sdhc.c revision 1.17 1 /* $NetBSD: sdhc.c,v 1.17 2012/07/12 16:58:50 jakllsch Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.17 2012/07/12 16:58:50 jakllsch Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 };
89
90 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args const * saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 aprint_normal(" slot %d", HDEVINST(hp));
230
231 return UNCONF;
232 }
233
234 /*
235 * Called by attachment driver. For each SD card slot there is one SD
236 * host controller standard register set. (1.3)
237 */
238 int
239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
240 bus_space_handle_t ioh, bus_size_t iosize)
241 {
242 struct sdmmcbus_attach_args saa;
243 struct sdhc_host *hp;
244 uint32_t caps;
245 uint16_t sdhcver;
246
247 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
248 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
249 switch (SDHC_SPEC_VERSION(sdhcver)) {
250 case SDHC_SPEC_VERS_100:
251 aprint_normal("1.0");
252 break;
253
254 case SDHC_SPEC_VERS_200:
255 aprint_normal("2.0");
256 break;
257
258 case SDHC_SPEC_VERS_300:
259 aprint_normal("3.0");
260 break;
261
262 default:
263 aprint_normal("unknown version(0x%x)",
264 SDHC_SPEC_VERSION(sdhcver));
265 break;
266 }
267 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
268
269 /* Allocate one more host structure. */
270 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
271 if (hp == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "couldn't alloc memory (sdhc host)\n");
274 goto err1;
275 }
276 sc->sc_host[sc->sc_nhosts++] = hp;
277
278 /* Fill in the new host structure. */
279 hp->sc = sc;
280 hp->iot = iot;
281 hp->ioh = ioh;
282 hp->dmat = sc->sc_dmat;
283 hp->specver = SDHC_SPEC_VERSION(sdhcver);
284
285 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
286 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
287 cv_init(&hp->intr_cv, "sdhcintr");
288
289 /*
290 * Reset the host controller and enable interrupts.
291 */
292 (void)sdhc_host_reset(hp);
293
294 /* Determine host capabilities. */
295 mutex_enter(&hp->host_mtx);
296 caps = HREAD4(hp, SDHC_CAPABILITIES);
297 mutex_exit(&hp->host_mtx);
298
299 #if notyet
300 /* Use DMA if the host system and the controller support it. */
301 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
302 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
303 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
304 SET(hp->flags, SHF_USE_DMA);
305 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
306 }
307 #endif
308
309 /*
310 * Determine the base clock frequency. (2.2.24)
311 */
312 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
313 if (hp->clkbase == 0) {
314 if (sc->sc_clkbase == 0) {
315 /* The attachment driver must tell us. */
316 aprint_error_dev(sc->sc_dev,
317 "unknown base clock frequency\n");
318 goto err;
319 }
320 hp->clkbase = sc->sc_clkbase;
321 }
322 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
323 /* SDHC 1.0 supports only 10-63 MHz. */
324 aprint_error_dev(sc->sc_dev,
325 "base clock frequency out of range: %u MHz\n",
326 hp->clkbase / 1000);
327 goto err;
328 }
329 DPRINTF(1,("%s: base clock frequency %u MHz\n",
330 device_xname(sc->sc_dev), hp->clkbase / 1000));
331
332 /*
333 * XXX Set the data timeout counter value according to
334 * capabilities. (2.2.15)
335 */
336 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
337 #if 0
338 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
339 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
340 #endif
341
342 /*
343 * Determine SD bus voltage levels supported by the controller.
344 */
345 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
346 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
347 }
348 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
349 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
350 }
351 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
352 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
353 }
354
355 /*
356 * Determine the maximum block length supported by the host
357 * controller. (2.2.24)
358 */
359 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
360 case SDHC_MAX_BLK_LEN_512:
361 hp->maxblklen = 512;
362 break;
363
364 case SDHC_MAX_BLK_LEN_1024:
365 hp->maxblklen = 1024;
366 break;
367
368 case SDHC_MAX_BLK_LEN_2048:
369 hp->maxblklen = 2048;
370 break;
371
372 case SDHC_MAX_BLK_LEN_4096:
373 hp->maxblklen = 4096;
374 break;
375
376 default:
377 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
378 goto err;
379 }
380 DPRINTF(1, ("%s: max block length %u byte%s\n",
381 device_xname(sc->sc_dev), hp->maxblklen,
382 hp->maxblklen > 1 ? "s" : ""));
383
384 /*
385 * Attach the generic SD/MMC bus driver. (The bus driver must
386 * not invoke any chipset functions before it is attached.)
