sdhc.c revision 1.116 1 /* $NetBSD: sdhc.c,v 1.116 2022/10/14 07:54:49 jmcneill Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.116 2022/10/14 07:54:49 jmcneill Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39 #include <sys/atomic.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT (hz*3)
59 #define SDHC_TUNING_TIMEOUT hz
60
61 struct sdhc_host {
62 struct sdhc_softc *sc; /* host controller device */
63
64 bus_space_tag_t iot; /* host register set tag */
65 bus_space_handle_t ioh; /* host register set handle */
66 bus_size_t ios; /* host register space size */
67 bus_dma_tag_t dmat; /* host DMA tag */
68
69 device_t sdmmc; /* generic SD/MMC device */
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 kmutex_t intr_lock;
80 kmutex_t bus_clock_lock;
81 kcondvar_t intr_cv;
82
83 callout_t tuning_timer;
84 int tuning_timing;
85 u_int tuning_timer_count;
86 u_int tuning_timer_pending;
87
88 int specver; /* spec. version */
89
90 uint32_t flags; /* flags for this host */
91 #define SHF_USE_DMA 0x0001
92 #define SHF_USE_4BIT_MODE 0x0002
93 #define SHF_USE_8BIT_MODE 0x0004
94 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
95 #define SHF_USE_ADMA2_32 0x0010
96 #define SHF_USE_ADMA2_64 0x0020
97 #define SHF_USE_ADMA2_MASK 0x0030
98
99 bus_dmamap_t adma_map;
100 bus_dma_segment_t adma_segs[1];
101 void *adma2;
102
103 uint8_t vdd; /* last vdd setting */
104 };
105
106 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
107
108 static uint8_t
109 hread1(struct sdhc_host *hp, bus_size_t reg)
110 {
111
112 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
113 return bus_space_read_1(hp->iot, hp->ioh, reg);
114 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
115 }
116
117 static uint16_t
118 hread2(struct sdhc_host *hp, bus_size_t reg)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
122 return bus_space_read_2(hp->iot, hp->ioh, reg);
123 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
124 }
125
126 #define HREAD1(hp, reg) hread1(hp, reg)
127 #define HREAD2(hp, reg) hread2(hp, reg)
128 #define HREAD4(hp, reg) \
129 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
130
131
132 static void
133 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_1(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 3);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffU << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 static void
148 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
149 {
150
151 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
152 bus_space_write_2(hp->iot, hp->ioh, o, val);
153 } else {
154 const size_t shift = 8 * (o & 2);
155 o &= -4;
156 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
157 tmp = (val << shift) | (tmp & ~(0xffffU << shift));
158 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
159 }
160 }
161
162 static void
163 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
164 {
165
166 bus_space_write_4(hp->iot, hp->ioh, o, val);
167 }
168
169 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
170 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
171 #define HWRITE4(hp, reg, val) hwrite4(hp, reg, val)
172
173 #define HCLR1(hp, reg, bits) \
174 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
175 #define HCLR2(hp, reg, bits) \
176 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
177 #define HCLR4(hp, reg, bits) \
178 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
179 #define HSET1(hp, reg, bits) \
180 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
181 #define HSET2(hp, reg, bits) \
182 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
183 #define HSET4(hp, reg, bits) \
184 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
185
186 static int sdhc_host_reset(sdmmc_chipset_handle_t);
187 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
188 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
189 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
190 static int sdhc_card_detect(sdmmc_chipset_handle_t);
191 static int sdhc_write_protect(sdmmc_chipset_handle_t);
192 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
193 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
194 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
195 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
196 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
197 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
198 static void sdhc_exec_command(sdmmc_chipset_handle_t,
199 struct sdmmc_command *);
200 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
201 static int sdhc_execute_tuning1(struct sdhc_host *, int);
202 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
203 static void sdhc_tuning_timer(void *);
204 static void sdhc_hw_reset(sdmmc_chipset_handle_t);
205 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
206 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
207 static int sdhc_soft_reset(struct sdhc_host *, int);
208 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool);
209 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
210 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
211 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
212 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
213 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
214 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
215 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
216
217 static struct sdmmc_chip_functions sdhc_functions = {
218 /* host controller reset */
219 .host_reset = sdhc_host_reset,
220
221 /* host controller capabilities */
222 .host_ocr = sdhc_host_ocr,
223 .host_maxblklen = sdhc_host_maxblklen,
224
225 /* card detection */
226 .card_detect = sdhc_card_detect,
227
228 /* write protect */
229 .write_protect = sdhc_write_protect,
230
231 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
232 .bus_power = sdhc_bus_power,
233 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
234 .bus_width = sdhc_bus_width,
235 .bus_rod = sdhc_bus_rod,
236
237 /* command execution */
238 .exec_command = sdhc_exec_command,
239
240 /* card interrupt */
241 .card_enable_intr = sdhc_card_enable_intr,
242 .card_intr_ack = sdhc_card_intr_ack,
243
244 /* UHS functions */
245 .signal_voltage = sdhc_signal_voltage,
246 .bus_clock_ddr = sdhc_bus_clock_ddr,
247 .execute_tuning = sdhc_execute_tuning,
248 .hw_reset = sdhc_hw_reset,
249 };
250
251 static int
252 sdhc_cfprint(void *aux, const char *pnp)
253 {
254 const struct sdmmcbus_attach_args * const saa = aux;
255 const struct sdhc_host * const hp = saa->saa_sch;
256
257 if (pnp) {
258 aprint_normal("sdmmc at %s", pnp);
259 }
260 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
261 if (hp->sc->sc_host[host] == hp) {
262 aprint_normal(" slot %zu", host);
263 }
264 }
265
266 return UNCONF;
267 }
268
269 /*
270 * Called by attachment driver. For each SD card slot there is one SD
271 * host controller standard register set. (1.3)
272 */
273 int
274 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
275 bus_space_handle_t ioh, bus_size_t iosize)
276 {
277 struct sdmmcbus_attach_args saa;
278 struct sdhc_host *hp;
279 uint32_t caps, caps2;
280 uint16_t sdhcver;
281 int error;
282
283 /* Allocate one more host structure. */
284 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
285 if (hp == NULL) {
286 aprint_error_dev(sc->sc_dev,
287 "couldn't alloc memory (sdhc host)\n");
288 goto err1;
289 }
290 sc->sc_host[sc->sc_nhosts++] = hp;
291
292 /* Fill in the new host structure. */
293 hp->sc = sc;
294 hp->iot = iot;
295 hp->ioh = ioh;
296 hp->ios = iosize;
297 hp->dmat = sc->sc_dmat;
298
299 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
300 mutex_init(&hp->bus_clock_lock, MUTEX_DEFAULT, IPL_NONE);
301 cv_init(&hp->intr_cv, "sdhcintr");
302 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
303 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
304
305 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
306 sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
307 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
308 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
309 } else if (iosize <= SDHC_HOST_CTL_VERSION) {
310 sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
311 } else {
312 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
313 }
314 aprint_normal_dev(sc->sc_dev, "SDHC ");
315 hp->specver = SDHC_SPEC_VERSION(sdhcver);
316 switch (SDHC_SPEC_VERSION(sdhcver)) {
317 case SDHC_SPEC_VERS_100:
318 aprint_normal("1.0");
319 break;
320 case SDHC_SPEC_VERS_200:
321 aprint_normal("2.0");
322 break;
323 case SDHC_SPEC_VERS_300:
324 aprint_normal("3.0");
325 break;
326 case SDHC_SPEC_VERS_400:
327 aprint_normal("4.0");
328 break;
329 case SDHC_SPEC_VERS_410:
330 aprint_normal("4.1");
331 break;
332 case SDHC_SPEC_VERS_420:
333 aprint_normal("4.2");
334 break;
335 case SDHC_SPEC_NOVERS:
336 hp->specver = -1;
337 aprint_normal("NO-VERS");
338 break;
339 default:
340 aprint_normal("unknown version(0x%x)",
341 SDHC_SPEC_VERSION(sdhcver));
342 break;
343 }
344 if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
345 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
346
347 /*
348 * Reset the host controller and enable interrupts.
