sdhc.c revision 1.14 1 /* $NetBSD: sdhc.c,v 1.14 2012/07/12 03:05:49 matt Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.14 2012/07/12 03:05:49 matt Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 };
89
90 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91
92 static uint8_t
93 hread1(struct sdhc_host *hp, bus_size_t reg)
94 {
95
96 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
97 return bus_space_read_1(hp->iot, hp->ioh, reg);
98 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
99 }
100
101 static uint16_t
102 hread2(struct sdhc_host *hp, bus_size_t reg)
103 {
104
105 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
106 return bus_space_read_2(hp->iot, hp->ioh, reg);
107 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
108 }
109
110 #define HREAD1(hp, reg) hread1(hp, reg)
111 #define HREAD2(hp, reg) hread2(hp, reg)
112 #define HREAD4(hp, reg) \
113 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
114
115
116 static void
117 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
118 {
119
120 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
121 bus_space_write_1(hp->iot, hp->ioh, o, val);
122 } else {
123 const size_t shift = 8 * (o & 3);
124 o &= -4;
125 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
126 tmp = (val << shift) | (tmp & ~(0xff << shift));
127 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
128 }
129 }
130
131 static void
132 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
133 {
134
135 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
136 bus_space_write_2(hp->iot, hp->ioh, o, val);
137 } else {
138 const size_t shift = 8 * (o & 2);
139 o &= -4;
140 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
141 tmp = (val << shift) | (tmp & ~(0xffff << shift));
142 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
143 }
144 }
145
146 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
147 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
148 #define HWRITE4(hp, reg, val) \
149 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
150
151 #define HCLR1(hp, reg, bits) \
152 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
153 #define HCLR2(hp, reg, bits) \
154 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
155 #define HCLR4(hp, reg, bits) \
156 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
157 #define HSET1(hp, reg, bits) \
158 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
159 #define HSET2(hp, reg, bits) \
160 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
161 #define HSET4(hp, reg, bits) \
162 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
163
164 static int sdhc_host_reset(sdmmc_chipset_handle_t);
165 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
166 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
167 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
168 static int sdhc_card_detect(sdmmc_chipset_handle_t);
169 static int sdhc_write_protect(sdmmc_chipset_handle_t);
170 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
171 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
172 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
174 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
176 static void sdhc_exec_command(sdmmc_chipset_handle_t,
177 struct sdmmc_command *);
178 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
179 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
180 static int sdhc_soft_reset(struct sdhc_host *, int);
181 static int sdhc_wait_intr(struct sdhc_host *, int, int);
182 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
183 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
185 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
186 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
189
190
191 static struct sdmmc_chip_functions sdhc_functions = {
192 /* host controller reset */
193 sdhc_host_reset,
194
195 /* host controller capabilities */
196 sdhc_host_ocr,
197 sdhc_host_maxblklen,
198
199 /* card detection */
200 sdhc_card_detect,
201
202 /* write protect */
203 sdhc_write_protect,
204
205 /* bus power, clock frequency and width */
206 sdhc_bus_power,
207 sdhc_bus_clock,
208 sdhc_bus_width,
209 sdhc_bus_rod,
210
211 /* command execution */
212 sdhc_exec_command,
213
214 /* card interrupt */
215 sdhc_card_enable_intr,
216 sdhc_card_intr_ack
217 };
218
219 /*
220 * Called by attachment driver. For each SD card slot there is one SD
221 * host controller standard register set. (1.3)
222 */
223 int
224 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
225 bus_space_handle_t ioh, bus_size_t iosize)
226 {
227 struct sdmmcbus_attach_args saa;
228 struct sdhc_host *hp;
229 uint32_t caps;
230 uint16_t sdhcver;
231
232 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
233 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
234 switch (SDHC_SPEC_VERSION(sdhcver)) {
235 case SDHC_SPEC_VERS_100:
236 aprint_normal("1.0");
237 break;
238
239 case SDHC_SPEC_VERS_200:
240 aprint_normal("2.0");
241 break;
242
243 case SDHC_SPEC_VERS_300:
244 aprint_normal("3.0");
245 break;
246
247 default:
248 aprint_normal("unknown version(0x%x)",
249 SDHC_SPEC_VERSION(sdhcver));
250 break;
251 }
252 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
253
254 /* Allocate one more host structure. */
255 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
256 if (hp == NULL) {
257 aprint_error_dev(sc->sc_dev,
258 "couldn't alloc memory (sdhc host)\n");
259 goto err1;
260 }
261 sc->sc_host[sc->sc_nhosts++] = hp;
262
263 /* Fill in the new host structure. */
264 hp->sc = sc;
265 hp->iot = iot;
266 hp->ioh = ioh;
267 hp->dmat = sc->sc_dmat;
268 hp->specver = SDHC_SPEC_VERSION(sdhcver);
269
270 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
271 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
272 cv_init(&hp->intr_cv, "sdhcintr");
273
274 /*
275 * Reset the host controller and enable interrupts.
