Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.18
      1 /*	$NetBSD: sdhc.c,v 1.18 2012/07/12 17:15:27 jakllsch Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.18 2012/07/12 17:15:27 jakllsch Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_dma_tag_t dmat;		/* host DMA tag */
     66 
     67 	device_t sdmmc;			/* generic SD/MMC device */
     68 
     69 	struct kmutex host_mtx;
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	struct kmutex intr_mtx;
     80 	struct kcondvar intr_cv;
     81 
     82 	int specver;			/* spec. version */
     83 
     84 	uint32_t flags;			/* flags for this host */
     85 #define SHF_USE_DMA		0x0001
     86 #define SHF_USE_4BIT_MODE	0x0002
     87 #define SHF_USE_8BIT_MODE	0x0004
     88 };
     89 
     90 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91 #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     92 
     93 static uint8_t
     94 hread1(struct sdhc_host *hp, bus_size_t reg)
     95 {
     96 
     97 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     98 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     99 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    100 }
    101 
    102 static uint16_t
    103 hread2(struct sdhc_host *hp, bus_size_t reg)
    104 {
    105 
    106 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    107 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    108 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    109 }
    110 
    111 #define HREAD1(hp, reg)		hread1(hp, reg)
    112 #define HREAD2(hp, reg)		hread2(hp, reg)
    113 #define HREAD4(hp, reg)		\
    114 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    115 
    116 
    117 static void
    118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    119 {
    120 
    121 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    122 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    123 	} else {
    124 		const size_t shift = 8 * (o & 3);
    125 		o &= -4;
    126 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    127 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    128 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    129 	}
    130 }
    131 
    132 static void
    133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    134 {
    135 
    136 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    138 	} else {
    139 		const size_t shift = 8 * (o & 2);
    140 		o &= -4;
    141 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    143 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144 	}
    145 }
    146 
    147 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    148 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    149 #define HWRITE4(hp, reg, val)						\
    150 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    151 
    152 #define HCLR1(hp, reg, bits)						\
    153 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    154 #define HCLR2(hp, reg, bits)						\
    155 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    156 #define HCLR4(hp, reg, bits)						\
    157 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    158 #define HSET1(hp, reg, bits)						\
    159 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    160 #define HSET2(hp, reg, bits)						\
    161 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    162 #define HSET4(hp, reg, bits)						\
    163 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    164 
    165 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    166 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    167 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    168 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    169 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    170 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    171 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    172 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    173 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    174 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    175 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    176 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    177 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    178 		    struct sdmmc_command *);
    179 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    180 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    181 static int	sdhc_soft_reset(struct sdhc_host *, int);
    182 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    183 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    184 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    185 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    186 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190 
    191 
    192 static struct sdmmc_chip_functions sdhc_functions = {
    193 	/* host controller reset */
    194 	sdhc_host_reset,
    195 
    196 	/* host controller capabilities */
    197 	sdhc_host_ocr,
    198 	sdhc_host_maxblklen,
    199 
    200 	/* card detection */
    201 	sdhc_card_detect,
    202 
    203 	/* write protect */
    204 	sdhc_write_protect,
    205 
    206 	/* bus power, clock frequency and width */
    207 	sdhc_bus_power,
    208 	sdhc_bus_clock,
    209 	sdhc_bus_width,
    210 	sdhc_bus_rod,
    211 
    212 	/* command execution */
    213 	sdhc_exec_command,
    214 
    215 	/* card interrupt */
    216 	sdhc_card_enable_intr,
    217 	sdhc_card_intr_ack
    218 };
    219 
    220 static int
    221 sdhc_cfprint(void *aux, const char *pnp)
    222 {
    223 	const struct sdmmcbus_attach_args const * saa = aux;
    224 	const struct sdhc_host * const hp = saa->saa_sch;
    225 
    226 	if (pnp) {
    227 		aprint_normal("sdmmc at %s", pnp);
    228 	}
    229 	aprint_normal(" slot %d", HDEVINST(hp));
    230 
    231 	return UNCONF;
    232 }
    233 
    234 /*
    235  * Called by attachment driver.  For each SD card slot there is one SD
    236  * host controller standard register set. (1.3)
    237  */
    238 int
    239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    240     bus_space_handle_t ioh, bus_size_t iosize)
    241 {
    242 	struct sdmmcbus_attach_args saa;
    243 	struct sdhc_host *hp;
    244 	uint32_t caps;
    245 	uint16_t sdhcver;
    246 
    247 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
    248 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    249 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    250 	case SDHC_SPEC_VERS_100:
    251 		aprint_normal("1.0");
    252 		break;
    253 
    254 	case SDHC_SPEC_VERS_200:
    255 		aprint_normal("2.0");
    256 		break;
    257 
    258 	case SDHC_SPEC_VERS_300:
    259 		aprint_normal("3.0");
    260 		break;
    261 
    262 	default:
    263 		aprint_normal("unknown version(0x%x)",
    264 		    SDHC_SPEC_VERSION(sdhcver));
    265 		break;
    266 	}
    267 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    268 
    269 	/* Allocate one more host structure. */
    270 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    271 	if (hp == NULL) {
    272 		aprint_error_dev(sc->sc_dev,
    273 		    "couldn't alloc memory (sdhc host)\n");
    274 		goto err1;
    275 	}
    276 	sc->sc_host[sc->sc_nhosts++] = hp;
    277 
    278 	/* Fill in the new host structure. */
    279 	hp->sc = sc;
    280 	hp->iot = iot;
    281 	hp->ioh = ioh;
    282 	hp->dmat = sc->sc_dmat;
    283 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    284 
    285 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    286 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    287 	cv_init(&hp->intr_cv, "sdhcintr");
    288 
    289 	/*
    290 	 * Reset the host controller and enable interrupts.