349 */
350 (void)sdhc_host_reset(hp);
351
352 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
353 /* init uSDHC registers */
354 HWRITE4(hp, SDHC_MMC_BOOT, 0);
355 HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
356 SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
357 HWRITE4(hp, SDHC_WATERMARK_LEVEL,
358 (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
359 (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
360 (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
361 (0x40 << SDHC_WATERMARK_READ_SHIFT));
362 HSET4(hp, SDHC_VEND_SPEC,
363 SDHC_VEND_SPEC_MBO |
364 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
365 SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
366 SDHC_VEND_SPEC_HCLK_SOFT_EN |
367 SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
368 SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
369 SDHC_VEND_SPEC_FRC_SDCLK_ON);
370 }
371
372 /* Determine host capabilities. */
373 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
374 caps = sc->sc_caps;
375 caps2 = sc->sc_caps2;
376 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
377 /* uSDHC capability register is little bit different */
378 caps = HREAD4(hp, SDHC_CAPABILITIES);
379 caps |= SDHC_8BIT_SUPP;
380 if (caps & SDHC_ADMA1_SUPP)
381 caps |= SDHC_ADMA2_SUPP;
382 sc->sc_caps = caps;
383 /* uSDHC has no SDHC_CAPABILITIES2 register */
384 caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
385 } else {
386 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
387 if (hp->specver >= SDHC_SPEC_VERS_300) {
388 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
389 } else {
390 caps2 = sc->sc_caps2 = 0;
391 }
392 }
393
394 aprint_verbose(", caps <%08x/%08x>", caps, caps2);
395
396 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
397 SDHC_RETUNING_MODES_MASK;
398 if (retuning_mode == SDHC_RETUNING_MODE_1) {
399 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
400 SDHC_TIMER_COUNT_MASK;
401 if (hp->tuning_timer_count == 0xf)
402 hp->tuning_timer_count = 0;
403 if (hp->tuning_timer_count)
404 hp->tuning_timer_count =
405 1 << (hp->tuning_timer_count - 1);
406 }
407
408 /*
409 * Use DMA if the host system and the controller support it.
410 * Supports integrated or external DMA egine, with or without
411 * SDHC_DMA_ENABLE in the command.
412 */
413 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
414 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
415 ISSET(caps, SDHC_DMA_SUPPORT)))) {
416 SET(hp->flags, SHF_USE_DMA);
417
418 if (ISSET(caps, SDHC_ADMA2_SUPP) &&
419 !ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA)) {
420 SET(hp->flags, SHF_MODE_DMAEN);
421 /*
422 * 64-bit mode was present in the 2.00 spec, removed
423 * from 3.00, and re-added in 4.00 with a different
424 * descriptor layout. We only support 2.00 and 3.00
425 * descriptors for now.
426 */
427 if (hp->specver == SDHC_SPEC_VERS_200 &&
428 ISSET(caps, SDHC_64BIT_SYS_BUS)) {
429 SET(hp->flags, SHF_USE_ADMA2_64);
430 aprint_normal(", 64-bit ADMA2");
431 } else {
432 SET(hp->flags, SHF_USE_ADMA2_32);
433 aprint_normal(", 32-bit ADMA2");
434 }
435 } else {
436 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
437 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
438 SET(hp->flags, SHF_MODE_DMAEN);
439 if (sc->sc_vendor_transfer_data_dma) {
440 aprint_normal(", platform DMA");
441 } else {
442 aprint_normal(", SDMA");
443 }
444 }
445 } else {
446 aprint_normal(", PIO");
447 }
448
449 /*
450 * Determine the base clock frequency. (2.2.24)
451 */
452 if (hp->specver >= SDHC_SPEC_VERS_300) {
453 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
454 } else {
455 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
456 }
457 if (hp->clkbase == 0 ||
458 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
459 if (sc->sc_clkbase == 0) {
460 /* The attachment driver must tell us. */
461 aprint_error_dev(sc->sc_dev,
462 "unknown base clock frequency\n");
463 goto err;
464 }
465 hp->clkbase = sc->sc_clkbase;
466 }
467 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
468 /* SDHC 1.0 supports only 10-63 MHz. */
469 aprint_error_dev(sc->sc_dev,
470 "base clock frequency out of range: %u MHz\n",
471 hp->clkbase / 1000);
472 goto err;
473 }
474 aprint_normal(", %u kHz", hp->clkbase);
475
476 /*
477 * XXX Set the data timeout counter value according to
478 * capabilities. (2.2.15)
479 */
480 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
481 #if 1
482 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
483 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
484 #endif
485
486 if (ISSET(caps, SDHC_EMBEDDED_SLOT))
487 aprint_normal(", embedded slot");
488
489 /*
490 * Determine SD bus voltage levels supported by the controller.
491 */
492 aprint_normal(",");
493 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
494 SET(hp->ocr, MMC_OCR_HCS);
495 aprint_normal(" HS");
496 }
497 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
498 if (ISSET(caps2, SDHC_SDR50_SUPP)) {
499 SET(hp->ocr, MMC_OCR_S18A);
500 aprint_normal(" SDR50");
501 }
502 if (ISSET(caps2, SDHC_DDR50_SUPP)) {
503 SET(hp->ocr, MMC_OCR_S18A);
504 aprint_normal(" DDR50");
505 }
506 if (ISSET(caps2, SDHC_SDR104_SUPP)) {
507 SET(hp->ocr, MMC_OCR_S18A);
508 aprint_normal(" SDR104 HS200");
509 }
510 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
511 SET(hp->ocr, MMC_OCR_1_65V_1_95V);
512 aprint_normal(" 1.8V");
513 }
514 }
515 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
516 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
517 aprint_normal(" 3.0V");
518 }
519 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
520 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
521 aprint_normal(" 3.3V");
522 }
523 if (hp->specver >= SDHC_SPEC_VERS_300) {
524 aprint_normal(", re-tuning mode %d", retuning_mode + 1);
525 if (hp->tuning_timer_count)
526 aprint_normal(" (%us timer)", hp->tuning_timer_count);
527 }
528
529 /*
530 * Determine the maximum block length supported by the host
531 * controller. (2.2.24)
532 */
533 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
534 case SDHC_MAX_BLK_LEN_512:
535 hp->maxblklen = 512;
536 break;
537
538 case SDHC_MAX_BLK_LEN_1024:
539 hp->maxblklen = 1024;
540 break;
541
542 case SDHC_MAX_BLK_LEN_2048:
543 hp->maxblklen = 2048;
544 break;
545
546 case SDHC_MAX_BLK_LEN_4096:
547 hp->maxblklen = 4096;
548 break;
549
550 default:
551 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
552 goto err;
553 }
554 aprint_normal(", %u byte blocks", hp->maxblklen);
555 aprint_normal("\n");
556
557 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
558 int rseg;
559
560 /* Allocate ADMA2 descriptor memory */
561 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
562 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
563 if (error) {
564 aprint_error_dev(sc->sc_dev,
565 "ADMA2 dmamem_alloc failed (%d)\n", error);
566 goto adma_done;
567 }
568 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
569 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
570 if (error) {
571 aprint_error_dev(sc->sc_dev,
572 "ADMA2 dmamem_map failed (%d)\n", error);
573 goto adma_done;
574 }
575 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
576 0, BUS_DMA_WAITOK, &hp->adma_map);
577 if (error) {
578 aprint_error_dev(sc->sc_dev,
579 "ADMA2 dmamap_create failed (%d)\n", error);
580 goto adma_done;
581 }
582 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
583 hp->adma2, PAGE_SIZE, NULL,
584 BUS_DMA_WAITOK|BUS_DMA_WRITE);
585 if (error) {
586 aprint_error_dev(sc->sc_dev,
587 "ADMA2 dmamap_load failed (%d)\n", error);
588 goto adma_done;
589 }
590
591 memset(hp->adma2, 0, PAGE_SIZE);
592
593 adma_done:
594 if (error)
595 CLR(hp->flags, SHF_USE_ADMA2_MASK);
596 }
597
598 /*
599 * Attach the generic SD/MMC bus driver. (The bus driver must
600 * not invoke any chipset functions before it is attached.)
