sdhc.c revision 1.111 1 /* $NetBSD: sdhc.c,v 1.111 2021/08/07 16:19:16 thorpej Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.111 2021/08/07 16:19:16 thorpej Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39 #include <sys/atomic.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT (hz*3)
59 #define SDHC_TUNING_TIMEOUT hz
60
61 struct sdhc_host {
62 struct sdhc_softc *sc; /* host controller device */
63
64 bus_space_tag_t iot; /* host register set tag */
65 bus_space_handle_t ioh; /* host register set handle */
66 bus_size_t ios; /* host register space size */
67 bus_dma_tag_t dmat; /* host DMA tag */
68
69 device_t sdmmc; /* generic SD/MMC device */
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 kmutex_t intr_lock;
80 kcondvar_t intr_cv;
81
82 callout_t tuning_timer;
83 int tuning_timing;
84 u_int tuning_timer_count;
85 u_int tuning_timer_pending;
86
87 int specver; /* spec. version */
88
89 uint32_t flags; /* flags for this host */
90 #define SHF_USE_DMA 0x0001
91 #define SHF_USE_4BIT_MODE 0x0002
92 #define SHF_USE_8BIT_MODE 0x0004
93 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
94 #define SHF_USE_ADMA2_32 0x0010
95 #define SHF_USE_ADMA2_64 0x0020
96 #define SHF_USE_ADMA2_MASK 0x0030
97
98 bus_dmamap_t adma_map;
99 bus_dma_segment_t adma_segs[1];
100 void *adma2;
101
102 uint8_t vdd; /* last vdd setting */
103 };
104
105 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
106
107 static uint8_t
108 hread1(struct sdhc_host *hp, bus_size_t reg)
109 {
110
111 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
112 return bus_space_read_1(hp->iot, hp->ioh, reg);
113 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
114 }
115
116 static uint16_t
117 hread2(struct sdhc_host *hp, bus_size_t reg)
118 {
119
120 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
121 return bus_space_read_2(hp->iot, hp->ioh, reg);
122 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
123 }
124
125 #define HREAD1(hp, reg) hread1(hp, reg)
126 #define HREAD2(hp, reg) hread2(hp, reg)
127 #define HREAD4(hp, reg) \
128 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
129
130
131 static void
132 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
133 {
134
135 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
136 bus_space_write_1(hp->iot, hp->ioh, o, val);
137 } else {
138 const size_t shift = 8 * (o & 3);
139 o &= -4;
140 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
141 tmp = (val << shift) | (tmp & ~(0xffU << shift));
142 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
143 }
144 }
145
146 static void
147 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
148 {
149
150 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
151 bus_space_write_2(hp->iot, hp->ioh, o, val);
152 } else {
153 const size_t shift = 8 * (o & 2);
154 o &= -4;
155 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
156 tmp = (val << shift) | (tmp & ~(0xffffU << shift));
157 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
158 }
159 }
160
161 static void
162 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
163 {
164
165 bus_space_write_4(hp->iot, hp->ioh, o, val);
166 }
167
168 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
169 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
170 #define HWRITE4(hp, reg, val) hwrite4(hp, reg, val)
171
172 #define HCLR1(hp, reg, bits) \
173 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
174 #define HCLR2(hp, reg, bits) \
175 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
176 #define HCLR4(hp, reg, bits) \
177 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
178 #define HSET1(hp, reg, bits) \
179 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
180 #define HSET2(hp, reg, bits) \
181 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
182 #define HSET4(hp, reg, bits) \
183 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
184
185 static int sdhc_host_reset(sdmmc_chipset_handle_t);
186 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
187 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
188 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
189 static int sdhc_card_detect(sdmmc_chipset_handle_t);
190 static int sdhc_write_protect(sdmmc_chipset_handle_t);
191 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
192 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
193 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
194 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
195 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
196 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
197 static void sdhc_exec_command(sdmmc_chipset_handle_t,
198 struct sdmmc_command *);
199 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
200 static int sdhc_execute_tuning1(struct sdhc_host *, int);
201 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
202 static void sdhc_tuning_timer(void *);
203 static void sdhc_hw_reset(sdmmc_chipset_handle_t);
204 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
205 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
206 static int sdhc_soft_reset(struct sdhc_host *, int);
207 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool);
208 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
209 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
210 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
211 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
212 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
213 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
214 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
215
216 static struct sdmmc_chip_functions sdhc_functions = {
217 /* host controller reset */
218 .host_reset = sdhc_host_reset,
219
220 /* host controller capabilities */
221 .host_ocr = sdhc_host_ocr,
222 .host_maxblklen = sdhc_host_maxblklen,
223
224 /* card detection */
225 .card_detect = sdhc_card_detect,
226
227 /* write protect */
228 .write_protect = sdhc_write_protect,
229
230 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
231 .bus_power = sdhc_bus_power,
232 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
233 .bus_width = sdhc_bus_width,
234 .bus_rod = sdhc_bus_rod,
235
236 /* command execution */
237 .exec_command = sdhc_exec_command,
238
239 /* card interrupt */
240 .card_enable_intr = sdhc_card_enable_intr,
241 .card_intr_ack = sdhc_card_intr_ack,
242
243 /* UHS functions */
244 .signal_voltage = sdhc_signal_voltage,
245 .bus_clock_ddr = sdhc_bus_clock_ddr,
246 .execute_tuning = sdhc_execute_tuning,
247 .hw_reset = sdhc_hw_reset,
248 };
249
250 static int
251 sdhc_cfprint(void *aux, const char *pnp)
252 {
253 const struct sdmmcbus_attach_args * const saa = aux;
254 const struct sdhc_host * const hp = saa->saa_sch;
255
256 if (pnp) {
257 aprint_normal("sdmmc at %s", pnp);
258 }
259 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
260 if (hp->sc->sc_host[host] == hp) {
261 aprint_normal(" slot %zu", host);
262 }
263 }
264
265 return UNCONF;
266 }
267
268 /*
269 * Called by attachment driver. For each SD card slot there is one SD
270 * host controller standard register set. (1.3)
271 */
272 int
273 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
274 bus_space_handle_t ioh, bus_size_t iosize)
275 {
276 struct sdmmcbus_attach_args saa;
277 struct sdhc_host *hp;
278 uint32_t caps, caps2;
279 uint16_t sdhcver;
280 int error;
281
282 /* Allocate one more host structure. */
283 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
284 if (hp == NULL) {
285 aprint_error_dev(sc->sc_dev,
286 "couldn't alloc memory (sdhc host)\n");
287 goto err1;
288 }
289 sc->sc_host[sc->sc_nhosts++] = hp;
290
291 /* Fill in the new host structure. */
292 hp->sc = sc;
293 hp->iot = iot;
294 hp->ioh = ioh;
295 hp->ios = iosize;
296 hp->dmat = sc->sc_dmat;
297
298 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
299 cv_init(&hp->intr_cv, "sdhcintr");
300 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
301 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
302
303 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
304 sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
305 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
306 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
307 } else if (iosize <= SDHC_HOST_CTL_VERSION) {
308 sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
309 } else {
310 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
311 }
312 aprint_normal_dev(sc->sc_dev, "SDHC ");
313 hp->specver = SDHC_SPEC_VERSION(sdhcver);
314 switch (SDHC_SPEC_VERSION(sdhcver)) {
315 case SDHC_SPEC_VERS_100:
316 aprint_normal("1.0");
317 break;
318 case SDHC_SPEC_VERS_200:
319 aprint_normal("2.0");
320 break;
321 case SDHC_SPEC_VERS_300:
322 aprint_normal("3.0");
323 break;
324 case SDHC_SPEC_VERS_400:
325 aprint_normal("4.0");
326 break;
327 case SDHC_SPEC_VERS_410:
328 aprint_normal("4.1");
329 break;
330 case SDHC_SPEC_VERS_420:
331 aprint_normal("4.2");
332 break;
333 case SDHC_SPEC_NOVERS:
334 hp->specver = -1;
335 aprint_normal("NO-VERS");
336 break;
337 default:
338 aprint_normal("unknown version(0x%x)",
339 SDHC_SPEC_VERSION(sdhcver));
340 break;
341 }
342 if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
343 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
344
345 /*
346 * Reset the host controller and enable interrupts.