    291 	 */
    292 	(void)sdhc_host_reset(hp);
    293 
    294 	/* Determine host capabilities. */
    295 	mutex_enter(&hp->host_mtx);
    296 	caps = HREAD4(hp, SDHC_CAPABILITIES);
    297 	mutex_exit(&hp->host_mtx);
    298 
    299 #if notyet
    300 	/* Use DMA if the host system and the controller support it. */
    301 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
    302 	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
    303 	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
    304 		SET(hp->flags, SHF_USE_DMA);
    305 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    306 	}
    307 #endif
    308 
    309 	/*
    310 	 * Determine the base clock frequency. (2.2.24)
    311 	 */
    312 	hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    313 	if (hp->clkbase == 0) {
    314 		if (sc->sc_clkbase == 0) {
    315 			/* The attachment driver must tell us. */
    316 			aprint_error_dev(sc->sc_dev,
    317 			    "unknown base clock frequency\n");
    318 			goto err;
    319 		}
    320 		hp->clkbase = sc->sc_clkbase;
    321 	}
    322 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    323 		/* SDHC 1.0 supports only 10-63 MHz. */
    324 		aprint_error_dev(sc->sc_dev,
    325 		    "base clock frequency out of range: %u MHz\n",
    326 		    hp->clkbase / 1000);
    327 		goto err;
    328 	}
    329 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    330 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    331 
    332 	/*
    333 	 * XXX Set the data timeout counter value according to
    334 	 * capabilities. (2.2.15)
    335 	 */
    336 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    337 #if 0
    338 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    339 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    340 #endif
    341 
    342 	/*
    343 	 * Determine SD bus voltage levels supported by the controller.
    344 	 */
    345 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    346 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    347 	}
    348 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    349 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    350 	}
    351 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    352 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    353 	}
    354 
    355 	/*
    356 	 * Determine the maximum block length supported by the host
    357 	 * controller. (2.2.24)
    358 	 */
    359 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    360 	case SDHC_MAX_BLK_LEN_512:
    361 		hp->maxblklen = 512;
    362 		break;
    363 
    364 	case SDHC_MAX_BLK_LEN_1024:
    365 		hp->maxblklen = 1024;
    366 		break;
    367 
    368 	case SDHC_MAX_BLK_LEN_2048:
    369 		hp->maxblklen = 2048;
    370 		break;
    371 
    372 	case SDHC_MAX_BLK_LEN_4096:
    373 		hp->maxblklen = 4096;
    374 		break;
    375 
    376 	default:
    377 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    378 		goto err;
    379 	}
    380 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    381 	    device_xname(sc->sc_dev), hp->maxblklen,
    382 	    hp->maxblklen > 1 ? "s" : ""));
    383 
    384 	/*
    385 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    386 	 * not invoke any chipset functions before it is attached.)
    387 	 */
    388 	memset(&saa, 0, sizeof(saa));
    389 	saa.saa_busname = "sdmmc";
    390 	saa.saa_sct = &sdhc_functions;
    391 	saa.saa_sch = hp;
    392 	saa.saa_dmat = hp->dmat;
    393 	saa.saa_clkmin = hp->clkbase / 256;
    394 	saa.saa_clkmax = hp->clkbase;
    395 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    396 		saa.saa_clkmin /= 2046;
    397 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    398 		saa.saa_clkmin /= 16;
    399 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    400 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    401 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    402 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    403 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    404 #if notyet
    405 	if (ISSET(hp->flags, SHF_USE_DMA))
    406 		saa.saa_caps |= SMC_CAPS_DMA;
    407 #endif
    408 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    409 
    410 	return 0;
    411 
    412 err:
    413 	cv_destroy(&hp->intr_cv);
    414 	mutex_destroy(&hp->intr_mtx);
    415 	mutex_destroy(&hp->host_mtx);
    416 	free(hp, M_DEVBUF);
    417 	sc->sc_host[--sc->sc_nhosts] = NULL;
    418 err1:
    419 	return 1;
    420 }
    421 
    422 int
    423 sdhc_detach(device_t dev, int flags)
    424 {
    425 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    426 	struct sdhc_softc *sc = hp->sc;
    427 	int rv = 0;
    428 
    429 	if (hp->sdmmc)
    430 		rv = config_detach(hp->sdmmc, flags);
    431 
    432 	cv_destroy(&hp->intr_cv);
    433 	mutex_destroy(&hp->intr_mtx);
    434 	mutex_destroy(&hp->host_mtx);
    435 	free(hp, M_DEVBUF);
    436 	sc->sc_host[--sc->sc_nhosts] = NULL;
    437 
    438 	return rv;
    439 }
    440 
    441 bool
    442 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    443 {
    444 	struct sdhc_softc *sc = device_private(dev);
    445 	struct sdhc_host *hp;
    446 	size_t i;
    447 
    448 	/* XXX poll for command completion or suspend command
    449 	 * in progress */
    450 
    451 	/* Save the host controller state. */
    452 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    453 		hp = sc->sc_host[n];
    454 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    455 			for (i = 0; i < sizeof hp->regs; i += 4) {
    456 				uint32_t v = HREAD4(hp, i);
    457 				hp->regs[i + 0] = (v >> 0);
    458 				hp->regs[i + 1] = (v >> 8);
    459 				if (i + 3 < sizeof hp->regs) {
    460 					hp->regs[i + 2] = (v >> 16);
    461 					hp->regs[i + 3] = (v >> 24);
    462 				}
    463 			}
    464 		} else {
    465 			for (i = 0; i < sizeof hp->regs; i++) {
    466 				hp->regs[i] = HREAD1(hp, i);
    467 			}
    468 		}
    469 	}
    470 	return true;
    471 }
    472 
    473 bool
    474 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    475 {
    476 	struct sdhc_softc *sc = device_private(dev);