601 */
602 memset(&saa, 0, sizeof(saa));
603 saa.saa_busname = "sdmmc";
604 saa.saa_sct = &sdhc_functions;
605 saa.saa_sch = hp;
606 saa.saa_dmat = hp->dmat;
607 saa.saa_clkmax = hp->clkbase;
608 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
609 saa.saa_clkmin = hp->clkbase / 256 / 2046;
610 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
611 saa.saa_clkmin = hp->clkbase / 256 / 16;
612 else if (hp->sc->sc_clkmsk != 0)
613 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
614 (ffs(hp->sc->sc_clkmsk) - 1));
615 else if (hp->specver >= SDHC_SPEC_VERS_300)
616 saa.saa_clkmin = hp->clkbase / 0x3ff;
617 else
618 saa.saa_clkmin = hp->clkbase / 256;
619 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
620 saa.saa_caps |= SMC_CAPS_AUTO_STOP;
621 saa.saa_caps |= SMC_CAPS_4BIT_MODE;
622 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
623 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
624 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
625 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED |
626 SMC_CAPS_MMC_HIGHSPEED;
627 if (ISSET(caps2, SDHC_SDR104_SUPP))
628 saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
629 SMC_CAPS_UHS_SDR50 |
630 SMC_CAPS_MMC_HS200;
631 if (ISSET(caps2, SDHC_SDR50_SUPP))
632 saa.saa_caps |= SMC_CAPS_UHS_SDR50;
633 if (ISSET(caps2, SDHC_DDR50_SUPP))
634 saa.saa_caps |= SMC_CAPS_UHS_DDR50;
635 if (ISSET(hp->flags, SHF_USE_DMA)) {
636 saa.saa_caps |= SMC_CAPS_DMA;
637 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
638 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
639 }
640 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
641 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
642 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
643 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
644
645 if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
646 saa.saa_max_seg = 65535;
647
648 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
649
650 return 0;
651
652 err:
653 callout_destroy(&hp->tuning_timer);
654 cv_destroy(&hp->intr_cv);
655 mutex_destroy(&hp->bus_clock_lock);
656 mutex_destroy(&hp->intr_lock);
657 free(hp, M_DEVBUF);
658 sc->sc_host[--sc->sc_nhosts] = NULL;
659 err1:
660 return 1;
661 }
662
663 int
664 sdhc_detach(struct sdhc_softc *sc, int flags)
665 {
666 struct sdhc_host *hp;
667 int rv = 0;
668
669 for (size_t n = 0; n < sc->sc_nhosts; n++) {
670 hp = sc->sc_host[n];
671 if (hp == NULL)
672 continue;
673 if (hp->sdmmc != NULL) {
674 rv = config_detach(hp->sdmmc, flags);
675 if (rv)
676 break;
677 hp->sdmmc = NULL;
678 }
679 /* disable interrupts */
680 if ((flags & DETACH_FORCE) == 0) {
681 mutex_enter(&hp->intr_lock);
682 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
683 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
684 } else {
685 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
686 }
687 sdhc_soft_reset(hp, SDHC_RESET_ALL);
688 mutex_exit(&hp->intr_lock);
689 }
690 callout_halt(&hp->tuning_timer, NULL);
691 callout_destroy(&hp->tuning_timer);
692 cv_destroy(&hp->intr_cv);
693 mutex_destroy(&hp->intr_lock);
694 if (hp->ios > 0) {
695 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
696 hp->ios = 0;
697 }
698 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
699 bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
700 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
701 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
702 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
703 }
704 free(hp, M_DEVBUF);
705 sc->sc_host[n] = NULL;
706 }
707
708 return rv;
709 }
710
711 bool
712 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
713 {
714 struct sdhc_softc *sc = device_private(dev);
715 struct sdhc_host *hp;
716 size_t i;
717
718 /* XXX poll for command completion or suspend command
719 * in progress */
720
721 /* Save the host controller state. */
722 for (size_t n = 0; n < sc->sc_nhosts; n++) {
723 hp = sc->sc_host[n];
724 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
725 for (i = 0; i < sizeof hp->regs; i += 4) {
726 uint32_t v = HREAD4(hp, i);
727 hp->regs[i + 0] = (v >> 0);
728 hp->regs[i + 1] = (v >> 8);
729 if (i + 3 < sizeof hp->regs) {
730 hp->regs[i + 2] = (v >> 16);
731 hp->regs[i + 3] = (v >> 24);
732 }
733 }
734 } else {
735 for (i = 0; i < sizeof hp->regs; i++) {
736 hp->regs[i] = HREAD1(hp, i);
737 }
738 }
739 }
740 return true;
741 }
742
743 bool
744 sdhc_resume(device_t dev, const pmf_qual_t *qual)
745 {
746 struct sdhc_softc *sc = device_private(dev);
747 struct sdhc_host *hp;
748 size_t i;
749
750 /* Restore the host controller state. */
751 for (size_t n = 0; n < sc->sc_nhosts; n++) {
752 hp = sc->sc_host[n];
753 (void)sdhc_host_reset(hp);
754 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
755 for (i = 0; i < sizeof hp->regs; i += 4) {
756 if (i + 3 < sizeof hp->regs) {
757 HWRITE4(hp, i,
758 (hp->regs[i + 0] << 0)
759 | (hp->regs[i + 1] << 8)
760 | (hp->regs[i + 2] << 16)
761 | (hp->regs[i + 3] << 24));
762 } else {
763 HWRITE4(hp, i,
764 (hp->regs[i + 0] << 0)
765 | (hp->regs[i + 1] << 8));
766 }
767 }
768 } else {
769 for (i = 0; i < sizeof hp->regs; i++) {
770 HWRITE1(hp, i, hp->regs[i]);
771 }
772 }
773 }
774 return true;
775 }
776
777 bool
778 sdhc_shutdown(device_t dev, int flags)
779 {
780 struct sdhc_softc *sc = device_private(dev);
781 struct sdhc_host *hp;
782
783 /* XXX chip locks up if we don't disable it before reboot. */
784 for (size_t i = 0; i < sc->sc_nhosts; i++) {
785 hp = sc->sc_host[i];
786 (void)sdhc_host_reset(hp);
787 }
788 return true;
789 }
790
791 /*
792 * Reset the host controller. Called during initialization, when
793 * cards are removed, upon resume, and during error recovery.
794 */
795 static int
796 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
797 {
798 struct sdhc_host *hp = (struct sdhc_host *)sch;
799 uint32_t sdhcimask;
800 int error;
801
802 KASSERT(mutex_owned(&hp->intr_lock));
803
804 /* Disable all interrupts. */
805 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
806 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
807 } else {
808 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
809 }
810
811 /* Let sdhc_bus_power restore power */
812 hp->vdd = 0;
813
814 /*
815 * Reset the entire host controller and wait up to 100ms for
816 * the controller to clear the reset bit.
817 */
818 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
819 if (error)
820 goto out;
821
822 /* Set data timeout counter value to max for now. */
823 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
824 #if 1
825 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
826 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
827 #endif
828
829 /* Enable interrupts. */
830 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
831 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
832 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
833 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
834 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
835 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
836 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
837 sdhcimask ^=
838 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
839 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
840 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
841 } else {
842 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
843 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
844 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
845 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
846 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
847 }
848
849 out:
850 return error;
851 }
852
853 static int
854 sdhc_host_reset(sdmmc_chipset_handle_t sch)
855 {
856 struct sdhc_host *hp = (struct sdhc_host *)sch;
857 int error;
858
859 mutex_enter(&hp->intr_lock);
860 error = sdhc_host_reset1(sch);
861 mutex_exit(&hp->intr_lock);
862
863 return error;
864 }
865
866 static uint32_t
867 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
868 {
869 struct sdhc_host *hp = (struct sdhc_host *)sch;
870
871 return hp->ocr;
872 }
873
874 static int
875 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
876 {
877 struct sdhc_host *hp = (struct sdhc_host *)sch;
878
879 return hp->maxblklen;
880 }
881
882 /*
883 * Return non-zero if the card is currently inserted.
884 */
885 static int
886 sdhc_card_detect(sdmmc_chipset_handle_t sch)
887 {
888 struct sdhc_host *hp = (struct sdhc_host *)sch;
889 int r;
890
891 if (hp->sc->sc_vendor_card_detect)
892 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
893
894 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
895
896 return r ? 1 : 0;
897 }
898
899 /*
900 * Return non-zero if the card is currently write-protected.
901 */
902 static int
903 sdhc_write_protect(sdmmc_chipset_handle_t sch)
904 {
905 struct sdhc_host *hp = (struct sdhc_host *)sch;
906 int r;
907
908 if (hp->sc->sc_vendor_write_protect)
909 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
910
911 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
912
913 return r ? 0 : 1;
914 }
915
916 /*
917 * Set or change SD bus voltage and enable or disable SD bus power.
918 * Return zero on success.
919 */
920 static int
921 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
922 {
923 struct sdhc_host *hp = (struct sdhc_host *)sch;
924 uint8_t vdd;
925 int error = 0;
926 const uint32_t pcmask =
927 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
928 uint32_t reg;
929
930 mutex_enter(&hp->intr_lock);
931
932 /*
933 * Disable bus power before voltage change.
934 */
935 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
936 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
937 hp->vdd = 0;
938 HWRITE1(hp, SDHC_POWER_CTL, 0);
939 }
940
941 /* If power is disabled, reset the host and return now. */
942 if (ocr == 0) {
943 (void)sdhc_host_reset1(hp);
944 callout_halt(&hp->tuning_timer, &hp->intr_lock);
945 goto out;
946 }
947
948 /*
949 * Select the lowest voltage according to capabilities.