387 */
388 memset(&saa, 0, sizeof(saa));
389 saa.saa_busname = "sdmmc";
390 saa.saa_sct = &sdhc_functions;
391 saa.saa_sch = hp;
392 saa.saa_dmat = hp->dmat;
393 saa.saa_clkmin = hp->clkbase / 256;
394 saa.saa_clkmax = hp->clkbase;
395 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
396 saa.saa_clkmin /= 2046;
397 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
398 saa.saa_clkmin /= 16;
399 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
400 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
401 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
402 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
403 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
404 #if notyet
405 if (ISSET(hp->flags, SHF_USE_DMA))
406 saa.saa_caps |= SMC_CAPS_DMA;
407 #endif
408 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
409
410 return 0;
411
412 err:
413 cv_destroy(&hp->intr_cv);
414 mutex_destroy(&hp->intr_mtx);
415 mutex_destroy(&hp->host_mtx);
416 free(hp, M_DEVBUF);
417 sc->sc_host[--sc->sc_nhosts] = NULL;
418 err1:
419 return 1;
420 }
421
422 int
423 sdhc_detach(device_t dev, int flags)
424 {
425 struct sdhc_host *hp = (struct sdhc_host *)dev;
426 struct sdhc_softc *sc = hp->sc;
427 int rv = 0;
428
429 if (hp->sdmmc)
430 rv = config_detach(hp->sdmmc, flags);
431
432 cv_destroy(&hp->intr_cv);
433 mutex_destroy(&hp->intr_mtx);
434 mutex_destroy(&hp->host_mtx);
435 free(hp, M_DEVBUF);
436 sc->sc_host[--sc->sc_nhosts] = NULL;
437
438 return rv;
439 }
440
441 bool
442 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
443 {
444 struct sdhc_softc *sc = device_private(dev);
445 struct sdhc_host *hp;
446 size_t i;
447
448 /* XXX poll for command completion or suspend command
449 * in progress */
450
451 /* Save the host controller state. */
452 for (size_t n = 0; n < sc->sc_nhosts; n++) {
453 hp = sc->sc_host[n];
454 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
455 for (i = 0; i < sizeof hp->regs; i += 4) {
456 uint32_t v = HREAD4(hp, i);
457 hp->regs[i + 0] = (v >> 0);
458 hp->regs[i + 1] = (v >> 8);
459 if (i + 3 < sizeof hp->regs) {
460 hp->regs[i + 2] = (v >> 16);
461 hp->regs[i + 3] = (v >> 24);
462 }
463 }
464 } else {
465 for (i = 0; i < sizeof hp->regs; i++) {
466 hp->regs[i] = HREAD1(hp, i);
467 }
468 }
469 }
470 return true;
471 }
472
473 bool
474 sdhc_resume(device_t dev, const pmf_qual_t *qual)
475 {
476 struct sdhc_softc *sc = device_private(dev);
477 struct sdhc_host *hp;
478 size_t i;
479
480 /* Restore the host controller state. */
481 for (size_t n = 0; n < sc->sc_nhosts; n++) {
482 hp = sc->sc_host[n];
483 (void)sdhc_host_reset(hp);
484 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
485 for (i = 0; i < sizeof hp->regs; i += 4) {
486 if (i + 3 < sizeof hp->regs) {
487 HWRITE4(hp, i,
488 (hp->regs[i + 0] << 0)
489 | (hp->regs[i + 1] << 8)
490 | (hp->regs[i + 2] << 16)
491 | (hp->regs[i + 3] << 24));
492 } else {
493 HWRITE4(hp, i,
494 (hp->regs[i + 0] << 0)
495 | (hp->regs[i + 1] << 8));
496 }
497 }
498 } else {
499 for (i = 0; i < sizeof hp->regs; i++) {
500 HWRITE1(hp, i, hp->regs[i]);
501 }
502 }
503 }
504 return true;
505 }
506
507 bool
508 sdhc_shutdown(device_t dev, int flags)
509 {
510 struct sdhc_softc *sc = device_private(dev);
511 struct sdhc_host *hp;
512
513 /* XXX chip locks up if we don't disable it before reboot. */
514 for (size_t i = 0; i < sc->sc_nhosts; i++) {
515 hp = sc->sc_host[i];
516 (void)sdhc_host_reset(hp);
517 }
518 return true;
519 }
520
521 /*
522 * Reset the host controller. Called during initialization, when
523 * cards are removed, upon resume, and during error recovery.