276 */
277 (void)sdhc_host_reset(hp);
278
279 /* Determine host capabilities. */
280 mutex_enter(&hp->host_mtx);
281 caps = HREAD4(hp, SDHC_CAPABILITIES);
282 mutex_exit(&hp->host_mtx);
283
284 #if notyet
285 /* Use DMA if the host system and the controller support it. */
286 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
287 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
288 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
289 SET(hp->flags, SHF_USE_DMA);
290 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
291 }
292 #endif
293
294 /*
295 * Determine the base clock frequency. (2.2.24)
296 */
297 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
298 if (hp->clkbase == 0) {
299 if (sc->sc_clkbase == 0) {
300 /* The attachment driver must tell us. */
301 aprint_error_dev(sc->sc_dev,
302 "unknown base clock frequency\n");
303 goto err;
304 }
305 hp->clkbase = sc->sc_clkbase;
306 }
307 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
308 /* SDHC 1.0 supports only 10-63 MHz. */
309 aprint_error_dev(sc->sc_dev,
310 "base clock frequency out of range: %u MHz\n",
311 hp->clkbase / 1000);
312 goto err;
313 }
314 DPRINTF(1,("%s: base clock frequency %u MHz\n",
315 device_xname(sc->sc_dev), hp->clkbase / 1000));
316
317 /*
318 * XXX Set the data timeout counter value according to
319 * capabilities. (2.2.15)
320 */
321 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
322 #if 0
323 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
324 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
325 #endif
326
327 /*
328 * Determine SD bus voltage levels supported by the controller.
329 */
330 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
331 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
332 }
333 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
334 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
335 }
336 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
337 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
338 }
339
340 /*
341 * Determine the maximum block length supported by the host
342 * controller. (2.2.24)
343 */
344 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
345 case SDHC_MAX_BLK_LEN_512:
346 hp->maxblklen = 512;
347 break;
348
349 case SDHC_MAX_BLK_LEN_1024:
350 hp->maxblklen = 1024;
351 break;
352
353 case SDHC_MAX_BLK_LEN_2048:
354 hp->maxblklen = 2048;
355 break;
356
357 case SDHC_MAX_BLK_LEN_4096:
358 hp->maxblklen = 4096;
359 break;
360
361 default:
362 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
363 goto err;
364 }
365 DPRINTF(1, ("%s: max block length %u byte%s\n",
366 device_xname(sc->sc_dev), hp->maxblklen,
367 hp->maxblklen > 1 ? "s" : ""));
368
369 /*
370 * Attach the generic SD/MMC bus driver. (The bus driver must
371 * not invoke any chipset functions before it is attached.)
372 */
373 memset(&saa, 0, sizeof(saa));
374 saa.saa_busname = "sdmmc";
375 saa.saa_sct = &sdhc_functions;
376 saa.saa_sch = hp;
377 saa.saa_dmat = hp->dmat;
378 saa.saa_clkmin = hp->clkbase / 256;
379 saa.saa_clkmax = hp->clkbase;
380 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
381 saa.saa_clkmin /= 2046;
382 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
383 saa.saa_clkmin /= 16;
384 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
385 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
386 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
387 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
388 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
389 #if notyet
390 if (ISSET(hp->flags, SHF_USE_DMA))
391 saa.saa_caps |= SMC_CAPS_DMA;
392 #endif
393 hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
394
395 return 0;
396
397 err:
398 cv_destroy(&hp->intr_cv);
399 mutex_destroy(&hp->intr_mtx);
400 mutex_destroy(&hp->host_mtx);
401 free(hp, M_DEVBUF);
402 sc->sc_host[--sc->sc_nhosts] = NULL;
403 err1:
404 return 1;
405 }
406
407 int
408 sdhc_detach(device_t dev, int flags)
409 {
410 struct sdhc_host *hp = (struct sdhc_host *)dev;
411 struct sdhc_softc *sc = hp->sc;
412 int rv = 0;
413
414 if (hp->sdmmc)
415 rv = config_detach(hp->sdmmc, flags);
416
417 cv_destroy(&hp->intr_cv);
418 mutex_destroy(&hp->intr_mtx);
419 mutex_destroy(&hp->host_mtx);
420 free(hp, M_DEVBUF);
421 sc->sc_host[--sc->sc_nhosts] = NULL;
422
423 return rv;
424 }
425
426 bool
427 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
428 {
429 struct sdhc_softc *sc = device_private(dev);
430 struct sdhc_host *hp;
431 size_t i;
432
433 /* XXX poll for command completion or suspend command
434 * in progress */
435
436 /* Save the host controller state. */
437 for (size_t n = 0; n < sc->sc_nhosts; n++) {
438 hp = sc->sc_host[n];
439 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
440 for (i = 0; i < sizeof hp->regs; i += 4) {
441 uint32_t v = HREAD4(hp, i);
442 hp->regs[i + 0] = (v >> 0);
443 hp->regs[i + 1] = (v >> 8);
444 if (i + 3 < sizeof hp->regs) {
445 hp->regs[i + 2] = (v >> 16);
446 hp->regs[i + 3] = (v >> 24);
447 }
448 }
449 } else {