347 */
348 (void)sdhc_host_reset(hp);
349
350 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
351 /* init uSDHC registers */
352 HWRITE4(hp, SDHC_MMC_BOOT, 0);
353 HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
354 SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
355 HWRITE4(hp, SDHC_WATERMARK_LEVEL,
356 (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
357 (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
358 (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
359 (0x40 << SDHC_WATERMARK_READ_SHIFT));
360 HSET4(hp, SDHC_VEND_SPEC,
361 SDHC_VEND_SPEC_MBO |
362 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
363 SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
364 SDHC_VEND_SPEC_HCLK_SOFT_EN |
365 SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
366 SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
367 SDHC_VEND_SPEC_FRC_SDCLK_ON);
368 }
369
370 /* Determine host capabilities. */
371 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
372 caps = sc->sc_caps;
373 caps2 = sc->sc_caps2;
374 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
375 /* uSDHC capability register is little bit different */
376 caps = HREAD4(hp, SDHC_CAPABILITIES);
377 caps |= SDHC_8BIT_SUPP;
378 if (caps & SDHC_ADMA1_SUPP)
379 caps |= SDHC_ADMA2_SUPP;
380 sc->sc_caps = caps;
381 /* uSDHC has no SDHC_CAPABILITIES2 register */
382 caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
383 } else {
384 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
385 if (hp->specver >= SDHC_SPEC_VERS_300) {
386 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
387 } else {
388 caps2 = sc->sc_caps2 = 0;
389 }
390 }
391
392 aprint_verbose(", caps <%08x/%08x>", caps, caps2);
393
394 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
395 SDHC_RETUNING_MODES_MASK;
396 if (retuning_mode == SDHC_RETUNING_MODE_1) {
397 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
398 SDHC_TIMER_COUNT_MASK;
399 if (hp->tuning_timer_count == 0xf)
400 hp->tuning_timer_count = 0;
401 if (hp->tuning_timer_count)
402 hp->tuning_timer_count =
403 1 << (hp->tuning_timer_count - 1);
404 }
405
406 /*
407 * Use DMA if the host system and the controller support it.
408 * Suports integrated or external DMA egine, with or without
409 * SDHC_DMA_ENABLE in the command.
410 */
411 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
412 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
413 ISSET(caps, SDHC_DMA_SUPPORT)))) {
414 SET(hp->flags, SHF_USE_DMA);
415
416 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
417 ISSET(caps, SDHC_ADMA2_SUPP)) {
418 SET(hp->flags, SHF_MODE_DMAEN);
419 /*
420 * 64-bit mode was present in the 2.00 spec, removed
421 * from 3.00, and re-added in 4.00 with a different
422 * descriptor layout. We only support 2.00 and 3.00
423 * descriptors for now.
424 */
425 if (hp->specver == SDHC_SPEC_VERS_200 &&
426 ISSET(caps, SDHC_64BIT_SYS_BUS)) {
427 SET(hp->flags, SHF_USE_ADMA2_64);
428 aprint_normal(", 64-bit ADMA2");
429 } else {
430 SET(hp->flags, SHF_USE_ADMA2_32);
431 aprint_normal(", 32-bit ADMA2");
432 }
433 } else {
434 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
435 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
436 SET(hp->flags, SHF_MODE_DMAEN);
437 if (sc->sc_vendor_transfer_data_dma) {
438 aprint_normal(", platform DMA");
439 } else {
440 aprint_normal(", SDMA");
441 }
442 }
443 } else {
444 aprint_normal(", PIO");
445 }
446
447 /*
448 * Determine the base clock frequency. (2.2.24)
449 */
450 if (hp->specver >= SDHC_SPEC_VERS_300) {
451 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
452 } else {
453 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
454 }
455 if (hp->clkbase == 0 ||
456 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
457 if (sc->sc_clkbase == 0) {
458 /* The attachment driver must tell us. */
459 aprint_error_dev(sc->sc_dev,
460 "unknown base clock frequency\n");
461 goto err;
462 }
463 hp->clkbase = sc->sc_clkbase;
464 }
465 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
466 /* SDHC 1.0 supports only 10-63 MHz. */
467 aprint_error_dev(sc->sc_dev,
468 "base clock frequency out of range: %u MHz\n",
469 hp->clkbase / 1000);
470 goto err;
471 }
472 aprint_normal(", %u kHz", hp->clkbase);
473
474 /*
475 * XXX Set the data timeout counter value according to
476 * capabilities. (2.2.15)
477 */
478 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
479 #if 1
480 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
481 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
482 #endif
483
484 if (ISSET(caps, SDHC_EMBEDDED_SLOT))
485 aprint_normal(", embedded slot");
486
487 /*
488 * Determine SD bus voltage levels supported by the controller.
489 */
490 aprint_normal(",");
491 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
492 SET(hp->ocr, MMC_OCR_HCS);
493 aprint_normal(" HS");
494 }
495 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
496 if (ISSET(caps2, SDHC_SDR50_SUPP)) {
497 SET(hp->ocr, MMC_OCR_S18A);
498 aprint_normal(" SDR50");
499 }
500 if (ISSET(caps2, SDHC_DDR50_SUPP)) {
501 SET(hp->ocr, MMC_OCR_S18A);
502 aprint_normal(" DDR50");
503 }
504 if (ISSET(caps2, SDHC_SDR104_SUPP)) {
505 SET(hp->ocr, MMC_OCR_S18A);
506 aprint_normal(" SDR104 HS200");
507 }
508 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
509 SET(hp->ocr, MMC_OCR_1_65V_1_95V);
510 aprint_normal(" 1.8V");
511 }
512 }
513 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
514 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
515 aprint_normal(" 3.0V");
516 }
517 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
518 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
519 aprint_normal(" 3.3V");
520 }
521 if (hp->specver >= SDHC_SPEC_VERS_300) {
522 aprint_normal(", re-tuning mode %d", retuning_mode + 1);
523 if (hp->tuning_timer_count)
524 aprint_normal(" (%us timer)", hp->tuning_timer_count);
525 }
526
527 /*
528 * Determine the maximum block length supported by the host
529 * controller. (2.2.24)
530 */
531 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
532 case SDHC_MAX_BLK_LEN_512:
533 hp->maxblklen = 512;
534 break;
535
536 case SDHC_MAX_BLK_LEN_1024:
537 hp->maxblklen = 1024;
538 break;
539
540 case SDHC_MAX_BLK_LEN_2048:
541 hp->maxblklen = 2048;
542 break;
543
544 case SDHC_MAX_BLK_LEN_4096:
545 hp->maxblklen = 4096;
546 break;
547
548 default:
549 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
550 goto err;
551 }
552 aprint_normal(", %u byte blocks", hp->maxblklen);
553 aprint_normal("\n");
554
555 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
556 int rseg;
557
558 /* Allocate ADMA2 descriptor memory */
559 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
560 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
561 if (error) {
562 aprint_error_dev(sc->sc_dev,
563 "ADMA2 dmamem_alloc failed (%d)\n", error);
564 goto adma_done;
565 }
566 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
567 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
568 if (error) {
569 aprint_error_dev(sc->sc_dev,
570 "ADMA2 dmamem_map failed (%d)\n", error);
571 goto adma_done;
572 }
573 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
574 0, BUS_DMA_WAITOK, &hp->adma_map);
575 if (error) {
576 aprint_error_dev(sc->sc_dev,
577 "ADMA2 dmamap_create failed (%d)\n", error);
578 goto adma_done;
579 }
580 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
581 hp->adma2, PAGE_SIZE, NULL,
582 BUS_DMA_WAITOK|BUS_DMA_WRITE);
583 if (error) {
584 aprint_error_dev(sc->sc_dev,
585 "ADMA2 dmamap_load failed (%d)\n", error);
586 goto adma_done;
587 }
588
589 memset(hp->adma2, 0, PAGE_SIZE);
590
591 adma_done:
592 if (error)
593 CLR(hp->flags, SHF_USE_ADMA2_MASK);
594 }
595
596 /*
597 * Attach the generic SD/MMC bus driver. (The bus driver must
598 * not invoke any chipset functions before it is attached.)