    477 	struct sdhc_host *hp;
    478 	size_t i;
    479 
    480 	/* Restore the host controller state. */
    481 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    482 		hp = sc->sc_host[n];
    483 		(void)sdhc_host_reset(hp);
    484 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    485 			for (i = 0; i < sizeof hp->regs; i += 4) {
    486 				if (i + 3 < sizeof hp->regs) {
    487 					HWRITE4(hp, i,
    488 					    (hp->regs[i + 0] << 0)
    489 					    | (hp->regs[i + 1] << 8)
    490 					    | (hp->regs[i + 2] << 16)
    491 					    | (hp->regs[i + 3] << 24));
    492 				} else {
    493 					HWRITE4(hp, i,
    494 					    (hp->regs[i + 0] << 0)
    495 					    | (hp->regs[i + 1] << 8));
    496 				}
    497 			}
    498 		} else {
    499 			for (i = 0; i < sizeof hp->regs; i++) {
    500 				HWRITE1(hp, i, hp->regs[i]);
    501 			}
    502 		}
    503 	}
    504 	return true;
    505 }
    506 
    507 bool
    508 sdhc_shutdown(device_t dev, int flags)
    509 {
    510 	struct sdhc_softc *sc = device_private(dev);
    511 	struct sdhc_host *hp;
    512 
    513 	/* XXX chip locks up if we don't disable it before reboot. */
    514 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    515 		hp = sc->sc_host[i];
    516 		(void)sdhc_host_reset(hp);
    517 	}
    518 	return true;
    519 }
    520 
    521 /*
    522  * Reset the host controller.  Called during initialization, when
    523  * cards are removed, upon resume, and during error recovery.
    524  */
    525 static int
    526 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    527 {
    528 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    529 	uint32_t sdhcimask;
    530 	int error;
    531 
    532 	/* Don't lock. */
    533 
    534 	/* Disable all interrupts. */
    535 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    536 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    537 	} else {
    538 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    539 	}
    540 
    541 	/*
    542 	 * Reset the entire host controller and wait up to 100ms for
    543 	 * the controller to clear the reset bit.
    544 	 */
    545 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    546 	if (error)
    547 		goto out;
    548 
    549 	/* Set data timeout counter value to max for now. */
    550 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    551 #if 0
    552 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    553 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    554 #endif
    555 
    556 	/* Enable interrupts. */
    557 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    558 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    559 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    560 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    561 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    562 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    563 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    564 		sdhcimask ^=
    565 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    566 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    567 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    568 	} else {
    569 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    570 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    571 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    572 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    573 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    574 	}
    575 
    576 out:
    577 	return error;
    578 }
    579 
    580 static int
    581 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    582 {
    583 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    584 	int error;
    585 
    586 	mutex_enter(&hp->host_mtx);
    587 	error = sdhc_host_reset1(sch);
    588 	mutex_exit(&hp->host_mtx);
    589 
    590 	return error;
    591 }
    592 
    593 static uint32_t
    594 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    595 {
    596 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    597 
    598 	return hp->ocr;
    599 }
    600 
    601 static int
    602 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    603 {
    604 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    605 
    606 	return hp->maxblklen;
    607 }
    608 
    609 /*
    610  * Return non-zero if the card is currently inserted.
    611  */
    612 static int
    613 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    614 {
    615 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    616 	int r;
    617 
    618 	mutex_enter(&hp->host_mtx);
    619 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    620 	mutex_exit(&hp->host_mtx);
    621 
    622 	return r ? 1 : 0;
    623 }
    624 
    625 /*
    626  * Return non-zero if the card is currently write-protected.
    627  */
    628 static int
    629 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    630 {
    631 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    632 	int r;
    633 
    634 	mutex_enter(&hp->host_mtx);
    635 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    636 	mutex_exit(&hp->host_mtx);
    637 
    638 	return r ? 0 : 1;
    639 }
    640 
    641 /*
    642  * Set or change SD bus voltage and enable or disable SD bus power.
    643  * Return zero on success.
    644  */
    645 static int
    646 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    647 {
    648 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    649 	uint8_t vdd;
    650 	int error = 0;
    651 
    652 	mutex_enter(&hp->host_mtx);
    653 
    654 	/*
    655 	 * Disable bus power before voltage change.
    656 	 */
    657 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    658 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    659 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    660 
    661 	/* If power is disabled, reset the host and return now. */
    662 	if (ocr == 0) {
    663 		(void)sdhc_host_reset1(hp);
    664 		goto out;
    665 	}
    666 
    667 	/*
    668 	 * Select the lowest voltage according to capabilities.