450 for (i = 0; i < sizeof hp->regs; i++) {
451 hp->regs[i] = HREAD1(hp, i);
452 }
453 }
454 }
455 return true;
456 }
457
458 bool
459 sdhc_resume(device_t dev, const pmf_qual_t *qual)
460 {
461 struct sdhc_softc *sc = device_private(dev);
462 struct sdhc_host *hp;
463 size_t i;
464
465 /* Restore the host controller state. */
466 for (size_t n = 0; n < sc->sc_nhosts; n++) {
467 hp = sc->sc_host[n];
468 (void)sdhc_host_reset(hp);
469 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
470 for (i = 0; i < sizeof hp->regs; i += 4) {
471 if (i + 3 < sizeof hp->regs) {
472 HWRITE4(hp, i,
473 (hp->regs[i + 0] << 0)
474 | (hp->regs[i + 1] << 8)
475 | (hp->regs[i + 2] << 16)
476 | (hp->regs[i + 3] << 24));
477 } else {
478 HWRITE4(hp, i,
479 (hp->regs[i + 0] << 0)
480 | (hp->regs[i + 1] << 8));
481 }
482 }
483 } else {
484 for (i = 0; i < sizeof hp->regs; i++) {
485 HWRITE1(hp, i, hp->regs[i]);
486 }
487 }
488 }
489 return true;
490 }
491
492 bool
493 sdhc_shutdown(device_t dev, int flags)
494 {
495 struct sdhc_softc *sc = device_private(dev);
496 struct sdhc_host *hp;
497
498 /* XXX chip locks up if we don't disable it before reboot. */
499 for (size_t i = 0; i < sc->sc_nhosts; i++) {
500 hp = sc->sc_host[i];
501 (void)sdhc_host_reset(hp);
502 }
503 return true;
504 }
505
506 /*
507 * Reset the host controller. Called during initialization, when
508 * cards are removed, upon resume, and during error recovery.
509 */
510 static int
511 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
512 {
513 struct sdhc_host *hp = (struct sdhc_host *)sch;
514 uint32_t sdhcimask;
515 int error;
516
517 /* Don't lock. */
518
519 /* Disable all interrupts. */
520 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
521 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
522 } else {
523 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
524 }
525
526 /*
527 * Reset the entire host controller and wait up to 100ms for
528 * the controller to clear the reset bit.
529 */
530 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
531 if (error)
532 goto out;
533
534 /* Set data timeout counter value to max for now. */
535 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
536 #if 0
537 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
538 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
539 #endif
540
541 /* Enable interrupts. */
542 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
543 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
544 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
545 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
546 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
547 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
548 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
549 sdhcimask ^=
550 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
551 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
552 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
553 } else {
554 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
555 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
556 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
557 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
558 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
559 }
560
561 out:
562 return error;
563 }
564
565 static int
566 sdhc_host_reset(sdmmc_chipset_handle_t sch)
567 {
568 struct sdhc_host *hp = (struct sdhc_host *)sch;
569 int error;
570
571 mutex_enter(&hp->host_mtx);
572 error = sdhc_host_reset1(sch);
573 mutex_exit(&hp->host_mtx);
574
575 return error;
576 }
577
578 static uint32_t
579 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
580 {
581 struct sdhc_host *hp = (struct sdhc_host *)sch;
582
583 return hp->ocr;
584 }
585
586 static int
587 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
588 {
589 struct sdhc_host *hp = (struct sdhc_host *)sch;
590
591 return hp->maxblklen;
592 }
593
594 /*
595 * Return non-zero if the card is currently inserted.
596 */
597 static int
598 sdhc_card_detect(sdmmc_chipset_handle_t sch)
599 {
600 struct sdhc_host *hp = (struct sdhc_host *)sch;
601 int r;
602
603 mutex_enter(&hp->host_mtx);
604 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
605 mutex_exit(&hp->host_mtx);
606
607 return r ? 1 : 0;
608 }
609
610 /*
611 * Return non-zero if the card is currently write-protected.
612 */
613 static int
614 sdhc_write_protect(sdmmc_chipset_handle_t sch)
615 {
616 struct sdhc_host *hp = (struct sdhc_host *)sch;
617 int r;
618
619 mutex_enter(&hp->host_mtx);
620 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
621 mutex_exit(&hp->host_mtx);
622
623 return r ? 0 : 1;
624 }
625
626 /*
627 * Set or change SD bus voltage and enable or disable SD bus power.
628 * Return zero on success.
629 */
630 static int
631 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
632 {
633 struct sdhc_host *hp = (struct sdhc_host *)sch;
634 uint8_t vdd;
635 int error = 0;
636
637 mutex_enter(&hp->host_mtx);
638
639 /*
640 * Disable bus power before voltage change.