524 */
525 static int
526 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
527 {
528 struct sdhc_host *hp = (struct sdhc_host *)sch;
529 uint32_t sdhcimask;
530 int error;
531
532 /* Don't lock. */
533
534 /* Disable all interrupts. */
535 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
536 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
537 } else {
538 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
539 }
540
541 /*
542 * Reset the entire host controller and wait up to 100ms for
543 * the controller to clear the reset bit.
544 */
545 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
546 if (error)
547 goto out;
548
549 /* Set data timeout counter value to max for now. */
550 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
551 #if 0
552 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
553 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
554 #endif
555
556 /* Enable interrupts. */
557 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
558 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
559 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
560 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
561 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
562 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
563 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
564 sdhcimask ^=
565 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
566 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
567 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
568 } else {
569 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
570 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
571 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
572 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
573 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
574 }
575
576 out:
577 return error;
578 }
579
580 static int
581 sdhc_host_reset(sdmmc_chipset_handle_t sch)
582 {
583 struct sdhc_host *hp = (struct sdhc_host *)sch;
584 int error;
585
586 mutex_enter(&hp->host_mtx);
587 error = sdhc_host_reset1(sch);
588 mutex_exit(&hp->host_mtx);
589
590 return error;
591 }
592
593 static uint32_t
594 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
595 {
596 struct sdhc_host *hp = (struct sdhc_host *)sch;
597
598 return hp->ocr;
599 }
600
601 static int
602 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
603 {
604 struct sdhc_host *hp = (struct sdhc_host *)sch;
605
606 return hp->maxblklen;
607 }
608
609 /*
610 * Return non-zero if the card is currently inserted.
611 */
612 static int
613 sdhc_card_detect(sdmmc_chipset_handle_t sch)
614 {
615 struct sdhc_host *hp = (struct sdhc_host *)sch;
616 int r;
617
618 mutex_enter(&hp->host_mtx);
619 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
620 mutex_exit(&hp->host_mtx);
621
622 return r ? 1 : 0;
623 }
624
625 /*
626 * Return non-zero if the card is currently write-protected.
627 */
628 static int
629 sdhc_write_protect(sdmmc_chipset_handle_t sch)
630 {
631 struct sdhc_host *hp = (struct sdhc_host *)sch;
632 int r;
633
634 mutex_enter(&hp->host_mtx);
635 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
636 mutex_exit(&hp->host_mtx);
637
638 return r ? 0 : 1;
639 }
640
641 /*
642 * Set or change SD bus voltage and enable or disable SD bus power.
643 * Return zero on success.
644 */
645 static int
646 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
647 {
648 struct sdhc_host *hp = (struct sdhc_host *)sch;
649 uint8_t vdd;
650 int error = 0;
651
652 mutex_enter(&hp->host_mtx);
653
654 /*
655 * Disable bus power before voltage change.
656 */
657 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
658 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
659 HWRITE1(hp, SDHC_POWER_CTL, 0);
660
661 /* If power is disabled, reset the host and return now. */
662 if (ocr == 0) {
663 (void)sdhc_host_reset1(hp);
664 goto out;
665 }
666
667 /*
668 * Select the lowest voltage according to capabilities.
669 */
670 ocr &= hp->ocr;
671 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
672 vdd = SDHC_VOLTAGE_1_8V;
673 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
674 vdd = SDHC_VOLTAGE_3_0V;
675 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
676 vdd = SDHC_VOLTAGE_3_3V;
677 } else {
678 /* Unsupported voltage level requested. */
679 error = EINVAL;
680 goto out;
681 }
682
683 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
684 /*
685 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
686 * voltage ramp until power rises.
687 */
688 HWRITE1(hp, SDHC_POWER_CTL,
689 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
690 sdmmc_delay(10000);
691
692 /*
693 * The host system may not power the bus due to battery low,
694 * etc. In that case, the host controller should clear the
695 * bus power bit.
696 */
697 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
698 error = ENXIO;
699 goto out;
700 }
701 }
702
703 out:
704 mutex_exit(&hp->host_mtx);
705
706 return error;
707 }
708
709 /*
710 * Return the smallest possible base clock frequency divisor value
711 * for the CLOCK_CTL register to produce `freq' (KHz).
712 */
713 static bool
714 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
715 {
716 u_int div;
717
718 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
719 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
720 if ((hp->clkbase / div) <= freq) {
721 *divp = SDHC_SDCLK_CGM
722 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
723 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
724 return true;
725 }
726 }
727 /* No divisor found. */
728 return false;
729 }
730 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
731 u_int dvs = (hp->clkbase + freq - 1) / freq;
732 u_int roundup = dvs & 1;
733 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
734 if (dvs + roundup <= 16) {
735 dvs += roundup - 1;
736 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
737 | (dvs << SDHC_SDCLK_DVS_SHIFT);
738 DPRINTF(2,
739 ("%s: divisor for freq %u is %u * %u\n",
740 HDEVNAME(hp), freq, div * 2, dvs + 1));
741 return true;
742 }
743 /*
744 * If we drop bits, we need to round up the divisor.