    669 	 */
    670 	ocr &= hp->ocr;
    671 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    672 		vdd = SDHC_VOLTAGE_1_8V;
    673 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    674 		vdd = SDHC_VOLTAGE_3_0V;
    675 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    676 		vdd = SDHC_VOLTAGE_3_3V;
    677 	} else {
    678 		/* Unsupported voltage level requested. */
    679 		error = EINVAL;
    680 		goto out;
    681 	}
    682 
    683 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    684 		/*
    685 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    686 		 * voltage ramp until power rises.
    687 		 */
    688 		HWRITE1(hp, SDHC_POWER_CTL,
    689 		    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    690 		sdmmc_delay(10000);
    691 
    692 		/*
    693 		 * The host system may not power the bus due to battery low,
    694 		 * etc.  In that case, the host controller should clear the
    695 		 * bus power bit.
    696 		 */
    697 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    698 			error = ENXIO;
    699 			goto out;
    700 		}
    701 	}
    702 
    703 out:
    704 	mutex_exit(&hp->host_mtx);
    705 
    706 	return error;
    707 }
    708 
    709 /*
    710  * Return the smallest possible base clock frequency divisor value
    711  * for the CLOCK_CTL register to produce `freq' (KHz).
    712  */
    713 static bool
    714 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    715 {
    716 	u_int div;
    717 
    718 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    719 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    720 			if ((hp->clkbase / div) <= freq) {
    721 				*divp = SDHC_SDCLK_CGM
    722 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    723 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    724 				//freq = hp->clkbase / div;
    725 				return true;
    726 			}
    727 		}
    728 		/* No divisor found. */
    729 		return false;
    730 	}
    731 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    732 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    733 		u_int roundup = dvs & 1;
    734 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    735 			if (dvs + roundup <= 16) {
    736 				dvs += roundup - 1;
    737 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    738 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    739 				DPRINTF(2,
    740 				    ("%s: divisor for freq %u is %u * %u\n",
    741 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    742 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    743 				return true;
    744 			}
    745 			/*
    746 			 * If we drop bits, we need to round up the divisor.
    747 			 */
    748 			roundup |= dvs & 1;
    749 		}
    750 		/* No divisor found. */
    751 		return false;
    752 	} else {
    753 		for (div = 1; div <= 256; div *= 2) {
    754 			if ((hp->clkbase / div) <= freq) {
    755 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    756 				//freq = hp->clkbase / div;
    757 				return true;
    758 			}
    759 		}
    760 	}
    761 	/* No divisor found. */
    762 	return false;
    763 }
    764 
    765 /*
    766  * Set or change SDCLK frequency or disable the SD clock.
    767  * Return zero on success.
    768  */
    769 static int
    770 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    771 {
    772 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    773 	u_int div;
    774 	u_int timo;
    775 	int error = 0;
    776 #ifdef DIAGNOSTIC
    777 	bool present;
    778 
    779 	mutex_enter(&hp->host_mtx);
    780 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    781 	mutex_exit(&hp->host_mtx);
    782 
    783 	/* Must not stop the clock if commands are in progress. */
    784 	if (present && sdhc_card_detect(hp)) {
    785 		printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
    786 		    device_xname(hp->sc->sc_dev));
    787 	}
    788 #endif
    789 
    790 	mutex_enter(&hp->host_mtx);
    791 
    792 	/*
    793 	 * Stop SD clock before changing the frequency.
    794 	 */
    795 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    796 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    797 		if (freq == SDMMC_SDCLK_OFF) {
    798 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    799 			goto out;
    800 		}
    801 	} else {
    802 		HWRITE2(hp, SDHC_CLOCK_CTL, 0);
    803 		if (freq == SDMMC_SDCLK_OFF)
    804 			goto out;
    805 	}
    806 
    807 	/*
    808 	 * Set the minimum base clock frequency divisor.
    809 	 */
    810 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    811 		/* Invalid base clock frequency or `freq' value. */
    812 		error = EINVAL;
    813 		goto out;
    814 	}
    815 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    816 		HWRITE4(hp, SDHC_CLOCK_CTL,
    817 		    div | (SDHC_TIMEOUT_MAX << 16));
    818 	} else {
    819 		HWRITE2(hp, SDHC_CLOCK_CTL, div);
    820 	}
    821 
    822 	/*
    823 	 * Start internal clock.  Wait 10ms for stabilization.
    824 	 */
    825 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    826 		sdmmc_delay(10000);
    827 		HSET4(hp, SDHC_CLOCK_CTL,
    828 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    829 	} else {
    830 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    831 		for (timo = 1000; timo > 0; timo--) {
    832 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    833 			    SDHC_INTCLK_STABLE))
    834 				break;
    835 			sdmmc_delay(10);
    836 		}
    837 		if (timo == 0) {
    838 			error = ETIMEDOUT;
    839 			goto out;
    840 		}
    841 	}
    842 
    843 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    844 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    845 		/*
    846 		 * Sending 80 clocks at 400kHz takes 200us.
    847 		 * So delay for that time + slop and then
    848 		 * check a few times for completion.