641 */
642 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
643 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
644 HWRITE1(hp, SDHC_POWER_CTL, 0);
645
646 /* If power is disabled, reset the host and return now. */
647 if (ocr == 0) {
648 (void)sdhc_host_reset1(hp);
649 goto out;
650 }
651
652 /*
653 * Select the lowest voltage according to capabilities.
654 */
655 ocr &= hp->ocr;
656 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
657 vdd = SDHC_VOLTAGE_1_8V;
658 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
659 vdd = SDHC_VOLTAGE_3_0V;
660 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
661 vdd = SDHC_VOLTAGE_3_3V;
662 } else {
663 /* Unsupported voltage level requested. */
664 error = EINVAL;
665 goto out;
666 }
667
668 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
669 /*
670 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
671 * voltage ramp until power rises.
672 */
673 HWRITE1(hp, SDHC_POWER_CTL,
674 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
675 sdmmc_delay(10000);
676
677 /*
678 * The host system may not power the bus due to battery low,
679 * etc. In that case, the host controller should clear the
680 * bus power bit.
681 */
682 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
683 error = ENXIO;
684 goto out;
685 }
686 }
687
688 out:
689 mutex_exit(&hp->host_mtx);
690
691 return error;
692 }
693
694 /*
695 * Return the smallest possible base clock frequency divisor value
696 * for the CLOCK_CTL register to produce `freq' (KHz).
697 */
698 static bool
699 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
700 {
701 u_int div;
702
703 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
704 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
705 if ((hp->clkbase / div) <= freq) {
706 *divp = SDHC_SDCLK_CGM
707 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
708 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
709 return true;
710 }
711 }
712 /* No divisor found. */
713 return false;
714 }
715 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
716 u_int dvs = (hp->clkbase + freq - 1) / freq;
717 u_int roundup = dvs & 1;
718 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
719 if (dvs + roundup <= 16) {
720 dvs += roundup - 1;
721 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
722 | (dvs << SDHC_SDCLK_DVS_SHIFT);
723 DPRINTF(2,
724 ("%s: divisor for freq %u is %u * %u\n",
725 HDEVNAME(hp), freq, div * 2, dvs + 1));
726 return true;
727 }
728 /*
729 * If we drop bits, we need to round up the divisor.
730 */
731 roundup |= dvs & 1;
732 }
733 panic("%s: can't find divisor for freq %u", HDEVNAME(hp), freq);
734 } else {
735 for (div = 1; div <= 256; div *= 2) {
736 if ((hp->clkbase / div) <= freq) {
737 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
738 return true;
739 }
740 }
741 }
742 /* No divisor found. */
743 return false;
744 }
745
746 /*
747 * Set or change SDCLK frequency or disable the SD clock.
748 * Return zero on success.
749 */
750 static int
751 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
752 {
753 struct sdhc_host *hp = (struct sdhc_host *)sch;
754 u_int div;
755 u_int timo;
756 int error = 0;
757 #ifdef DIAGNOSTIC
758 bool present;
759
760 mutex_enter(&hp->host_mtx);
761 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
762 mutex_exit(&hp->host_mtx);
763
764 /* Must not stop the clock if commands are in progress. */
765 if (present && sdhc_card_detect(hp)) {
766 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
767 device_xname(hp->sc->sc_dev));
768 }
769 #endif
770
771 mutex_enter(&hp->host_mtx);
772
773 /*
774 * Stop SD clock before changing the frequency.
775 */
776 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
777 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
778 if (freq == SDMMC_SDCLK_OFF) {
779 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
780 goto out;
781 }
782 } else {
783 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
784 if (freq == SDMMC_SDCLK_OFF)
785 goto out;
786 }
787
788 /*
789 * Set the minimum base clock frequency divisor.
790 */
791 if (!sdhc_clock_divisor(hp, freq, &div)) {
792 /* Invalid base clock frequency or `freq' value. */
793 error = EINVAL;
794 goto out;
795 }
796 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
797 HWRITE4(hp, SDHC_CLOCK_CTL,
798 div | (SDHC_TIMEOUT_MAX << 16));
799 } else {
800 HWRITE2(hp, SDHC_CLOCK_CTL, div);
801 }
802
803 /*
804 * Start internal clock. Wait 10ms for stabilization.
805 */
806 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
807 sdmmc_delay(10000);
808 HSET4(hp, SDHC_CLOCK_CTL,
809 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
810 } else {
811 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
812 for (timo = 1000; timo > 0; timo--) {
813 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
814 SDHC_INTCLK_STABLE))
815 break;
816 sdmmc_delay(10);
817 }
818 if (timo == 0) {
819 error = ETIMEDOUT;
820 goto out;
821 }
822 }
823
824 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
825 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
826 /*
827 * Sending 80 clocks at 400kHz takes 200us.
828 * So delay for that time + slop and then
829 * check a few times for completion.
830 */
831 sdmmc_delay(210);
832 for (timo = 10; timo > 0; timo--) {
833 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
834 SDHC_INIT_ACTIVE))
835 break;
836 sdmmc_delay(10);
837 }
838 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
839
840 /*
841 * Enable SD clock.