599 */
600 memset(&saa, 0, sizeof(saa));
601 saa.saa_busname = "sdmmc";
602 saa.saa_sct = &sdhc_functions;
603 saa.saa_sch = hp;
604 saa.saa_dmat = hp->dmat;
605 saa.saa_clkmax = hp->clkbase;
606 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
607 saa.saa_clkmin = hp->clkbase / 256 / 2046;
608 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
609 saa.saa_clkmin = hp->clkbase / 256 / 16;
610 else if (hp->sc->sc_clkmsk != 0)
611 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
612 (ffs(hp->sc->sc_clkmsk) - 1));
613 else if (hp->specver >= SDHC_SPEC_VERS_300)
614 saa.saa_clkmin = hp->clkbase / 0x3ff;
615 else
616 saa.saa_clkmin = hp->clkbase / 256;
617 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
618 saa.saa_caps |= SMC_CAPS_AUTO_STOP;
619 saa.saa_caps |= SMC_CAPS_4BIT_MODE;
620 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
621 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
622 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
623 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
624 if (ISSET(caps2, SDHC_SDR104_SUPP))
625 saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
626 SMC_CAPS_UHS_SDR50 |
627 SMC_CAPS_MMC_HS200;
628 if (ISSET(caps2, SDHC_SDR50_SUPP))
629 saa.saa_caps |= SMC_CAPS_UHS_SDR50;
630 if (ISSET(caps2, SDHC_DDR50_SUPP))
631 saa.saa_caps |= SMC_CAPS_UHS_DDR50;
632 if (ISSET(hp->flags, SHF_USE_DMA)) {
633 saa.saa_caps |= SMC_CAPS_DMA;
634 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
635 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
636 }
637 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
638 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
639 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
640 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
641
642 if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
643 saa.saa_max_seg = 65535;
644
645 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
646
647 return 0;
648
649 err:
650 callout_destroy(&hp->tuning_timer);
651 cv_destroy(&hp->intr_cv);
652 mutex_destroy(&hp->intr_lock);
653 free(hp, M_DEVBUF);
654 sc->sc_host[--sc->sc_nhosts] = NULL;
655 err1:
656 return 1;
657 }
658
659 int
660 sdhc_detach(struct sdhc_softc *sc, int flags)
661 {
662 struct sdhc_host *hp;
663 int rv = 0;
664
665 for (size_t n = 0; n < sc->sc_nhosts; n++) {
666 hp = sc->sc_host[n];
667 if (hp == NULL)
668 continue;
669 if (hp->sdmmc != NULL) {
670 rv = config_detach(hp->sdmmc, flags);
671 if (rv)
672 break;
673 hp->sdmmc = NULL;
674 }
675 /* disable interrupts */
676 if ((flags & DETACH_FORCE) == 0) {
677 mutex_enter(&hp->intr_lock);
678 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
679 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
680 } else {
681 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
682 }
683 sdhc_soft_reset(hp, SDHC_RESET_ALL);
684 mutex_exit(&hp->intr_lock);
685 }
686 callout_halt(&hp->tuning_timer, NULL);
687 callout_destroy(&hp->tuning_timer);
688 cv_destroy(&hp->intr_cv);
689 mutex_destroy(&hp->intr_lock);
690 if (hp->ios > 0) {
691 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
692 hp->ios = 0;
693 }
694 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
695 bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
696 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
697 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
698 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
699 }
700 free(hp, M_DEVBUF);
701 sc->sc_host[n] = NULL;
702 }
703
704 return rv;
705 }
706
707 bool
708 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
709 {
710 struct sdhc_softc *sc = device_private(dev);
711 struct sdhc_host *hp;
712 size_t i;
713
714 /* XXX poll for command completion or suspend command
715 * in progress */
716
717 /* Save the host controller state. */
718 for (size_t n = 0; n < sc->sc_nhosts; n++) {
719 hp = sc->sc_host[n];
720 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
721 for (i = 0; i < sizeof hp->regs; i += 4) {
722 uint32_t v = HREAD4(hp, i);
723 hp->regs[i + 0] = (v >> 0);
724 hp->regs[i + 1] = (v >> 8);
725 if (i + 3 < sizeof hp->regs) {
726 hp->regs[i + 2] = (v >> 16);
727 hp->regs[i + 3] = (v >> 24);
728 }
729 }
730 } else {
731 for (i = 0; i < sizeof hp->regs; i++) {
732 hp->regs[i] = HREAD1(hp, i);
733 }
734 }
735 }
736 return true;
737 }
738
739 bool
740 sdhc_resume(device_t dev, const pmf_qual_t *qual)
741 {
742 struct sdhc_softc *sc = device_private(dev);
743 struct sdhc_host *hp;
744 size_t i;
745
746 /* Restore the host controller state. */
747 for (size_t n = 0; n < sc->sc_nhosts; n++) {
748 hp = sc->sc_host[n];
749 (void)sdhc_host_reset(hp);
750 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
751 for (i = 0; i < sizeof hp->regs; i += 4) {
752 if (i + 3 < sizeof hp->regs) {
753 HWRITE4(hp, i,
754 (hp->regs[i + 0] << 0)
755 | (hp->regs[i + 1] << 8)
756 | (hp->regs[i + 2] << 16)
757 | (hp->regs[i + 3] << 24));
758 } else {
759 HWRITE4(hp, i,
760 (hp->regs[i + 0] << 0)
761 | (hp->regs[i + 1] << 8));
762 }
763 }
764 } else {
765 for (i = 0; i < sizeof hp->regs; i++) {
766 HWRITE1(hp, i, hp->regs[i]);
767 }
768 }
769 }
770 return true;
771 }
772
773 bool
774 sdhc_shutdown(device_t dev, int flags)
775 {
776 struct sdhc_softc *sc = device_private(dev);
777 struct sdhc_host *hp;
778
779 /* XXX chip locks up if we don't disable it before reboot. */
780 for (size_t i = 0; i < sc->sc_nhosts; i++) {
781 hp = sc->sc_host[i];
782 (void)sdhc_host_reset(hp);
783 }
784 return true;
785 }
786
787 /*
788 * Reset the host controller. Called during initialization, when
789 * cards are removed, upon resume, and during error recovery.
790 */
791 static int
792 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
793 {
794 struct sdhc_host *hp = (struct sdhc_host *)sch;
795 uint32_t sdhcimask;
796 int error;
797
798 KASSERT(mutex_owned(&hp->intr_lock));
799
800 /* Disable all interrupts. */
801 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
802 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
803 } else {
804 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
805 }
806
807 /* Let sdhc_bus_power restore power */
808 hp->vdd = 0;
809
810 /*
811 * Reset the entire host controller and wait up to 100ms for
812 * the controller to clear the reset bit.
813 */
814 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
815 if (error)
816 goto out;
817
818 /* Set data timeout counter value to max for now. */
819 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
820 #if 1
821 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
822 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
823 #endif
824
825 /* Enable interrupts. */
826 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
827 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
828 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
829 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
830 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
831 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
832 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
833 sdhcimask ^=
834 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
835 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
836 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
837 } else {
838 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
839 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
840 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
841 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
842 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
843 }
844
845 out:
846 return error;
847 }
848
849 static int
850 sdhc_host_reset(sdmmc_chipset_handle_t sch)
851 {
852 struct sdhc_host *hp = (struct sdhc_host *)sch;
853 int error;
854
855 mutex_enter(&hp->intr_lock);
856 error = sdhc_host_reset1(sch);
857 mutex_exit(&hp->intr_lock);
858
859 return error;
860 }
861
862 static uint32_t
863 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
864 {
865 struct sdhc_host *hp = (struct sdhc_host *)sch;
866
867 return hp->ocr;
868 }
869
870 static int
871 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
872 {
873 struct sdhc_host *hp = (struct sdhc_host *)sch;
874
875 return hp->maxblklen;
876 }
877
878 /*
879 * Return non-zero if the card is currently inserted.
880 */
881 static int
882 sdhc_card_detect(sdmmc_chipset_handle_t sch)
883 {
884 struct sdhc_host *hp = (struct sdhc_host *)sch;
885 int r;
886
887 if (hp->sc->sc_vendor_card_detect)
888 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
889
890 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
891
892 return r ? 1 : 0;
893 }
894
895 /*
896 * Return non-zero if the card is currently write-protected.
897 */
898 static int
899 sdhc_write_protect(sdmmc_chipset_handle_t sch)
900 {
901 struct sdhc_host *hp = (struct sdhc_host *)sch;
902 int r;
903
904 if (hp->sc->sc_vendor_write_protect)
905 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
906
907 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
908
909 return r ? 0 : 1;
910 }
911
912 /*
913 * Set or change SD bus voltage and enable or disable SD bus power.
914 * Return zero on success.
915 */
916 static int
917 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
918 {
919 struct sdhc_host *hp = (struct sdhc_host *)sch;
920 uint8_t vdd;
921 int error = 0;
922 const uint32_t pcmask =
923 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
924 uint32_t reg;
925
926 mutex_enter(&hp->intr_lock);
927
928 /*
929 * Disable bus power before voltage change.
930 */
931 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
932 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
933 hp->vdd = 0;
934 HWRITE1(hp, SDHC_POWER_CTL, 0);
935 }
936
937 /* If power is disabled, reset the host and return now. */
938 if (ocr == 0) {
939 (void)sdhc_host_reset1(hp);
940 callout_halt(&hp->tuning_timer, &hp->intr_lock);
941 goto out;
942 }
943
944 /*
945 * Select the lowest voltage according to capabilities.