745 */
746 roundup |= dvs & 1;
747 }
748 panic("%s: can't find divisor for freq %u", HDEVNAME(hp), freq);
749 } else {
750 for (div = 1; div <= 256; div *= 2) {
751 if ((hp->clkbase / div) <= freq) {
752 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
753 return true;
754 }
755 }
756 }
757 /* No divisor found. */
758 return false;
759 }
760
761 /*
762 * Set or change SDCLK frequency or disable the SD clock.
763 * Return zero on success.
764 */
765 static int
766 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
767 {
768 struct sdhc_host *hp = (struct sdhc_host *)sch;
769 u_int div;
770 u_int timo;
771 int error = 0;
772 #ifdef DIAGNOSTIC
773 bool present;
774
775 mutex_enter(&hp->host_mtx);
776 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
777 mutex_exit(&hp->host_mtx);
778
779 /* Must not stop the clock if commands are in progress. */
780 if (present && sdhc_card_detect(hp)) {
781 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
782 device_xname(hp->sc->sc_dev));
783 }
784 #endif
785
786 mutex_enter(&hp->host_mtx);
787
788 /*
789 * Stop SD clock before changing the frequency.
790 */
791 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
792 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
793 if (freq == SDMMC_SDCLK_OFF) {
794 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
795 goto out;
796 }
797 } else {
798 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
799 if (freq == SDMMC_SDCLK_OFF)
800 goto out;
801 }
802
803 /*
804 * Set the minimum base clock frequency divisor.
805 */
806 if (!sdhc_clock_divisor(hp, freq, &div)) {
807 /* Invalid base clock frequency or `freq' value. */
808 error = EINVAL;
809 goto out;
810 }
811 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
812 HWRITE4(hp, SDHC_CLOCK_CTL,
813 div | (SDHC_TIMEOUT_MAX << 16));
814 } else {
815 HWRITE2(hp, SDHC_CLOCK_CTL, div);
816 }
817
818 /*
819 * Start internal clock. Wait 10ms for stabilization.
820 */
821 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
822 sdmmc_delay(10000);
823 HSET4(hp, SDHC_CLOCK_CTL,
824 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
825 } else {
826 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
827 for (timo = 1000; timo > 0; timo--) {
828 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
829 SDHC_INTCLK_STABLE))
830 break;
831 sdmmc_delay(10);
832 }
833 if (timo == 0) {
834 error = ETIMEDOUT;
835 goto out;
836 }
837 }
838
839 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
840 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
841 /*
842 * Sending 80 clocks at 400kHz takes 200us.
843 * So delay for that time + slop and then
844 * check a few times for completion.
845 */
846 sdmmc_delay(210);
847 for (timo = 10; timo > 0; timo--) {
848 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
849 SDHC_INIT_ACTIVE))
850 break;
851 sdmmc_delay(10);
852 }
853 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
854
855 /*
856 * Enable SD clock.
857 */
858 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
859 } else {
860 /*
861 * Enable SD clock.
862 */
863 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
864
865 if (freq > 25000)
866 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
867 else
868 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
869 }
870
871 out:
872 mutex_exit(&hp->host_mtx);
873
874 return error;
875 }
876
877 static int
878 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
879 {
880 struct sdhc_host *hp = (struct sdhc_host *)sch;
881 int reg;
882
883 switch (width) {
884 case 1:
885 case 4:
886 break;
887
888 case 8:
889 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
890 break;
891 /* FALLTHROUGH */
892 default:
893 DPRINTF(0,("%s: unsupported bus width (%d)\n",
894 HDEVNAME(hp), width));
895 return 1;
896 }
897
898 mutex_enter(&hp->host_mtx);
899 reg = HREAD1(hp, SDHC_HOST_CTL);
900 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
901 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
902 if (width == 4)
903 reg |= SDHC_4BIT_MODE;
904 else if (width == 8)
905 reg |= SDHC_ESDHC_8BIT_MODE;
906 } else {
907 reg &= ~SDHC_4BIT_MODE;
908 if (width == 4)
909 reg |= SDHC_4BIT_MODE;
910 }
911 HWRITE1(hp, SDHC_HOST_CTL, reg);
912 mutex_exit(&hp->host_mtx);
913
914 return 0;
915 }
916
917 static int
918 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
919 {
920
921 /* Nothing ?? */
922 return 0;
923 }
924
925 static void
926 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
927 {
928 struct sdhc_host *hp = (struct sdhc_host *)sch;
929
930 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
931 mutex_enter(&hp->host_mtx);
932 if (enable) {
933 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
934 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
935 } else {
936 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
937 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
938 }
939 mutex_exit(&hp->host_mtx);
940 }
941 }
942
943 static void
944 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
945 {
946 struct sdhc_host *hp = (struct sdhc_host *)sch;
947
948 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
949 mutex_enter(&hp->host_mtx);
950 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
951 mutex_exit(&hp->host_mtx);
952 }
953 }
954
955 static int
956 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
957 {
958 uint32_t state;
959 int timeout;
960
961 for (timeout = 10; timeout > 0; timeout--) {
962 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
963 return 0;
964 sdmmc_delay(10000);
965 }
966 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
967 value, state));
968 return ETIMEDOUT;
969 }
970
971 static void
972 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
973 {
974 struct sdhc_host *hp = (struct sdhc_host *)sch;
975 int error;
976
977 #if 0
978 if (cmd->c_data) {
979 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
980 if (ISSET(hp->flags, SHF_USE_DMA)) {
981 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
982 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
983 } else {
984 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
985 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
986 }
987 }
988 #endif
989
990 /*
991 * Start the MMC command, or mark `cmd' as failed and return.