842 */
843 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
844 } else {
845 /*
846 * Enable SD clock.
847 */
848 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
849
850 if (freq > 25000)
851 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
852 else
853 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
854 }
855
856 out:
857 mutex_exit(&hp->host_mtx);
858
859 return error;
860 }
861
862 static int
863 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
864 {
865 struct sdhc_host *hp = (struct sdhc_host *)sch;
866 int reg;
867
868 switch (width) {
869 case 1:
870 case 4:
871 break;
872
873 case 8:
874 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
875 break;
876 /* FALLTHROUGH */
877 default:
878 DPRINTF(0,("%s: unsupported bus width (%d)\n",
879 HDEVNAME(hp), width));
880 return 1;
881 }
882
883 mutex_enter(&hp->host_mtx);
884 reg = HREAD1(hp, SDHC_HOST_CTL);
885 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
886 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
887 if (width == 4)
888 reg |= SDHC_4BIT_MODE;
889 else if (width == 8)
890 reg |= SDHC_ESDHC_8BIT_MODE;
891 } else {
892 reg &= ~SDHC_4BIT_MODE;
893 if (width == 4)
894 reg |= SDHC_4BIT_MODE;
895 }
896 HWRITE1(hp, SDHC_HOST_CTL, reg);
897 mutex_exit(&hp->host_mtx);
898
899 return 0;
900 }
901
902 static int
903 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
904 {
905
906 /* Nothing ?? */
907 return 0;
908 }
909
910 static void
911 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
912 {
913 struct sdhc_host *hp = (struct sdhc_host *)sch;
914
915 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
916 mutex_enter(&hp->host_mtx);
917 if (enable) {
918 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
919 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
920 } else {
921 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
922 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
923 }
924 mutex_exit(&hp->host_mtx);
925 }
926 }
927
928 static void
929 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
930 {
931 struct sdhc_host *hp = (struct sdhc_host *)sch;
932
933 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
934 mutex_enter(&hp->host_mtx);
935 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
936 mutex_exit(&hp->host_mtx);
937 }
938 }
939
940 static int
941 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
942 {
943 uint32_t state;
944 int timeout;
945
946 for (timeout = 10; timeout > 0; timeout--) {
947 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
948 return 0;
949 sdmmc_delay(10000);
950 }
951 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
952 value, state));
953 return ETIMEDOUT;
954 }
955
956 static void
957 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
958 {
959 struct sdhc_host *hp = (struct sdhc_host *)sch;
960 int error;
961
962 #if 0
963 if (cmd->c_data) {
964 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
965 if (ISSET(hp->flags, SHF_USE_DMA)) {
966 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
967 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
968 } else {
969 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
970 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
971 }
972 }
973 #endif
974
975 /*
976 * Start the MMC command, or mark `cmd' as failed and return.
977 */
978 error = sdhc_start_command(hp, cmd);
979 if (error) {
980 cmd->c_error = error;
981 goto out;
982 }
983
984 /*
985 * Wait until the command phase is done, or until the command
986 * is marked done for any other reason.
987 */
988 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
989 cmd->c_error = ETIMEDOUT;
990 goto out;
991 }
992
993 /*
994 * The host controller removes bits [0:7] from the response
995 * data (CRC) and we pass the data up unchanged to the bus
996 * driver (without padding).
997 */
998 mutex_enter(&hp->host_mtx);
999 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1000 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1001 uint8_t *p = (uint8_t *)cmd->c_resp;
1002 int i;
1003
1004 for (i = 0; i < 15; i++)
1005 *p++ = HREAD1(hp, SDHC_RESPONSE + i);
1006 } else {
1007 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
1008 }
1009 }
1010 mutex_exit(&hp->host_mtx);
1011 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1012
1013 /*
1014 * If the command has data to transfer in any direction,
1015 * execute the transfer now.