946 */
947 ocr &= hp->ocr;
948 if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
949 vdd = SDHC_VOLTAGE_1_8V;
950 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
951 vdd = SDHC_VOLTAGE_3_0V;
952 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
953 vdd = SDHC_VOLTAGE_3_3V;
954 } else {
955 /* Unsupported voltage level requested. */
956 error = EINVAL;
957 goto out;
958 }
959
960 /*
961 * Did voltage change ?
962 */
963 if (vdd == hp->vdd)
964 goto out;
965
966 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
967 /*
968 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
969 * voltage ramp until power rises.
970 */
971
972 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
973 HWRITE1(hp, SDHC_POWER_CTL,
974 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
975 } else {
976 reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
977 HWRITE1(hp, SDHC_POWER_CTL, reg);
978 sdmmc_delay(1);
979 reg |= (vdd << SDHC_VOLTAGE_SHIFT);
980 HWRITE1(hp, SDHC_POWER_CTL, reg);
981 sdmmc_delay(1);
982 reg |= SDHC_BUS_POWER;
983 HWRITE1(hp, SDHC_POWER_CTL, reg);
984 sdmmc_delay(10000);
985 }
986
987 /*
988 * The host system may not power the bus due to battery low,
989 * etc. In that case, the host controller should clear the
990 * bus power bit.
991 */
992 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
993 error = ENXIO;
994 goto out;
995 }
996 }
997
998 /* power successfully changed */
999 hp->vdd = vdd;
1000
1001 out:
1002 mutex_exit(&hp->intr_lock);
1003
1004 return error;
1005 }
1006
1007 /*
1008 * Return the smallest possible base clock frequency divisor value
1009 * for the CLOCK_CTL register to produce `freq' (KHz).
1010 */
1011 static bool
1012 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
1013 {
1014 u_int div;
1015
1016 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
1017 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
1018 if ((hp->clkbase / div) <= freq) {
1019 *divp = SDHC_SDCLK_CGM
1020 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
1021 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
1022 //freq = hp->clkbase / div;
1023 return true;
1024 }
1025 }
1026 /* No divisor found. */
1027 return false;
1028 }
1029 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
1030 u_int dvs = (hp->clkbase + freq - 1) / freq;
1031 u_int roundup = dvs & 1;
1032 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
1033 if (dvs + roundup <= 16) {
1034 dvs += roundup - 1;
1035 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
1036 | (dvs << SDHC_SDCLK_DVS_SHIFT);
1037 DPRINTF(2,
1038 ("%s: divisor for freq %u is %u * %u\n",
1039 HDEVNAME(hp), freq, div * 2, dvs + 1));
1040 //freq = hp->clkbase / (div * 2) * (dvs + 1);
1041 return true;
1042 }
1043 /*
1044 * If we drop bits, we need to round up the divisor.
1045 */
1046 roundup |= dvs & 1;
1047 }
1048 /* No divisor found. */
1049 return false;
1050 }
1051 if (hp->sc->sc_clkmsk != 0) {
1052 div = howmany(hp->clkbase, freq);
1053 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
1054 return false;
1055 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
1056 //freq = hp->clkbase / div;
1057 return true;
1058 }
1059 if (hp->specver >= SDHC_SPEC_VERS_300) {
1060 div = howmany(hp->clkbase, freq);
1061 div = div > 1 ? howmany(div, 2) : 0;
1062 if (div > 0x3ff)
1063 return false;
1064 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
1065 << SDHC_SDCLK_XDIV_SHIFT) |
1066 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
1067 << SDHC_SDCLK_DIV_SHIFT);
1068 //freq = hp->clkbase / (div ? div * 2 : 1);
1069 return true;
1070 } else {
1071 for (div = 1; div <= 256; div *= 2) {
1072 if ((hp->clkbase / div) <= freq) {
1073 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
1074 //freq = hp->clkbase / div;
1075 return true;
1076 }
1077 }
1078 /* No divisor found. */
1079 return false;
1080 }
1081 /* No divisor found. */
1082 return false;
1083 }
1084
1085 /*
1086 * Set or change SDCLK frequency or disable the SD clock.
1087 * Return zero on success.
1088 */
1089 static int
1090 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
1091 {
1092 struct sdhc_host *hp = (struct sdhc_host *)sch;
1093 u_int div;
1094 u_int timo;
1095 int16_t reg;
1096 int error = 0;
1097 bool present __diagused;
1098
1099 mutex_enter(&hp->intr_lock);
1100
1101 #ifdef DIAGNOSTIC
1102 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
1103
1104 /* Must not stop the clock if commands are in progress. */
1105 if (present && sdhc_card_detect(hp)) {
1106 aprint_normal_dev(hp->sc->sc_dev,
1107 "%s: command in progress\n", __func__);
1108 }
1109 #endif
1110
1111 if (hp->sc->sc_vendor_bus_clock) {
1112 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1113 if (error != 0)
1114 goto out;
1115 }
1116
1117 /*
1118 * Stop SD clock before changing the frequency.
1119 */
1120 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1121 HCLR4(hp, SDHC_VEND_SPEC,
1122 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1123 SDHC_VEND_SPEC_FRC_SDCLK_ON);
1124 if (freq == SDMMC_SDCLK_OFF) {
1125 goto out;
1126 }
1127 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1128 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1129 if (freq == SDMMC_SDCLK_OFF) {
1130 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1131 goto out;
1132 }
1133 } else {
1134 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1135 if (freq == SDMMC_SDCLK_OFF)
1136 goto out;
1137 }
1138
1139 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1140 if (ddr)
1141 HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1142 else
1143 HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1144 } else if (hp->specver >= SDHC_SPEC_VERS_300) {
1145 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1146 if (freq > 100000) {
1147 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1148 } else if (freq > 50000) {
1149 if (ddr) {
1150 HSET2(hp, SDHC_HOST_CTL2,
1151 SDHC_UHS_MODE_SELECT_DDR50);
1152 } else {
1153 HSET2(hp, SDHC_HOST_CTL2,
1154 SDHC_UHS_MODE_SELECT_SDR50);
1155 }
1156 } else if (freq > 25000) {
1157 if (ddr) {
1158 HSET2(hp, SDHC_HOST_CTL2,
1159 SDHC_UHS_MODE_SELECT_DDR50);
1160 } else {
1161 HSET2(hp, SDHC_HOST_CTL2,
1162 SDHC_UHS_MODE_SELECT_SDR25);
1163 }
1164 } else if (freq > 400) {
1165 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1166 }
1167 }
1168
1169 /*
1170 * Slow down Ricoh 5U823 controller that isn't reliable
1171 * at 100MHz bus clock.
1172 */
1173 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
1174 if (freq == 100000)
1175 --freq;
1176 }
1177
1178 /*
1179 * Set the minimum base clock frequency divisor.
1180 */
1181 if (!sdhc_clock_divisor(hp, freq, &div)) {
1182 /* Invalid base clock frequency or `freq' value. */
1183 aprint_error_dev(hp->sc->sc_dev,
1184 "Invalid bus clock %d kHz\n", freq);
1185 error = EINVAL;
1186 goto out;
1187 }
1188 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1189 if (ddr) {
1190 /* in ddr mode, divisor >>= 1 */
1191 div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
1192 SDHC_SDCLK_DIV_SHIFT)) |
1193 (div & (SDHC_SDCLK_DVS_MASK <<
1194 SDHC_SDCLK_DVS_SHIFT));
1195 }
1196 for (timo = 1000; timo > 0; timo--) {
1197 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
1198 break;
1199 sdmmc_delay(10);
1200 }
1201 HWRITE4(hp, SDHC_CLOCK_CTL,
1202 div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
1203 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1204 HWRITE4(hp, SDHC_CLOCK_CTL,
1205 div | (SDHC_TIMEOUT_MAX << 16));
1206 } else {
1207 reg = HREAD2(hp, SDHC_CLOCK_CTL);
1208 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1209 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1210 }
1211
1212 /*
1213 * Start internal clock. Wait 10ms for stabilization.
1214 */
1215 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1216 HSET4(hp, SDHC_VEND_SPEC,
1217 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1218 SDHC_VEND_SPEC_FRC_SDCLK_ON);
1219 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1220 sdmmc_delay(10000);
1221 HSET4(hp, SDHC_CLOCK_CTL,
1222 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1223 } else {
1224 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1225 for (timo = 1000; timo > 0; timo--) {
1226 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1227 SDHC_INTCLK_STABLE))
1228 break;
1229 sdmmc_delay(10);
1230 }
1231 if (timo == 0) {
1232 error = ETIMEDOUT;
1233 DPRINTF(1,("%s: timeout\n", __func__));
1234 goto out;
1235 }
1236 }
1237
1238 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1239 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1240 /*
1241 * Sending 80 clocks at 400kHz takes 200us.