950 */
951 ocr &= hp->ocr;
952 if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
953 vdd = SDHC_VOLTAGE_1_8V;
954 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
955 vdd = SDHC_VOLTAGE_3_0V;
956 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
957 vdd = SDHC_VOLTAGE_3_3V;
958 } else {
959 /* Unsupported voltage level requested. */
960 error = EINVAL;
961 goto out;
962 }
963
964 /*
965 * Did voltage change ?
966 */
967 if (vdd == hp->vdd)
968 goto out;
969
970 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
971 /*
972 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
973 * voltage ramp until power rises.
974 */
975
976 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
977 HWRITE1(hp, SDHC_POWER_CTL,
978 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
979 } else {
980 reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
981 HWRITE1(hp, SDHC_POWER_CTL, reg);
982 sdmmc_delay(1);
983 reg |= (vdd << SDHC_VOLTAGE_SHIFT);
984 HWRITE1(hp, SDHC_POWER_CTL, reg);
985 sdmmc_delay(1);
986 reg |= SDHC_BUS_POWER;
987 HWRITE1(hp, SDHC_POWER_CTL, reg);
988 sdmmc_delay(10000);
989 }
990
991 /*
992 * The host system may not power the bus due to battery low,
993 * etc. In that case, the host controller should clear the
994 * bus power bit.
995 */
996 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
997 error = ENXIO;
998 goto out;
999 }
1000 }
1001
1002 /* power successfully changed */
1003 hp->vdd = vdd;
1004
1005 out:
1006 mutex_exit(&hp->intr_lock);
1007
1008 return error;
1009 }
1010
1011 /*
1012 * Return the smallest possible base clock frequency divisor value
1013 * for the CLOCK_CTL register to produce `freq' (KHz).
1014 */
1015 static bool
1016 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
1017 {
1018 u_int div;
1019
1020 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
1021 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
1022 if ((hp->clkbase / div) <= freq) {
1023 *divp = SDHC_SDCLK_CGM
1024 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
1025 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
1026 //freq = hp->clkbase / div;
1027 return true;
1028 }
1029 }
1030 /* No divisor found. */
1031 return false;
1032 }
1033 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
1034 u_int dvs = (hp->clkbase + freq - 1) / freq;
1035 u_int roundup = dvs & 1;
1036 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
1037 if (dvs + roundup <= 16) {
1038 dvs += roundup - 1;
1039 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
1040 | (dvs << SDHC_SDCLK_DVS_SHIFT);
1041 DPRINTF(2,
1042 ("%s: divisor for freq %u is %u * %u\n",
1043 HDEVNAME(hp), freq, div * 2, dvs + 1));
1044 //freq = hp->clkbase / (div * 2) * (dvs + 1);
1045 return true;
1046 }
1047 /*
1048 * If we drop bits, we need to round up the divisor.
1049 */
1050 roundup |= dvs & 1;
1051 }
1052 /* No divisor found. */
1053 return false;
1054 }
1055 if (hp->sc->sc_clkmsk != 0) {
1056 div = howmany(hp->clkbase, freq);
1057 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
1058 return false;
1059 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
1060 //freq = hp->clkbase / div;
1061 return true;
1062 }
1063 if (hp->specver >= SDHC_SPEC_VERS_300) {
1064 div = howmany(hp->clkbase, freq);
1065 div = div > 1 ? howmany(div, 2) : 0;
1066 if (div > 0x3ff)
1067 return false;
1068 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
1069 << SDHC_SDCLK_XDIV_SHIFT) |
1070 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
1071 << SDHC_SDCLK_DIV_SHIFT);
1072 //freq = hp->clkbase / (div ? div * 2 : 1);
1073 return true;
1074 } else {
1075 for (div = 1; div <= 256; div *= 2) {
1076 if ((hp->clkbase / div) <= freq) {
1077 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
1078 //freq = hp->clkbase / div;
1079 return true;
1080 }
1081 }
1082 /* No divisor found. */
1083 return false;
1084 }
1085 /* No divisor found. */
1086 return false;
1087 }
1088
1089 /*
1090 * Set or change SDCLK frequency or disable the SD clock.
1091 * Return zero on success.
1092 */
1093 static int
1094 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
1095 {
1096 struct sdhc_host *hp = (struct sdhc_host *)sch;
1097 u_int div;
1098 u_int timo;
1099 int16_t reg;
1100 int error = 0;
1101 bool present __diagused;
1102
1103 #ifdef DIAGNOSTIC
1104 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
1105
1106 /* Must not stop the clock if commands are in progress. */
1107 if (present && sdhc_card_detect(hp)) {
1108 aprint_normal_dev(hp->sc->sc_dev,
1109 "%s: command in progress\n", __func__);
1110 }
1111 #endif
1112
1113 if (hp->sc->sc_vendor_bus_clock) {
1114 mutex_enter(&hp->bus_clock_lock);
1115 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1116 mutex_exit(&hp->bus_clock_lock);
1117 if (error != 0)
1118 return error;
1119 }
1120
1121 mutex_enter(&hp->intr_lock);
1122
1123 /*
1124 * Stop SD clock before changing the frequency.
1125 */
1126 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1127 HCLR4(hp, SDHC_VEND_SPEC,
1128 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1129 SDHC_VEND_SPEC_FRC_SDCLK_ON);
1130 if (freq == SDMMC_SDCLK_OFF) {
1131 goto out;
1132 }
1133 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1134 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1135 if (freq == SDMMC_SDCLK_OFF) {
1136 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1137 goto out;
1138 }
1139 } else {
1140 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1141 if (freq == SDMMC_SDCLK_OFF)
1142 goto out;
1143 }
1144
1145 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1146 if (ddr)
1147 HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1148 else
1149 HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1150 } else if (hp->specver >= SDHC_SPEC_VERS_300) {
1151 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1152 if (freq > 100000) {
1153 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1154 } else if (freq > 50000) {
1155 if (ddr) {
1156 HSET2(hp, SDHC_HOST_CTL2,
1157 SDHC_UHS_MODE_SELECT_DDR50);
1158 } else {
1159 HSET2(hp, SDHC_HOST_CTL2,
1160 SDHC_UHS_MODE_SELECT_SDR50);
1161 }
1162 } else if (freq > 25000) {
1163 if (ddr) {
1164 HSET2(hp, SDHC_HOST_CTL2,
1165 SDHC_UHS_MODE_SELECT_DDR50);
1166 } else {
1167 HSET2(hp, SDHC_HOST_CTL2,
1168 SDHC_UHS_MODE_SELECT_SDR25);
1169 }
1170 } else if (freq > 400) {
1171 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1172 }
1173 }
1174
1175 /*
1176 * Slow down Ricoh 5U823 controller that isn't reliable
1177 * at 100MHz bus clock.
1178 */
1179 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
1180 if (freq == 100000)
1181 --freq;
1182 }
1183
1184 /*
1185 * Set the minimum base clock frequency divisor.
1186 */
1187 if (!sdhc_clock_divisor(hp, freq, &div)) {
1188 /* Invalid base clock frequency or `freq' value. */
1189 aprint_error_dev(hp->sc->sc_dev,
1190 "Invalid bus clock %d kHz\n", freq);
1191 error = EINVAL;
1192 goto out;
1193 }
1194 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1195 if (ddr) {
1196 /* in ddr mode, divisor >>= 1 */
1197 div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
1198 SDHC_SDCLK_DIV_SHIFT)) |
1199 (div & (SDHC_SDCLK_DVS_MASK <<
1200 SDHC_SDCLK_DVS_SHIFT));
1201 }
1202 for (timo = 1000; timo > 0; timo--) {
1203 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
1204 break;
1205 sdmmc_delay(10);
1206 }
1207 HWRITE4(hp, SDHC_CLOCK_CTL,
1208 div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
1209 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1210 HWRITE4(hp, SDHC_CLOCK_CTL,
1211 div | (SDHC_TIMEOUT_MAX << 16));
1212 } else {
1213 reg = HREAD2(hp, SDHC_CLOCK_CTL);
1214 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1215 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1216 }
1217
1218 /*
1219 * Start internal clock. Wait 10ms for stabilization.
1220 */
1221 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1222 HSET4(hp, SDHC_VEND_SPEC,
1223 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1224 SDHC_VEND_SPEC_FRC_SDCLK_ON);
1225 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1226 sdmmc_delay(10000);
1227 HSET4(hp, SDHC_CLOCK_CTL,
1228 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1229 } else {
1230 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1231 for (timo = 1000; timo > 0; timo--) {
1232 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1233 SDHC_INTCLK_STABLE))
1234 break;
1235 sdmmc_delay(10);
1236 }
1237 if (timo == 0) {
1238 error = ETIMEDOUT;
1239 DPRINTF(1,("%s: timeout\n", __func__));
1240 goto out;
1241 }
1242 }
1243
1244 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1245 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1246 /*
1247 * Sending 80 clocks at 400kHz takes 200us.