1016 */
1017 if (cmd->c_error == 0 && cmd->c_data != NULL)
1018 sdhc_transfer_data(hp, cmd);
1019
1020 out:
1021 #if 0
1022 if (cmd->c_dmamap != NULL && cmd->c_error == 0
1023 && ISSET(hp->flags, SHF_USE_DMA)
1024 && ISSET(cmd->c_flags, SCF_CMD_READ) {
1025 if (((uintptr_t)cmd->c_data & PAGE_MASK) + cmd->c_datalen > PAGE_SIZE) {
1026 memcpy(cmd->c_data,
1027 (void *)hp->sc->dma_map->dm_segs[0].ds_addr,
1028 cmd->c_datalen);
1029 }
1030 bus_dmamap_unload(hp->sc->dt, hp->sc->dma_map);
1031 }
1032 #endif
1033
1034 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1035 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1036 mutex_enter(&hp->host_mtx);
1037 /* Turn off the LED. */
1038 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1039 mutex_exit(&hp->host_mtx);
1040 }
1041 SET(cmd->c_flags, SCF_ITSDONE);
1042
1043 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1044 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1045 cmd->c_flags, cmd->c_error));
1046 }
1047
1048 static int
1049 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1050 {
1051 struct sdhc_softc * const sc = hp->sc;
1052 uint16_t blksize = 0;
1053 uint16_t blkcount = 0;
1054 uint16_t mode;
1055 uint16_t command;
1056 int error;
1057
1058 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1059 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1060 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1061
1062 /*
1063 * The maximum block length for commands should be the minimum
1064 * of the host buffer size and the card buffer size. (1.7.2)
1065 */
1066
1067 /* Fragment the data into proper blocks. */
1068 if (cmd->c_datalen > 0) {
1069 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1070 blkcount = cmd->c_datalen / blksize;
1071 if (cmd->c_datalen % blksize > 0) {
1072 /* XXX: Split this command. (1.7.4) */
1073 aprint_error_dev(sc->sc_dev,
1074 "data not a multiple of %u bytes\n", blksize);
1075 return EINVAL;
1076 }
1077 }
1078
1079 /* Check limit imposed by 9-bit block count. (1.7.2) */
1080 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1081 aprint_error_dev(sc->sc_dev, "too much data\n");
1082 return EINVAL;
1083 }
1084
1085 /* Prepare transfer mode register value. (2.2.5) */
1086 mode = 0;
1087 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1088 mode |= SDHC_READ_MODE;
1089 if (blkcount > 0) {
1090 mode |= SDHC_BLOCK_COUNT_ENABLE;
1091 if (blkcount > 1) {
1092 mode |= SDHC_MULTI_BLOCK_MODE;
1093 /* XXX only for memory commands? */
1094 mode |= SDHC_AUTO_CMD12_ENABLE;
1095 }
1096 }
1097 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1098 if (cmd->c_dmamap->dm_nsegs == 1) {
1099 mode |= SDHC_DMA_ENABLE;
1100 } else {
1101 cmd->c_dmamap = NULL;
1102 }
1103 }
1104
1105 /*
1106 * Prepare command register value. (2.2.6)
1107 */
1108 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1109
1110 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1111 command |= SDHC_CRC_CHECK_ENABLE;
1112 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1113 command |= SDHC_INDEX_CHECK_ENABLE;
1114 if (cmd->c_data != NULL)
1115 command |= SDHC_DATA_PRESENT_SELECT;
1116
1117 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1118 command |= SDHC_NO_RESPONSE;
1119 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1120 command |= SDHC_RESP_LEN_136;
1121 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1122 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1123 else
1124 command |= SDHC_RESP_LEN_48;
1125
1126 /* Wait until command and data inhibit bits are clear. (1.5) */
1127 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1128 if (error)
1129 return error;
1130
1131 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1132 HDEVNAME(hp), blksize, blkcount, mode, command));
1133
1134 mutex_enter(&hp->host_mtx);
1135
1136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1137 /* Alert the user not to remove the card. */
1138 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1139 }
1140
1141 /* Set DMA start address. */
1142 if (ISSET(mode, SDHC_DMA_ENABLE))
1143 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1144
1145 /*
1146 * Start a CPU data transfer. Writing to the high order byte
1147 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1148 */
1149 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1150 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1151 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1152 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1153 } else {
1154 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1155 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1156 if (blkcount > 1)
1157 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1158 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1159 HWRITE2(hp, SDHC_COMMAND, command);
1160 }
1161
1162 mutex_exit(&hp->host_mtx);
1163
1164 return 0;
1165 }
1166
1167 static void
1168 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1169 {
1170 int error;
1171
1172 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1173 MMC_R1(cmd->c_resp), cmd->c_datalen));
1174
1175 #ifdef SDHC_DEBUG
1176 /* XXX I forgot why I wanted to know when this happens :-( */
1177 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1178 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1179 aprint_error_dev(hp->sc->sc_dev,
1180 "CMD52/53 error response flags %#x\n",
1181 MMC_R1(cmd->c_resp) & 0xff00);
1182 }
1183 #endif
1184
1185 if (cmd->c_dmamap != NULL)
1186 error = sdhc_transfer_data_dma(hp, cmd);
1187 else
1188 error = sdhc_transfer_data_pio(hp, cmd);
1189 if (error)
1190 cmd->c_error = error;
1191 SET(cmd->c_flags, SCF_ITSDONE);
1192
1193 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1194 HDEVNAME(hp), cmd->c_error));
1195 }
1196
1197 static int
1198 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1199 {
1200 bus_dmamap_t dmap = cmd->c_dmamap;
1201 uint16_t blklen = cmd->c_blklen;
1202 uint16_t blkcnt = cmd->c_datalen / blklen;
1203 uint16_t remain;
1204 int error = 0;