    849 		 */
    850 		sdmmc_delay(210);
    851 		for (timo = 10; timo > 0; timo--) {
    852 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    853 			    SDHC_INIT_ACTIVE))
    854 				break;
    855 			sdmmc_delay(10);
    856 		}
    857 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    858 
    859 		/*
    860 		 * Enable SD clock.
    861 		 */
    862 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    863 	} else {
    864 		/*
    865 		 * Enable SD clock.
    866 		 */
    867 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    868 
    869 		if (freq > 25000)
    870 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    871 		else
    872 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    873 	}
    874 
    875 out:
    876 	mutex_exit(&hp->host_mtx);
    877 
    878 	return error;
    879 }
    880 
    881 static int
    882 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    883 {
    884 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    885 	int reg;
    886 
    887 	switch (width) {
    888 	case 1:
    889 	case 4:
    890 		break;
    891 
    892 	case 8:
    893 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    894 			break;
    895 		/* FALLTHROUGH */
    896 	default:
    897 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    898 		    HDEVNAME(hp), width));
    899 		return 1;
    900 	}
    901 
    902 	mutex_enter(&hp->host_mtx);
    903 	reg = HREAD1(hp, SDHC_HOST_CTL);
    904 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    905 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    906 		if (width == 4)
    907 			reg |= SDHC_4BIT_MODE;
    908 		else if (width == 8)
    909 			reg |= SDHC_ESDHC_8BIT_MODE;
    910 	} else {
    911 		reg &= ~SDHC_4BIT_MODE;
    912 		if (width == 4)
    913 			reg |= SDHC_4BIT_MODE;
    914 	}
    915 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    916 	mutex_exit(&hp->host_mtx);
    917 
    918 	return 0;
    919 }
    920 
    921 static int
    922 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    923 {
    924 
    925 	/* Nothing ?? */
    926 	return 0;
    927 }
    928 
    929 static void
    930 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    931 {
    932 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    933 
    934 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    935 		mutex_enter(&hp->host_mtx);
    936 		if (enable) {
    937 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    938 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    939 		} else {
    940 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    941 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    942 		}
    943 		mutex_exit(&hp->host_mtx);
    944 	}
    945 }
    946 
    947 static void
    948 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    949 {
    950 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    951 
    952 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    953 		mutex_enter(&hp->host_mtx);
    954 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    955 		mutex_exit(&hp->host_mtx);
    956 	}
    957 }
    958 
    959 static int
    960 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    961 {
    962 	uint32_t state;
    963 	int timeout;
    964 
    965 	for (timeout = 10; timeout > 0; timeout--) {
    966 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
    967 			return 0;
    968 		sdmmc_delay(10000);
    969 	}
    970 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
    971 	    value, state));
    972 	return ETIMEDOUT;
    973 }
    974 
    975 static void
    976 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
    977 {
    978 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    979 	int error;
    980 
    981 #if 0
    982 	if (cmd->c_data) {
    983 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
    984 		if (ISSET(hp->flags, SHF_USE_DMA)) {
    985 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    986 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
    987 		} else {
    988 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    989 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
    990 		}
    991 	}
    992 #endif
    993 
    994 	/*
    995 	 * Start the MMC command, or mark `cmd' as failed and return.
    996 	 */
    997 	error = sdhc_start_command(hp, cmd);
    998 	if (error) {
    999 		cmd->c_error = error;
   1000 		goto out;
   1001 	}
   1002 
   1003 	/*
   1004 	 * Wait until the command phase is done, or until the command
   1005 	 * is marked done for any other reason.
   1006 	 */
   1007 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1008 		cmd->c_error = ETIMEDOUT;
   1009 		goto out;
   1010 	}
   1011 
   1012 	/*
   1013 	 * The host controller removes bits [0:7] from the response
   1014 	 * data (CRC) and we pass the data up unchanged to the bus
   1015 	 * driver (without padding).
   1016 	 */
   1017 	mutex_enter(&hp->host_mtx);
   1018 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1019 		uint32_t *p = cmd->c_resp;
   1020 		int i;
   1021 
   1022 		for (i = 0; i < 4; i++) {
   1023 			*p++ = bus_space_read_stream_4(hp->iot, hp->ioh,
   1024 			    SDHC_RESPONSE + i * 4);
   1025 			if (!ISSET(cmd->c_flags, SCF_RSP_136))
   1026 				break;
   1027 		}
   1028 	}
   1029 	mutex_exit(&hp->host_mtx);
   1030 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1031 
   1032 	/*
   1033 	 * If the command has data to transfer in any direction,
   1034 	 * execute the transfer now.
