Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.119
      1 /*	$NetBSD: sdhc.c,v 1.119 2024/05/09 01:33:13 dyoung Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.119 2024/05/09 01:33:13 dyoung Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kmutex_t bus_clock_lock;
     81 	kcondvar_t intr_cv;
     82 
     83 	callout_t tuning_timer;
     84 	int tuning_timing;
     85 	u_int tuning_timer_count;
     86 	u_int tuning_timer_pending;
     87 
     88 	int specver;			/* spec. version */
     89 
     90 	uint32_t flags;			/* flags for this host */
     91 #define SHF_USE_DMA		0x0001
     92 #define SHF_USE_4BIT_MODE	0x0002
     93 #define SHF_USE_8BIT_MODE	0x0004
     94 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     95 #define SHF_USE_ADMA2_32	0x0010
     96 #define SHF_USE_ADMA2_64	0x0020
     97 #define SHF_USE_ADMA2_MASK	0x0030
     98 
     99 	bus_dmamap_t		adma_map;
    100 	bus_dma_segment_t	adma_segs[1];
    101 	void			*adma2;
    102 
    103 	uint8_t			vdd;	/* last vdd setting */
    104 };
    105 
    106 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    107 
    108 static uint8_t
    109 hread1(struct sdhc_host *hp, bus_size_t reg)
    110 {
    111 
    112 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    113 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    114 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    115 }
    116 
    117 static uint16_t
    118 hread2(struct sdhc_host *hp, bus_size_t reg)
    119 {
    120 
    121 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    122 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    123 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    124 }
    125 
    126 #define HREAD1(hp, reg)		hread1(hp, reg)
    127 #define HREAD2(hp, reg)		hread2(hp, reg)
    128 #define HREAD4(hp, reg)		\
    129 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    130 
    131 
    132 static void
    133 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    134 {
    135 
    136 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    138 	} else {
    139 		const size_t shift = 8 * (o & 3);
    140 		o &= -4;
    141 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142 		tmp = (val << shift) | (tmp & ~(0xffU << shift));
    143 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144 	}
    145 	if (hp->sc->sc_write_delay != 0) {
    146 		delay(hp->sc->sc_write_delay);
    147 	}
    148 }
    149 
    150 static void
    151 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    152 {
    153 
    154 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    155 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    156 	} else {
    157 		const size_t shift = 8 * (o & 2);
    158 		o &= -4;
    159 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    160 		tmp = (val << shift) | (tmp & ~(0xffffU << shift));
    161 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    162 	}
    163 	if (hp->sc->sc_write_delay != 0) {
    164 		delay(hp->sc->sc_write_delay);
    165 	}
    166 }
    167 
    168 static void
    169 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
    170 {
    171 
    172 	bus_space_write_4(hp->iot, hp->ioh, o, val);
    173 	if (hp->sc->sc_write_delay != 0) {
    174 		delay(hp->sc->sc_write_delay);
    175 	}
    176 }
    177 
    178 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    179 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    180 #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
    181 
    182 #define HCLR1(hp, reg, bits)						\
    183 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    184 #define HCLR2(hp, reg, bits)						\
    185 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    186 #define HCLR4(hp, reg, bits)						\
    187 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    188 #define HSET1(hp, reg, bits)						\
    189 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    190 #define HSET2(hp, reg, bits)						\
    191 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    192 #define HSET4(hp, reg, bits)						\
    193 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    194 
    195 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    196 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    197 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    198 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    199 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    200 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    201 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    202 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    203 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    204 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    205 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    206 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    207 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    208 		    struct sdmmc_command *);
    209 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    210 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    211 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    212 static void	sdhc_tuning_timer(void *);
    213 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    214 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    215 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    216 static int	sdhc_soft_reset(struct sdhc_host *, int);
    217 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    218 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    219 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    220 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    221 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    222 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    223 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    224 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    225 
    226 static struct sdmmc_chip_functions sdhc_functions = {
    227 	/* host controller reset */
    228 	.host_reset = sdhc_host_reset,
    229 
    230 	/* host controller capabilities */
    231 	.host_ocr = sdhc_host_ocr,
    232 	.host_maxblklen = sdhc_host_maxblklen,
    233 
    234 	/* card detection */
    235 	.card_detect = sdhc_card_detect,
    236 
    237 	/* write protect */
    238 	.write_protect = sdhc_write_protect,
    239 
    240 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    241 	.bus_power = sdhc_bus_power,
    242 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    243 	.bus_width = sdhc_bus_width,
    244 	.bus_rod = sdhc_bus_rod,
    245 
    246 	/* command execution */
    247 	.exec_command = sdhc_exec_command,
    248 
    249 	/* card interrupt */
    250 	.card_enable_intr = sdhc_card_enable_intr,
    251 	.card_intr_ack = sdhc_card_intr_ack,
    252 
    253 	/* UHS functions */
    254 	.signal_voltage = sdhc_signal_voltage,
    255 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    256 	.execute_tuning = sdhc_execute_tuning,
    257 	.hw_reset = sdhc_hw_reset,
    258 };
    259 
    260 static int
    261 sdhc_cfprint(void *aux, const char *pnp)
    262 {
    263 	const struct sdmmcbus_attach_args * const saa = aux;
    264 	const struct sdhc_host * const hp = saa->saa_sch;
    265 
    266 	if (pnp) {
    267 		aprint_normal("sdmmc at %s", pnp);
    268 	}
    269 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    270 		if (hp->sc->sc_host[host] == hp) {
    271 			aprint_normal(" slot %zu", host);
    272 		}
    273 	}
    274 
    275 	return UNCONF;
    276 }
    277 
    278 /*
    279  * Called by attachment driver.  For each SD card slot there is one SD
    280  * host controller standard register set. (1.3)
    281  */
    282 int
    283 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    284     bus_space_handle_t ioh, bus_size_t iosize)
    285 {
    286 	struct sdmmcbus_attach_args saa;
    287 	struct sdhc_host *hp;
    288 	uint32_t caps, caps2;
    289 	uint16_t sdhcver;
    290 	int error;
    291 
    292 	/* Allocate one more host structure. */
    293 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    294 	if (hp == NULL) {
    295 		aprint_error_dev(sc->sc_dev,
    296 		    "couldn't alloc memory (sdhc host)\n");
    297 		goto err1;
    298 	}
    299 	sc->sc_host[sc->sc_nhosts++] = hp;
    300 
    301 	/* Fill in the new host structure. */
    302 	hp->sc = sc;
    303 	hp->iot = iot;
    304 	hp->ioh = ioh;
    305 	hp->ios = iosize;
    306 	hp->dmat = sc->sc_dmat;
    307 
    308 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    309 	mutex_init(&hp->bus_clock_lock, MUTEX_DEFAULT, IPL_NONE);
    310 	cv_init(&hp->intr_cv, "sdhcintr");
    311 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    312 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    313 
    314 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    315 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    316 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    317 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    318 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    319 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    320 	} else {
    321 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    322 	}
    323 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    324 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    325 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    326 	case SDHC_SPEC_VERS_100:
    327 		aprint_normal("1.0");
    328 		break;
    329 	case SDHC_SPEC_VERS_200:
    330 		aprint_normal("2.0");
    331 		break;
    332 	case SDHC_SPEC_VERS_300:
    333 		aprint_normal("3.0");
    334 		break;
    335 	case SDHC_SPEC_VERS_400:
    336 		aprint_normal("4.0");
    337 		break;
    338 	case SDHC_SPEC_VERS_410:
    339 		aprint_normal("4.1");
    340 		break;
    341 	case SDHC_SPEC_VERS_420:
    342 		aprint_normal("4.2");
    343 		break;
    344 	case SDHC_SPEC_NOVERS:
    345 		hp->specver = -1;
    346 		aprint_normal("NO-VERS");
    347 		break;
    348 	default:
    349 		aprint_normal("unknown version(0x%x)",
    350 		    SDHC_SPEC_VERSION(sdhcver));
    351 		break;
    352 	}
    353 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    354 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    355 
    356 	/*
    357 	 * Reset the host controller and enable interrupts.