1242 * So delay for that time + slop and then
1243 * check a few times for completion.
1244 */
1245 sdmmc_delay(210);
1246 for (timo = 10; timo > 0; timo--) {
1247 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1248 SDHC_INIT_ACTIVE))
1249 break;
1250 sdmmc_delay(10);
1251 }
1252 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1253
1254 /*
1255 * Enable SD clock.
1256 */
1257 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1258 HSET4(hp, SDHC_VEND_SPEC,
1259 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1260 SDHC_VEND_SPEC_FRC_SDCLK_ON);
1261 } else {
1262 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1263 }
1264 } else {
1265 /*
1266 * Enable SD clock.
1267 */
1268 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1269
1270 if (freq > 25000 &&
1271 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1272 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1273 else
1274 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1275 }
1276
1277 if (hp->sc->sc_vendor_bus_clock_post) {
1278 error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
1279 if (error != 0)
1280 goto out;
1281 }
1282
1283 out:
1284 mutex_exit(&hp->intr_lock);
1285
1286 return error;
1287 }
1288
1289 static int
1290 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1291 {
1292 struct sdhc_host *hp = (struct sdhc_host *)sch;
1293 int reg;
1294
1295 switch (width) {
1296 case 1:
1297 case 4:
1298 break;
1299
1300 case 8:
1301 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1302 break;
1303 /* FALLTHROUGH */
1304 default:
1305 DPRINTF(0,("%s: unsupported bus width (%d)\n",
1306 HDEVNAME(hp), width));
1307 return 1;
1308 }
1309
1310 if (hp->sc->sc_vendor_bus_width) {
1311 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
1312 if (error != 0)
1313 return error;
1314 }
1315
1316 mutex_enter(&hp->intr_lock);
1317
1318 reg = HREAD1(hp, SDHC_HOST_CTL);
1319 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1320 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1321 if (width == 4)
1322 reg |= SDHC_4BIT_MODE;
1323 else if (width == 8)
1324 reg |= SDHC_ESDHC_8BIT_MODE;
1325 } else {
1326 reg &= ~SDHC_4BIT_MODE;
1327 if (hp->specver >= SDHC_SPEC_VERS_300) {
1328 reg &= ~SDHC_8BIT_MODE;
1329 }
1330 if (width == 4) {
1331 reg |= SDHC_4BIT_MODE;
1332 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1333 reg |= SDHC_8BIT_MODE;
1334 }
1335 }
1336 HWRITE1(hp, SDHC_HOST_CTL, reg);
1337
1338 mutex_exit(&hp->intr_lock);
1339
1340 return 0;
1341 }
1342
1343 static int
1344 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1345 {
1346 struct sdhc_host *hp = (struct sdhc_host *)sch;
1347
1348 if (hp->sc->sc_vendor_rod)
1349 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1350
1351 return 0;
1352 }
1353
1354 static void
1355 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1356 {
1357 struct sdhc_host *hp = (struct sdhc_host *)sch;
1358
1359 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1360 mutex_enter(&hp->intr_lock);
1361 if (enable) {
1362 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1363 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1364 } else {
1365 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1366 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1367 }
1368 mutex_exit(&hp->intr_lock);
1369 }
1370 }
1371
1372 static void
1373 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1374 {
1375 struct sdhc_host *hp = (struct sdhc_host *)sch;
1376
1377 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1378 mutex_enter(&hp->intr_lock);
1379 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1380 mutex_exit(&hp->intr_lock);
1381 }
1382 }
1383
1384 static int
1385 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1386 {
1387 struct sdhc_host *hp = (struct sdhc_host *)sch;
1388 int error = 0;
1389
1390 if (hp->specver < SDHC_SPEC_VERS_300)
1391 return EINVAL;
1392
1393 mutex_enter(&hp->intr_lock);
1394 switch (signal_voltage) {
1395 case SDMMC_SIGNAL_VOLTAGE_180:
1396 if (hp->sc->sc_vendor_signal_voltage != NULL) {
1397 error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1398 signal_voltage);
1399 if (error != 0)
1400 break;
1401 }
1402 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1403 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1404 break;
1405 case SDMMC_SIGNAL_VOLTAGE_330:
1406 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1407 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1408 if (hp->sc->sc_vendor_signal_voltage != NULL) {
1409 error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1410 signal_voltage);
1411 if (error != 0)
1412 break;
1413 }
1414 break;
1415 default:
1416 error = EINVAL;
1417 break;
1418 }
1419 mutex_exit(&hp->intr_lock);
1420
1421 return error;
1422 }
1423
1424 /*
1425 * Sampling clock tuning procedure (UHS)
1426 */
1427 static int
1428 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
1429 {
1430 struct sdmmc_command cmd;
1431 uint8_t hostctl;
1432 int opcode, error, retry = 40;
1433
1434 KASSERT(mutex_owned(&hp->intr_lock));
1435
1436 hp->tuning_timing = timing;
1437
1438 switch (timing) {
1439 case SDMMC_TIMING_MMC_HS200:
1440 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1441 break;
1442 case SDMMC_TIMING_UHS_SDR50:
1443 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1444 return 0;
1445 /* FALLTHROUGH */
1446 case SDMMC_TIMING_UHS_SDR104:
1447 opcode = MMC_SEND_TUNING_BLOCK;
1448 break;
1449 default:
1450 return EINVAL;
1451 }
1452
1453 hostctl = HREAD1(hp, SDHC_HOST_CTL);
1454
1455 /* enable buffer read ready interrupt */
1456 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1457 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1458
1459 /* disable DMA */
1460 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1461
1462 /* reset tuning circuit */
1463 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1464
1465 /* start of tuning */
1466 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1467
1468 do {
1469 memset(&cmd, 0, sizeof(cmd));
1470 cmd.c_opcode = opcode;
1471 cmd.c_arg = 0;
1472 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1473 if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1474 cmd.c_blklen = cmd.c_datalen = 128;
1475 } else {
1476 cmd.c_blklen = cmd.c_datalen = 64;
1477 }
1478
1479 error = sdhc_start_command(hp, &cmd);
1480 if (error)
1481 break;
1482
1483 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1484 SDHC_TUNING_TIMEOUT, false)) {
1485 break;
1486 }
1487
1488 delay(1000);
1489 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1490
1491 /* disable buffer read ready interrupt */
1492 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1493 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1494
1495 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1496 HCLR2(hp, SDHC_HOST_CTL2,
1497 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1498 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1499 aprint_error_dev(hp->sc->sc_dev,
1500 "tuning did not complete, using fixed sampling clock\n");
1501 return 0; /* tuning did not complete */
1502 }
1503
1504 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1505 HCLR2(hp, SDHC_HOST_CTL2,
1506 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1507 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1508 aprint_error_dev(hp->sc->sc_dev,
1509 "tuning failed, using fixed sampling clock\n");
1510 return 0; /* tuning failed */
1511 }
1512
1513 if (hp->tuning_timer_count) {
1514 callout_schedule(&hp->tuning_timer,
1515 hz * hp->tuning_timer_count);
1516 }
1517
1518 return 0; /* tuning completed */
1519 }
1520
1521 static int
1522 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1523 {
1524 struct sdhc_host *hp = (struct sdhc_host *)sch;
1525 int error;
1526
1527 mutex_enter(&hp->intr_lock);
1528 error = sdhc_execute_tuning1(hp, timing);
1529 mutex_exit(&hp->intr_lock);
1530 return error;
1531 }
1532
1533 static void
1534 sdhc_tuning_timer(void *arg)
1535 {
1536 struct sdhc_host *hp = arg;
1537
1538 atomic_swap_uint(&hp->tuning_timer_pending, 1);
1539 }
1540
1541 static void
1542 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
1543 {
1544 struct sdhc_host *hp = (struct sdhc_host *)sch;
1545 struct sdhc_softc *sc = hp->sc;
1546
1547 if (sc->sc_vendor_hw_reset != NULL)
1548 sc->sc_vendor_hw_reset(sc, hp);
1549 }
1550
1551 static int
1552 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1553 {
1554 uint32_t state;
1555 int timeout;
1556
1557 for (timeout = 100000; timeout > 0; timeout--) {
1558 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1559 return 0;
1560 sdmmc_delay(10);
1561 }
1562 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1563 mask, value, state);
1564 return ETIMEDOUT;
1565 }
1566
1567 static void
1568 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1569 {
1570 struct sdhc_host *hp = (struct sdhc_host *)sch;
1571 int error;
1572 bool probing;
1573
1574 mutex_enter(&hp->intr_lock);
1575
1576 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
1577 (void)sdhc_execute_tuning1(hp, hp->tuning_timing);
1578 }
1579
1580 if (cmd->c_data &&
1581 ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1582 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1583 if (ISSET(hp->flags, SHF_USE_DMA)) {
1584 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1585 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1586 } else {
1587 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1588 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1589 }
1590 }
1591
1592 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1593 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1594 if (cmd->c_data != NULL) {
1595 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1596 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1597 } else {
1598 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1599 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1600 }
1601 }
1602
1603 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
1604 if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1605 SET(cmd->c_flags, SCF_RSP_BSY);
1606 }
1607
1608 /*
1609 * Start the MMC command, or mark `cmd' as failed and return.