1248 * So delay for that time + slop and then
1249 * check a few times for completion.
1250 */
1251 sdmmc_delay(210);
1252 for (timo = 10; timo > 0; timo--) {
1253 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1254 SDHC_INIT_ACTIVE))
1255 break;
1256 sdmmc_delay(10);
1257 }
1258 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1259
1260 /*
1261 * Enable SD clock.
1262 */
1263 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1264 HSET4(hp, SDHC_VEND_SPEC,
1265 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1266 SDHC_VEND_SPEC_FRC_SDCLK_ON);
1267 } else {
1268 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1269 }
1270 } else {
1271 /*
1272 * Enable SD clock.
1273 */
1274 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1275
1276 if (freq > 25000 &&
1277 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1278 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1279 else
1280 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1281 }
1282
1283 mutex_exit(&hp->intr_lock);
1284
1285 if (hp->sc->sc_vendor_bus_clock_post) {
1286 mutex_enter(&hp->bus_clock_lock);
1287 error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
1288 mutex_exit(&hp->bus_clock_lock);
1289 }
1290 return error;
1291
1292 out:
1293 mutex_exit(&hp->intr_lock);
1294
1295 return error;
1296 }
1297
1298 static int
1299 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1300 {
1301 struct sdhc_host *hp = (struct sdhc_host *)sch;
1302 int reg;
1303
1304 switch (width) {
1305 case 1:
1306 case 4:
1307 break;
1308
1309 case 8:
1310 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1311 break;
1312 /* FALLTHROUGH */
1313 default:
1314 DPRINTF(0,("%s: unsupported bus width (%d)\n",
1315 HDEVNAME(hp), width));
1316 return 1;
1317 }
1318
1319 if (hp->sc->sc_vendor_bus_width) {
1320 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
1321 if (error != 0)
1322 return error;
1323 }
1324
1325 mutex_enter(&hp->intr_lock);
1326
1327 reg = HREAD1(hp, SDHC_HOST_CTL);
1328 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1329 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1330 if (width == 4)
1331 reg |= SDHC_4BIT_MODE;
1332 else if (width == 8)
1333 reg |= SDHC_ESDHC_8BIT_MODE;
1334 } else {
1335 reg &= ~SDHC_4BIT_MODE;
1336 if (hp->specver >= SDHC_SPEC_VERS_300) {
1337 reg &= ~SDHC_8BIT_MODE;
1338 }
1339 if (width == 4) {
1340 reg |= SDHC_4BIT_MODE;
1341 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1342 reg |= SDHC_8BIT_MODE;
1343 }
1344 }
1345 HWRITE1(hp, SDHC_HOST_CTL, reg);
1346
1347 mutex_exit(&hp->intr_lock);
1348
1349 return 0;
1350 }
1351
1352 static int
1353 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1354 {
1355 struct sdhc_host *hp = (struct sdhc_host *)sch;
1356
1357 if (hp->sc->sc_vendor_rod)
1358 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1359
1360 return 0;
1361 }
1362
1363 static void
1364 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1365 {
1366 struct sdhc_host *hp = (struct sdhc_host *)sch;
1367
1368 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1369 mutex_enter(&hp->intr_lock);
1370 if (enable) {
1371 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1372 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1373 } else {
1374 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1375 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1376 }
1377 mutex_exit(&hp->intr_lock);
1378 }
1379 }
1380
1381 static void
1382 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1383 {
1384 struct sdhc_host *hp = (struct sdhc_host *)sch;
1385
1386 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1387 mutex_enter(&hp->intr_lock);
1388 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1389 mutex_exit(&hp->intr_lock);
1390 }
1391 }
1392
1393 static int
1394 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1395 {
1396 struct sdhc_host *hp = (struct sdhc_host *)sch;
1397 int error = 0;
1398
1399 if (hp->specver < SDHC_SPEC_VERS_300)
1400 return EINVAL;
1401
1402 mutex_enter(&hp->intr_lock);
1403 switch (signal_voltage) {
1404 case SDMMC_SIGNAL_VOLTAGE_180:
1405 if (hp->sc->sc_vendor_signal_voltage != NULL) {
1406 error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1407 signal_voltage);
1408 if (error != 0)
1409 break;
1410 }
1411 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1412 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1413 break;
1414 case SDMMC_SIGNAL_VOLTAGE_330:
1415 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1416 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1417 if (hp->sc->sc_vendor_signal_voltage != NULL) {
1418 error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1419 signal_voltage);
1420 if (error != 0)
1421 break;
1422 }
1423 break;
1424 default:
1425 error = EINVAL;
1426 break;
1427 }
1428 mutex_exit(&hp->intr_lock);
1429
1430 return error;
1431 }
1432
1433 /*
1434 * Sampling clock tuning procedure (UHS)
1435 */
1436 static int
1437 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
1438 {
1439 struct sdmmc_command cmd;
1440 uint8_t hostctl;
1441 int opcode, error, retry = 40;
1442
1443 KASSERT(mutex_owned(&hp->intr_lock));
1444
1445 hp->tuning_timing = timing;
1446
1447 switch (timing) {
1448 case SDMMC_TIMING_MMC_HS200:
1449 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1450 break;
1451 case SDMMC_TIMING_UHS_SDR50:
1452 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1453 return 0;
1454 /* FALLTHROUGH */
1455 case SDMMC_TIMING_UHS_SDR104:
1456 opcode = MMC_SEND_TUNING_BLOCK;
1457 break;
1458 default:
1459 return EINVAL;
1460 }
1461
1462 hostctl = HREAD1(hp, SDHC_HOST_CTL);
1463
1464 /* enable buffer read ready interrupt */
1465 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1466 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1467
1468 /* disable DMA */
1469 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1470
1471 /* reset tuning circuit */
1472 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1473
1474 /* start of tuning */
1475 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1476
1477 do {
1478 memset(&cmd, 0, sizeof(cmd));
1479 cmd.c_opcode = opcode;
1480 cmd.c_arg = 0;
1481 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1482 if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1483 cmd.c_blklen = cmd.c_datalen = 128;
1484 } else {
1485 cmd.c_blklen = cmd.c_datalen = 64;
1486 }
1487
1488 error = sdhc_start_command(hp, &cmd);
1489 if (error)
1490 break;
1491
1492 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1493 SDHC_TUNING_TIMEOUT, false)) {
1494 break;
1495 }
1496
1497 delay(1000);
1498 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1499
1500 /* disable buffer read ready interrupt */
1501 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1502 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1503
1504 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1505 HCLR2(hp, SDHC_HOST_CTL2,
1506 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1507 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1508 aprint_error_dev(hp->sc->sc_dev,
1509 "tuning did not complete, using fixed sampling clock\n");
1510 return 0; /* tuning did not complete */
1511 }
1512
1513 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1514 HCLR2(hp, SDHC_HOST_CTL2,
1515 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1516 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1517 aprint_error_dev(hp->sc->sc_dev,
1518 "tuning failed, using fixed sampling clock\n");
1519 return 0; /* tuning failed */
1520 }
1521
1522 if (hp->tuning_timer_count) {
1523 callout_schedule(&hp->tuning_timer,
1524 hz * hp->tuning_timer_count);
1525 }
1526
1527 return 0; /* tuning completed */
1528 }
1529
1530 static int
1531 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1532 {
1533 struct sdhc_host *hp = (struct sdhc_host *)sch;
1534 int error;
1535
1536 mutex_enter(&hp->intr_lock);
1537 error = sdhc_execute_tuning1(hp, timing);
1538 mutex_exit(&hp->intr_lock);
1539 return error;
1540 }
1541
1542 static void
1543 sdhc_tuning_timer(void *arg)
1544 {
1545 struct sdhc_host *hp = arg;
1546
1547 atomic_swap_uint(&hp->tuning_timer_pending, 1);
1548 }
1549
1550 static void
1551 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
1552 {
1553 struct sdhc_host *hp = (struct sdhc_host *)sch;
1554 struct sdhc_softc *sc = hp->sc;
1555
1556 if (sc->sc_vendor_hw_reset != NULL)
1557 sc->sc_vendor_hw_reset(sc, hp);
1558 }
1559
1560 static int
1561 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1562 {
1563 uint32_t state;
1564 int timeout;
1565
1566 for (timeout = 100000; timeout > 0; timeout--) {
1567 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1568 return 0;
1569 sdmmc_delay(10);
1570 }
1571 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1572 mask, value, state);
1573 return ETIMEDOUT;
1574 }
1575
1576 static void
1577 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1578 {
1579 struct sdhc_host *hp = (struct sdhc_host *)sch;
1580 int error;
1581 bool probing;
1582
1583 mutex_enter(&hp->intr_lock);
1584
1585 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
1586 (void)sdhc_execute_tuning1(hp, hp->tuning_timing);
1587 }
1588
1589 if (cmd->c_data &&
1590 ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1591 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1592 if (ISSET(hp->flags, SHF_USE_DMA)) {
1593 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1594 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1595 } else {
1596 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1597 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1598 }
1599 }
1600
1601 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1602 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1603 if (cmd->c_data != NULL) {
1604 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1605 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1606 } else {
1607 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1608 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1609 }
1610 }
1611
1612 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
1613 if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1614 SET(cmd->c_flags, SCF_RSP_BSY);
1615 }
1616
1617 /*
1618 * Start the MMC command, or mark `cmd' as failed and return.