    358 	 */
    359 	(void)sdhc_host_reset(hp);
    360 
    361 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    362 		/* init uSDHC registers */
    363 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    364 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    365 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    366 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    367 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    368 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    369 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    370 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    371 		HSET4(hp, SDHC_VEND_SPEC,
    372 		    SDHC_VEND_SPEC_MBO |
    373 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    374 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    375 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    376 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    377 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    378 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    379 	}
    380 
    381 	/* Determine host capabilities. */
    382 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    383 		caps = sc->sc_caps;
    384 		caps2 = sc->sc_caps2;
    385 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    386 		/* uSDHC capability register is little bit different */
    387 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    388 		caps |= SDHC_8BIT_SUPP;
    389 		if (caps & SDHC_ADMA1_SUPP)
    390 			caps |= SDHC_ADMA2_SUPP;
    391 		sc->sc_caps = caps;
    392 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    393 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    394 	} else {
    395 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    396 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    397 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    398 		} else {
    399 			caps2 = sc->sc_caps2 = 0;
    400 		}
    401 	}
    402 
    403 	aprint_verbose(", caps <%08x/%08x>", caps, caps2);
    404 
    405 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    406 	    SDHC_RETUNING_MODES_MASK;
    407 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    408 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    409 		    SDHC_TIMER_COUNT_MASK;
    410 		if (hp->tuning_timer_count == 0xf)
    411 			hp->tuning_timer_count = 0;
    412 		if (hp->tuning_timer_count)
    413 			hp->tuning_timer_count =
    414 			    1 << (hp->tuning_timer_count - 1);
    415 	}
    416 
    417 	/*
    418 	 * Use DMA if the host system and the controller support it.
    419 	 * Supports integrated or external DMA egine, with or without
    420 	 * SDHC_DMA_ENABLE in the command.
    421 	 */
    422 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    423 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    424 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    425 		SET(hp->flags, SHF_USE_DMA);
    426 
    427 		if (ISSET(caps, SDHC_ADMA2_SUPP) &&
    428 		    !ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA)) {
    429 			SET(hp->flags, SHF_MODE_DMAEN);
    430 			/*
    431 			 * 64-bit mode was present in the 2.00 spec, removed
    432 			 * from 3.00, and re-added in 4.00 with a different
    433 			 * descriptor layout. We only support 2.00 and 3.00
    434 			 * descriptors for now.
    435 			 */
    436 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    437 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    438 				SET(hp->flags, SHF_USE_ADMA2_64);
    439 				aprint_normal(", 64-bit ADMA2");
    440 			} else {
    441 				SET(hp->flags, SHF_USE_ADMA2_32);
    442 				aprint_normal(", 32-bit ADMA2");
    443 			}
    444 		} else {
    445 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    446 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    447 				SET(hp->flags, SHF_MODE_DMAEN);
    448 			if (sc->sc_vendor_transfer_data_dma) {
    449 				aprint_normal(", platform DMA");
    450 			} else {
    451 				aprint_normal(", SDMA");
    452 			}
    453 		}
    454 	} else {
    455 		aprint_normal(", PIO");
    456 	}
    457 
    458 	/*
    459 	 * Determine the base clock frequency. (2.2.24)
    460 	 */
    461 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    462 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    463 	} else {
    464 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    465 	}
    466 	if (hp->clkbase == 0 ||
    467 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    468 		if (sc->sc_clkbase == 0) {
    469 			/* The attachment driver must tell us. */
    470 			aprint_error_dev(sc->sc_dev,
    471 			    "unknown base clock frequency\n");
    472 			goto err;
    473 		}
    474 		hp->clkbase = sc->sc_clkbase;
    475 	}
    476 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    477 		/* SDHC 1.0 supports only 10-63 MHz. */
    478 		aprint_error_dev(sc->sc_dev,
    479 		    "base clock frequency out of range: %u MHz\n",
    480 		    hp->clkbase / 1000);
    481 		goto err;
    482 	}
    483 	aprint_normal(", %u kHz", hp->clkbase);
    484 
    485 	/*
    486 	 * XXX Set the data timeout counter value according to
    487 	 * capabilities. (2.2.15)
    488 	 */
    489 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    490 #if 1
    491 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    492 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    493 #endif
    494 
    495 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    496 		aprint_normal(", embedded slot");
    497 
    498 	/*
    499 	 * Determine SD bus voltage levels supported by the controller.
    500 	 */
    501 	aprint_normal(",");
    502 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    503 		SET(hp->ocr, MMC_OCR_HCS);
    504 		aprint_normal(" HS");
    505 	}
    506 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
    507 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    508 			SET(hp->ocr, MMC_OCR_S18A);
    509 			aprint_normal(" SDR50");
    510 		}
    511 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    512 			SET(hp->ocr, MMC_OCR_S18A);
    513 			aprint_normal(" DDR50");
    514 		}
    515 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    516 			SET(hp->ocr, MMC_OCR_S18A);
    517 			aprint_normal(" SDR104 HS200");
    518 		}
    519 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    520 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    521 			aprint_normal(" 1.8V");
    522 		}
    523 	}
    524 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    525 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    526 		aprint_normal(" 3.0V");
    527 	}
    528 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    529 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    530 		aprint_normal(" 3.3V");
    531 	}
    532 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    533 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    534 		if (hp->tuning_timer_count)
    535 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    536 	}
    537 
    538 	/*
    539 	 * Determine the maximum block length supported by the host
    540 	 * controller. (2.2.24)
    541 	 */
    542 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    543 	case SDHC_MAX_BLK_LEN_512:
    544 		hp->maxblklen = 512;
    545 		break;
    546 
    547 	case SDHC_MAX_BLK_LEN_1024:
    548 		hp->maxblklen = 1024;
    549 		break;
    550 
    551 	case SDHC_MAX_BLK_LEN_2048:
    552 		hp->maxblklen = 2048;
    553 		break;
    554 
    555 	case SDHC_MAX_BLK_LEN_4096:
    556 		hp->maxblklen = 4096;
    557 		break;
    558 
    559 	default:
    560 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    561 		goto err;
    562 	}
    563 	aprint_normal(", %u byte blocks", hp->maxblklen);
    564 	aprint_normal("\n");
    565 
    566 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    567 		int rseg;
    568 
    569 		/* Allocate ADMA2 descriptor memory */
    570 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    571 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    572 		if (error) {
    573 			aprint_error_dev(sc->sc_dev,
    574 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    575 			goto adma_done;
    576 		}
    577 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    578 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    579 		if (error) {
    580 			aprint_error_dev(sc->sc_dev,
    581 			    "ADMA2 dmamem_map failed (%d)\n", error);
    582 			goto adma_done;
    583 		}
    584 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    585 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    586 		if (error) {
    587 			aprint_error_dev(sc->sc_dev,
    588 			    "ADMA2 dmamap_create failed (%d)\n", error);
    589 			goto adma_done;
    590 		}
    591 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    592 		    hp->adma2, PAGE_SIZE, NULL,
    593 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    594 		if (error) {
    595 			aprint_error_dev(sc->sc_dev,
    596 			    "ADMA2 dmamap_load failed (%d)\n", error);
    597 			goto adma_done;
    598 		}
    599 
    600 		memset(hp->adma2, 0, PAGE_SIZE);
    601 
    602 adma_done:
    603 		if (error)
    604 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    605 	}
    606 
    607 	/*
    608 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    609 	 * not invoke any chipset functions before it is attached.)