   1035 	 */
   1036 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1037 		sdhc_transfer_data(hp, cmd);
   1038 
   1039 out:
   1040 #if 0
   1041 	if (cmd->c_dmamap != NULL && cmd->c_error == 0
   1042 	    && ISSET(hp->flags, SHF_USE_DMA)
   1043 	    && ISSET(cmd->c_flags, SCF_CMD_READ) {
   1044 		if (((uintptr_t)cmd->c_data & PAGE_MASK) + cmd->c_datalen > PAGE_SIZE) {
   1045 			memcpy(cmd->c_data,
   1046 			    (void *)hp->sc->dma_map->dm_segs[0].ds_addr,
   1047 			    cmd->c_datalen);
   1048 		}
   1049 		bus_dmamap_unload(hp->sc->dt, hp->sc->dma_map);
   1050 	}
   1051 #endif
   1052 
   1053 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1054 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1055 		mutex_enter(&hp->host_mtx);
   1056 		/* Turn off the LED. */
   1057 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1058 		mutex_exit(&hp->host_mtx);
   1059 	}
   1060 	SET(cmd->c_flags, SCF_ITSDONE);
   1061 
   1062 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1063 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1064 	    cmd->c_flags, cmd->c_error));
   1065 }
   1066 
   1067 static int
   1068 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1069 {
   1070 	struct sdhc_softc * const sc = hp->sc;
   1071 	uint16_t blksize = 0;
   1072 	uint16_t blkcount = 0;
   1073 	uint16_t mode;
   1074 	uint16_t command;
   1075 	int error;
   1076 
   1077 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1078 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1079 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1080 
   1081 	/*
   1082 	 * The maximum block length for commands should be the minimum
   1083 	 * of the host buffer size and the card buffer size. (1.7.2)
   1084 	 */
   1085 
   1086 	/* Fragment the data into proper blocks. */
   1087 	if (cmd->c_datalen > 0) {
   1088 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1089 		blkcount = cmd->c_datalen / blksize;
   1090 		if (cmd->c_datalen % blksize > 0) {
   1091 			/* XXX: Split this command. (1.7.4) */
   1092 			aprint_error_dev(sc->sc_dev,
   1093 			    "data not a multiple of %u bytes\n", blksize);
   1094 			return EINVAL;
   1095 		}
   1096 	}
   1097 
   1098 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1099 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1100 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1101 		return EINVAL;
   1102 	}
   1103 
   1104 	/* Prepare transfer mode register value. (2.2.5) */
   1105 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1106 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1107 		mode |= SDHC_READ_MODE;
   1108 	if (blkcount > 1) {
   1109 		mode |= SDHC_MULTI_BLOCK_MODE;
   1110 		/* XXX only for memory commands? */
   1111 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1112 	}
   1113 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1114 		if (cmd->c_dmamap->dm_nsegs == 1) {
   1115 			mode |= SDHC_DMA_ENABLE;
   1116 		} else {
   1117 			cmd->c_dmamap = NULL;
   1118 		}
   1119 	}
   1120 
   1121 	/*
   1122 	 * Prepare command register value. (2.2.6)
   1123 	 */
   1124 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1125 
   1126 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1127 		command |= SDHC_CRC_CHECK_ENABLE;
   1128 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1129 		command |= SDHC_INDEX_CHECK_ENABLE;
   1130 	if (cmd->c_data != NULL)
   1131 		command |= SDHC_DATA_PRESENT_SELECT;
   1132 
   1133 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1134 		command |= SDHC_NO_RESPONSE;
   1135 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1136 		command |= SDHC_RESP_LEN_136;
   1137 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1138 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1139 	else
   1140 		command |= SDHC_RESP_LEN_48;
   1141 
   1142 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1143 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1144 	if (error)
   1145 		return error;
   1146 
   1147 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1148 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1149 
   1150 	mutex_enter(&hp->host_mtx);
   1151 
   1152 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1153 		/* Alert the user not to remove the card. */
   1154 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1155 	}
   1156 
   1157 	/* Set DMA start address. */
   1158 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1159 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1160 
   1161 	/*
   1162 	 * Start a CPU data transfer.  Writing to the high order byte
   1163 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1164 	 */
   1165 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1166 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1167 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1168 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1169 	} else {
   1170 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1171 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1172 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1173 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1174 		HWRITE2(hp, SDHC_COMMAND, command);
   1175 	}
   1176 
   1177 	mutex_exit(&hp->host_mtx);
   1178 
   1179 	return 0;
   1180 }
   1181 
   1182 static void
   1183 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1184 {
   1185 	int error;
   1186 
   1187 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1188 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1189 
   1190 #ifdef SDHC_DEBUG
   1191 	/* XXX I forgot why I wanted to know when this happens :-( */
   1192 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1193 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1194 		aprint_error_dev(hp->sc->sc_dev,
   1195 		    "CMD52/53 error response flags %#x\n",
   1196 		    MMC_R1(cmd->c_resp) & 0xff00);
   1197 	}
   1198 #endif
   1199 
   1200 	if (cmd->c_dmamap != NULL)
   1201 		error = sdhc_transfer_data_dma(hp, cmd);
   1202 	else
   1203 		error = sdhc_transfer_data_pio(hp, cmd);
   1204 	if (error)
   1205 		cmd->c_error = error;
   1206 	SET(cmd->c_flags, SCF_ITSDONE);
   1207 
   1208 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1209 	    HDEVNAME(hp), cmd->c_error));
   1210 }
   1211 
   1212 static int
   1213 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1214 {
   1215 	bus_dmamap_t dmap = cmd->c_dmamap;
   1216 	uint16_t blklen = cmd->c_blklen;
   1217 	uint16_t blkcnt = cmd->c_datalen / blklen;
   1218 	uint16_t remain;
   1219 	int error = 0;
   1220 
   1221 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1222 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1223 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1224 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1225 