1619 */
1620 error = sdhc_start_command(hp, cmd);
1621 if (error) {
1622 cmd->c_error = error;
1623 goto out;
1624 }
1625
1626 /*
1627 * Wait until the command phase is done, or until the command
1628 * is marked done for any other reason.
1629 */
1630 probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
1631 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
1632 DPRINTF(1,("%s: timeout for command\n", __func__));
1633 sdmmc_delay(50);
1634 cmd->c_error = ETIMEDOUT;
1635 goto out;
1636 }
1637
1638 /*
1639 * The host controller removes bits [0:7] from the response
1640 * data (CRC) and we pass the data up unchanged to the bus
1641 * driver (without padding).
1642 */
1643 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1644 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1645 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1646 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1647 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1648 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1649 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1650 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1651 (cmd->c_resp[1] << 24);
1652 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1653 (cmd->c_resp[2] << 24);
1654 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1655 (cmd->c_resp[3] << 24);
1656 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1657 }
1658 }
1659 }
1660 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1661
1662 /*
1663 * If the command has data to transfer in any direction,
1664 * execute the transfer now.
1665 */
1666 if (cmd->c_error == 0 && cmd->c_data != NULL)
1667 sdhc_transfer_data(hp, cmd);
1668 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1669 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
1670 !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
1671 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
1672 HDEVNAME(hp)));
1673 cmd->c_error = ETIMEDOUT;
1674 goto out;
1675 }
1676 }
1677
1678 out:
1679 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1680 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1681 /* Turn off the LED. */
1682 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1683 }
1684 SET(cmd->c_flags, SCF_ITSDONE);
1685
1686 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
1687 cmd->c_opcode == MMC_STOP_TRANSMISSION)
1688 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
1689
1690 mutex_exit(&hp->intr_lock);
1691
1692 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1693 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1694 cmd->c_flags, cmd->c_error));
1695 }
1696
1697 static int
1698 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1699 {
1700 struct sdhc_softc * const sc = hp->sc;
1701 uint16_t blksize = 0;
1702 uint16_t blkcount = 0;
1703 uint16_t mode;
1704 uint16_t command;
1705 uint32_t pmask;
1706 int error;
1707
1708 KASSERT(mutex_owned(&hp->intr_lock));
1709
1710 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1711 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1712 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1713
1714 /*
1715 * The maximum block length for commands should be the minimum
1716 * of the host buffer size and the card buffer size. (1.7.2)
1717 */
1718
1719 /* Fragment the data into proper blocks. */
1720 if (cmd->c_datalen > 0) {
1721 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1722 blkcount = cmd->c_datalen / blksize;
1723 if (cmd->c_datalen % blksize > 0) {
1724 /* XXX: Split this command. (1.7.4) */
1725 aprint_error_dev(sc->sc_dev,
1726 "data not a multiple of %u bytes\n", blksize);
1727 return EINVAL;
1728 }
1729 }
1730
1731 /* Check limit imposed by 9-bit block count. (1.7.2) */
1732 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1733 aprint_error_dev(sc->sc_dev, "too much data\n");
1734 return EINVAL;
1735 }
1736
1737 /* Prepare transfer mode register value. (2.2.5) */
1738 mode = 0;
1739 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1740 mode |= SDHC_READ_MODE;
1741 if (blkcount > 0) {
1742 mode |= SDHC_BLOCK_COUNT_ENABLE;
1743 if (blkcount > 1) {
1744 mode |= SDHC_MULTI_BLOCK_MODE;
1745 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
1746 && !ISSET(cmd->c_flags, SCF_NO_STOP))
1747 mode |= SDHC_AUTO_CMD12_ENABLE;
1748 }
1749 }
1750 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1751 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1752 mode |= SDHC_DMA_ENABLE;
1753 }
1754
1755 /*
1756 * Prepare command register value. (2.2.6)
1757 */
1758 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1759
1760 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1761 command |= SDHC_CRC_CHECK_ENABLE;
1762 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1763 command |= SDHC_INDEX_CHECK_ENABLE;
1764 if (cmd->c_datalen > 0)
1765 command |= SDHC_DATA_PRESENT_SELECT;
1766
1767 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1768 command |= SDHC_NO_RESPONSE;
1769 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1770 command |= SDHC_RESP_LEN_136;
1771 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1772 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1773 else
1774 command |= SDHC_RESP_LEN_48;
1775
1776 /* Wait until command and optionally data inhibit bits are clear. (1.5) */
1777 pmask = SDHC_CMD_INHIBIT_CMD;
1778 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
1779 pmask |= SDHC_CMD_INHIBIT_DAT;
1780 error = sdhc_wait_state(hp, pmask, 0);
1781 if (error) {
1782 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1783 device_printf(sc->sc_dev, "command or data phase inhibited\n");
1784 return error;
1785 }
1786
1787 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1788 HDEVNAME(hp), blksize, blkcount, mode, command));
1789
1790 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1791 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1792 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1793 }
1794
1795 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1796 /* Alert the user not to remove the card. */
1797 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1798 }
1799
1800 /* Set DMA start address. */
1801 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1802 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1803 bus_addr_t paddr =
1804 cmd->c_dmamap->dm_segs[seg].ds_addr;
1805 uint16_t len =
1806 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1807 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1808 uint16_t attr =
1809 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1810 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1811 attr |= SDHC_ADMA2_END;
1812 }
1813 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1814 struct sdhc_adma2_descriptor32 *desc =
1815 hp->adma2;
1816 desc[seg].attribute = htole16(attr);
1817 desc[seg].length = htole16(len);
1818 desc[seg].address = htole32(paddr);
1819 } else {
1820 struct sdhc_adma2_descriptor64 *desc =
1821 hp->adma2;
1822 desc[seg].attribute = htole16(attr);
1823 desc[seg].length = htole16(len);
1824 desc[seg].address = htole32(paddr & 0xffffffff);
1825 desc[seg].address_hi = htole32(
1826 (uint64_t)paddr >> 32);
1827 }
1828 }
1829 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1830 struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1831 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1832 } else {
1833 struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1834 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1835 }
1836 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1837 BUS_DMASYNC_PREWRITE);
1838 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1839 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1840 HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
1841 } else {
1842 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1843 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1844 }
1845
1846 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1847
1848 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1849 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1850 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1851 (uint64_t)desc_addr >> 32);
1852 }
1853 } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1854 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1855 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1856 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1857 }
1858 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1859 }
1860
1861 /*
1862 * Start a CPU data transfer. Writing to the high order byte
1863 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1864 */
1865 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1866 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1867 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1868 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1869 /* mode bits is in MIX_CTRL register on uSDHC */
1870 HWRITE4(hp, SDHC_MIX_CTRL, mode |
1871 (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
1872 if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1873 command |= SDHC_COMMAND_TYPE_ABORT;
1874 HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
1875 } else {
1876 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1877 }
1878 } else {
1879 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1880 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1881 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1882 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1883 HWRITE2(hp, SDHC_COMMAND, command);
1884 }
1885
1886 return 0;
1887 }
1888
1889 static void
1890 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1891 {