    610 	 */
    611 	memset(&saa, 0, sizeof(saa));
    612 	saa.saa_busname = "sdmmc";
    613 	saa.saa_sct = &sdhc_functions;
    614 	saa.saa_sch = hp;
    615 	saa.saa_dmat = hp->dmat;
    616 	saa.saa_clkmax = hp->clkbase;
    617 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    618 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    619 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    620 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    621 	else if (hp->sc->sc_clkmsk != 0)
    622 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    623 		    (ffs(hp->sc->sc_clkmsk) - 1));
    624 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    625 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    626 	else
    627 		saa.saa_clkmin = hp->clkbase / 256;
    628 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    629 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    630 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    631 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    632 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    633 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    634 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED |
    635 				SMC_CAPS_MMC_HIGHSPEED;
    636 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    637 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    638 				SMC_CAPS_UHS_SDR50 |
    639 				SMC_CAPS_MMC_HS200;
    640 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    641 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    642 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    643 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    644 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    645 		saa.saa_caps |= SMC_CAPS_DMA;
    646 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    647 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    648 	}
    649 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    650 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    651 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    652 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    653 
    654 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
    655 		saa.saa_max_seg = 65535;
    656 
    657 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
    658 
    659 	return 0;
    660 
    661 err:
    662 	callout_destroy(&hp->tuning_timer);
    663 	cv_destroy(&hp->intr_cv);
    664 	mutex_destroy(&hp->bus_clock_lock);
    665 	mutex_destroy(&hp->intr_lock);
    666 	free(hp, M_DEVBUF);
    667 	sc->sc_host[--sc->sc_nhosts] = NULL;
    668 err1:
    669 	return 1;
    670 }
    671 
    672 int
    673 sdhc_detach(struct sdhc_softc *sc, int flags)
    674 {
    675 	struct sdhc_host *hp;
    676 	int rv = 0;
    677 
    678 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    679 		hp = sc->sc_host[n];
    680 		if (hp == NULL)
    681 			continue;
    682 		if (hp->sdmmc != NULL) {
    683 			rv = config_detach(hp->sdmmc, flags);
    684 			if (rv)
    685 				break;
    686 			hp->sdmmc = NULL;
    687 		}
    688 		/* disable interrupts */
    689 		if ((flags & DETACH_FORCE) == 0) {
    690 			mutex_enter(&hp->intr_lock);
    691 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    692 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    693 			} else {
    694 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    695 			}
    696 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    697 			mutex_exit(&hp->intr_lock);
    698 		}
    699 		callout_halt(&hp->tuning_timer, NULL);
    700 		callout_destroy(&hp->tuning_timer);
    701 		cv_destroy(&hp->intr_cv);
    702 		mutex_destroy(&hp->intr_lock);
    703 		if (hp->ios > 0) {
    704 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    705 			hp->ios = 0;
    706 		}
    707 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    708 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    709 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    710 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    711 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    712 		}
    713 		free(hp, M_DEVBUF);
    714 		sc->sc_host[n] = NULL;
    715 	}
    716 
    717 	return rv;
    718 }
    719 
    720 bool
    721 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    722 {
    723 	struct sdhc_softc *sc = device_private(dev);
    724 	struct sdhc_host *hp;
    725 	size_t i;
    726 
    727 	/* XXX poll for command completion or suspend command
    728 	 * in progress */
    729 
    730 	/* Save the host controller state. */
    731 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    732 		hp = sc->sc_host[n];
    733 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    734 			for (i = 0; i < sizeof hp->regs; i += 4) {
    735 				uint32_t v = HREAD4(hp, i);
    736 				hp->regs[i + 0] = (v >> 0);
    737 				hp->regs[i + 1] = (v >> 8);
    738 				if (i + 3 < sizeof hp->regs) {
    739 					hp->regs[i + 2] = (v >> 16);
    740 					hp->regs[i + 3] = (v >> 24);
    741 				}
    742 			}
    743 		} else {
    744 			for (i = 0; i < sizeof hp->regs; i++) {
    745 				hp->regs[i] = HREAD1(hp, i);
    746 			}
    747 		}
    748 	}
    749 	return true;
    750 }
    751 
    752 bool
    753 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    754 {
    755 	struct sdhc_softc *sc = device_private(dev);
    756 	struct sdhc_host *hp;
    757 	size_t i;
    758 
    759 	/* Restore the host controller state. */
    760 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    761 		hp = sc->sc_host[n];
    762 		(void)sdhc_host_reset(hp);
    763 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    764 			for (i = 0; i < sizeof hp->regs; i += 4) {
    765 				if (i + 3 < sizeof hp->regs) {
    766 					HWRITE4(hp, i,
    767 					    (hp->regs[i + 0] << 0)
    768 					    | (hp->regs[i + 1] << 8)
    769 					    | (hp->regs[i + 2] << 16)
    770 					    | (hp->regs[i + 3] << 24));
    771 				} else {
    772 					HWRITE4(hp, i,
    773 					    (hp->regs[i + 0] << 0)
    774 					    | (hp->regs[i + 1] << 8));
    775 				}
    776 			}
    777 		} else {
    778 			for (i = 0; i < sizeof hp->regs; i++) {
    779 				HWRITE1(hp, i, hp->regs[i]);
    780 			}
    781 		}
    782 	}
    783 	return true;
    784 }
    785 
    786 bool
    787 sdhc_shutdown(device_t dev, int flags)
    788 {
    789 	struct sdhc_softc *sc = device_private(dev);
    790 	struct sdhc_host *hp;
    791 
    792 	/* XXX chip locks up if we don't disable it before reboot. */
    793 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    794 		hp = sc->sc_host[i];
    795 		(void)sdhc_host_reset(hp);
    796 	}
    797 	return true;
    798 }
    799 
    800 /*
    801  * Reset the host controller.  Called during initialization, when
    802  * cards are removed, upon resume, and during error recovery.
    803  */
    804 static int
    805 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    806 {
    807 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    808 	uint32_t sdhcimask;
    809 	int error;
    810 
    811 	KASSERT(mutex_owned(&hp->intr_lock));
    812 
    813 	/* Disable all interrupts. */
    814 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    815 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    816 	} else {
    817 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    818 	}
    819 
    820 	/* Let sdhc_bus_power restore power */
    821 	hp->vdd = 0;
    822 
    823 	/*
    824 	 * Reset the entire host controller and wait up to 100ms for
    825 	 * the controller to clear the reset bit.
    826 	 */
    827 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    828 	if (error)
    829 		goto out;
    830 
    831 	/* Set data timeout counter value to max for now. */
    832 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    833 #if 1
    834 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    835 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    836 #endif
    837 
    838 	/* Enable interrupts. */
    839 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    840 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    841 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    842 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    843 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    844 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    845 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    846 		sdhcimask ^=
    847 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    848 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    849 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    850 	} else {
    851 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    852 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    853 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    854 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    855 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    856 	}
    857 
    858 out:
    859 	return error;
    860 }
    861 
    862 static int
    863 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    864 {
    865 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    866 	int error;
    867 
    868 	mutex_enter(&hp->intr_lock);
    869 	error = sdhc_host_reset1(sch);
    870 	mutex_exit(&hp->intr_lock);
    871 
    872 	return error;
    873 }
    874 
    875 static uint32_t
    876 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    877 {
    878 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    879 
    880 	return hp->ocr;
    881 }
    882 
    883 static int
    884 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    885 {
    886 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    887 
    888 	return hp->maxblklen;
    889 }
    890 
    891 /*
    892  * Return non-zero if the card is currently inserted.
    893  */
    894 static int
    895 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    896 {
    897 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    898 	int r;
    899 
    900 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NON_REMOVABLE))
    901 		return 1;
    902 
    903 	if (hp->sc->sc_vendor_card_detect)
    904 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    905 
    906 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    907 
    908 	return r ? 1 : 0;
    909 }
    910 
    911 /*
    912  * Return non-zero if the card is currently write-protected.
    913  */
    914 static int
    915 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    916 {
    917 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    918 	int r;
    919 
    920 	if (hp->sc->sc_vendor_write_protect)
    921 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    922 
    923 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    924 
    925 	return r ? 0 : 1;
    926 }
    927 
    928 /*
    929  * Set or change SD bus voltage and enable or disable SD bus power.
    930  * Return zero on success.
    931  */
    932 static int
    933 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    934 {
    935 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    936 	uint8_t vdd;
    937 	int error = 0;
    938 	const uint32_t pcmask =
    939 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    940 	uint32_t reg;
    941 
    942 	mutex_enter(&hp->intr_lock);
    943 
    944 	/*
    945 	 * Disable bus power before voltage change.
    946 	 */
    947 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    948 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
    949 		hp->vdd = 0;
    950 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    951 	}
    952 
    953 	/* If power is disabled, reset the host and return now. */
    954 	if (ocr == 0) {
    955 		(void)sdhc_host_reset1(hp);
    956 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    957 		goto out;
    958 	}
    959 
    960 	/*
    961 	 * Select the lowest voltage according to capabilities.
    962 	 */
    963 	ocr &= hp->ocr;
    964 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    965 		vdd = SDHC_VOLTAGE_1_8V;
    966 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    967 		vdd = SDHC_VOLTAGE_3_0V;
    968 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    969 		vdd = SDHC_VOLTAGE_3_3V;
    970 	} else {
    971 		/* Unsupported voltage level requested. */
    972 		error = EINVAL;
    973 		goto out;
    974 	}
    975 
    976 	/*
    977 	 * Did voltage change ?
    978 	 */
    979 	if (vdd == hp->vdd)
    980 		goto out;
    981 
    982 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    983 		/*
    984 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    985 		 * voltage ramp until power rises.