1205
1206 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1207 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1208 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1209 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1210
1211 for (;;) {
1212 if (!sdhc_wait_intr(hp,
1213 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1214 SDHC_DMA_TIMEOUT)) {
1215 error = ETIMEDOUT;
1216 break;
1217 }
1218
1219 /* single block mode */
1220 if (blkcnt == 1)
1221 break;
1222
1223 /* multi block mode */
1224 remain = HREAD2(hp, SDHC_BLOCK_COUNT);
1225 if (remain == 0)
1226 break;
1227
1228 HWRITE4(hp, SDHC_DMA_ADDR,
1229 dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
1230 }
1231
1232 #if 0
1233 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1234 SDHC_TRANSFER_TIMEOUT))
1235 error = ETIMEDOUT;
1236 #endif
1237
1238 return error;
1239 }
1240
1241 static int
1242 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1243 {
1244 uint8_t *data = cmd->c_data;
1245 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1246 u_int len, datalen;
1247 u_int imask;
1248 u_int pmask;
1249 int error = 0;
1250
1251 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1252 imask = SDHC_BUFFER_READ_READY;
1253 pmask = SDHC_BUFFER_READ_ENABLE;
1254 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1255 pio_func = esdhc_read_data_pio;
1256 } else {
1257 pio_func = sdhc_read_data_pio;
1258 }
1259 } else {
1260 imask = SDHC_BUFFER_WRITE_READY;
1261 pmask = SDHC_BUFFER_WRITE_ENABLE;
1262 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1263 pio_func = esdhc_write_data_pio;
1264 } else {
1265 pio_func = sdhc_write_data_pio;
1266 }
1267 }
1268 datalen = cmd->c_datalen;
1269
1270 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1271 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1272 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1273
1274 while (datalen > 0) {
1275 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1276 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1277 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1278 } else {
1279 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1280 }
1281 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1282 error = ETIMEDOUT;
1283 break;
1284 }
1285
1286 error = sdhc_wait_state(hp, pmask, pmask);
1287 if (error)
1288 break;
1289 }
1290
1291 len = MIN(datalen, cmd->c_blklen);
1292 (*pio_func)(hp, data, len);
1293 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1294 HDEVNAME(hp), len, data));
1295
1296 data += len;
1297 datalen -= len;
1298 }
1299
1300 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1301 SDHC_TRANSFER_TIMEOUT))
1302 error = ETIMEDOUT;
1303
1304 return error;
1305 }
1306
1307 static void
1308 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1309 {
1310
1311 if (((__uintptr_t)data & 3) == 0) {
1312 while (datalen > 3) {
1313 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1314 data += 4;
1315 datalen -= 4;
1316 }
1317 if (datalen > 1) {
1318 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1319 data += 2;
1320 datalen -= 2;
1321 }
1322 if (datalen > 0) {
1323 *data = HREAD1(hp, SDHC_DATA);
1324 data += 1;
1325 datalen -= 1;
1326 }
1327 } else if (((__uintptr_t)data & 1) == 0) {
1328 while (datalen > 1) {
1329 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1330 data += 2;
1331 datalen -= 2;
1332 }
1333 if (datalen > 0) {
1334 *data = HREAD1(hp, SDHC_DATA);
1335 data += 1;
1336 datalen -= 1;
1337 }
1338 } else {
1339 while (datalen > 0) {
1340 *data = HREAD1(hp, SDHC_DATA);
1341 data += 1;
1342 datalen -= 1;
1343 }
1344 }
1345 }
1346
1347 static void
1348 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1349 {
1350
1351 if (((__uintptr_t)data & 3) == 0) {
1352 while (datalen > 3) {
1353 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1354 data += 4;
1355 datalen -= 4;
1356 }
1357 if (datalen > 1) {
1358 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1359 data += 2;
1360 datalen -= 2;
1361 }
1362 if (datalen > 0) {
1363 HWRITE1(hp, SDHC_DATA, *data);
1364 data += 1;
1365 datalen -= 1;
1366 }
1367 } else if (((__uintptr_t)data & 1) == 0) {
1368 while (datalen > 1) {
1369 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1370 data += 2;
1371 datalen -= 2;
1372 }
1373 if (datalen > 0) {
1374 HWRITE1(hp, SDHC_DATA, *data);
1375 data += 1;
1376 datalen -= 1;
1377 }
1378 } else {
1379 while (datalen > 0) {
1380 HWRITE1(hp, SDHC_DATA, *data);
1381 data += 1;
1382 datalen -= 1;
1383 }
1384 }
1385 }
1386
1387 static void
1388 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1389 {
1390 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1391 uint32_t v;
1392
1393 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1394 v = HREAD4(hp, SDHC_DATA);
1395 v = le32toh(v);
1396 *(uint32_t *)data = v;
1397 data += 4;
1398 datalen -= 4;
1399 status = HREAD2(hp, SDHC_NINTR_STATUS);
1400 }
1401 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1402 v = HREAD4(hp, SDHC_DATA);
1403 v = le32toh(v);
1404 do {
1405 *data++ = v;
1406 v >>= 8;
1407 } while (--datalen > 0);
1408 }
1409 }
1410
1411 static void
1412 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1413 {
1414 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1415 uint32_t v;
1416
1417 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1418 v = *(uint32_t *)data;
1419 v = htole32(v);
1420 HWRITE4(hp, SDHC_DATA, v);
1421 data += 4;
1422 datalen -= 4;
1423 status = HREAD2(hp, SDHC_NINTR_STATUS);
1424 }
1425 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1426 v = *(uint32_t *)data;
1427 v = htole32(v);
1428 HWRITE4(hp, SDHC_DATA, v);
1429 }
1430 }
1431
1432 /* Prepare for another command. */
1433 static int
1434 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1435 {
1436 int timo;
1437
1438 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1439
1440 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1441 for (timo = 10; timo > 0; timo--) {
1442 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1443 break;