1892 struct sdhc_softc *sc = hp->sc;
1893 int error;
1894
1895 KASSERT(mutex_owned(&hp->intr_lock));
1896
1897 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1898 MMC_R1(cmd->c_resp), cmd->c_datalen));
1899
1900 #ifdef SDHC_DEBUG
1901 /* XXX I forgot why I wanted to know when this happens :-( */
1902 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1903 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1904 aprint_error_dev(hp->sc->sc_dev,
1905 "CMD52/53 error response flags %#x\n",
1906 MMC_R1(cmd->c_resp) & 0xff00);
1907 }
1908 #endif
1909
1910 if (cmd->c_dmamap != NULL) {
1911 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1912 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1913 if (error == 0 && !sdhc_wait_intr(hp,
1914 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
1915 DPRINTF(1,("%s: timeout\n", __func__));
1916 error = ETIMEDOUT;
1917 }
1918 } else {
1919 error = sdhc_transfer_data_dma(hp, cmd);
1920 }
1921 } else
1922 error = sdhc_transfer_data_pio(hp, cmd);
1923 if (error)
1924 cmd->c_error = error;
1925 SET(cmd->c_flags, SCF_ITSDONE);
1926
1927 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1928 HDEVNAME(hp), cmd->c_error));
1929 }
1930
1931 static int
1932 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1933 {
1934 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1935 bus_addr_t posaddr;
1936 bus_addr_t segaddr;
1937 bus_size_t seglen;
1938 u_int seg = 0;
1939 int error = 0;
1940 int status;
1941
1942 KASSERT(mutex_owned(&hp->intr_lock));
1943 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1944 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1945 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1946 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1947
1948 for (;;) {
1949 status = sdhc_wait_intr(hp,
1950 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1951 SDHC_DMA_TIMEOUT, false);
1952
1953 if (status & SDHC_TRANSFER_COMPLETE) {
1954 break;
1955 }
1956 if (!status) {
1957 DPRINTF(1,("%s: timeout\n", __func__));
1958 error = ETIMEDOUT;
1959 break;
1960 }
1961
1962 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1963 continue;
1964 }
1965
1966 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1967 continue;
1968 }
1969
1970 /* DMA Interrupt (boundary crossing) */
1971
1972 segaddr = dm_segs[seg].ds_addr;
1973 seglen = dm_segs[seg].ds_len;
1974 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1975
1976 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1977 continue;
1978 }
1979 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1980 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1981 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1982 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1983 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1984 }
1985
1986 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1987 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1988 PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1989 }
1990
1991 return error;
1992 }
1993
1994 static int
1995 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1996 {
1997 uint8_t *data = cmd->c_data;
1998 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1999 u_int len, datalen;
2000 u_int imask;
2001 u_int pmask;
2002 int error = 0;
2003
2004 KASSERT(mutex_owned(&hp->intr_lock));
2005
2006 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
2007 imask = SDHC_BUFFER_READ_READY;
2008 pmask = SDHC_BUFFER_READ_ENABLE;
2009 if (ISSET(hp->sc->sc_flags,
2010 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2011 pio_func = esdhc_read_data_pio;
2012 } else {
2013 pio_func = sdhc_read_data_pio;
2014 }
2015 } else {
2016 imask = SDHC_BUFFER_WRITE_READY;
2017 pmask = SDHC_BUFFER_WRITE_ENABLE;
2018 if (ISSET(hp->sc->sc_flags,
2019 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2020 pio_func = esdhc_write_data_pio;
2021 } else {
2022 pio_func = sdhc_write_data_pio;
2023 }
2024 }
2025 datalen = cmd->c_datalen;
2026
2027 KASSERT(mutex_owned(&hp->intr_lock));
2028 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
2029 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
2030 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
2031
2032 while (datalen > 0) {
2033 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
2034 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2035 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
2036 } else {
2037 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
2038 }
2039 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
2040 DPRINTF(1,("%s: timeout\n", __func__));
2041 error = ETIMEDOUT;
2042 break;
2043 }
2044
2045 error = sdhc_wait_state(hp, pmask, pmask);
2046 if (error)
2047 break;
2048 }
2049
2050 len = MIN(datalen, cmd->c_blklen);
2051 (*pio_func)(hp, data, len);
2052 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
2053 HDEVNAME(hp), len, data));
2054
2055 data += len;
2056 datalen -= len;
2057 }
2058
2059 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
2060 SDHC_TRANSFER_TIMEOUT, false)) {
2061 DPRINTF(1,("%s: timeout for transfer\n", __func__));
2062 error = ETIMEDOUT;
2063 }
2064
2065 return error;
2066 }
2067
2068 static void
2069 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2070 {
2071
2072 if (((__uintptr_t)data & 3) == 0) {
2073 while (datalen > 3) {
2074 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
2075 data += 4;
2076 datalen -= 4;
2077 }
2078 if (datalen > 1) {
2079 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2080 data += 2;
2081 datalen -= 2;
2082 }
2083 if (datalen > 0) {
2084 *data = HREAD1(hp, SDHC_DATA);
2085 data += 1;
2086 datalen -= 1;
2087 }
2088 } else if (((__uintptr_t)data & 1) == 0) {
2089 while (datalen > 1) {
2090 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2091 data += 2;
2092 datalen -= 2;
2093 }
2094 if (datalen > 0) {
2095 *data = HREAD1(hp, SDHC_DATA);
2096 data += 1;
2097 datalen -= 1;
2098 }
2099 } else {
2100 while (datalen > 0) {
2101 *data = HREAD1(hp, SDHC_DATA);
2102 data += 1;
2103 datalen -= 1;
2104 }
2105 }
2106 }
2107
2108 static void
2109 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2110 {
2111
2112 if (((__uintptr_t)data & 3) == 0) {
2113 while (datalen > 3) {
2114 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
2115 data += 4;
2116 datalen -= 4;
2117 }
2118 if (datalen > 1) {
2119 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2120 data += 2;
2121 datalen -= 2;
2122 }
2123 if (datalen > 0) {
2124 HWRITE1(hp, SDHC_DATA, *data);
2125 data += 1;
2126 datalen -= 1;
2127 }
2128 } else if (((__uintptr_t)data & 1) == 0) {
2129 while (datalen > 1) {
2130 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2131 data += 2;
2132 datalen -= 2;
2133 }
2134 if (datalen > 0) {
2135 HWRITE1(hp, SDHC_DATA, *data);
2136 data += 1;
2137 datalen -= 1;
2138 }
2139 } else {
2140 while (datalen > 0) {
2141 HWRITE1(hp, SDHC_DATA, *data);
2142 data += 1;
2143 datalen -= 1;
2144 }
2145 }
2146 }
2147
2148 static void
2149 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2150 {
2151 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2152 uint32_t v;
2153
2154 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
2155 size_t count = 0;
2156
2157 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2158 if (count == 0) {
2159 /*
2160 * If we've drained "watermark" words, we need to wait
2161 * a little bit so the read FIFO can refill.
2162 */
2163 sdmmc_delay(10);
2164 count = watermark;
2165 }
2166 v = HREAD4(hp, SDHC_DATA);
2167 v = le32toh(v);
2168 *(uint32_t *)data = v;
2169 data += 4;
2170 datalen -= 4;
2171 status = HREAD2(hp, SDHC_NINTR_STATUS);
2172 count--;
2173 }
2174 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2175 if (count == 0) {
2176 sdmmc_delay(10);
2177 }
2178 v = HREAD4(hp, SDHC_DATA);
2179 v = le32toh(v);
2180 do {
2181 *data++ = v;
2182 v >>= 8;
2183 } while (--datalen > 0);
2184 }
2185 }
2186
2187 static void
2188 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2189 {
2190 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2191 uint32_t v;
2192
2193 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
2194 size_t count = watermark;
2195
2196 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2197 if (count == 0) {
2198 sdmmc_delay(10);
2199 count = watermark;
2200 }
2201 v = *(uint32_t *)data;
2202 v = htole32(v);
2203 HWRITE4(hp, SDHC_DATA, v);
2204 data += 4;
2205 datalen -= 4;
2206 status = HREAD2(hp, SDHC_NINTR_STATUS);
2207 count--;
2208 }
2209 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2210 if (count == 0) {
2211 sdmmc_delay(10);
2212 }
2213 v = *(uint32_t *)data;
2214 v = htole32(v);
2215 HWRITE4(hp, SDHC_DATA, v);
2216 }
2217 }
2218
2219 /* Prepare for another command. */
2220 static int
2221 sdhc_soft_reset(struct sdhc_host *hp, int mask)
2222 {
2223 int timo;
2224
2225 KASSERT(mutex_owned(&hp->intr_lock));
2226
2227 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
2228
2229 /* Request the reset. */
2230 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
2231
2232 /*
2233 * If necessary, wait for the controller to set the bits to
2234 * acknowledge the reset.
2235 */
2236 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
2237 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
2238 for (timo = 10000; timo > 0; timo--) {
2239 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2240 break;
2241 /* Short delay because I worry we may miss it... */
2242 sdmmc_delay(1);
2243 }
2244 if (timo == 0) {
2245 DPRINTF(1,("%s: timeout for reset on\n", __func__));
2246 return ETIMEDOUT;
2247 }
2248 }
2249
2250 /*
2251 * Wait for the controller to clear the bits to indicate that
2252 * the reset has completed.