    986 		 */
    987 
    988 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    989 			HWRITE1(hp, SDHC_POWER_CTL,
    990 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    991 		} else {
    992 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
    993 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    994 			sdmmc_delay(1);
    995 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
    996 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    997 			sdmmc_delay(1);
    998 			reg |= SDHC_BUS_POWER;
    999 			HWRITE1(hp, SDHC_POWER_CTL, reg);
   1000 			sdmmc_delay(10000);
   1001 		}
   1002 
   1003 		/*
   1004 		 * The host system may not power the bus due to battery low,
   1005 		 * etc.  In that case, the host controller should clear the
   1006 		 * bus power bit.
   1007 		 */
   1008 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
   1009 			error = ENXIO;
   1010 			goto out;
   1011 		}
   1012 	}
   1013 
   1014 	/* power successfully changed */
   1015 	hp->vdd = vdd;
   1016 
   1017 out:
   1018 	mutex_exit(&hp->intr_lock);
   1019 
   1020 	return error;
   1021 }
   1022 
   1023 /*
   1024  * Return the smallest possible base clock frequency divisor value
   1025  * for the CLOCK_CTL register to produce `freq' (KHz).
   1026  */
   1027 static bool
   1028 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
   1029 {
   1030 	u_int div;
   1031 
   1032 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
   1033 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
   1034 			if ((hp->clkbase / div) <= freq) {
   1035 				*divp = SDHC_SDCLK_CGM
   1036 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
   1037 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
   1038 				//freq = hp->clkbase / div;
   1039 				return true;
   1040 			}
   1041 		}
   1042 		/* No divisor found. */
   1043 		return false;
   1044 	}
   1045 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
   1046 		u_int dvs = (hp->clkbase + freq - 1) / freq;
   1047 		u_int roundup = dvs & 1;
   1048 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
   1049 			if (dvs + roundup <= 16) {
   1050 				dvs += roundup - 1;
   1051 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
   1052 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1053 				DPRINTF(2,
   1054 				    ("%s: divisor for freq %u is %u * %u\n",
   1055 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1056 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1057 				return true;
   1058 			}
   1059 			/*
   1060 			 * If we drop bits, we need to round up the divisor.
   1061 			 */
   1062 			roundup |= dvs & 1;
   1063 		}
   1064 		/* No divisor found. */
   1065 		return false;
   1066 	}
   1067 	if (hp->sc->sc_clkmsk != 0) {
   1068 		div = howmany(hp->clkbase, freq);
   1069 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1070 			return false;
   1071 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1072 		//freq = hp->clkbase / div;
   1073 		return true;
   1074 	}
   1075 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1076 		div = howmany(hp->clkbase, freq);
   1077 		div = div > 1 ? howmany(div, 2) : 0;
   1078 		if (div > 0x3ff)
   1079 			return false;
   1080 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1081 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1082 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1083 			 << SDHC_SDCLK_DIV_SHIFT);
   1084 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1085 		return true;
   1086 	} else {
   1087 		for (div = 1; div <= 256; div *= 2) {
   1088 			if ((hp->clkbase / div) <= freq) {
   1089 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1090 				//freq = hp->clkbase / div;
   1091 				return true;
   1092 			}
   1093 		}
   1094 		/* No divisor found. */
   1095 		return false;
   1096 	}
   1097 	/* No divisor found. */
   1098 	return false;
   1099 }
   1100 
   1101 /*
   1102  * Set or change SDCLK frequency or disable the SD clock.
   1103  * Return zero on success.
   1104  */
   1105 static int
   1106 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1107 {
   1108 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1109 	u_int div;
   1110 	u_int timo;
   1111 	int16_t reg;
   1112 	int error = 0;
   1113 	bool present __diagused;
   1114 
   1115 #ifdef DIAGNOSTIC
   1116 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1117 
   1118 	/* Must not stop the clock if commands are in progress. */
   1119 	if (present && sdhc_card_detect(hp)) {
   1120 		aprint_normal_dev(hp->sc->sc_dev,
   1121 		    "%s: command in progress\n", __func__);
   1122 	}
   1123 #endif
   1124 
   1125 	if (hp->sc->sc_vendor_bus_clock) {
   1126 		mutex_enter(&hp->bus_clock_lock);
   1127 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1128 		mutex_exit(&hp->bus_clock_lock);
   1129 		if (error != 0)
   1130 			return error;
   1131 	}
   1132 
   1133 	mutex_enter(&hp->intr_lock);
   1134 
   1135 	/*
   1136 	 * Stop SD clock before changing the frequency.
   1137 	 */
   1138 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1139 		HCLR4(hp, SDHC_VEND_SPEC,
   1140 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1141 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1142 		if (freq == SDMMC_SDCLK_OFF) {
   1143 			goto out;
   1144 		}
   1145 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1146 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1147 		if (freq == SDMMC_SDCLK_OFF) {
   1148 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1149 			goto out;
   1150 		}
   1151 	} else {
   1152 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1153 		if (freq == SDMMC_SDCLK_OFF)
   1154 			goto out;
   1155 	}
   1156 
   1157 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1158 		if (ddr)
   1159 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1160 		else
   1161 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1162 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1163 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1164 		if (freq > 100000) {
   1165 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1166 		} else if (freq > 50000) {
   1167 			if (ddr) {
   1168 				HSET2(hp, SDHC_HOST_CTL2,
   1169 				    SDHC_UHS_MODE_SELECT_DDR50);
   1170 			} else {
   1171 				HSET2(hp, SDHC_HOST_CTL2,
   1172 				    SDHC_UHS_MODE_SELECT_SDR50);
   1173 			}
   1174 		} else if (freq > 25000) {
   1175 			if (ddr) {
   1176 				HSET2(hp, SDHC_HOST_CTL2,
   1177 				    SDHC_UHS_MODE_SELECT_DDR50);
   1178 			} else {
   1179 				HSET2(hp, SDHC_HOST_CTL2,
   1180 				    SDHC_UHS_MODE_SELECT_SDR25);
   1181 			}
   1182 		} else if (freq > 400) {
   1183 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1184 		}
   1185 	}
   1186 
   1187 	/*
   1188 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1189 	 * at 100MHz bus clock.
   1190 	 */
   1191 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1192 		if (freq == 100000)
   1193 			--freq;
   1194 	}
   1195 
   1196 	/*
   1197 	 * Set the minimum base clock frequency divisor.
   1198 	 */
   1199 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1200 		/* Invalid base clock frequency or `freq' value. */
   1201 		aprint_error_dev(hp->sc->sc_dev,
   1202 			"Invalid bus clock %d kHz\n", freq);
   1203 		error = EINVAL;
   1204 		goto out;
   1205 	}
   1206 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1207 		if (ddr) {
   1208 			/* in ddr mode, divisor >>= 1 */
   1209 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1210 			    SDHC_SDCLK_DIV_SHIFT)) |
   1211 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1212 			    SDHC_SDCLK_DVS_SHIFT));
   1213 		}
   1214 		for (timo = 1000; timo > 0; timo--) {
   1215 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1216 				break;
   1217 			sdmmc_delay(10);
   1218 		}
   1219 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1220 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1221 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1222 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1223 		    div | (SDHC_TIMEOUT_MAX << 16));
   1224 	} else {
   1225 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1226 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1227 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1228 	}
   1229 
   1230 	/*
   1231 	 * Start internal clock.  Wait 10ms for stabilization.
   1232 	 */
   1233 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1234 		HSET4(hp, SDHC_VEND_SPEC,
   1235 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1236 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1237 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1238 		sdmmc_delay(10000);
   1239 		HSET4(hp, SDHC_CLOCK_CTL,
   1240 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1241 	} else {
   1242 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1243 		for (timo = 1000; timo > 0; timo--) {
   1244 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1245 			    SDHC_INTCLK_STABLE))
   1246 				break;
   1247 			sdmmc_delay(10);
   1248 		}
   1249 		if (timo == 0) {
   1250 			error = ETIMEDOUT;
   1251 			DPRINTF(1,("%s: timeout\n", __func__));
   1252 			goto out;
   1253 		}
   1254 	}
   1255 
   1256 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1257 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1258 		/*
   1259 		 * Sending 80 clocks at 400kHz takes 200us.
   1260 		 * So delay for that time + slop and then
   1261 		 * check a few times for completion.
   1262 		 */
   1263 		sdmmc_delay(210);
   1264 		for (timo = 10; timo > 0; timo--) {
   1265 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1266 			    SDHC_INIT_ACTIVE))
   1267 				break;
   1268 			sdmmc_delay(10);
   1269 		}
   1270 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1271 
   1272 		/*
   1273 		 * Enable SD clock.