1610 */
1611 error = sdhc_start_command(hp, cmd);
1612 if (error) {
1613 cmd->c_error = error;
1614 goto out;
1615 }
1616
1617 /*
1618 * Wait until the command phase is done, or until the command
1619 * is marked done for any other reason.
1620 */
1621 probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
1622 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
1623 DPRINTF(1,("%s: timeout for command\n", __func__));
1624 sdmmc_delay(50);
1625 cmd->c_error = ETIMEDOUT;
1626 goto out;
1627 }
1628
1629 /*
1630 * The host controller removes bits [0:7] from the response
1631 * data (CRC) and we pass the data up unchanged to the bus
1632 * driver (without padding).
1633 */
1634 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1635 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1636 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1637 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1638 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1639 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1640 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1641 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1642 (cmd->c_resp[1] << 24);
1643 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1644 (cmd->c_resp[2] << 24);
1645 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1646 (cmd->c_resp[3] << 24);
1647 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1648 }
1649 }
1650 }
1651 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1652
1653 /*
1654 * If the command has data to transfer in any direction,
1655 * execute the transfer now.
1656 */
1657 if (cmd->c_error == 0 && cmd->c_data != NULL)
1658 sdhc_transfer_data(hp, cmd);
1659 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1660 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
1661 !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
1662 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
1663 HDEVNAME(hp)));
1664 cmd->c_error = ETIMEDOUT;
1665 goto out;
1666 }
1667 }
1668
1669 out:
1670 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1671 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1672 /* Turn off the LED. */
1673 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1674 }
1675 SET(cmd->c_flags, SCF_ITSDONE);
1676
1677 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
1678 cmd->c_opcode == MMC_STOP_TRANSMISSION)
1679 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
1680
1681 mutex_exit(&hp->intr_lock);
1682
1683 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1684 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1685 cmd->c_flags, cmd->c_error));
1686 }
1687
1688 static int
1689 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1690 {
1691 struct sdhc_softc * const sc = hp->sc;
1692 uint16_t blksize = 0;
1693 uint16_t blkcount = 0;
1694 uint16_t mode;
1695 uint16_t command;
1696 uint32_t pmask;
1697 int error;
1698
1699 KASSERT(mutex_owned(&hp->intr_lock));
1700
1701 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1702 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1703 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1704
1705 /*
1706 * The maximum block length for commands should be the minimum
1707 * of the host buffer size and the card buffer size. (1.7.2)
1708 */
1709
1710 /* Fragment the data into proper blocks. */
1711 if (cmd->c_datalen > 0) {
1712 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1713 blkcount = cmd->c_datalen / blksize;
1714 if (cmd->c_datalen % blksize > 0) {
1715 /* XXX: Split this command. (1.7.4) */
1716 aprint_error_dev(sc->sc_dev,
1717 "data not a multiple of %u bytes\n", blksize);
1718 return EINVAL;
1719 }
1720 }
1721
1722 /* Check limit imposed by 9-bit block count. (1.7.2) */
1723 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1724 aprint_error_dev(sc->sc_dev, "too much data\n");
1725 return EINVAL;
1726 }
1727
1728 /* Prepare transfer mode register value. (2.2.5) */
1729 mode = 0;
1730 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1731 mode |= SDHC_READ_MODE;
1732 if (blkcount > 0) {
1733 mode |= SDHC_BLOCK_COUNT_ENABLE;
1734 if (blkcount > 1) {
1735 mode |= SDHC_MULTI_BLOCK_MODE;
1736 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
1737 && !ISSET(cmd->c_flags, SCF_NO_STOP))
1738 mode |= SDHC_AUTO_CMD12_ENABLE;
1739 }
1740 }
1741 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1742 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1743 mode |= SDHC_DMA_ENABLE;
1744 }
1745
1746 /*
1747 * Prepare command register value. (2.2.6)
1748 */
1749 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1750
1751 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1752 command |= SDHC_CRC_CHECK_ENABLE;
1753 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1754 command |= SDHC_INDEX_CHECK_ENABLE;
1755 if (cmd->c_datalen > 0)
1756 command |= SDHC_DATA_PRESENT_SELECT;
1757
1758 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1759 command |= SDHC_NO_RESPONSE;
1760 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1761 command |= SDHC_RESP_LEN_136;
1762 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1763 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1764 else
1765 command |= SDHC_RESP_LEN_48;
1766
1767 /* Wait until command and optionally data inhibit bits are clear. (1.5) */
1768 pmask = SDHC_CMD_INHIBIT_CMD;
1769 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
1770 pmask |= SDHC_CMD_INHIBIT_DAT;
1771 error = sdhc_wait_state(hp, pmask, 0);
1772 if (error) {
1773 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1774 device_printf(sc->sc_dev, "command or data phase inhibited\n");
1775 return error;
1776 }
1777
1778 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1779 HDEVNAME(hp), blksize, blkcount, mode, command));
1780
1781 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1782 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1783 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1784 }
1785
1786 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1787 /* Alert the user not to remove the card. */
1788 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1789 }
1790
1791 /* Set DMA start address. */
1792 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1793 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1794 bus_addr_t paddr =
1795 cmd->c_dmamap->dm_segs[seg].ds_addr;
1796 uint16_t len =
1797 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1798 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1799 uint16_t attr =
1800 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1801 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1802 attr |= SDHC_ADMA2_END;
1803 }
1804 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1805 struct sdhc_adma2_descriptor32 *desc =
1806 hp->adma2;
1807 desc[seg].attribute = htole16(attr);
1808 desc[seg].length = htole16(len);
1809 desc[seg].address = htole32(paddr);
1810 } else {
1811 struct sdhc_adma2_descriptor64 *desc =
1812 hp->adma2;
1813 desc[seg].attribute = htole16(attr);
1814 desc[seg].length = htole16(len);
1815 desc[seg].address = htole32(paddr & 0xffffffff);
1816 desc[seg].address_hi = htole32(
1817 (uint64_t)paddr >> 32);
1818 }
1819 }
1820 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1821 struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1822 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1823 } else {
1824 struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1825 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1826 }
1827 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1828 BUS_DMASYNC_PREWRITE);
1829 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1830 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1831 HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
1832 } else {
1833 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1834 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1835 }
1836
1837 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1838
1839 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1840 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1841 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1842 (uint64_t)desc_addr >> 32);
1843 }
1844 } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1845 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1846 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1847 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1848 }
1849 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1850 }
1851
1852 /*
1853 * Start a CPU data transfer. Writing to the high order byte
1854 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1855 */
1856 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1857 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1858 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1859 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1860 /* mode bits is in MIX_CTRL register on uSDHC */
1861 HWRITE4(hp, SDHC_MIX_CTRL, mode |
1862 (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
1863 if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1864 command |= SDHC_COMMAND_TYPE_ABORT;
1865 HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
1866 } else {
1867 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1868 }
1869 } else {
1870 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1871 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1872 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1873 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1874 HWRITE2(hp, SDHC_COMMAND, command);
1875 }
1876
1877 return 0;
1878 }
1879
1880 static void
1881 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1882 {