2253 */
2254 for (timo = 10; timo > 0; timo--) {
2255 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2256 break;
2257 sdmmc_delay(10000);
2258 }
2259 if (timo == 0) {
2260 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
2261 HREAD1(hp, SDHC_SOFTWARE_RESET)));
2262 return ETIMEDOUT;
2263 }
2264
2265 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2266 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
2267 }
2268
2269 return 0;
2270 }
2271
2272 static int
2273 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
2274 {
2275 int status, error, nointr;
2276
2277 KASSERT(mutex_owned(&hp->intr_lock));
2278
2279 mask |= SDHC_ERROR_INTERRUPT;
2280
2281 nointr = 0;
2282 status = hp->intr_status & mask;
2283 while (status == 0) {
2284 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
2285 == EWOULDBLOCK) {
2286 nointr = 1;
2287 break;
2288 }
2289 status = hp->intr_status & mask;
2290 }
2291 error = hp->intr_error_status;
2292
2293 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2294 error));
2295
2296 hp->intr_status &= ~status;
2297 hp->intr_error_status &= ~error;
2298
2299 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2300 if (ISSET(error, SDHC_DMA_ERROR))
2301 device_printf(hp->sc->sc_dev,"dma error\n");
2302 if (ISSET(error, SDHC_ADMA_ERROR))
2303 device_printf(hp->sc->sc_dev,"adma error\n");
2304 if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
2305 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
2306 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
2307 device_printf(hp->sc->sc_dev,"current limit error\n");
2308 if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
2309 device_printf(hp->sc->sc_dev,"data end bit error\n");
2310 if (ISSET(error, SDHC_DATA_CRC_ERROR))
2311 device_printf(hp->sc->sc_dev,"data crc error\n");
2312 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
2313 device_printf(hp->sc->sc_dev,"data timeout error\n");
2314 if (ISSET(error, SDHC_CMD_INDEX_ERROR))
2315 device_printf(hp->sc->sc_dev,"cmd index error\n");
2316 if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
2317 device_printf(hp->sc->sc_dev,"cmd end bit error\n");
2318 if (ISSET(error, SDHC_CMD_CRC_ERROR))
2319 device_printf(hp->sc->sc_dev,"cmd crc error\n");
2320 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
2321 if (!probing)
2322 device_printf(hp->sc->sc_dev,"cmd timeout error\n");
2323 #ifdef SDHC_DEBUG
2324 else if (sdhcdebug > 0)
2325 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
2326 #endif
2327 }
2328 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
2329 device_printf(hp->sc->sc_dev,"vendor error %#x\n",
2330 (error & ~SDHC_EINTR_STATUS_MASK));
2331 if (error == 0)
2332 device_printf(hp->sc->sc_dev,"no error\n");
2333
2334 /* Command timeout has higher priority than command complete. */
2335 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
2336 CLR(status, SDHC_COMMAND_COMPLETE);
2337
2338 /* Transfer complete has higher priority than data timeout. */
2339 if (ISSET(status, SDHC_TRANSFER_COMPLETE))
2340 CLR(error, SDHC_DATA_TIMEOUT_ERROR);
2341 }
2342
2343 if (nointr ||
2344 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
2345 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2346 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
2347 hp->intr_error_status = 0;
2348 status = 0;
2349 }
2350
2351 return status;
2352 }
2353
2354 /*
2355 * Established by attachment driver at interrupt priority IPL_SDMMC.
2356 */
2357 int
2358 sdhc_intr(void *arg)
2359 {
2360 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2361 struct sdhc_host *hp;
2362 int done = 0;
2363 uint16_t status;
2364 uint16_t error;
2365
2366 /* We got an interrupt, but we don't know from which slot. */
2367 for (size_t host = 0; host < sc->sc_nhosts; host++) {
2368 hp = sc->sc_host[host];
2369 if (hp == NULL)
2370 continue;
2371
2372 mutex_enter(&hp->intr_lock);
2373
2374 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2375 /* Find out which interrupts are pending. */
2376 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2377 status = xstatus;
2378 error = xstatus >> 16;
2379 if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
2380 (xstatus & SDHC_TRANSFER_COMPLETE) &&
2381 !(xstatus & SDHC_DMA_INTERRUPT)) {
2382 /* read again due to uSDHC errata */
2383 status = xstatus = HREAD4(hp,
2384 SDHC_NINTR_STATUS);
2385 error = xstatus >> 16;
2386 }
2387 if (ISSET(sc->sc_flags,
2388 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2389 if ((error & SDHC_NINTR_STATUS_MASK) != 0)
2390 SET(status, SDHC_ERROR_INTERRUPT);
2391 }
2392 if (error)
2393 xstatus |= SDHC_ERROR_INTERRUPT;
2394 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2395 goto next_port; /* no interrupt for us */
2396 /* Acknowledge the interrupts we are about to handle. */
2397 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2398 } else {
2399 /* Find out which interrupts are pending. */
2400 error = 0;
2401 status = HREAD2(hp, SDHC_NINTR_STATUS);
2402 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2403 goto next_port; /* no interrupt for us */
2404 /* Acknowledge the interrupts we are about to handle. */
2405 HWRITE2(hp, SDHC_NINTR_STATUS, status);
2406 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2407 /* Acknowledge error interrupts. */
2408 error = HREAD2(hp, SDHC_EINTR_STATUS);
2409 HWRITE2(hp, SDHC_EINTR_STATUS, error);
2410 }
2411 }
2412
2413 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2414 status, error));
2415
2416 /* Claim this interrupt. */
2417 done = 1;
2418
2419 if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
2420 ISSET(error, SDHC_ADMA_ERROR)) {
2421 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2422 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2423 adma_err);
2424 }
2425
2426 /*
2427 * Wake up the sdmmc event thread to scan for cards.
2428 */
2429 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2430 if (hp->sdmmc != NULL) {
2431 sdmmc_needs_discover(hp->sdmmc);
2432 }
2433 if (ISSET(sc->sc_flags,
2434 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2435 HCLR4(hp, SDHC_NINTR_STATUS_EN,
2436 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2437 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2438 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2439 }
2440 }
2441
2442 /*
2443 * Schedule re-tuning process (UHS).
2444 */
2445 if (ISSET(status, SDHC_RETUNING_EVENT)) {
2446 atomic_swap_uint(&hp->tuning_timer_pending, 1);
2447 }
2448
2449 /*
2450 * Wake up the blocking process to service command
2451 * related interrupt(s).
2452 */
2453 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
2454 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2455 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2456 hp->intr_error_status |= error;
2457 hp->intr_status |= status;
2458 if (ISSET(sc->sc_flags,
2459 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2460 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2461 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2462 }
2463 cv_broadcast(&hp->intr_cv);
2464 }
2465
2466 /*
2467 * Service SD card interrupts.
2468 */
2469 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
2470 && ISSET(status, SDHC_CARD_INTERRUPT)) {
2471 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2472 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2473 sdmmc_card_intr(hp->sdmmc);
2474 }
2475 next_port:
2476 mutex_exit(&hp->intr_lock);
2477 }
2478
2479 return done;
2480 }
2481
2482 kmutex_t *
2483 sdhc_host_lock(struct sdhc_host *hp)
2484 {
2485 return &hp->intr_lock;
2486 }
2487
2488 uint8_t
2489 sdhc_host_read_1(struct sdhc_host *hp, int reg)
2490 {
2491 return HREAD1(hp, reg);
2492 }
2493
2494 uint16_t
2495 sdhc_host_read_2(struct sdhc_host *hp, int reg)
2496 {
2497 return HREAD2(hp, reg);
2498 }
2499
2500 uint32_t
2501 sdhc_host_read_4(struct sdhc_host *hp, int reg)
2502 {
2503 return HREAD4(hp, reg);
2504 }
2505
2506 void
2507 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
2508 {
2509 HWRITE1(hp, reg, val);
2510 }
2511
2512 void
2513 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
2514 {
2515 HWRITE2(hp, reg, val);
2516 }
2517
2518 void
2519 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
2520 {
2521 HWRITE4(hp, reg, val);
2522 }
2523
2524 #ifdef SDHC_DEBUG
2525 void
2526 sdhc_dump_regs(struct sdhc_host *hp)
2527 {
2528
2529 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2530 HREAD4(hp, SDHC_PRESENT_STATE));
2531 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2532 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2533 HREAD1(hp, SDHC_POWER_CTL));
2534 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2535 HREAD2(hp, SDHC_NINTR_STATUS));
2536 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2537 HREAD2(hp, SDHC_EINTR_STATUS));
2538 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2539 HREAD2(hp, SDHC_NINTR_STATUS_EN));
2540 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2541 HREAD2(hp, SDHC_EINTR_STATUS_EN));
2542 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2543 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2544 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2545 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2546 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2547 HREAD4(hp, SDHC_CAPABILITIES));
2548 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2549 HREAD4(hp, SDHC_MAX_CAPABILITIES));
2550 }
2551 #endif
2552