   1274 		 */
   1275 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1276 			HSET4(hp, SDHC_VEND_SPEC,
   1277 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1278 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1279 		} else {
   1280 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1281 		}
   1282 	} else {
   1283 		/*
   1284 		 * Enable SD clock.
   1285 		 */
   1286 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1287 
   1288 		if (freq > 25000 &&
   1289 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1290 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1291 		else
   1292 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1293 	}
   1294 
   1295 	mutex_exit(&hp->intr_lock);
   1296 
   1297 	if (hp->sc->sc_vendor_bus_clock_post) {
   1298 		mutex_enter(&hp->bus_clock_lock);
   1299 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
   1300 		mutex_exit(&hp->bus_clock_lock);
   1301 	}
   1302 	return error;
   1303 
   1304 out:
   1305 	mutex_exit(&hp->intr_lock);
   1306 
   1307 	return error;
   1308 }
   1309 
   1310 static int
   1311 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1312 {
   1313 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1314 	int reg;
   1315 
   1316 	switch (width) {
   1317 	case 1:
   1318 	case 4:
   1319 		break;
   1320 
   1321 	case 8:
   1322 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1323 			break;
   1324 		/* FALLTHROUGH */
   1325 	default:
   1326 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1327 		    HDEVNAME(hp), width));
   1328 		return 1;
   1329 	}
   1330 
   1331 	if (hp->sc->sc_vendor_bus_width) {
   1332 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1333 		if (error != 0)
   1334 			return error;
   1335 	}
   1336 
   1337 	mutex_enter(&hp->intr_lock);
   1338 
   1339 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1340 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1341 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1342 		if (width == 4)
   1343 			reg |= SDHC_4BIT_MODE;
   1344 		else if (width == 8)
   1345 			reg |= SDHC_ESDHC_8BIT_MODE;
   1346 	} else {
   1347 		reg &= ~SDHC_4BIT_MODE;
   1348 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1349 			reg &= ~SDHC_8BIT_MODE;
   1350 		}
   1351 		if (width == 4) {
   1352 			reg |= SDHC_4BIT_MODE;
   1353 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1354 			reg |= SDHC_8BIT_MODE;
   1355 		}
   1356 	}
   1357 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1358 
   1359 	mutex_exit(&hp->intr_lock);
   1360 
   1361 	return 0;
   1362 }
   1363 
   1364 static int
   1365 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1366 {
   1367 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1368 
   1369 	if (hp->sc->sc_vendor_rod)
   1370 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1371 
   1372 	return 0;
   1373 }
   1374 
   1375 static void
   1376 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1377 {
   1378 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1379 
   1380 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1381 		mutex_enter(&hp->intr_lock);
   1382 		if (enable) {
   1383 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1384 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1385 		} else {
   1386 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1387 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1388 		}
   1389 		mutex_exit(&hp->intr_lock);
   1390 	}
   1391 }
   1392 
   1393 static void
   1394 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1395 {
   1396 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1397 
   1398 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1399 		mutex_enter(&hp->intr_lock);
   1400 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1401 		mutex_exit(&hp->intr_lock);
   1402 	}
   1403 }
   1404 
   1405 static int
   1406 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1407 {
   1408 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1409 	int error = 0;
   1410 
   1411 	if (hp->specver < SDHC_SPEC_VERS_300)
   1412 		return EINVAL;
   1413 
   1414 	mutex_enter(&hp->intr_lock);
   1415 	switch (signal_voltage) {
   1416 	case SDMMC_SIGNAL_VOLTAGE_180:
   1417 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1418 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1419 			    signal_voltage);
   1420 			if (error != 0)
   1421 				break;
   1422 		}
   1423 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1424 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1425 		break;
   1426 	case SDMMC_SIGNAL_VOLTAGE_330:
   1427 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1428 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1429 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1430 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1431 			    signal_voltage);
   1432 			if (error != 0)
   1433 				break;
   1434 		}
   1435 		break;
   1436 	default:
   1437 		error = EINVAL;
   1438 		break;
   1439 	}
   1440 	mutex_exit(&hp->intr_lock);
   1441 
   1442 	return error;
   1443 }
   1444 
   1445 /*
   1446  * Sampling clock tuning procedure (UHS)
   1447  */
   1448 static int
   1449 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1450 {
   1451 	struct sdmmc_command cmd;
   1452 	uint8_t hostctl;
   1453 	int opcode, error, retry = 40;
   1454 
   1455 	KASSERT(mutex_owned(&hp->intr_lock));
   1456 
   1457 	hp->tuning_timing = timing;
   1458 
   1459 	switch (timing) {
   1460 	case SDMMC_TIMING_MMC_HS200:
   1461 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1462 		break;
   1463 	case SDMMC_TIMING_UHS_SDR50:
   1464 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1465 			return 0;
   1466 		/* FALLTHROUGH */
   1467 	case SDMMC_TIMING_UHS_SDR104:
   1468 		opcode = MMC_SEND_TUNING_BLOCK;
   1469 		break;
   1470 	default:
   1471 		return EINVAL;
   1472 	}
   1473 
   1474 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1475 
   1476 	/* enable buffer read ready interrupt */
   1477 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1478 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1479 
   1480 	/* disable DMA */
   1481 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1482 
   1483 	/* reset tuning circuit */
   1484 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1485 
   1486 	/* start of tuning */
   1487 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1488 
   1489 	do {
   1490 		memset(&cmd, 0, sizeof(cmd));
   1491 		cmd.c_opcode = opcode;
   1492 		cmd.c_arg = 0;
   1493 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1494 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1495 			cmd.c_blklen = cmd.c_datalen = 128;
   1496 		} else {
   1497 			cmd.c_blklen = cmd.c_datalen = 64;
   1498 		}
   1499 
   1500 		error = sdhc_start_command(hp, &cmd);
   1501 		if (error)
   1502 			break;
   1503 
   1504 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1505 		    SDHC_TUNING_TIMEOUT, false)) {
   1506 			break;
   1507 		}
   1508 
   1509 		delay(1000);
   1510 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1511 
   1512 	/* disable buffer read ready interrupt */
   1513 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1514 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1515 
   1516 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1517 		HCLR2(hp, SDHC_HOST_CTL2,
   1518 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1519 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1520 		aprint_error_dev(hp->sc->sc_dev,
   1521 		    "tuning did not complete, using fixed sampling clock\n");
   1522 		return 0;		/* tuning did not complete */
   1523 	}
   1524 
   1525 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1526 		HCLR2(hp, SDHC_HOST_CTL2,
   1527 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1528 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1529 		aprint_error_dev(hp->sc->sc_dev,
   1530 		    "tuning failed, using fixed sampling clock\n");
   1531 		return 0;		/* tuning failed */
   1532 	}
   1533 
   1534 	if (hp->tuning_timer_count) {
   1535 		callout_schedule(&hp->tuning_timer,
   1536 		    hz * hp->tuning_timer_count);
   1537 	}
   1538 
   1539 	return 0;		/* tuning completed */
   1540 }
   1541 
   1542 static int
   1543 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1544 {
   1545 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1546 	int error;
   1547 
   1548 	mutex_enter(&hp->intr_lock);
   1549 	error = sdhc_execute_tuning1(hp, timing);
   1550 	mutex_exit(&hp->intr_lock);
   1551 	return error;
   1552 }
   1553 
   1554 static void
   1555 sdhc_tuning_timer(void *arg)
   1556 {
   1557 	struct sdhc_host *hp = arg;
   1558 
   1559 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1560 }
   1561 
   1562 static void
   1563 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1564 {
   1565 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1566 	struct sdhc_softc *sc = hp->sc;
   1567 
   1568 	if (sc->sc_vendor_hw_reset != NULL)
   1569 		sc->sc_vendor_hw_reset(sc, hp);
   1570 }
   1571 
   1572 static int
   1573 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1574 {
   1575 	uint32_t state;
   1576 	int timeout;
   1577 
   1578 	for (timeout = 100000; timeout > 0; timeout--) {
   1579 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1580 			return 0;
   1581 		sdmmc_delay(10);
   1582 	}
   1583 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1584 	    mask, value, state);
   1585 	return ETIMEDOUT;
   1586 }
   1587 
   1588 static void
   1589 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1590 {
   1591 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1592 	int error;
   1593 	bool probing;
   1594 
   1595 	mutex_enter(&hp->intr_lock);
   1596 
   1597 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1598 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1599 	}
   1600 
   1601 	if (cmd->c_data &&
   1602 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1603 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1604 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1605 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1606 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1607 		} else {
   1608 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1609 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1610 		}
   1611 	}
   1612 
   1613 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1614 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1615 		if (cmd->c_data != NULL) {
   1616 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1617 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1618 		} else {
   1619 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1620 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1621 		}
   1622 	}
   1623 
   1624 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
   1625 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1626 			SET(cmd->c_flags, SCF_RSP_BSY);
   1627 	}
   1628 
   1629 	/*
   1630 	 * Start the MMC command, or mark `cmd' as failed and return.