1883 struct sdhc_softc *sc = hp->sc;
1884 int error;
1885
1886 KASSERT(mutex_owned(&hp->intr_lock));
1887
1888 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1889 MMC_R1(cmd->c_resp), cmd->c_datalen));
1890
1891 #ifdef SDHC_DEBUG
1892 /* XXX I forgot why I wanted to know when this happens :-( */
1893 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1894 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1895 aprint_error_dev(hp->sc->sc_dev,
1896 "CMD52/53 error response flags %#x\n",
1897 MMC_R1(cmd->c_resp) & 0xff00);
1898 }
1899 #endif
1900
1901 if (cmd->c_dmamap != NULL) {
1902 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1903 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1904 if (error == 0 && !sdhc_wait_intr(hp,
1905 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
1906 DPRINTF(1,("%s: timeout\n", __func__));
1907 error = ETIMEDOUT;
1908 }
1909 } else {
1910 error = sdhc_transfer_data_dma(hp, cmd);
1911 }
1912 } else
1913 error = sdhc_transfer_data_pio(hp, cmd);
1914 if (error)
1915 cmd->c_error = error;
1916 SET(cmd->c_flags, SCF_ITSDONE);
1917
1918 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1919 HDEVNAME(hp), cmd->c_error));
1920 }
1921
1922 static int
1923 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1924 {
1925 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1926 bus_addr_t posaddr;
1927 bus_addr_t segaddr;
1928 bus_size_t seglen;
1929 u_int seg = 0;
1930 int error = 0;
1931 int status;
1932
1933 KASSERT(mutex_owned(&hp->intr_lock));
1934 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1935 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1936 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1937 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1938
1939 for (;;) {
1940 status = sdhc_wait_intr(hp,
1941 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1942 SDHC_DMA_TIMEOUT, false);
1943
1944 if (status & SDHC_TRANSFER_COMPLETE) {
1945 break;
1946 }
1947 if (!status) {
1948 DPRINTF(1,("%s: timeout\n", __func__));
1949 error = ETIMEDOUT;
1950 break;
1951 }
1952
1953 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1954 continue;
1955 }
1956
1957 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1958 continue;
1959 }
1960
1961 /* DMA Interrupt (boundary crossing) */
1962
1963 segaddr = dm_segs[seg].ds_addr;
1964 seglen = dm_segs[seg].ds_len;
1965 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1966
1967 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1968 continue;
1969 }
1970 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1971 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1972 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1973 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1974 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1975 }
1976
1977 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1978 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1979 PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1980 }
1981
1982 return error;
1983 }
1984
1985 static int
1986 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1987 {
1988 uint8_t *data = cmd->c_data;
1989 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1990 u_int len, datalen;
1991 u_int imask;
1992 u_int pmask;
1993 int error = 0;
1994
1995 KASSERT(mutex_owned(&hp->intr_lock));
1996
1997 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1998 imask = SDHC_BUFFER_READ_READY;
1999 pmask = SDHC_BUFFER_READ_ENABLE;
2000 if (ISSET(hp->sc->sc_flags,
2001 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2002 pio_func = esdhc_read_data_pio;
2003 } else {
2004 pio_func = sdhc_read_data_pio;
2005 }
2006 } else {
2007 imask = SDHC_BUFFER_WRITE_READY;
2008 pmask = SDHC_BUFFER_WRITE_ENABLE;
2009 if (ISSET(hp->sc->sc_flags,
2010 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2011 pio_func = esdhc_write_data_pio;
2012 } else {
2013 pio_func = sdhc_write_data_pio;
2014 }
2015 }
2016 datalen = cmd->c_datalen;
2017
2018 KASSERT(mutex_owned(&hp->intr_lock));
2019 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
2020 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
2021 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
2022
2023 while (datalen > 0) {
2024 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
2025 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2026 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
2027 } else {
2028 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
2029 }
2030 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
2031 DPRINTF(1,("%s: timeout\n", __func__));
2032 error = ETIMEDOUT;
2033 break;
2034 }
2035
2036 error = sdhc_wait_state(hp, pmask, pmask);
2037 if (error)
2038 break;
2039 }
2040
2041 len = MIN(datalen, cmd->c_blklen);
2042 (*pio_func)(hp, data, len);
2043 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
2044 HDEVNAME(hp), len, data));
2045
2046 data += len;
2047 datalen -= len;
2048 }
2049
2050 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
2051 SDHC_TRANSFER_TIMEOUT, false)) {
2052 DPRINTF(1,("%s: timeout for transfer\n", __func__));
2053 error = ETIMEDOUT;
2054 }
2055
2056 return error;
2057 }
2058
2059 static void
2060 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2061 {
2062
2063 if (((__uintptr_t)data & 3) == 0) {
2064 while (datalen > 3) {
2065 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
2066 data += 4;
2067 datalen -= 4;
2068 }
2069 if (datalen > 1) {
2070 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2071 data += 2;
2072 datalen -= 2;
2073 }
2074 if (datalen > 0) {
2075 *data = HREAD1(hp, SDHC_DATA);
2076 data += 1;
2077 datalen -= 1;
2078 }
2079 } else if (((__uintptr_t)data & 1) == 0) {
2080 while (datalen > 1) {
2081 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2082 data += 2;
2083 datalen -= 2;
2084 }
2085 if (datalen > 0) {
2086 *data = HREAD1(hp, SDHC_DATA);
2087 data += 1;
2088 datalen -= 1;
2089 }
2090 } else {
2091 while (datalen > 0) {
2092 *data = HREAD1(hp, SDHC_DATA);
2093 data += 1;
2094 datalen -= 1;
2095 }
2096 }
2097 }
2098
2099 static void
2100 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2101 {
2102
2103 if (((__uintptr_t)data & 3) == 0) {
2104 while (datalen > 3) {
2105 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
2106 data += 4;
2107 datalen -= 4;
2108 }
2109 if (datalen > 1) {
2110 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2111 data += 2;
2112 datalen -= 2;
2113 }
2114 if (datalen > 0) {
2115 HWRITE1(hp, SDHC_DATA, *data);
2116 data += 1;
2117 datalen -= 1;
2118 }
2119 } else if (((__uintptr_t)data & 1) == 0) {
2120 while (datalen > 1) {
2121 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2122 data += 2;
2123 datalen -= 2;
2124 }
2125 if (datalen > 0) {
2126 HWRITE1(hp, SDHC_DATA, *data);
2127 data += 1;
2128 datalen -= 1;
2129 }
2130 } else {
2131 while (datalen > 0) {
2132 HWRITE1(hp, SDHC_DATA, *data);
2133 data += 1;
2134 datalen -= 1;
2135 }
2136 }
2137 }
2138
2139 static void
2140 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2141 {
2142 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2143 uint32_t v;
2144
2145 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
2146 size_t count = 0;
2147
2148 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2149 if (count == 0) {
2150 /*
2151 * If we've drained "watermark" words, we need to wait
2152 * a little bit so the read FIFO can refill.
2153 */
2154 sdmmc_delay(10);
2155 count = watermark;
2156 }
2157 v = HREAD4(hp, SDHC_DATA);
2158 v = le32toh(v);
2159 *(uint32_t *)data = v;
2160 data += 4;
2161 datalen -= 4;
2162 status = HREAD2(hp, SDHC_NINTR_STATUS);
2163 count--;
2164 }
2165 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2166 if (count == 0) {
2167 sdmmc_delay(10);
2168 }
2169 v = HREAD4(hp, SDHC_DATA);
2170 v = le32toh(v);
2171 do {
2172 *data++ = v;
2173 v >>= 8;
2174 } while (--datalen > 0);
2175 }
2176 }
2177
2178 static void
2179 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2180 {
2181 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2182 uint32_t v;
2183
2184 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
2185 size_t count = watermark;
2186
2187 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2188 if (count == 0) {
2189 sdmmc_delay(10);
2190 count = watermark;
2191 }
2192 v = *(uint32_t *)data;
2193 v = htole32(v);
2194 HWRITE4(hp, SDHC_DATA, v);
2195 data += 4;
2196 datalen -= 4;
2197 status = HREAD2(hp, SDHC_NINTR_STATUS);
2198 count--;
2199 }
2200 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2201 if (count == 0) {
2202 sdmmc_delay(10);
2203 }
2204 v = *(uint32_t *)data;
2205 v = htole32(v);
2206 HWRITE4(hp, SDHC_DATA, v);
2207 }
2208 }
2209
2210 /* Prepare for another command. */
2211 static int
2212 sdhc_soft_reset(struct sdhc_host *hp, int mask)
2213 {
2214 int timo;
2215
2216 KASSERT(mutex_owned(&hp->intr_lock));
2217
2218 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
2219
2220 /* Request the reset. */
2221 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
2222
2223 /*
2224 * If necessary, wait for the controller to set the bits to
2225 * acknowledge the reset.
2226 */
2227 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
2228 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
2229 for (timo = 10000; timo > 0; timo--) {
2230 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2231 break;
2232 /* Short delay because I worry we may miss it... */
2233 sdmmc_delay(1);
2234 }
2235 if (timo == 0) {
2236 DPRINTF(1,("%s: timeout for reset on\n", __func__));
2237 return ETIMEDOUT;
2238 }
2239 }
2240
2241 /*
2242 * Wait for the controller to clear the bits to indicate that
2243 * the reset has completed.
