter(&hp->intr_lock);
   2364 
   2365 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2366 			/* Find out which interrupts are pending. */
   2367 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2368 			status = xstatus;
   2369 			error = xstatus >> 16;
   2370 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2371 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2372 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2373 				/* read again due to uSDHC errata */
   2374 				status = xstatus = HREAD4(hp,
   2375 				    SDHC_NINTR_STATUS);
   2376 				error = xstatus >> 16;
   2377 			}
   2378 			if (ISSET(sc->sc_flags,
   2379 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2380 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2381 					SET(status, SDHC_ERROR_INTERRUPT);
   2382 			}
   2383 			if (error)
   2384 				xstatus |= SDHC_ERROR_INTERRUPT;
   2385 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2386 				goto next_port; /* no interrupt for us */
   2387 			/* Acknowledge the interrupts we are about to handle. */
   2388 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2389 		} else {
   2390 			/* Find out which interrupts are pending. */
   2391 			error = 0;
   2392 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2393 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2394 				goto next_port; /* no interrupt for us */
   2395 			/* Acknowledge the interrupts we are about to handle. */
   2396 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2397 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2398 				/* Acknowledge error interrupts. */
   2399 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2400 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2401 			}
   2402 		}
   2403 
   2404 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2405 		    status, error));
   2406 
   2407 		/* Claim this interrupt. */
   2408 		done = 1;
   2409 
   2410 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2411 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2412 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2413 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2414 			    adma_err);
   2415 		}
   2416 
   2417 		/*
   2418 		 * Wake up the sdmmc event thread to scan for cards.
   2419 		 */
   2420 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2421 			if (hp->sdmmc != NULL) {
   2422 				sdmmc_needs_discover(hp->sdmmc);
   2423 			}
   2424 			if (ISSET(sc->sc_flags,
   2425 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2426 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2427 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2428 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2429 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2430 			}
   2431 		}
   2432 
   2433 		/*
   2434 		 * Schedule re-tuning process (UHS).
   2435 		 */
   2436 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2437 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2438 		}
   2439 
   2440 		/*
   2441 		 * Wake up the blocking process to service command
   2442 		 * related interrupt(s).
   2443 		 */
   2444 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2445 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2446 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2447 			hp->intr_error_status |= error;
   2448 			hp->intr_status |= status;
   2449 			if (ISSET(sc->sc_flags,
   2450 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2451 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2452 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2453 			}
   2454 			cv_broadcast(&hp->intr_cv);
   2455 		}
   2456 
   2457 		/*
   2458 		 * Service SD card interrupts.
   2459 		 */
   2460 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2461 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2462 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2463 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2464 			sdmmc_card_intr(hp->sdmmc);
   2465 		}
   2466 next_port:
   2467 		mutex_exit(&hp->intr_lock);
   2468 	}
   2469 
   2470 	return done;
   2471 }
   2472 
   2473 kmutex_t *
   2474 sdhc_host_lock(struct sdhc_host *hp)
   2475 {
   2476 	return &hp->intr_lock;
   2477 }
   2478 
   2479 uint8_t
   2480 sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2481 {
   2482 	return HREAD1(hp, reg);
   2483 }
   2484 
   2485 uint16_t
   2486 sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2487 {
   2488 	return HREAD2(hp, reg);
   2489 }
   2490 
   2491 uint32_t
   2492 sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2493 {
   2494 	return HREAD4(hp, reg);
   2495 }
   2496 
   2497 void
   2498 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2499 {
   2500 	HWRITE1(hp, reg, val);
   2501 }
   2502 
   2503 void
   2504 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2505 {
   2506 	HWRITE2(hp, reg, val);
   2507 }
   2508 
   2509 void
   2510 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2511 {
   2512 	HWRITE4(hp, reg, val);
   2513 }
   2514 
   2515 #ifdef SDHC_DEBUG
   2516 void
   2517 sdhc_dump_regs(struct sdhc_host *hp)
   2518 {
   2519 
   2520 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2521 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2522 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2523 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2524 		    HREAD1(hp, SDHC_POWER_CTL));
   2525 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2526 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2527 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2528 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2529 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2530 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2531 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2532 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2533 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2534 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2535 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2536 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2537 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2538 	    HREAD4(hp, SDHC_CAPABILITIES));
   2539 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2540 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2541 }
   2542 #endif
   2543