   1631 	 */
   1632 	error = sdhc_start_command(hp, cmd);
   1633 	if (error) {
   1634 		cmd->c_error = error;
   1635 		goto out;
   1636 	}
   1637 
   1638 	/*
   1639 	 * Wait until the command phase is done, or until the command
   1640 	 * is marked done for any other reason.
   1641 	 */
   1642 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1643 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
   1644 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1645 		sdmmc_delay(50);
   1646 		cmd->c_error = ETIMEDOUT;
   1647 		goto out;
   1648 	}
   1649 
   1650 	/*
   1651 	 * The host controller removes bits [0:7] from the response
   1652 	 * data (CRC) and we pass the data up unchanged to the bus
   1653 	 * driver (without padding).
   1654 	 */
   1655 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1656 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1657 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1658 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1659 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1660 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1661 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1662 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1663 				    (cmd->c_resp[1] << 24);
   1664 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1665 				    (cmd->c_resp[2] << 24);
   1666 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1667 				    (cmd->c_resp[3] << 24);
   1668 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1669 			}
   1670 		}
   1671 	}
   1672 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1673 
   1674 	/*
   1675 	 * If the command has data to transfer in any direction,
   1676 	 * execute the transfer now.
   1677 	 */
   1678 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1679 		sdhc_transfer_data(hp, cmd);
   1680 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1681 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1682 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1683 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1684 			    HDEVNAME(hp)));
   1685 			cmd->c_error = ETIMEDOUT;
   1686 			goto out;
   1687 		}
   1688 	}
   1689 
   1690 out:
   1691 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1692 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1693 		/* Turn off the LED. */
   1694 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1695 	}
   1696 	SET(cmd->c_flags, SCF_ITSDONE);
   1697 
   1698 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1699 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1700 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1701 
   1702 	mutex_exit(&hp->intr_lock);
   1703 
   1704 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1705 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1706 	    cmd->c_flags, cmd->c_error));
   1707 }
   1708 
   1709 static int
   1710 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1711 {
   1712 	struct sdhc_softc * const sc = hp->sc;
   1713 	uint16_t blksize = 0;
   1714 	uint16_t blkcount = 0;
   1715 	uint16_t mode;
   1716 	uint16_t command;
   1717 	uint32_t pmask;
   1718 	int error;
   1719 
   1720 	KASSERT(mutex_owned(&hp->intr_lock));
   1721 
   1722 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1723 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1724 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1725 
   1726 	/*
   1727 	 * The maximum block length for commands should be the minimum
   1728 	 * of the host buffer size and the card buffer size. (1.7.2)
   1729 	 */
   1730 
   1731 	/* Fragment the data into proper blocks. */
   1732 	if (cmd->c_datalen > 0) {
   1733 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1734 		blkcount = cmd->c_datalen / blksize;
   1735 		if (cmd->c_datalen % blksize > 0) {
   1736 			/* XXX: Split this command. (1.7.4) */
   1737 			aprint_error_dev(sc->sc_dev,
   1738 			    "data not a multiple of %u bytes\n", blksize);
   1739 			return EINVAL;
   1740 		}
   1741 	}
   1742 
   1743 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1744 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1745 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1746 		return EINVAL;
   1747 	}
   1748 
   1749 	/* Prepare transfer mode register value. (2.2.5) */
   1750 	mode = 0;
   1751 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1752 		mode |= SDHC_READ_MODE;
   1753 	if (blkcount > 0) {
   1754 		mode |= SDHC_BLOCK_COUNT_ENABLE;
   1755 		if (blkcount > 1) {
   1756 			mode |= SDHC_MULTI_BLOCK_MODE;
   1757 			if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
   1758 			    && !ISSET(cmd->c_flags, SCF_NO_STOP))
   1759 				mode |= SDHC_AUTO_CMD12_ENABLE;
   1760 		}
   1761 	}
   1762 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1763 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1764 		mode |= SDHC_DMA_ENABLE;
   1765 	}
   1766 
   1767 	/*
   1768 	 * Prepare command register value. (2.2.6)
   1769 	 */
   1770 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1771 
   1772 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1773 		command |= SDHC_CRC_CHECK_ENABLE;
   1774 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1775 		command |= SDHC_INDEX_CHECK_ENABLE;
   1776 	if (cmd->c_datalen > 0)
   1777 		command |= SDHC_DATA_PRESENT_SELECT;
   1778 
   1779 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1780 		command |= SDHC_NO_RESPONSE;
   1781 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1782 		command |= SDHC_RESP_LEN_136;
   1783 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1784 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1785 	else
   1786 		command |= SDHC_RESP_LEN_48;
   1787 
   1788 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1789 	pmask = SDHC_CMD_INHIBIT_CMD;
   1790 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1791 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1792 	error = sdhc_wait_state(hp, pmask, 0);
   1793 	if (error) {
   1794 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1795 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1796 		return error;
   1797 	}
   1798 
   1799 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1800 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1801 
   1802 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1803 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1804 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1805 	}
   1806 
   1807 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1808 		/* Alert the user not to remove the card. */
   1809 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1810 	}
   1811 
   1812 	/* Set DMA start address. */
   1813 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1814 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1815 			bus_addr_t paddr =
   1816 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1817 			uint16_t len =
   1818 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1819 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1820 			uint16_t attr =
   1821 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1822 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1823 				attr |= SDHC_ADMA2_END;
   1824 			}
   1825 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1826 				struct sdhc_adma2_descriptor32 *desc =
   1827 				    hp->adma2;
   1828 				desc[seg].attribute = htole16(attr);
   1829 				desc[seg].length = htole16(len);
   1830 				desc[seg].address = htole32(paddr);
   1831 			} else {
   1832 				struct sdhc_adma2_descriptor64 *desc =
   1833 				    hp->adma2;
   1834 				desc[seg].attribute = htole16(attr);
   1835 				desc[seg].length = htole16(len);
   1836 				desc[seg].address = htole32(paddr & 0xffffffff);
   1837 				desc[seg].address_hi = htole32(
   1838 				    (uint64_t)paddr >> 32);
   1839 			}
   1840 		}
   1841 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1842 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1843 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1844 		} else {
   1845 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1846 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1847 		}
   1848 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1849 		    BUS_DMASYNC_PREWRITE);
   1850 
   1851 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1852 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1853 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1854 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1855 			    (uint64_t)desc_addr >> 32);
   1856 		}
   1857 
   1858 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1859 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1860 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1861 		} else {
   1862 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1863 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1864 		}
   1865 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1866 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1867 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1868 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1869 		}
   1870 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1871 	}
   1872 
   1873 	/*
   1874 	 * Start a CPU data transfer.  Writing to the high order byte
   1875 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1876 	 */
   1877 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1878 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1879 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1880 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1881 			/* mode bits is in MIX_CTRL register on uSDHC */
   1882 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1883 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
   1884 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1885 				command |= SDHC_COMMAND_TYPE_ABORT;
   1886 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1887 		} else {
   1888 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1889 		}
   1890 	} else {
   1891 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1892 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1893 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1894 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1895 		HWRITE2(hp, SDHC_COMMAND, command);
   1896 	}
   1897 
   1898 	return 0;
   1899 }
   1900 
   1901 static void
   1902 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1903 {