992 */
993 error = sdhc_start_command(hp, cmd);
994 if (error) {
995 cmd->c_error = error;
996 goto out;
997 }
998
999 /*
1000 * Wait until the command phase is done, or until the command
1001 * is marked done for any other reason.
1002 */
1003 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1004 cmd->c_error = ETIMEDOUT;
1005 goto out;
1006 }
1007
1008 /*
1009 * The host controller removes bits [0:7] from the response
1010 * data (CRC) and we pass the data up unchanged to the bus
1011 * driver (without padding).
1012 */
1013 mutex_enter(&hp->host_mtx);
1014 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1015 uint32_t *p = cmd->c_resp;
1016 int i;
1017
1018 for (i = 0; i < 4; i++) {
1019 *p++ = bus_space_read_stream_4(hp->iot, hp->ioh,
1020 SDHC_RESPONSE + i * 4);
1021 if (!ISSET(cmd->c_flags, SCF_RSP_136))
1022 break;
1023 }
1024 }
1025 mutex_exit(&hp->host_mtx);
1026 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1027
1028 /*
1029 * If the command has data to transfer in any direction,
1030 * execute the transfer now.
1031 */
1032 if (cmd->c_error == 0 && cmd->c_data != NULL)
1033 sdhc_transfer_data(hp, cmd);
1034
1035 out:
1036 #if 0
1037 if (cmd->c_dmamap != NULL && cmd->c_error == 0
1038 && ISSET(hp->flags, SHF_USE_DMA)
1039 && ISSET(cmd->c_flags, SCF_CMD_READ) {
1040 if (((uintptr_t)cmd->c_data & PAGE_MASK) + cmd->c_datalen > PAGE_SIZE) {
1041 memcpy(cmd->c_data,
1042 (void *)hp->sc->dma_map->dm_segs[0].ds_addr,
1043 cmd->c_datalen);
1044 }
1045 bus_dmamap_unload(hp->sc->dt, hp->sc->dma_map);
1046 }
1047 #endif
1048
1049 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1050 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1051 mutex_enter(&hp->host_mtx);
1052 /* Turn off the LED. */
1053 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1054 mutex_exit(&hp->host_mtx);
1055 }
1056 SET(cmd->c_flags, SCF_ITSDONE);
1057
1058 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1059 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1060 cmd->c_flags, cmd->c_error));
1061 }
1062
1063 static int
1064 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1065 {
1066 struct sdhc_softc * const sc = hp->sc;
1067 uint16_t blksize = 0;
1068 uint16_t blkcount = 0;
1069 uint16_t mode;
1070 uint16_t command;
1071 int error;
1072
1073 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1074 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1075 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1076
1077 /*
1078 * The maximum block length for commands should be the minimum
1079 * of the host buffer size and the card buffer size. (1.7.2)
1080 */
1081
1082 /* Fragment the data into proper blocks. */
1083 if (cmd->c_datalen > 0) {
1084 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1085 blkcount = cmd->c_datalen / blksize;
1086 if (cmd->c_datalen % blksize > 0) {
1087 /* XXX: Split this command. (1.7.4) */
1088 aprint_error_dev(sc->sc_dev,
1089 "data not a multiple of %u bytes\n", blksize);
1090 return EINVAL;
1091 }
1092 }
1093
1094 /* Check limit imposed by 9-bit block count. (1.7.2) */
1095 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1096 aprint_error_dev(sc->sc_dev, "too much data\n");
1097 return EINVAL;
1098 }
1099
1100 /* Prepare transfer mode register value. (2.2.5) */
1101 mode = SDHC_BLOCK_COUNT_ENABLE;
1102 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1103 mode |= SDHC_READ_MODE;
1104 if (blkcount > 1) {
1105 mode |= SDHC_MULTI_BLOCK_MODE;
1106 /* XXX only for memory commands? */
1107 mode |= SDHC_AUTO_CMD12_ENABLE;
1108 }
1109 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1110 if (cmd->c_dmamap->dm_nsegs == 1) {
1111 mode |= SDHC_DMA_ENABLE;
1112 } else {
1113 cmd->c_dmamap = NULL;
1114 }
1115 }
1116
1117 /*
1118 * Prepare command register value. (2.2.6)
1119 */
1120 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1121
1122 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1123 command |= SDHC_CRC_CHECK_ENABLE;
1124 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1125 command |= SDHC_INDEX_CHECK_ENABLE;
1126 if (cmd->c_data != NULL)
1127 command |= SDHC_DATA_PRESENT_SELECT;
1128
1129 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1130 command |= SDHC_NO_RESPONSE;
1131 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1132 command |= SDHC_RESP_LEN_136;
1133 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1134 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1135 else
1136 command |= SDHC_RESP_LEN_48;
1137
1138 /* Wait until command and data inhibit bits are clear. (1.5) */
1139 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1140 if (error)
1141 return error;
1142
1143 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1144 HDEVNAME(hp), blksize, blkcount, mode, command));