   1226 	for (;;) {
   1227 		if (!sdhc_wait_intr(hp,
   1228 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1229 		    SDHC_DMA_TIMEOUT)) {
   1230 			error = ETIMEDOUT;
   1231 			break;
   1232 		}
   1233 
   1234 		/* single block mode */
   1235 		if (blkcnt == 1)
   1236 			break;
   1237 
   1238 		/* multi block mode */
   1239 		remain = HREAD2(hp, SDHC_BLOCK_COUNT);
   1240 		if (remain == 0)
   1241 			break;
   1242 
   1243 		HWRITE4(hp, SDHC_DMA_ADDR,
   1244 		    dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
   1245 	}
   1246 
   1247 #if 0
   1248 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1249 	    SDHC_TRANSFER_TIMEOUT))
   1250 		error = ETIMEDOUT;
   1251 #endif
   1252 
   1253 	return error;
   1254 }
   1255 
   1256 static int
   1257 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1258 {
   1259 	uint8_t *data = cmd->c_data;
   1260 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1261 	u_int len, datalen;
   1262 	u_int imask;
   1263 	u_int pmask;
   1264 	int error = 0;
   1265 
   1266 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1267 		imask = SDHC_BUFFER_READ_READY;
   1268 		pmask = SDHC_BUFFER_READ_ENABLE;
   1269 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1270 			pio_func = esdhc_read_data_pio;
   1271 		} else {
   1272 			pio_func = sdhc_read_data_pio;
   1273 		}
   1274 	} else {
   1275 		imask = SDHC_BUFFER_WRITE_READY;
   1276 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1277 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1278 			pio_func = esdhc_write_data_pio;
   1279 		} else {
   1280 			pio_func = sdhc_write_data_pio;
   1281 		}
   1282 	}
   1283 	datalen = cmd->c_datalen;
   1284 
   1285 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1286 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1287 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1288 
   1289 	while (datalen > 0) {
   1290 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1291 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1292 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1293 			} else {
   1294 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1295 			}
   1296 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1297 				error = ETIMEDOUT;
   1298 				break;
   1299 			}
   1300 
   1301 			error = sdhc_wait_state(hp, pmask, pmask);
   1302 			if (error)
   1303 				break;
   1304 		}
   1305 
   1306 		len = MIN(datalen, cmd->c_blklen);
   1307 		(*pio_func)(hp, data, len);
   1308 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1309 		    HDEVNAME(hp), len, data));
   1310 
   1311 		data += len;
   1312 		datalen -= len;
   1313 	}
   1314 
   1315 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1316 	    SDHC_TRANSFER_TIMEOUT))
   1317 		error = ETIMEDOUT;
   1318 
   1319 	return error;
   1320 }
   1321 
   1322 static void
   1323 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1324 {
   1325 
   1326 	if (((__uintptr_t)data & 3) == 0) {
   1327 		while (datalen > 3) {
   1328 			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
   1329 			data += 4;
   1330 			datalen -= 4;
   1331 		}
   1332 		if (datalen > 1) {
   1333 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1334 			data += 2;
   1335 			datalen -= 2;
   1336 		}
   1337 		if (datalen > 0) {
   1338 			*data = HREAD1(hp, SDHC_DATA);
   1339 			data += 1;
   1340 			datalen -= 1;
   1341 		}
   1342 	} else if (((__uintptr_t)data & 1) == 0) {
   1343 		while (datalen > 1) {
   1344 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1345 			data += 2;
   1346 			datalen -= 2;
   1347 		}
   1348 		if (datalen > 0) {
   1349 			*data = HREAD1(hp, SDHC_DATA);
   1350 			data += 1;
   1351 			datalen -= 1;
   1352 		}
   1353 	} else {
   1354 		while (datalen > 0) {
   1355 			*data = HREAD1(hp, SDHC_DATA);
   1356 			data += 1;
   1357 			datalen -= 1;
   1358 		}
   1359 	}
   1360 }
   1361 
   1362 static void
   1363 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1364 {
   1365 
   1366 	if (((__uintptr_t)data & 3) == 0) {
   1367 		while (datalen > 3) {
   1368 			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
   1369 			data += 4;
   1370 			datalen -= 4;
   1371 		}
   1372 		if (datalen > 1) {
   1373 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1374 			data += 2;
   1375 			datalen -= 2;
   1376 		}
   1377 		if (datalen > 0) {
   1378 			HWRITE1(hp, SDHC_DATA, *data);
   1379 			data += 1;
   1380 			datalen -= 1;
   1381 		}
   1382 	} else if (((__uintptr_t)data & 1) == 0) {
   1383 		while (datalen > 1) {
   1384 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1385 			data += 2;
   1386 			datalen -= 2;
   1387 		}
   1388 		if (datalen > 0) {
   1389 			HWRITE1(hp, SDHC_DATA, *data);
   1390 			data += 1;
   1391 			datalen -= 1;
   1392 		}
   1393 	} else {
   1394 		while (datalen > 0) {
   1395 			HWRITE1(hp, SDHC_DATA, *data);
   1396 			data += 1;
   1397 			datalen -= 1;
   1398 		}
   1399 	}
   1400 }
   1401 
   1402 static void
   1403 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1404 {
   1405 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1406 	uint32_t v;
   1407 
   1408 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1409 		v = HREAD4(hp, SDHC_DATA);
   1410 		v = le32toh(v);
   1411 		*(uint32_t *)data = v;
   1412 		data += 4;
   1413 		datalen -= 4;
   1414 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1415 	}
   1416 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1417 		v = HREAD4(hp, SDHC_DATA);
   1418 		v = le32toh(v);
   1419 		do {
   1420 			*data++ = v;
   1421 			v >>= 8;
   1422 		} while (--datalen > 0);
   1423 	}
   1424 }
   1425 
   1426 static void
   1427 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1428 {
   1429 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1430 	uint32_t v;
   1431 
   1432 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1433 		v = *(uint32_t *)data;
   1434 		v = htole32(v);
   1435 		HWRITE4(hp, SDHC_DATA, v);
   1436 		data += 4;
   1437 		datalen -= 4;
   1438 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1439 	}
   1440 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1441 		v = *(uint32_t *)data;
   1442 		v = htole32(v);
   1443 		HWRITE4(hp, SDHC_DATA, v);
   1444 	}
   1445 }
   1446 
   1447 /* Prepare for another command. */
   1448 static int
   1449 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1450 {
   1451 	int timo;
   1452 
   1453 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1454 
   1455 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1456 	for (timo = 10; timo > 0; timo--) {