   1904 	struct sdhc_softc *sc = hp->sc;
   1905 	int error;
   1906 
   1907 	KASSERT(mutex_owned(&hp->intr_lock));
   1908 
   1909 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1910 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1911 
   1912 #ifdef SDHC_DEBUG
   1913 	/* XXX I forgot why I wanted to know when this happens :-( */
   1914 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1915 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1916 		aprint_error_dev(hp->sc->sc_dev,
   1917 		    "CMD52/53 error response flags %#x\n",
   1918 		    MMC_R1(cmd->c_resp) & 0xff00);
   1919 	}
   1920 #endif
   1921 
   1922 	if (cmd->c_dmamap != NULL) {
   1923 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1924 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1925 			if (error == 0 && !sdhc_wait_intr(hp,
   1926 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1927 				DPRINTF(1,("%s: timeout\n", __func__));
   1928 				error = ETIMEDOUT;
   1929 			}
   1930 		} else {
   1931 			error = sdhc_transfer_data_dma(hp, cmd);
   1932 		}
   1933 	} else
   1934 		error = sdhc_transfer_data_pio(hp, cmd);
   1935 	if (error)
   1936 		cmd->c_error = error;
   1937 	SET(cmd->c_flags, SCF_ITSDONE);
   1938 
   1939 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1940 	    HDEVNAME(hp), cmd->c_error));
   1941 }
   1942 
   1943 static int
   1944 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1945 {
   1946 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1947 	bus_addr_t posaddr;
   1948 	bus_addr_t segaddr;
   1949 	bus_size_t seglen;
   1950 	u_int seg = 0;
   1951 	int error = 0;
   1952 	int status;
   1953 
   1954 	KASSERT(mutex_owned(&hp->intr_lock));
   1955 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1956 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1957 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1958 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1959 
   1960 	for (;;) {
   1961 		status = sdhc_wait_intr(hp,
   1962 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1963 		    SDHC_DMA_TIMEOUT, false);
   1964 
   1965 		if (status & SDHC_TRANSFER_COMPLETE) {
   1966 			break;
   1967 		}
   1968 		if (!status) {
   1969 			DPRINTF(1,("%s: timeout\n", __func__));
   1970 			error = ETIMEDOUT;
   1971 			break;
   1972 		}
   1973 
   1974 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1975 			continue;
   1976 		}
   1977 
   1978 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1979 			continue;
   1980 		}
   1981 
   1982 		/* DMA Interrupt (boundary crossing) */
   1983 
   1984 		segaddr = dm_segs[seg].ds_addr;
   1985 		seglen = dm_segs[seg].ds_len;
   1986 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1987 
   1988 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1989 			continue;
   1990 		}
   1991 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1992 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1993 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1994 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1995 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1996 	}
   1997 
   1998 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1999 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   2000 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   2001 	}
   2002 
   2003 	return error;
   2004 }
   2005 
   2006 static int
   2007 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   2008 {
   2009 	uint8_t *data = cmd->c_data;
   2010 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   2011 	u_int len, datalen;
   2012 	u_int imask;
   2013 	u_int pmask;
   2014 	int error = 0;
   2015 
   2016 	KASSERT(mutex_owned(&hp->intr_lock));
   2017 
   2018 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   2019 		imask = SDHC_BUFFER_READ_READY;
   2020 		pmask = SDHC_BUFFER_READ_ENABLE;
   2021 		if (ISSET(hp->sc->sc_flags,
   2022 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2023 			pio_func = esdhc_read_data_pio;
   2024 		} else {
   2025 			pio_func = sdhc_read_data_pio;
   2026 		}
   2027 	} else {
   2028 		imask = SDHC_BUFFER_WRITE_READY;
   2029 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   2030 		if (ISSET(hp->sc->sc_flags,
   2031 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2032 			pio_func = esdhc_write_data_pio;
   2033 		} else {
   2034 			pio_func = sdhc_write_data_pio;
   2035 		}
   2036 	}
   2037 	datalen = cmd->c_datalen;
   2038 
   2039 	KASSERT(mutex_owned(&hp->intr_lock));
   2040 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   2041 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   2042 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   2043 
   2044 	while (datalen > 0) {
   2045 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   2046 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2047 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2048 			} else {
   2049 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2050 			}
   2051 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   2052 				DPRINTF(1,("%s: timeout\n", __func__));
   2053 				error = ETIMEDOUT;
   2054 				break;
   2055 			}
   2056 
   2057 			error = sdhc_wait_state(hp, pmask, pmask);
   2058 			if (error)
   2059 				break;
   2060 		}
   2061 
   2062 		len = MIN(datalen, cmd->c_blklen);
   2063 		(*pio_func)(hp, data, len);
   2064 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2065 		    HDEVNAME(hp), len, data));
   2066 
   2067 		data += len;
   2068 		datalen -= len;
   2069 	}
   2070 
   2071 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2072 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2073 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2074 		error = ETIMEDOUT;
   2075 	}
   2076 
   2077 	return error;
   2078 }
   2079 
   2080 static void
   2081 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2082 {
   2083 
   2084 	if (((__uintptr_t)data & 3) == 0) {
   2085 		while (datalen > 3) {
   2086 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2087 			data += 4;
   2088 			datalen -= 4;
   2089 		}
   2090 		if (datalen > 1) {
   2091 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2092 			data += 2;
   2093 			datalen -= 2;
   2094 		}
   2095 		if (datalen > 0) {
   2096 			*data = HREAD1(hp, SDHC_DATA);
   2097 			data += 1;
   2098 			datalen -= 1;
   2099 		}
   2100 	} else if (((__uintptr_t)data & 1) == 0) {
   2101 		while (datalen > 1) {
   2102 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2103 			data += 2;
   2104 			datalen -= 2;
   2105 		}
   2106 		if (datalen > 0) {
   2107 			*data = HREAD1(hp, SDHC_DATA);
   2108 			data += 1;
   2109 			datalen -= 1;
   2110 		}
   2111 	} else {
   2112 		while (datalen > 0) {
   2113 			*data = HREAD1(hp, SDHC_DATA);
   2114 			data += 1;
   2115 			datalen -= 1;
   2116 		}
   2117 	}
   2118 }
   2119 
   2120 static void
   2121 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2122 {
   2123 
   2124 	if (((__uintptr_t)data & 3) == 0) {
   2125 		while (datalen > 3) {
   2126 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2127 			data += 4;
   2128 			datalen -= 4;
   2129 		}
   2130 		if (datalen > 1) {
   2131 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2132 			data += 2;
   2133 			datalen -= 2;
   2134 		}
   2135 		if (datalen > 0) {
   2136 			HWRITE1(hp, SDHC_DATA, *data);
   2137 			data += 1;
   2138 			datalen -= 1;
   2139 		}
   2140 	} else if (((__uintptr_t)data & 1) == 0) {
   2141 		while (datalen > 1) {
   2142 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2143 			data += 2;
   2144 			datalen -= 2;
   2145 		}
   2146 		if (datalen > 0) {
   2147 			HWRITE1(hp, SDHC_DATA, *data);
   2148 			data += 1;
   2149 			datalen -= 1;
   2150 		}
   2151 	} else {
   2152 		while (datalen > 0) {
   2153 			HWRITE1(hp, SDHC_DATA, *data);
   2154 			data += 1;
   2155 			datalen -= 1;
   2156 		}
   2157 	}
   2158 }
   2159 
   2160 static void
   2161 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2162 {
   2163 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2164 	uint32_t v;
   2165 
   2166 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2167 	size_t count = 0;
   2168 
   2169 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2170 		if (count == 0) {
   2171 			/*
   2172 			 * If we've drained "watermark" words, we need to wait
   2173 			 * a little bit so the read FIFO can refill.
   2174 			 */
   2175 			sdmmc_delay(10);
   2176 			count = watermark;
   2177 		}
   2178 		v = HREAD4(hp, SDHC_DATA);
   2179 		v = le32toh(v);
   2180 		*(uint32_t *)data = v;
   2181 		data += 4;
   2182 		datalen -= 4;
   2183 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2184 		count--;
   2185 	}
   2186 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2187 		if (count == 0) {
   2188 			sdmmc_delay(10);
   2189 		}
   2190 		v = HREAD4(hp, SDHC_DATA);
   2191 		v = le32toh(v);
   2192 		do {
   2193 			*data++ = v;
   2194 			v >>= 8;
   2195 		} while (--datalen > 0);
   2196 	}
   2197 }
   2198 
   2199 static void
   2200 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2201 {
   2202 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2203 	uint32_t v;
   2204 
   2205 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2206 	size_t count = watermark;
   2207 
   2208 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2209 		if (count == 0) {
   2210 			sdmmc_delay(10);
   2211 			count = watermark;
   2212 		}
   2213 		v = *(uint32_t *)data;
   2214 		v = htole32(v);
   2215 		HWRITE4(hp, SDHC_DATA, v);
   2216 		data += 4;
   2217 		datalen -= 4;
   2218 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2219 		count--;
   2220 	}
   2221 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2222 		if (count == 0) {
   2223 			sdmmc_delay(10);
   2224 		}
   2225 		v = *(uint32_t *)data;
   2226 		v = htole32(v);
   2227 		HWRITE4(hp, SDHC_DATA, v);
   2228 	}
   2229 }
   2230 
   2231 /* Prepare for another command. */
   2232 static int
   2233 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2234 {
   2235 	int timo;
   2236 
   2237 	KASSERT(mutex_owned(&hp->intr_lock));
   2238 
   2239 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2240 
   2241 	/* Request the reset.  */
   2242 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2243 
   2244 	/*
   2245 	 * If necessary, wait for the controller to set the bits to
   2246 	 * acknowledge the reset.