1145
1146 mutex_enter(&hp->host_mtx);
1147
1148 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1149 /* Alert the user not to remove the card. */
1150 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1151 }
1152
1153 /* Set DMA start address. */
1154 if (ISSET(mode, SDHC_DMA_ENABLE))
1155 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1156
1157 /*
1158 * Start a CPU data transfer. Writing to the high order byte
1159 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1160 */
1161 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1162 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1163 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1164 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1165 } else {
1166 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1167 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1168 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1169 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1170 HWRITE2(hp, SDHC_COMMAND, command);
1171 }
1172
1173 mutex_exit(&hp->host_mtx);
1174
1175 return 0;
1176 }
1177
1178 static void
1179 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1180 {
1181 int error;
1182
1183 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1184 MMC_R1(cmd->c_resp), cmd->c_datalen));
1185
1186 #ifdef SDHC_DEBUG
1187 /* XXX I forgot why I wanted to know when this happens :-( */
1188 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1189 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1190 aprint_error_dev(hp->sc->sc_dev,
1191 "CMD52/53 error response flags %#x\n",
1192 MMC_R1(cmd->c_resp) & 0xff00);
1193 }
1194 #endif
1195
1196 if (cmd->c_dmamap != NULL)
1197 error = sdhc_transfer_data_dma(hp, cmd);
1198 else
1199 error = sdhc_transfer_data_pio(hp, cmd);
1200 if (error)
1201 cmd->c_error = error;
1202 SET(cmd->c_flags, SCF_ITSDONE);
1203
1204 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1205 HDEVNAME(hp), cmd->c_error));
1206 }
1207
1208 static int
1209 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1210 {
1211 bus_dmamap_t dmap = cmd->c_dmamap;
1212 uint16_t blklen = cmd->c_blklen;
1213 uint16_t blkcnt = cmd->c_datalen / blklen;
1214 uint16_t remain;
1215 int error = 0;
1216
1217 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1218 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1219 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1220 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1221
1222 for (;;) {
1223 if (!sdhc_wait_intr(hp,
1224 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1225 SDHC_DMA_TIMEOUT)) {
1226 error = ETIMEDOUT;
1227 break;
1228 }
1229
1230 /* single block mode */
1231 if (blkcnt == 1)
1232 break;
1233
1234 /* multi block mode */
1235 remain = HREAD2(hp, SDHC_BLOCK_COUNT);
1236 if (remain == 0)
1237 break;
1238
1239 HWRITE4(hp, SDHC_DMA_ADDR,
1240 dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
1241 }
1242
1243 #if 0
1244 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1245 SDHC_TRANSFER_TIMEOUT))
1246 error = ETIMEDOUT;
1247 #endif
1248
1249 return error;
1250 }
1251
1252 static int
1253 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1254 {
1255 uint8_t *data = cmd->c_data;
1256 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1257 u_int len, datalen;
1258 u_int imask;
1259 u_int pmask;
1260 int error = 0;
1261
1262 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1263 imask = SDHC_BUFFER_READ_READY;
1264 pmask = SDHC_BUFFER_READ_ENABLE;
1265 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1266 pio_func = esdhc_read_data_pio;
1267 } else {
1268 pio_func = sdhc_read_data_pio;
1269 }
1270 } else {
1271 imask = SDHC_BUFFER_WRITE_READY;
1272 pmask = SDHC_BUFFER_WRITE_ENABLE;
1273 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1274 pio_func = esdhc_write_data_pio;
1275 } else {
1276 pio_func = sdhc_write_data_pio;
1277 }
1278 }
1279 datalen = cmd->c_datalen;
1280
1281 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1282 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1283 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1284
1285 while (datalen > 0) {
1286 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1287 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1288 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1289 } else {
1290 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1291 }
1292 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1293 error = ETIMEDOUT;
1294 break;
1295 }
1296
1297 error = sdhc_wait_state(hp, pmask, pmask);
1298 if (error)
1299 break;
1300 }
1301
1302 len = MIN(datalen, cmd->c_blklen);
1303 (*pio_func)(hp, data, len);
1304 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1305 HDEVNAME(hp), len, data));