   1457 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1458 			break;
   1459 		sdmmc_delay(10000);
   1460 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1461 	}
   1462 	if (timo == 0) {
   1463 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1464 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1465 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1466 		return ETIMEDOUT;
   1467 	}
   1468 
   1469 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1470 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1471 	}
   1472 
   1473 	return 0;
   1474 }
   1475 
   1476 static int
   1477 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1478 {
   1479 	int status;
   1480 
   1481 	mask |= SDHC_ERROR_INTERRUPT;
   1482 
   1483 	mutex_enter(&hp->intr_mtx);
   1484 	status = hp->intr_status & mask;
   1485 	while (status == 0) {
   1486 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1487 		    == EWOULDBLOCK) {
   1488 			status |= SDHC_ERROR_INTERRUPT;
   1489 			break;
   1490 		}
   1491 		status = hp->intr_status & mask;
   1492 	}
   1493 	hp->intr_status &= ~status;
   1494 
   1495 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1496 	    hp->intr_error_status));
   1497 
   1498 	/* Command timeout has higher priority than command complete. */
   1499 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1500 		hp->intr_error_status = 0;
   1501 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1502 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1503 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1504 		}
   1505 		status = 0;
   1506 	}
   1507 	mutex_exit(&hp->intr_mtx);
   1508 
   1509 	return status;
   1510 }
   1511 
   1512 /*
   1513  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1514  */
   1515 int
   1516 sdhc_intr(void *arg)
   1517 {
   1518 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1519 	struct sdhc_host *hp;
   1520 	int done = 0;
   1521 	uint16_t status;
   1522 	uint16_t error;
   1523 
   1524 	/* We got an interrupt, but we don't know from which slot. */
   1525 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1526 		hp = sc->sc_host[host];
   1527 		if (hp == NULL)
   1528 			continue;
   1529 
   1530 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1531 			/* Find out which interrupts are pending. */
   1532 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1533 			status = xstatus;
   1534 			error = xstatus >> 16;
   1535 			status |= (error ? SDHC_ERROR_INTERRUPT : 0);
   1536 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1537 				continue; /* no interrupt for us */
   1538 			/* Acknowledge the interrupts we are about to handle. */
   1539 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1540 		} else {
   1541 			/* Find out which interrupts are pending. */
   1542 			error = 0;
   1543 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1544 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1545 				continue; /* no interrupt for us */
   1546 			/* Acknowledge the interrupts we are about to handle. */
   1547 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1548 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1549 				/* Acknowledge error interrupts. */
   1550 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1551 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1552 			}
   1553 		}
   1554 
   1555 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1556 		    status, error));
   1557 
   1558 		/* Claim this interrupt. */
   1559 		done = 1;
   1560 
   1561 		/*
   1562 		 * Service error interrupts.
   1563 		 */
   1564 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1565 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1566 			hp->intr_error_status |= error;
   1567 			hp->intr_status |= status;
   1568 			cv_broadcast(&hp->intr_cv);
   1569 		}
   1570 
   1571 		/*
   1572 		 * Wake up the sdmmc event thread to scan for cards.
   1573 		 */
   1574 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1575 			sdmmc_needs_discover(hp->sdmmc);
   1576 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1577 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1578 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1579 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1580 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1581 			}
   1582 		}
   1583 
   1584 		/*
   1585 		 * Wake up the blocking process to service command
   1586 		 * related interrupt(s).
   1587 		 */
   1588 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1589 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1590 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1591 			hp->intr_status |= status;
   1592 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1593 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1594 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1595 			}
   1596 			cv_broadcast(&hp->intr_cv);
   1597 		}
   1598 
   1599 		/*
   1600 		 * Service SD card interrupts.
   1601 		 */
   1602 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1603 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1604 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1605 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1606 			sdmmc_card_intr(hp->sdmmc);
   1607 		}
   1608 	}
   1609 
   1610 	return done;
   1611 }
   1612 
   1613 #ifdef SDHC_DEBUG
   1614 void
   1615 sdhc_dump_regs(struct sdhc_host *hp)
   1616 {
   1617 
   1618 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1619 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1620 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1621 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1622 		    HREAD1(hp, SDHC_POWER_CTL));
   1623 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1624 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1625 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1626 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1627 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1628 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1629 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1630 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1631 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1632 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1633 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1634 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1635 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1636 	    HREAD4(hp, SDHC_CAPABILITIES));
   1637 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1638 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1639 }
   1640 #endif
   1641