   2247 	 */
   2248 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2249 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2250 		for (timo = 10000; timo > 0; timo--) {
   2251 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2252 				break;
   2253 			/* Short delay because I worry we may miss it...  */
   2254 			sdmmc_delay(1);
   2255 		}
   2256 		if (timo == 0) {
   2257 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2258 			return ETIMEDOUT;
   2259 		}
   2260 	}
   2261 
   2262 	/*
   2263 	 * Wait for the controller to clear the bits to indicate that
   2264 	 * the reset has completed.
   2265 	 */
   2266 	for (timo = 10; timo > 0; timo--) {
   2267 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2268 			break;
   2269 		sdmmc_delay(10000);
   2270 	}
   2271 	if (timo == 0) {
   2272 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2273 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2274 		return ETIMEDOUT;
   2275 	}
   2276 
   2277 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2278 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2279 	}
   2280 
   2281 	return 0;
   2282 }
   2283 
   2284 static int
   2285 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2286 {
   2287 	int status, error, nointr;
   2288 
   2289 	KASSERT(mutex_owned(&hp->intr_lock));
   2290 
   2291 	mask |= SDHC_ERROR_INTERRUPT;
   2292 
   2293 	nointr = 0;
   2294 	status = hp->intr_status & mask;
   2295 	while (status == 0) {
   2296 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2297 		    == EWOULDBLOCK) {
   2298 			nointr = 1;
   2299 			break;
   2300 		}
   2301 		status = hp->intr_status & mask;
   2302 	}
   2303 	error = hp->intr_error_status;
   2304 
   2305 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2306 	    error));
   2307 
   2308 	hp->intr_status &= ~status;
   2309 	hp->intr_error_status &= ~error;
   2310 
   2311 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2312 		if (ISSET(error, SDHC_DMA_ERROR))
   2313 			device_printf(hp->sc->sc_dev,"dma error\n");
   2314 		if (ISSET(error, SDHC_ADMA_ERROR))
   2315 			device_printf(hp->sc->sc_dev,"adma error\n");
   2316 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2317 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2318 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2319 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2320 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2321 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2322 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2323 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2324 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2325 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2326 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2327 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2328 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2329 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2330 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2331 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2332 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2333 			if (!probing)
   2334 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2335 #ifdef SDHC_DEBUG
   2336 			else if (sdhcdebug > 0)
   2337 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2338 #endif
   2339 		}
   2340 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2341 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2342 				(error & ~SDHC_EINTR_STATUS_MASK));
   2343 		if (error == 0)
   2344 			device_printf(hp->sc->sc_dev,"no error\n");
   2345 
   2346 		/* Command timeout has higher priority than command complete. */
   2347 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2348 			CLR(status, SDHC_COMMAND_COMPLETE);
   2349 
   2350 		/* Transfer complete has higher priority than data timeout. */
   2351 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2352 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2353 	}
   2354 
   2355 	if (nointr ||
   2356 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2357 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2358 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2359 		hp->intr_error_status = 0;
   2360 		status = 0;
   2361 	}
   2362 
   2363 	return status;
   2364 }
   2365 
   2366 /*
   2367  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2368  */
   2369 int
   2370 sdhc_intr(void *arg)
   2371 {
   2372 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2373 	struct sdhc_host *hp;
   2374 	int done = 0;
   2375 	uint16_t status;
   2376 	uint16_t error;
   2377 
   2378 	/* We got an interrupt, but we don't know from which slot. */
   2379 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2380 		hp = sc->sc_host[host];
   2381 		if (hp == NULL)
   2382 			continue;
   2383 
   2384 		mutex_enter(&hp->intr_lock);
   2385 
   2386 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2387 			/* Find out which interrupts are pending. */
   2388 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2389 			status = xstatus;
   2390 			error = xstatus >> 16;
   2391 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2392 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2393 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2394 				/* read again due to uSDHC errata */
   2395 				status = xstatus = HREAD4(hp,
   2396 				    SDHC_NINTR_STATUS);
   2397 				error = xstatus >> 16;
   2398 			}
   2399 			if (ISSET(sc->sc_flags,
   2400 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2401 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2402 					SET(status, SDHC_ERROR_INTERRUPT);
   2403 			}
   2404 			if (error)
   2405 				xstatus |= SDHC_ERROR_INTERRUPT;
   2406 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2407 				goto next_port; /* no interrupt for us */
   2408 			/* Acknowledge the interrupts we are about to handle. */
   2409 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2410 		} else {
   2411 			/* Find out which interrupts are pending. */
   2412 			error = 0;
   2413 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2414 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2415 				goto next_port; /* no interrupt for us */
   2416 			/* Acknowledge the interrupts we are about to handle. */
   2417 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2418 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2419 				/* Acknowledge error interrupts. */
   2420 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2421 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2422 			}
   2423 		}
   2424 
   2425 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2426 		    status, error));
   2427 
   2428 		/* Claim this interrupt. */
   2429 		done = 1;
   2430 
   2431 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2432 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2433 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2434 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2435 			    adma_err);
   2436 		}
   2437 
   2438 		/*
   2439 		 * Wake up the sdmmc event thread to scan for cards.
   2440 		 */
   2441 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2442 			if (hp->sdmmc != NULL) {
   2443 				sdmmc_needs_discover(hp->sdmmc);
   2444 			}
   2445 			if (ISSET(sc->sc_flags,
   2446 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2447 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2448 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2449 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2450 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2451 			}
   2452 		}
   2453 
   2454 		/*
   2455 		 * Schedule re-tuning process (UHS).
   2456 		 */
   2457 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2458 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2459 		}
   2460 
   2461 		/*
   2462 		 * Wake up the blocking process to service command
   2463 		 * related interrupt(s).
   2464 		 */
   2465 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2466 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2467 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2468 			hp->intr_error_status |= error;
   2469 			hp->intr_status |= status;
   2470 			if (ISSET(sc->sc_flags,
   2471 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2472 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2473 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2474 			}
   2475 			cv_broadcast(&hp->intr_cv);
   2476 		}
   2477 
   2478 		/*
   2479 		 * Service SD card interrupts.
   2480 		 */
   2481 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2482 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2483 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2484 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2485 			sdmmc_card_intr(hp->sdmmc);
   2486 		}
   2487 next_port:
   2488 		mutex_exit(&hp->intr_lock);
   2489 	}
   2490 
   2491 	return done;
   2492 }
   2493 
   2494 kmutex_t *
   2495 sdhc_host_lock(struct sdhc_host *hp)
   2496 {
   2497 	return &hp->intr_lock;
   2498 }
   2499 
   2500 uint8_t
   2501 sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2502 {
   2503 	return HREAD1(hp, reg);
   2504 }
   2505 
   2506 uint16_t
   2507 sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2508 {
   2509 	return HREAD2(hp, reg);
   2510 }
   2511 
   2512 uint32_t
   2513 sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2514 {
   2515 	return HREAD4(hp, reg);
   2516 }
   2517 
   2518 void
   2519 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2520 {
   2521 	HWRITE1(hp, reg, val);
   2522 }
   2523 
   2524 void
   2525 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2526 {
   2527 	HWRITE2(hp, reg, val);
   2528 }
   2529 
   2530 void
   2531 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2532 {
   2533 	HWRITE4(hp, reg, val);
   2534 }
   2535 
   2536 #ifdef SDHC_DEBUG
   2537 void
   2538 sdhc_dump_regs(struct sdhc_host *hp)
   2539 {
   2540 
   2541 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2542 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2543 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2544 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2545 		    HREAD1(hp, SDHC_POWER_CTL));
   2546 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2547 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2548 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2549 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2550 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2551 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2552 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2553 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2554 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2555 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2556 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2557 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2558 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2559 	    HREAD4(hp, SDHC_CAPABILITIES));
   2560 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2561 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2562 }
   2563 #endif
   2564