1306
1307 data += len;
1308 datalen -= len;
1309 }
1310
1311 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1312 SDHC_TRANSFER_TIMEOUT))
1313 error = ETIMEDOUT;
1314
1315 return error;
1316 }
1317
1318 static void
1319 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1320 {
1321
1322 if (((__uintptr_t)data & 3) == 0) {
1323 while (datalen > 3) {
1324 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1325 data += 4;
1326 datalen -= 4;
1327 }
1328 if (datalen > 1) {
1329 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1330 data += 2;
1331 datalen -= 2;
1332 }
1333 if (datalen > 0) {
1334 *data = HREAD1(hp, SDHC_DATA);
1335 data += 1;
1336 datalen -= 1;
1337 }
1338 } else if (((__uintptr_t)data & 1) == 0) {
1339 while (datalen > 1) {
1340 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1341 data += 2;
1342 datalen -= 2;
1343 }
1344 if (datalen > 0) {
1345 *data = HREAD1(hp, SDHC_DATA);
1346 data += 1;
1347 datalen -= 1;
1348 }
1349 } else {
1350 while (datalen > 0) {
1351 *data = HREAD1(hp, SDHC_DATA);
1352 data += 1;
1353 datalen -= 1;
1354 }
1355 }
1356 }
1357
1358 static void
1359 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1360 {
1361
1362 if (((__uintptr_t)data & 3) == 0) {
1363 while (datalen > 3) {
1364 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1365 data += 4;
1366 datalen -= 4;
1367 }
1368 if (datalen > 1) {
1369 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1370 data += 2;
1371 datalen -= 2;
1372 }
1373 if (datalen > 0) {
1374 HWRITE1(hp, SDHC_DATA, *data);
1375 data += 1;
1376 datalen -= 1;
1377 }
1378 } else if (((__uintptr_t)data & 1) == 0) {
1379 while (datalen > 1) {
1380 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1381 data += 2;
1382 datalen -= 2;
1383 }
1384 if (datalen > 0) {
1385 HWRITE1(hp, SDHC_DATA, *data);
1386 data += 1;
1387 datalen -= 1;
1388 }
1389 } else {
1390 while (datalen > 0) {
1391 HWRITE1(hp, SDHC_DATA, *data);
1392 data += 1;
1393 datalen -= 1;
1394 }
1395 }
1396 }
1397
1398 static void
1399 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1400 {
1401 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1402 uint32_t v;
1403
1404 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1405 v = HREAD4(hp, SDHC_DATA);
1406 v = le32toh(v);
1407 *(uint32_t *)data = v;
1408 data += 4;
1409 datalen -= 4;
1410 status = HREAD2(hp, SDHC_NINTR_STATUS);
1411 }
1412 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1413 v = HREAD4(hp, SDHC_DATA);
1414 v = le32toh(v);
1415 do {
1416 *data++ = v;
1417 v >>= 8;
1418 } while (--datalen > 0);
1419 }
1420 }
1421
1422 static void
1423 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1424 {
1425 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1426 uint32_t v;
1427
1428 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1429 v = *(uint32_t *)data;
1430 v = htole32(v);
1431 HWRITE4(hp, SDHC_DATA, v);
1432 data += 4;
1433 datalen -= 4;
1434 status = HREAD2(hp, SDHC_NINTR_STATUS);
1435 }
1436 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1437 v = *(uint32_t *)data;
1438 v = htole32(v);
1439 HWRITE4(hp, SDHC_DATA, v);
1440 }
1441 }
1442
1443 /* Prepare for another command. */
1444 static int
1445 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1446 {
1447 int timo;
1448
1449 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1450
1451 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1452 for (timo = 10; timo > 0; timo--) {
1453 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1454 break;
1455 sdmmc_delay(10000);
1456 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1457 }
1458 if (timo == 0) {
1459 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1460 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1461 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1462 return ETIMEDOUT;
1463 }
1464
1465 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1466 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1467 }
1468
1469 return 0;
1470 }
1471
1472 static int
1473 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1474 {
1475 int status;
1476
1477 mask |= SDHC_ERROR_INTERRUPT;
1478
1479 mutex_enter(&hp->intr_mtx);
1480 status = hp->intr_status & mask;
1481 while (status == 0) {
1482 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1483 == EWOULDBLOCK) {
1484 status |= SDHC_ERROR_INTERRUPT;
1485 break;
1486 }
1487 status = hp->intr_status & mask;
1488 }
1489 hp->intr_status &= ~status;
1490
1491 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1492 hp->intr_error_status));
1493
1494 /* Command timeout has higher priority than command complete. */
1495 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1496 hp->intr_error_status = 0;