2244 */
2245 for (timo = 10; timo > 0; timo--) {
2246 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2247 break;
2248 sdmmc_delay(10000);
2249 }
2250 if (timo == 0) {
2251 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
2252 HREAD1(hp, SDHC_SOFTWARE_RESET)));
2253 return ETIMEDOUT;
2254 }
2255
2256 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2257 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
2258 }
2259
2260 return 0;
2261 }
2262
2263 static int
2264 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
2265 {
2266 int status, error, nointr;
2267
2268 KASSERT(mutex_owned(&hp->intr_lock));
2269
2270 mask |= SDHC_ERROR_INTERRUPT;
2271
2272 nointr = 0;
2273 status = hp->intr_status & mask;
2274 while (status == 0) {
2275 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
2276 == EWOULDBLOCK) {
2277 nointr = 1;
2278 break;
2279 }
2280 status = hp->intr_status & mask;
2281 }
2282 error = hp->intr_error_status;
2283
2284 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2285 error));
2286
2287 hp->intr_status &= ~status;
2288 hp->intr_error_status &= ~error;
2289
2290 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2291 if (ISSET(error, SDHC_DMA_ERROR))
2292 device_printf(hp->sc->sc_dev,"dma error\n");
2293 if (ISSET(error, SDHC_ADMA_ERROR))
2294 device_printf(hp->sc->sc_dev,"adma error\n");
2295 if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
2296 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
2297 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
2298 device_printf(hp->sc->sc_dev,"current limit error\n");
2299 if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
2300 device_printf(hp->sc->sc_dev,"data end bit error\n");
2301 if (ISSET(error, SDHC_DATA_CRC_ERROR))
2302 device_printf(hp->sc->sc_dev,"data crc error\n");
2303 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
2304 device_printf(hp->sc->sc_dev,"data timeout error\n");
2305 if (ISSET(error, SDHC_CMD_INDEX_ERROR))
2306 device_printf(hp->sc->sc_dev,"cmd index error\n");
2307 if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
2308 device_printf(hp->sc->sc_dev,"cmd end bit error\n");
2309 if (ISSET(error, SDHC_CMD_CRC_ERROR))
2310 device_printf(hp->sc->sc_dev,"cmd crc error\n");
2311 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
2312 if (!probing)
2313 device_printf(hp->sc->sc_dev,"cmd timeout error\n");
2314 #ifdef SDHC_DEBUG
2315 else if (sdhcdebug > 0)
2316 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
2317 #endif
2318 }
2319 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
2320 device_printf(hp->sc->sc_dev,"vendor error %#x\n",
2321 (error & ~SDHC_EINTR_STATUS_MASK));
2322 if (error == 0)
2323 device_printf(hp->sc->sc_dev,"no error\n");
2324
2325 /* Command timeout has higher priority than command complete. */
2326 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
2327 CLR(status, SDHC_COMMAND_COMPLETE);
2328
2329 /* Transfer complete has higher priority than data timeout. */
2330 if (ISSET(status, SDHC_TRANSFER_COMPLETE))
2331 CLR(error, SDHC_DATA_TIMEOUT_ERROR);
2332 }
2333
2334 if (nointr ||
2335 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
2336 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2337 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
2338 hp->intr_error_status = 0;
2339 status = 0;
2340 }
2341
2342 return status;
2343 }
2344
2345 /*
2346 * Established by attachment driver at interrupt priority IPL_SDMMC.
2347 */
2348 int
2349 sdhc_intr(void *arg)
2350 {
2351 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2352 struct sdhc_host *hp;
2353 int done = 0;
2354 uint16_t status;
2355 uint16_t error;
2356
2357 /* We got an interrupt, but we don't know from which slot. */
2358 for (size_t host = 0; host < sc->sc_nhosts; host++) {
2359 hp = sc->sc_host[host];
2360 if (hp == NULL)
2361 continue;
2362
2363 mutex_enter(&hp->intr_lock);
2364
2365 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2366 /* Find out which interrupts are pending. */
2367 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2368 status = xstatus;
2369 error = xstatus >> 16;
2370 if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
2371 (xstatus & SDHC_TRANSFER_COMPLETE) &&
2372 !(xstatus & SDHC_DMA_INTERRUPT)) {
2373 /* read again due to uSDHC errata */
2374 status = xstatus = HREAD4(hp,
2375 SDHC_NINTR_STATUS);
2376 error = xstatus >> 16;
2377 }
2378 if (ISSET(sc->sc_flags,
2379 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2380 if ((error & SDHC_NINTR_STATUS_MASK) != 0)
2381 SET(status, SDHC_ERROR_INTERRUPT);
2382 }
2383 if (error)
2384 xstatus |= SDHC_ERROR_INTERRUPT;
2385 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2386 goto next_port; /* no interrupt for us */
2387 /* Acknowledge the interrupts we are about to handle. */
2388 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2389 } else {
2390 /* Find out which interrupts are pending. */
2391 error = 0;
2392 status = HREAD2(hp, SDHC_NINTR_STATUS);
2393 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2394 goto next_port; /* no interrupt for us */
2395 /* Acknowledge the interrupts we are about to handle. */
2396 HWRITE2(hp, SDHC_NINTR_STATUS, status);
2397 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2398 /* Acknowledge error interrupts. */
2399 error = HREAD2(hp, SDHC_EINTR_STATUS);
2400 HWRITE2(hp, SDHC_EINTR_STATUS, error);
2401 }
2402 }
2403
2404 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2405 status, error));
2406
2407 /* Claim this interrupt. */
2408 done = 1;
2409
2410 if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
2411 ISSET(error, SDHC_ADMA_ERROR)) {
2412 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2413 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2414 adma_err);
2415 }
2416
2417 /*
2418 * Wake up the sdmmc event thread to scan for cards.
2419 */
2420 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2421 if (hp->sdmmc != NULL) {
2422 sdmmc_needs_discover(hp->sdmmc);
2423 }
2424 if (ISSET(sc->sc_flags,
2425 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2426 HCLR4(hp, SDHC_NINTR_STATUS_EN,
2427 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2428 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2429 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2430 }
2431 }
2432
2433 /*
2434 * Schedule re-tuning process (UHS).
2435 */
2436 if (ISSET(status, SDHC_RETUNING_EVENT)) {
2437 atomic_swap_uint(&hp->tuning_timer_pending, 1);
2438 }
2439
2440 /*
2441 * Wake up the blocking process to service command
2442 * related interrupt(s).
2443 */
2444 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
2445 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2446 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2447 hp->intr_error_status |= error;
2448 hp->intr_status |= status;
2449 if (ISSET(sc->sc_flags,
2450 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2451 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2452 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2453 }
2454 cv_broadcast(&hp->intr_cv);
2455 }
2456
2457 /*
2458 * Service SD card interrupts.
2459 */
2460 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
2461 && ISSET(status, SDHC_CARD_INTERRUPT)) {
2462 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2463 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2464 sdmmc_card_intr(hp->sdmmc);
2465 }
2466 next_port:
2467 mutex_exit(&hp->intr_lock);
2468 }
2469
2470 return done;
2471 }
2472
2473 kmutex_t *
2474 sdhc_host_lock(struct sdhc_host *hp)
2475 {
2476 return &hp->intr_lock;
2477 }
2478
2479 uint8_t
2480 sdhc_host_read_1(struct sdhc_host *hp, int reg)
2481 {
2482 return HREAD1(hp, reg);
2483 }
2484
2485 uint16_t
2486 sdhc_host_read_2(struct sdhc_host *hp, int reg)
2487 {
2488 return HREAD2(hp, reg);
2489 }
2490
2491 uint32_t
2492 sdhc_host_read_4(struct sdhc_host *hp, int reg)
2493 {
2494 return HREAD4(hp, reg);
2495 }
2496
2497 void
2498 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
2499 {
2500 HWRITE1(hp, reg, val);
2501 }
2502
2503 void
2504 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
2505 {
2506 HWRITE2(hp, reg, val);
2507 }
2508
2509 void
2510 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
2511 {
2512 HWRITE4(hp, reg, val);
2513 }
2514
2515 #ifdef SDHC_DEBUG
2516 void
2517 sdhc_dump_regs(struct sdhc_host *hp)
2518 {
2519
2520 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2521 HREAD4(hp, SDHC_PRESENT_STATE));
2522 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2523 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2524 HREAD1(hp, SDHC_POWER_CTL));
2525 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2526 HREAD2(hp, SDHC_NINTR_STATUS));
2527 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2528 HREAD2(hp, SDHC_EINTR_STATUS));
2529 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2530 HREAD2(hp, SDHC_NINTR_STATUS_EN));
2531 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2532 HREAD2(hp, SDHC_EINTR_STATUS_EN));
2533 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2534 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2535 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2536 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2537 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2538 HREAD4(hp, SDHC_CAPABILITIES));
2539 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2540 HREAD4(hp, SDHC_MAX_CAPABILITIES));
2541 }
2542 #endif
2543