1444 sdmmc_delay(10000);
1445 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1446 }
1447 if (timo == 0) {
1448 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1449 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1450 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1451 return ETIMEDOUT;
1452 }
1453
1454 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1455 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1456 }
1457
1458 return 0;
1459 }
1460
1461 static int
1462 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1463 {
1464 int status;
1465
1466 mask |= SDHC_ERROR_INTERRUPT;
1467
1468 mutex_enter(&hp->intr_mtx);
1469 status = hp->intr_status & mask;
1470 while (status == 0) {
1471 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1472 == EWOULDBLOCK) {
1473 status |= SDHC_ERROR_INTERRUPT;
1474 break;
1475 }
1476 status = hp->intr_status & mask;
1477 }
1478 hp->intr_status &= ~status;
1479
1480 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1481 hp->intr_error_status));
1482
1483 /* Command timeout has higher priority than command complete. */
1484 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1485 hp->intr_error_status = 0;
1486 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1487 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1488 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1489 }
1490 status = 0;
1491 }
1492 mutex_exit(&hp->intr_mtx);
1493
1494 return status;
1495 }
1496
1497 /*
1498 * Established by attachment driver at interrupt priority IPL_SDMMC.
1499 */
1500 int
1501 sdhc_intr(void *arg)
1502 {
1503 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1504 struct sdhc_host *hp;
1505 int done = 0;
1506 uint16_t status;
1507 uint16_t error;
1508
1509 /* We got an interrupt, but we don't know from which slot. */
1510 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1511 hp = sc->sc_host[host];
1512 if (hp == NULL)
1513 continue;
1514
1515 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1516 /* Find out which interrupts are pending. */
1517 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1518 status = xstatus;
1519 error = xstatus >> 16;
1520 status |= (error ? SDHC_ERROR_INTERRUPT : 0);
1521 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1522 continue; /* no interrupt for us */
1523 /* Acknowledge the interrupts we are about to handle. */
1524 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1525 } else {
1526 /* Find out which interrupts are pending. */
1527 error = 0;
1528 status = HREAD2(hp, SDHC_NINTR_STATUS);
1529 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1530 continue; /* no interrupt for us */
1531 /* Acknowledge the interrupts we are about to handle. */
1532 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1533 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1534 /* Acknowledge error interrupts. */
1535 error = HREAD2(hp, SDHC_EINTR_STATUS);
1536 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1537 }
1538 }
1539
1540 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1541 status, error));
1542
1543 /* Claim this interrupt. */
1544 done = 1;
1545
1546 /*
1547 * Service error interrupts.
1548 */
1549 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1550 SDHC_DATA_TIMEOUT_ERROR)) {
1551 hp->intr_error_status |= error;
1552 hp->intr_status |= status;
1553 cv_broadcast(&hp->intr_cv);
1554 }
1555
1556 /*
1557 * Wake up the sdmmc event thread to scan for cards.
1558 */
1559 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1560 sdmmc_needs_discover(hp->sdmmc);
1561 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1562 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1563 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1564 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1565 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1566 }
1567 }
1568
1569 /*
1570 * Wake up the blocking process to service command
1571 * related interrupt(s).
1572 */
1573 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1574 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1575 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1576 hp->intr_status |= status;
1577 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1578 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1579 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1580 }
1581 cv_broadcast(&hp->intr_cv);
1582 }
1583
1584 /*
1585 * Service SD card interrupts.
1586 */
1587 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1588 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1589 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1590 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1591 sdmmc_card_intr(hp->sdmmc);
1592 }
1593 }
1594
1595 return done;
1596 }
1597
1598 #ifdef SDHC_DEBUG
1599 void
1600 sdhc_dump_regs(struct sdhc_host *hp)
1601 {
1602
1603 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1604 HREAD4(hp, SDHC_PRESENT_STATE));
1605 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1606 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1607 HREAD1(hp, SDHC_POWER_CTL));
1608 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1609 HREAD2(hp, SDHC_NINTR_STATUS));
1610 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1611 HREAD2(hp, SDHC_EINTR_STATUS));
1612 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1613 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1614 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1615 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1616 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1617 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1618 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1619 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1620 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1621 HREAD4(hp, SDHC_CAPABILITIES));
1622 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1623 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1624 }
1625 #endif
1626