1497 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1498 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1499 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1500 }
1501 status = 0;
1502 }
1503 mutex_exit(&hp->intr_mtx);
1504
1505 return status;
1506 }
1507
1508 /*
1509 * Established by attachment driver at interrupt priority IPL_SDMMC.
1510 */
1511 int
1512 sdhc_intr(void *arg)
1513 {
1514 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1515 struct sdhc_host *hp;
1516 int done = 0;
1517 uint16_t status;
1518 uint16_t error;
1519
1520 /* We got an interrupt, but we don't know from which slot. */
1521 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1522 hp = sc->sc_host[host];
1523 if (hp == NULL)
1524 continue;
1525
1526 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1527 /* Find out which interrupts are pending. */
1528 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1529 status = xstatus;
1530 error = xstatus >> 16;
1531 status |= (error ? SDHC_ERROR_INTERRUPT : 0);
1532 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1533 continue; /* no interrupt for us */
1534 /* Acknowledge the interrupts we are about to handle. */
1535 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1536 } else {
1537 /* Find out which interrupts are pending. */
1538 error = 0;
1539 status = HREAD2(hp, SDHC_NINTR_STATUS);
1540 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1541 continue; /* no interrupt for us */
1542 /* Acknowledge the interrupts we are about to handle. */
1543 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1544 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1545 /* Acknowledge error interrupts. */
1546 error = HREAD2(hp, SDHC_EINTR_STATUS);
1547 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1548 }
1549 }
1550
1551 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1552 status, error));
1553
1554 /* Claim this interrupt. */
1555 done = 1;
1556
1557 /*
1558 * Service error interrupts.
1559 */
1560 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1561 SDHC_DATA_TIMEOUT_ERROR)) {
1562 hp->intr_error_status |= error;
1563 hp->intr_status |= status;
1564 cv_broadcast(&hp->intr_cv);
1565 }
1566
1567 /*
1568 * Wake up the sdmmc event thread to scan for cards.
1569 */
1570 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1571 sdmmc_needs_discover(hp->sdmmc);
1572 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1573 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1574 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1575 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1576 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1577 }
1578 }
1579
1580 /*
1581 * Wake up the blocking process to service command
1582 * related interrupt(s).
1583 */
1584 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1585 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1586 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1587 hp->intr_status |= status;
1588 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1589 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1590 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1591 }
1592 cv_broadcast(&hp->intr_cv);
1593 }
1594
1595 /*
1596 * Service SD card interrupts.
1597 */
1598 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1599 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1600 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1601 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1602 sdmmc_card_intr(hp->sdmmc);
1603 }
1604 }
1605
1606 return done;
1607 }
1608
1609 #ifdef SDHC_DEBUG
1610 void
1611 sdhc_dump_regs(struct sdhc_host *hp)
1612 {
1613
1614 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1615 HREAD4(hp, SDHC_PRESENT_STATE));
1616 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1617 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1618 HREAD1(hp, SDHC_POWER_CTL));
1619 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1620 HREAD2(hp, SDHC_NINTR_STATUS));
1621 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1622 HREAD2(hp, SDHC_EINTR_STATUS));
1623 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1624 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1625 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1626 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1627 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1628 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1629 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1630 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1631 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1632 HREAD4(hp, SDHC_CAPABILITIES));
1633 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1634 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1635 }
1636 #endif
1637